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Abstract: The Internet of Things (IoT) consists of complex and dynamically aggregated elements or
smart entities that need decentralized supervision for data exchanging throughout different networks.
The artificial bee colony (ABC) is utilized in optimization problems for the big data in IoT, cloud and
central repositories. The main limitation during the searching mechanism is that every single food site
is compared with every other food site to find the best solution in the neighboring regions. In this way,
an extensive number of redundant comparisons are required, which results in a slower convergence
rate, greater time consumption and increased delays. This paper presents a solution to optimize
search operations with an enhanced ABC (E-ABC) approach. The proposed algorithm compares the
best food sites with neighboring sites to exclude poor sources. It achieves an efficient mechanism,
where the number of redundant comparisons is decreased during the searching mechanism of the
employed bee phase and the onlooker bee phase. The proposed algorithm is implemented in a
replication scenario to validate its performance in terms of the mean objective function values for
different functions, as well as the probability of availability and the response time. The results prove
the superiority of the E-ABC in contrast to its counterparts.

Keywords: data replication; bee colony optimization; artificial intelligence

1. Introduction

IoT refers to the network of inter-relating physical objects that have the ability to ex-
change data among a network at a remarkable speed for smart and intelligent devices. [1–4].
The data from smart devices are collected in an aggregated manner to be shared in a secure
way for dependable solutions. The IoT enables such physical entities to sense, discover, rec-
ognize, think, communicate and share data in a variety of applications [5,6]. The IoT-based
system reduces the human workload in multiple domains [7–10]. IoT-enabled structures
are complicated and dynamic in nature. Thus, there are many significant challenges that
have to be solved. Artificial intelligence (more specifically, swarm intelligence) deals with
such complex problems well because of its superior properties such as robustness and
flexibility [11]. SI generates benefits for IoT-enabled structures, which can be shaped as a
swarm of simple devices or can incorporate swarm intelligence-based algorithms to attain
global objectives [12]. In this way, a global optimum can be obtained at the system level
by starting with basic rules for individual behaviors and interactions. This capability to
self-organize is essential to adapt systems to changing environmental circumstances, to
scale effectively and to ensure robust functioning for a system’s long-term viability.

Cloud computing describes the on-demand provision of services like data storage,
data processing, etc. Cloud-based systems are most commonly used in fields like WSNs,
IoT, big data, etc., In the IoT, the cloud maintains central repositories for these applications,
where big data can be saved to analyze and alert stakeholders and to protect from possible
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losses [13]. The cloud server is considered as the primary or main server that is responsible
for providing services as needed; therefore, the big data from massive IoT devices are
usually processed through fog servers and then stored in the cloud. A large amount of
replicated data is also saved in the cloud, which should be eliminated to save storage.
Cloud-based systems minimize the expenses of IT systems or networks by enabling cost-
effective, extensible, flexible and widely available resources from anywhere and at any
time. These systems are able to transfer the enormous data packages that are assembled by
the IoT [14–16].

This paper presents the enhanced ABC mechanism to improve the optimization
performance. The main objective is to improve the searching mechanisms. This work solves
the identified problem by choosing different criteria for employed and onlooker bees to
choose their food sources. The main contributions of this work are as follows:

1. This work explores the schemes that utilize either standard ABC-based schemes or
modified versions to achieve better performance in terms of optimization;

2. The proposed work resolves the issue of excessive time consumption during the
search mechanism for the employed bee phase and onlooker bee phase in modified
versions of the ABC;

3. The proposed algorithm eliminates redundant comparisons when finding suitable
solutions, where every single food site is compared with every other food site. We
obtain the finest food sites in contrast to neighboring sites, which results in the
exclusion of poor sources;

4. Next, the enhanced version of the ABC algorithm is executed by data centers in order
to find the optimal path for data replicas. Finally, the proposed E-ABC algorithm’s
results are validated in comparison to its counterparts.

The rest of the manuscript is organized as follows. Section 2 presents a literature
review for data sharing and replication techniques. The proposed solution is presented in
Section 3. Section 4 discusses the efficiency of the proposed scheme; moreover, it presents
a comparison of the E-ABC with some other well-known algorithms. Finally, Section 5
concludes our work.

2. Literature Review

In this section, schemes that cover ABC algorithm-based solutions are explored while
considering its optimization. The literature is categorized into standard ABC schemes,
variants of the ABC and optimized data-sharing and replication-based techniques.

2.1. Standard ABC Schemes

This sub-section explores standard artificial bee colony (ABC) algorithm-based solu-
tions to achieve optimization. The SI-based optimized ABC is inspired by the foraging
behavior of honey bee swarms. It consists of three types of bees: an employed bee, an
onlooker bee and scout bees. Employed bees search for food sources, analyze the amount
of nectar and return to the dancing area and perform their dance. Onlooker bees observe
the employed foragers’ dances from their hives and choose a food site accordingly. The
third type of bees, named scout bees, are independent of employed and onlooker bees. In
the ABC, the honey bee swarms explore the area and search for food sources; once they
find sufficient sources, these bees memorize the locations of these sources before they leave
the hive. Afterwards, these bees start dancing in the dancing zone; this dance conveys the
food source’s location to the other bees that reside in the hive [17].

The ABC is applicable in numerous fields, such as continuous optimal problems, data
clustering, data replication, image classification, task scheduling and network reconfigura-
tion complexity. The ABC is known for its simplicity, minimal parameters and robust global
search capability [18]. The ABC is applicable to numerous fields, including research, social
sciences, data clustering, neural networks and many more. Moreover, it can be utilized
in cloud computing to reduce load balancing [19]. The ABC approach is most commonly
utilized in finding optimal solutions. The unique problem-solving method of the ABC
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algorithm makes it superior to other algorithms [20]. The scout bees examine food sites
randomly, as seen in Figure 1.
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2.2. Enhanced Variants of ABC Schemes

This sub-section explores the variants of the ABC algorithm where researchers have mod-
ified the existing functionality to achieve better results as per its applicability. Karaboga et al.
presented an enhanced version of the ABC algorithm named the quick artificial bee colony
algorithm (qABC). In qABC, the authors pointed out that onlooker bees choose their food
sources differently as compared to employed bees. Thus, a new definition for the onlooker
bee is introduced in qABC, while, in the original ABC technique, both the employed and
onlooker bees select their food sources using the same formula. Another modification in-
troduced in this algorithm is that it chooses a solution in neighboring areas using the mean
Euclidian distance. Moreover, the efficiency of qABC was tested on various benchmark
functions considering the neighborhood radius. The experimental outcomes prove the
efficiency of the qABC algorithm [21]. Aslan et al. presented an improved quick artificial
bee colony algorithm (iqABC). A new definition for exploitation is presented in this work
for the purpose of enhancing the early convergence rate without affecting the final solu-
tions. To attain encouraging results, four different search schemas are added in the ABC
algorithm. Additionally, a finestLimit parameter is added in the workflow of the standard
ABC algorithm. Experiments were performed for the finestLimit parameter and various
benchmark problems were used to test the performance of the iqABC algorithm while
comparing it with some other well-known algorithms. The results show the efficiency of
the iqABC algorithm over other preceding algorithms [22]. Sumin Li et al. present the
IABC algorithm, which enhances the modified search strategy of the GABC with a dynamic
inertia weight factor. Experimental results demonstrate that the IABC outperforms both
the standard ABC and GABC in terms of search accuracy and convergence speed [23].
Li et al. presented an improved algorithm named EMABC-NS that utilizes multi-strategy
collaboration and a neighborhood search. It incorporates information from both the global
best individual and nearby individuals during the search, enhancing the search strategy for
employed and onlooker bees. The introduction of a modification rate (MR) randomizes the
solution dimensions. The EMABC-NS outperforms competitors in benchmark functions
and engineering problems, demonstrating its effectiveness in practical applications [24].
Cui et al. presented an ABC algorithm named FOABC that uses fractional-order calculus
to enhance the local search capabilities by incorporating memory properties. The FOABC
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refers to past foraging behaviors stored in memory when generating new candidate so-
lutions. An improved search strategy in the employed bee phase balances diversification
and intensification. Experimental results on CEC benchmark problems show the FOABC’s
superiority over other ABC variants and its effectiveness in practical applications like robot
path planning [25]. Tingyu et al. presented an enhanced MaOABC-TA algorithm, incorpo-
rating two archives (convergence and diversity) and three search strategies, inspired by
the Two_Arch2 method. A new probability selection strategy prioritizes diverse solutions.
Experimental comparisons with 10 MaOEAs and 3 AfBCs on benchmark sets reveal that
MaOABC-TA outperforms the others in terms of the inverted generational distance (IGD)
and hypervolume (HV) values [26].

2.3. Data Sharing and Replication-Based Techniques

ABC-based schemes are applicable in the identification of replication in data and
files. The solutions in the literature attempt to identify replicas as food sources using the
ABC and its variants. Mansouri et al. presented a scheme named prefetching-aware data
replication (PDR). The connection is found among the data replicas while obtaining the data
from increasingly popular remote sites. To accomplish data replicas, the PDR utilizes fuzzy
logic. The structure of the PDR is based on four elements: the access number, the replica
cost, the duration since the last access for replicas and data availability [27]. Najjar et al. [28]
introduced a robust spanning tree technique in the IoT and named it RST-IoT. The presented
technique is used for tree construction. It utilizes the ABC approach to produce appropriate
trees for great productivity. The major advantage of adopting this approach is that it
produces trees that are close to optimum. The generated trees are arranged in accordance
with their preferences. The simulation findings show that RST-IoT outperforms previous
methods with regard to stability and energy usage. Saleem et al. [29] described a multi-
objective based optimization technique to select and place data replicas. The presented
approach uses the artificial bee colony algorithm to achieve optimal solutions and is called
the multi-objective optimized ABC algorithm (MOABC). In the presented approach, the
ABC is used to place the replicated data in the finest possible location in terms of the
shortest distance and lowest cost. Moreover, the MOABC uses the knapsack technique to
save money while achieving load balancing across data centers. In this approach, the data
centers employ artificial bee colonies to determine the optimal data replication sequence.
The suggested technique is implemented to investigate the effectiveness and accessibility
of data as well as the cost-optimality of replicas. The resultant outcomes demonstrate that
the MOABC produces effective solutions and outperforms competing methods.

Cui et al. [30] presented the ABC with dynamic composition, where bees are dynam-
ically assigned on the basis of a searching space limit, as compared to the existing ABC
schemes that involve a fixed ratio of employed and onlooker bees, which restricts the
utilization of the available resources when searching for the best food. Kruekaew et al.
presented an enhanced scheme named HABC_LJF for virtual machines that aimed to im-
prove task scheduling and load balancing [31]. Li et al. [32] demonstrated an ABC-based
hybrid approach that aimed to solve task scheduling. Liu et al. presented an efficient fog
computing resource-scheduling strategy to address inefficiencies in IoT edge networks with
increasing data input. Utilizing particle swarm optimization (PSO), the strategy optimizes
the load balance, computation time and energy consumption within a single fog cluster.
Additionally, the particle swarm genetic joint optimization artificial bee colony algorithm
(PGABC) optimizes task scheduling among fog clusters, further reducing the delay and
energy consumption. Experimental results demonstrate that the PGABC outperforms the
GABC, the ABC and the PSO in reducing time delays [33].

2.4. Comparative Discussion and Problem Statement

The standard ABC algorithm [17] exhibits strong exploration properties but lacks
efficiency in exploitation. With only two adjustable parameters (colony size and maximum
cycle number), it is simple to implement and flexible, allowing easy adjustments. Modifica-
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tions to the search equation in some schemes enhance the efficiency and convergence speed.
Researchers have explored hybrid techniques, combining the ABC with other algorithms
and hybridizing the ABC with data clustering algorithms for improved performance in
terms of accuracy, convergence rates, efficiency and robustness. In this section, a com-
parative analysis of existing schemes is presented to explore the optimization ability of
enhanced ABC-based schemes, as illustrated in Table 1.

Table 1. Summary of existing ABC-based schemes.

Author Article Task Algorithm Variant

Dervis Karaboga et al. [17] Honeybee swarm for
numerical optimization

Numerical optimization search for
optimum solutions. Standard ABC.

Dervis Karaboga et al. [21]

A quick ABC (qABC)
algorithm and its
performance on

optimization problems

Adds new equation in onlooker
bee phase.

Enhances convergence speed.

Utilizes standard ABC
with modified equations.

Dervis Karaboga et al. [22]
Improved quick artificial bee

colony (iqABC) algorithm
for global optimization

Newly defines exploitation.
Improves early convergence rate with

base solution.

Uses the ABC with four
new search schemas.

B. Akay et al. [25]
A modified artificial bee

colony algorithm for
real-parameter optimization

Enhances convergence speed of the
standard ABC.

Improves efficiency for composite and
non-separable functions.

Uses ABC algorithm
with frequency of
perturbation and
modification rate.

Tingyu et al. [26]
Improved ABC for

multi-objective optimization.
Uses expert systems

Improves inverted generational distance
and hypervolume values.

Uses the ABC with the
Two_Arch2 method.

S. Najjar et al. [28]
Reliable data gathering in

the Internet of Things using
artificial bee colony

Presents a robust spanning tree in the IoT.
Improves stability and energy usage.

Generates spanning
trees with the ABC.

The main problem during the search operation is that the standard ABC algorithm [17]
utilizes the same criteria for both employed and onlooker bees to choose food sources.
However, employed and onlooker bees choose their food sources differently. A modified
variant named qABC [21] resolves this issue, but it performs a large number of comparisons
to find the best solution. It compares each source with every other source in the neighbor-
hood. Consequently, it leads to several issues, such as slow convergence rates, greater time
consumption and increased delays.

3. Proposed Solution

We present the enhanced ABC (E-ABC), in which the employed bee phase and onlooker
bee phase of the ABC algorithm enhance the searching mechanism for better optimization.
It presents a solution for the selection of the finest food site with higher quality than
other algorithms. In order to obtain a faster convergence speed, the search schemas of the
employed bees and onlooker bees are improved. Existing schemes [17,33] also use a similar
framework or structure. The list of notations is shown in Table 2.

Table 2. List of notations.

Notation Description

B Blocks

li and ui Lower and upper bounds

xfinest Finest food source

xi,j, vi,j Old solution, new solution
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Table 2. Cont.

Notation Description

ibest Index of best food source

nk Number of blocks

I Total number of food sites

pro(d f ak) Data file availability probability

pro
(

bapj

)
Probability of block accessibility

rck Replica count for data file

CS, D Colony size and dimension

dci Data center

MR Modification rate

Ri,j Randomly appointed number between 0, 1

There are three phases, namely the employee bee phase, onlooker bee phase and
replication position optimization phase, which describe the workflow of the proposed ABC,
as shown in Figure 2. In the ABC algorithm, the search schemas rely on the exploitation
and exploration abilities of bees to attain enhanced convergence rates. Prior to these
modules, first, the food sites are initialized at random. Subsequently, the acquired food
sites are examined and their values are estimated using the objective function. In the
initial stage, control parameters such as the colony size, maximum iterations, maximum
number and limit are initialized. Food sites are initiated at random, ranging between
(0, 1), computed as xm,i = li + rand (0, 1) × (ui − li), where i denotes the total number of
food sites set by scout bees and ranges from 1 to sn. Moreover, m ranges between 1 and
d, where d represents the number of optimum parameters depicted so as to minimize the
objective function. In addition to this, li and ui represent the lower and upper bounds of
the parameter xm,i, respectively.
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3.1. Employed Bee Phase

The frequency of perturbation in the original ABC algorithm is inflexible, which means
that the frequency is fixed and, as a result, the convergence rate of the ABC algorithm
becomes slower. This is because, if the purpose is to generate a new solution vi, in this case,
only a single parameter of root solution xi is modified, which results in a slower convergence
rate. Hence, a new parameter MR is used in the employed bee phase and onlooker bee
phase. MR corresponds to the modification rate, which is a randomly appointed number
Ri,j that ranges between 0 and 1. Thus, in the present work, the value for the newly
generated solution is computed by utilizing the modification rate, as given in Equation (1).

vi,j =

{
xi,j + φ

(
xi,j − xk,j

)
i f Ri,j < MR

xi,j otherwise
(1)

As discussed earlier, the MR has a value from 0 to 1; k is a random number that
ranges from 1 to SN and it has an index that must be different from i. Furthermore, as a
result of the large amount of comparisons, the time consumption is high. It also affects
the quality of the global best solution. In the qABC, there is an opportunity to eliminate
the possibility of selecting certain solutions since the focus is on selecting the best possible
solutions. The literature also shows that due to this undesired behavior, sometimes, the
original ABC performs better than the qABC. Thus, considering these factors that cause
the algorithm’s poor performance, a new parameter named finestLimit is included in the
ABC, as in the iqABC algorithm. However, the difference between the present work and
the iqABC is that, in the iqABC, the workflow is reverted to the original ABC in such cases.
However, in the proposed algorithm, a modified definition is used for this case, which
helps in modifying the flow from the finestLimit parameter to the new modification rate
phase as Vfinest,j = xfinest,j + ∅ (xfinest,j − xi,j).

Furthermore, random food sources are produced in the population at the start of
the algorithm. Following this, a comparison is performed between the total evaluations
totalEval and maximum evaluations maxEval, as shown in step 2. A counter named
EBPTrials is activated if maxEval exceeds totalEval or is equal to totalEval in step 3. The
counter counts how many times xfinest fails to enhance the employed bee phase (EBP) to
the finestLimit value. The comparison determines whether the finest limit EBP will be
employed or not. In the case where the value of finestLimit exceeds the EBPTrials value
or they are both equal, then the ith employed will generate a solution in the neighboring
region with the help of Equation (2) from [19], as in step 8 and 19. If the value of the trial at
index ifinest is zero, then the value for EBP is revised; otherwise, its value will be increased
and EBPTrials is also incremented accordingly in step 13. If the scenario is the opposite,
where the best limit is less than EBPTrials, then the ith employed generates a solution that
guides the employed bee to the related food source, as shown in Algorithm 1.

f it
(

X f inest

)
=


1

1+ f (X f inest)
i f X f inest ≥ 0

1 + abs
(

f
(

X f inest

))
i f X f inest < 0

(2)

3.2. Onlooker Bee Phase

At the start, the SN sources are initialized at random in the population and probabilistic
values for fitness are computed to choose food sources. The SN depicts the size of the
population. Afterwards, all changes that are made in the employed bee phase are also
implemented here. A comparison between totalEval and maxEval is performed and the
total bees are contrasted with SN. A new solution in the neighboring region is generated
if the best limit exceeds OBPTrials or is equal to OBPTrials. The new candidate solution
is generated as Vfinest,j = xfinest,j + ∅ (xfinest,j − xs,j). Here, xs is a source/site selected by the
onlooker bees and it possesses jth parameter xs,j, while vfinest is a newly generated solution
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that possesses jth parameter vfinest,j. It utilizes Equation (1) when OBPTrials is greater than
or equal to the finest limit value, as shown in step 7 of Algorithm 2.

Algorithm 1: Food Source Identification by Employee Bee

Input: SN, totalEval
Output: Selected Food Source
1. for i = 1 to SN do
2. if totalEval ≤ maxEval then
3. if EBPTrials ≤ finestLimit then
4. send employee bees to the finest food site
5. i f inest = get finest food site index, x f inest = finest food site
6. Generate v f inest
7. v f inest = new food source

8. if fit
(

x f inest

)
≥ fit

(
v f inest

)
then

9. Replace x f inest with v f inest
10. trial(i f inest) = 0
11. else
12. trial(i f inest) = trial(i f inest) + 1
13. EBPTrials = EBPTrials + 1
14. end if
15. send employee bees to the finest food site
16. else
17. send employee bees to the relevant food sites
18. vi = new food site using Equation (1).
19. if fit(xi) ≥ fit(vi) then
20. Replace xi with vi, Set trial(i) = 0
21. else
22. trial(i) = trial(i) + 1
23. end if
24. send employed bees to the related food source
25. end if
26. totalEval = totalEval + 1
27. end if
28. end for

3.3. Optimized Replication Position

The E-ABC is applied to assess replicas and place them through nodes in a cloud
environment considering a shorter path. The E-ABC offers cost-effective optimal solutions
and attains burden sharing or load balancing via data centers (DCs). Accessing and placing
the DCs at the correct positions is crucial. The suggested solution demonstrates replication
access and suitable deployment in the cloud through nodes. We obtain the quickest route
between the DCs at the lowest cost and utilize a heterogeneous method to locate replicas at
the finest position, in an optimized way, using statistical distribution. The costs and quantity
of available data replications differ amongst the DCs. In the given scheme, employee bees
are capable of acquiring and depositing data correctly at the DCs at the lowest possible
cost. All the DCs are linked hierarchically and circularly across all levels. Users are at the
system’s exterior level, and they may use the DCs to transmit jobs to replicas in order to
obtain the best results at the lowest cost, duration and distance. Placing data replications at
locations closer to users, at an acceptable cost, via the DCs is a difficult task; thus, AI-based
techniques are used to achieve the objective of optimized data replication and placement
in the DCs. The E-ABC employs an improved variant of the ABC, which decreases the
number of comparisons and achieves high data accessibility while reducing delays. Next,
we will discuss the optimal replica position.
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Algorithm 2: Finest Food Site Selection by Onlooker Bee

Input: SN, food sites
Output: xcurrentBee, x f inest
1. for i = 1 to SN do
2. p(xi) = f it(xi)

∑SN
j=1 f it(xj)

3. end for
4. Set totalBee = 1, Set currentBee = 1
5. while totalBee ≤ SNandtotalEval ≤ maxEval do
6. if rand(0,1) ≤ p(xcurrentBee) then
7. if OBPTrials ≤ finestLimit then
8. send onlooker bees to the finest food site
9. i f inest = get finest food site index
10. x f inest = finest food site
11. v f inest = new food site
12. if fit(x f inest) ≥ fit(v f inest) then
13. Set x f inest = v f inest, trial(i f inest) = 0
14. else
15. trial(i f inest) = trial(i f inest) + 1
16. OBPTrials = OBPTrials + 1
17. end if
18. send onlooker bees to finest food site
19. else
20. vcurrentBee = a new food site through Equation (1)
21. if fit(xcurrentBee) ≥ fit(vcurrentBee) then
22. xcurrentBee = vi
23. trial(currentBee) = 1
24. else
25. trial(currentBee) = trial(currentBee) + 1
26. end if
27. send onlooker bees to the chosen food site
28. end if
29. totalEval = totalEval + 1
30. totalBee = totalBee + 1
31. end if
32. currentBee = currentBee + 1
33. if currentBee ≥ SN then
34. currentBee = 1
35. end if
36. end while

The users reside at the system’s outermost position and have the ability to transmit
tasks to replication in order to attain the best possible place in terms of time, distance
and cost. Accessing and placing the DCs at the appropriate position is achieved through
nodes in cloud computing. Thus, to achieve the excellent capability of selecting nodes with
cost-effectiveness and a shorter path among data centers, and to accomplish optimum data
replication, a heterogeneous approach is utilized. Moreover, at the same time, all the DCs
are connected at all levels, both hierarchically and circularly. Considering these points,
it is concluded that accessing the DCs and placing them at appropriate positions is very
important concerning honeybees, since these bees are liable to explore the lowest-cost path
efficiently. Data replicas reside at the DCs in order to fulfill the user’s tasks. Geometric
distribution and Zipf are used with the purpose of allocating replicas and placing files
between data centers that are nearer to users. Zipf is calculated as p( fi) =

1
iα .It is used for

the placement of replicated files among the different DCs that are very close to the users.
Here, α represents the factor data replication distribution and α ranges between 0 ≤ α < 1,
while i = 1, . . ., n. The geometric distribution is another important factor that is used to
randomly allocate and place replication files ideally together with various parameters. The
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value for the GD can be obtained using p(i) = (1 − p)i−1.p. Here, p represents access to a
replica file. The DC provides better efficiency with respect to speed, data accessibility and
reliability and has a higher fault tolerance rate, which results in a higher cost. Considering
the cloud environment, the replication cost is a crucial element. Thus, the total cost of the
system should be managed in a better way. Every DC has a cost to replicate data, which is
strongly associated with each data center. The cost among various data centers is calculated
on the basis of the replication number across each data center. In cloud computing, it is
very important to access replicas with the minimum cost and place them closer to the user.
The replica cost for data file fk can be computed using Equation (3), where x represents the
total number of DCs, cost (dci) represents the cost for file replication at data center dci and
brk(dci) represents the number of replicas of fk at dci.

costk(DC) = ∑x
i=1(cost(dci)× brk(dci)) (3)

4. Results and Discussion

In this section, the performance of the given scheme, E-ABC, is reviewed. This section
also presents configuration specifics and details of the experimental findings by introducing
a testbed for the implementation of the ABC algorithm. For the backend, we set up a testbed
on the C#/ASP.net code through WCF services to implement the ABC algorithm and deploy
it on the Windows AZURE cloud. The replicated data files of different applications and
software publicly available are physically placed at virtual machines as data centers on the
Windows Azure cloud. The front-end of the web application is deployed on a machine
with the Windows 10 operating system, 8 GB RAM and 2 processors of the 7th generation
with 2.9 GHz and 2.7 GHz. The application initiates a call to the WCF service functions
to execute the ABC algorithm and its variants. Initial graphs give information about the
convergence speed of the proposed scheme and show the comparison with some standard
and well-known variants of the ABC algorithm. After proving the efficiency of the given
algorithm, it is implemented in data replication scenarios. Moreover, eight well-known
benchmark functions are employed for experimentation. In addition to this, initially, the
efficiency of the proposed scheme is analyzed with respect to the finestLimit parameter and
numerous functions, including Rastrigin, Dixen Price, Ackley and Griewank, as given in
CEC [8]. The base schemes are ABC [17], qABC [21], GABC, iqABC [22] and MOABC [29].

4.1. Evaluation of Performance in Terms of finestLimit Parameter

In this section, experiments are conducted with respect to the finestLimit parameter.
In order to analyze the efficiency of the proposed E-ABC, numerous benchmark functions
and their base functions are utilized in the experiments. The functions f 1, f 2 are uni-
modal, while other functions, such as f 3, f 4, f 5, f 6 and f 7, are multimodal functions.
Furthermore, the colony size is taken as 20, and the maximum fitness values are taken
as 500 and 1500 for 10 dimensions and 30 dimensions, respectively. The limit value is
calculated as (colony size x dimensions)/2, and 20 independent runs are conducted with
various seeds, as in [8].

Convergence refers to a mathematical concept that can be defined as a series of
components that ultimately reaches a single value, known as a limit. Convergence itself
is not an algorithm; rather, it is a value that an algorithm manipulates or iterates on.
The phrase “fast convergence speed” is used in this study; the term “fast” specifies the
algorithm’s convergence rate, and it demonstrates how quickly the ABC converges towards
excellent-quality solutions. The value of the limit is calculated as Limit = CS×D

2 , where CS
denotes the colony size and D denotes the dimension [18].

The convergence speed for the proposed E-ABC is examined on Rotated Bent Cigar
function f 1, as shown in Figure 3a. It shows the dominance of the E-ABC in contrast to four
well-known algorithms, namely the original ABC, quick ABC, global ABC and improved
qABC algorithms. The graphical results present the mean objective value versus fitness
evaluations. Considering an example where the fitness evaluation value is noted as 500,
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the mean value against 500 is observed as 8 × 103 for the standard ABC, 7.5 × 103 for the
GABC, 5 × 103 for the qABC, 3 × 103 for the iqABC and 2.5 × 103 for the E-ABC. The results
reveal that the proposed E-ABC achieves a 45.83% better convergence rate as compared to
the ABC. It provides 41.67%, 20.83% and 4.17% better results than the GABC, the qABC and
the iqABC, respectively. Figure 3b elucidates the convergence speed with respect to Shifted
and Rotated Schwefel function f 4. The results show that the E-ABC achieves the optimal
solution, in contrast to the other base schemes. The convergence graph for Shifted and
Rotated HappyCat function f 6 is shown in Figure 3c. The results show that when the mean
objective function value is 1000, the proposed E-ABC reaches the optimal value, while
the other schemes require more time to approach the optimal value. Figure 3d presents
Shifted and Rotated HGBat function f 7 regarding the convergence rate. From the graph, it
is clear that the E-ABC reaches the mean objective value of 6 × 102 when the value of the
fitness evaluation is five hundred, while the iqABC achieves the same goal when the fitness
evaluation value is 1000. The other base schemes require even more time to approach the
optimal solution.
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4.2. Comparisons of Algorithms on Benchmark Functions

Classical benchmark functions are utilized in order to perform experiments. These
benchmark functions are diverse in nature, as some of them are unimodal and some are
multimodal and have different characteristics. Moreover, some functions are separable
while others are not. For this experiment, the highest fitness value is taken as 50,000, while
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overall 30 independent runs are conducted against different seeds and we observe the
mean objective value for these functions. The effectiveness of these functions is examined
on the Rastrigin function regarding the convergence rate, as shown in Figure 4a. For this
purpose, the average objective amount for the finest solution is noted. The results show the
improved results for the proposed E-ABC as compared to the ABC, qABC and iqABC.
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Next, we consider a scenario where experiments are performed for the convergence
speed for the well-known function named the Dixen price function, as depicted in Figure 4b.
The efficiency of the proposed E-ABC scheme along with the other three algorithms is ex-
amined by noting the average value for the objective function against the fitness evaluation
value. The results show that our proposed algorithm completely surpasses its counterparts.
After the Dixen price, we implement the E-ABC for the Ackley function in order to test the
effectiveness of the proposed E-ABC, as shown in Figure 4c. The graph provides a com-
prehensive view of the convergence speed for the average value of the objective function
against the fitness value. From the results, it is clearly seen that the E-ABC approaches
the optimal solution prior to other algorithms when tested on the Griewank function, as
shown in Figure 4d.

4.3. Data File Availability

Devices that provide maximum accessibility for the longest duration are said to be
trustworthy and scalable. The device should be accessible whenever a user requests data
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file availability. If a device collapses or if any errors or malfunctions occur, the device is
said to be unavailable or unreliable. As a result, guaranteeing maximum file accessibility
is critical in cloud-based environment. The probability of data file availability (dfa) is
determined using Equation (4) [17], where nk shows the number of blocks and rck shows
the number of replicas of a file. The cumulative value for block access probability (bap)
is also calculated. Case-1 illustrates a structure in which all data file blocks are placed at
the DC together. Case-2 shows a situation where the blocks are situated on different DCs
individually. The access to replicas for each cost value varies between 0 and 50. From
the experimental results, it is noticed that the file availability depends on the cost. As
the cost rises, the probability of file accessibility also rises, as shown in Figure 5a, where
highd f a = 0.9 > midd f a = 0.6 > lowd f a = 0.3 is observed for the probability. For the
cost value of 20, the file availability probability is 0.85, i.e., 85%. As the cost increases, the
probability of file availability also increases.

pro(d f ak)
′ =

 1 −
(

1 − ∏rck
i=1

(
1 − pro

(
bapj

)
i

)
)

nk
f or case 1

1 − ∏nk
i=1

(
1 − ∏rck

i=1

(
1 − pro

(
bapj

)
i

)
) f or case 2

(4)
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4.4. Response Time

The response time is the time that it takes for a system to respond to a service. It
depends on the route selected for transmission. The average response time (ART) is given in
Equation (5), where Cjk(st) is the sending time and Cjk(rt) is the receiving time of cloudlet
k in user j. Moreover, mj denotes the number of cloudlets for user j [34].

ART =
∑m

j=1 ∑
mj
k=1 (C jk(rt)− Cjk(st)

)
∑m

j=1 Mj
(5)

The response time to examine the rising number of cloudlets is elaborated in Figure 5b.
The efficiency of the proposed E-ABC with respect to the response time or delay is tested
and the results are compared with those of the MOABC and DCR2S. Considering these
circumstances, we note the response time in seconds against the number of cloudlets for all
considered schemes. For a number of cloudlets of 800, the mean response time is observed
as 34 s for the DCR2S, 16 s against the MOABC and 9 s for the presented scheme, E-ABC.
From these values, a considerably decreased response time for the E-ABC is noticed. The
E-ABC provides 67.5% better results than the DCR2S and 20% better than the MOABC.
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5. Conclusions

This work performs optimized data sharing in the IoT, where the search mechanism of
the employed bee phase and onlooker bee phase is enhanced using the E-ABC algorithm.
The system identifies optimized ways to identify sources that can perform searching in
an efficient manner, which reduces redundant operations as well. It optimizes the node
identification process with the shortest paths while accessing replicas in files placed at
central repositories. A testbed is set up to validate the performance of the proposed E-ABC
for data replications in contrast to existing schemes. The experimental results prove the
superiority of the proposed E-ABC algorithm compared to its counterparts in terms of the
convergence rate for different functions, the probability of file accessibility and the response
rate. The E-ABC algorithm offers a 65% better average response time when compared with
DCR2S and improves the average response time of MOABC by 20% when the count of
cloudlets is taken as 1000. The probability of file accessibility for the proposed scheme
is observed to be 85% when the total cost is 20. In the future, file-level de-duplication
techniques will be analyzed for possible optimization. Furthermore, we will examine the
impact of failed devices handling searching tasks and carrying desired information.
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