
Citation: Liu, J.-C.; Chi, H.-X.; Chang,

C.-C.; Chang, C.-C. An Innovative

Information Hiding Scheme Based on

Block-Wise Pixel Reordering. Future

Internet 2024, 16, 34. https://

doi.org/10.3390/fi16010034

Academic Editor: Carlo Blundo

Received: 26 December 2023

Revised: 17 January 2024

Accepted: 19 January 2024

Published: 22 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An Innovative Information Hiding Scheme Based on Block-Wise
Pixel Reordering
Jui-Chuan Liu 1 , Heng-Xiao Chi 1 , Ching-Chun Chang 2 and Chin-Chen Chang 1,*

1 Department of Information Engineering and Computer Science, Feng Chia University,
Taichung 40724, Taiwan; p1200318@o365.fcu.edu.tw (J.-C.L.); hx9704@gmail.com (H.-X.C.)

2 Information and Communication Security Research Center, Feng Chia University, Taichung 40724, Taiwan;
ccc@fcu.edu.tw

* Correspondence: alan3c@gmail.com

Abstract: Information has been uploaded and downloaded through the Internet, day in and day out,
ever since we immersed ourselves in the Internet. Data security has become an area demanding high
attention, and one of the most efficient techniques for protecting data is data hiding. In recent studies,
it has been shown that the indices of a codebook can be reordered to hide secret bits. The hiding
capacity of the codeword index reordering scheme increases when the size of the codebook increases.
Since the codewords in the codebook are not modified, the visual performance of compressed images
is retained. We propose a novel scheme making use of the fundamental principle of the codeword
index reordering technique to hide secret data in encrypted images. By observing our experimental
results, we can see that the obtained embedding capacity of 197,888 is larger than other state-of-the-art
schemes. Secret data can be extracted when a receiver owns a data hiding key, and the image can be
recovered when a receiver owns an encryption key.

Keywords: data hiding; vector quantization; codebook; codeword index reordering

1. Introduction

In the modern day, iCloud data transmission replaces the physical mail to speed up the
time spent on exchanging information. Needless to mention, the Internet is a key element
in the transmission process. Digital activities involving both the virtual world and the
physical world can be foreseen in the near future, such as if a hospital technician uploads
an X-ray image, a CT scan photo, or a patient’s information to a data center for a list of
specific doctors to download them in order to discuss various treatments over an online
meeting. To protect the privacy of the patient, no one should be able to see the information
other than the related doctors. Encrypting and decrypting digital information are becoming
more and more important in order to increase security. At the same time, there can be
diagnostics information to be passed to one or some particular doctors. Data hiding then
plays another crucial role in these data transitions [1,2].

When a content owner wants to send an image to a data receiver, the owner would
like to add a secret message in the image before transmitting it to the receiver. Adding the
secret message normally needs to go through a data hider, and as it may not be desirable
for the data hider to see the image content, the owner encrypts the image before sending it
in order to hide the message. A receiver holding the encryption key can recover the image,
and a receiver with the data hiding key can extract the secret information.

There are various data hiding schemes designed to protect data effectively in different
application circumstances that have demonstrated exceptional results. Data hiding has
branched out into reversible data hiding (RDH) [3–7] and non-reversible data hiding
depending on whether the image content can be recovered or not. According to the
hiding carriers, the hiding schemes can be cataloged into four different domains: spatial,
frequency, compression, and encryption. When in the spatial domain, digital cover images

Future Internet 2024, 16, 34. https://doi.org/10.3390/fi16010034 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16010034
https://doi.org/10.3390/fi16010034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0007-3401-8742
https://orcid.org/0000-0002-7780-8468
https://orcid.org/0000-0002-7319-5780
https://doi.org/10.3390/fi16010034
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16010034?type=check_update&version=1

Future Internet 2024, 16, 34 2 of 20

are modified directly to embed data. As for the frequency domain, images are transformed
using wavelet transform methods before embedding data. Images are first compressed
with compression techniques prior to embedding information in the compression domain.
In the encryption domain, images are encrypted using encryption keys before being sent
to the data hider to hide secrets in the encrypted image. Data hiding in encrypted images
(DH-EI) combines cryptography and DH technology to achieve higher levels of protection.
DH-EI has branched out into reserving room before encryption (RRBE) and vacating room
after encryption (VRAE) depending on the timing of room vacating.

Ma et al. [8] proposed a reversible method for data hiding in encrypted images by
preserving room before encryption in 2013. Yi and Zhou proposed a parameter-controlled
method to embed data to encrypted images in 2018 [9,10]. Around the same time, Pauline
and William [11] proposed a method using MSB prediction and gained high embedding
capacity by hiding data in encrypted images. Chen et al. [12], in 2020, further improved the
method by proposing a multi-MSB compression method. Puteaux and Puech [13] proposed
a fully reversible method by including the MSB error prediction and a reversible adaption
in 2020, and Wu et al. [14] proposed an improved version shortly after. Even though RRBE
has a higher embedding capacity amount, owners may not have enough knowledge of how
to go through the reserving process. Therefore, VRAE schemes still gain popularity among
these types of applications to better secure information privacy.

In the VRAE scheme, the content owner performs only the operation of encrypting
the image and then transmits the encrypted image to the data hider. After obtaining the
encrypted image, the data hider vacates the room and embeds the data. Hong et al. [15] pro-
posed a DH-EI method that combined side match and block-wise LSB flipping. Zhang [16]
proposed a scheme to preserve space by utilizing compressed LSB planes, but the embed-
ding capacity of this method was relatively low. Qian and Zhang [17] proposed a method
to reserve embedded rooms using distributed source coding. In 2014, joint and separable
DH-EI schemes using bit flipping and prediction error techniques were proposed by Wu
and Sun [18]. Hung et al. [19], in 2016, proposed a DH-EI framework for encrypting images
using block-wise stream cipher and shuffling. Since block-wise stream cipher and shuf-
fling are used, the correlation between encrypted blocks of pixels is preserved so that DH
techniques can be used directly in the encryption domain. In 2018, Ge et al. [20] combined
the block-wise stream cipher and selected peaks for histogram shifting. In 2020, Bhardwaj
and Aggarwal [21] used an improved block-based joint DHEI algorithm to obtain higher
embedding rates. In 2022, Wang et al. [22] proposed a method to embed secret data using
rotated pixel-blocks. Yu et al. [23] used MSB replacements to embed data and then used the
complexity among neighboring pixels to restore the image.

Our novel scheme focuses on using VRAE to hide data and incorporates vector
quantization codeword index reordering [4], Stream Cipher, and LSB replacement [5]
techniques to implement the scheme. Our research goal is to achieve a larger embedding
capacity than other methods without degrading the visual quality of recovered images.
The core contributions of the scheme are described below:

• The scheme offers large embedding capacity.
• It sustains the visual quality of encrypted images.
• Extracting secret messages and recovering images can be independent.

The rest of the paper is structured as follows: Section 2 discusses the Background of
the Works, including the LSB encryption, the applied sorting, and the key index reordering
method. Section 3 describes the details of the novel scheme, and Section 4 shows the
experiments conducted and their analyses. Finally, Section 5 is the conclusion.

2. Background of the Work

Our novel scheme employs the principal idea of a vector quantization (VQ) codeword
index reordering scheme [4] as the basic technique to embed and extract data. This section
describes the data embedding and data extraction using the codeword index reordering.

Future Internet 2024, 16, 34 3 of 20

When there is a codebook, it is sorted first before embedding secret data. The data
is embedded through the new indices in a stego codebook. Figure 1 indicates the flow of
the codeword index reordering scheme including data embedding, data extraction, and
image recovery. The stego codebook with the new ordered indices is then sent to receivers
to extract the data.

Future Internet 2024, 16, x FOR PEER REVIEW 3 of 22

2. Background of the Work
Our novel scheme employs the principal idea of a vector quantization (VQ) code-

word index reordering scheme [4] as the basic technique to embed and extract data. This
section describes the data embedding and data extraction using the codeword index reor-
dering.

When there is a codebook, it is sorted first before embedding secret data. The data is
embedded through the new indices in a stego codebook. Figure 1 indicates the flow of the
codeword index reordering scheme including data embedding, data extraction, and im-
age recovery. The stego codebook with the new ordered indices is then sent to receivers
to extract the data.

Figure 1. Flow of codeword index reordering scheme.

2.1. Sort Codewords by Projected Values
A sorted codebook is an essential component for a codeword index reordering

scheme [4]. There is a VQ codebook 𝐶𝐵 = {𝑐𝑤଴, 𝑐𝑤ଵ, ⋯ , 𝑐𝑤௠ିଵ}, where 𝑚 is the number
of the codewords in the codebook. A data hider will find an n-dimensional point 𝐷 ={𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟௡}, where 𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟௡ are randomly generated using a random seed. A line 𝑂𝐷ሬሬሬሬሬሬ⃗
connecting 𝐷 and the origin 𝑂 = {0, 0, ⋯ , 0} is a line that codewords in a codebook can
project and obtain their projected values. These projected values are denoted as 𝜆ଵ, 𝜆ଶ, …, 𝜆௡ using Equation (1) and are to be used to sort the codewords in the codebook. 𝜆௞ = 𝑐𝑤௞ ⋅ 𝑂𝐷ሬሬሬሬሬሬ⃗ , 0 ൑ 𝑘 ൑ 𝑚 − 1. (1)

The codebook 𝐶𝐵 is sorted and resulted to a sorted codebook 𝐶𝐵′ ={𝑐𝑤଴ᇱ , 𝑐𝑤ଵᇱ, ⋯ , 𝑐𝑤௠ିଵᇱ }.
An example of a codebook consisting of eight two-dimensional codewords is demon-

strated in Figure 2 to provide a better understanding of the projected values and the sort-
ing result according to their projected values.

(a) (b)

Figure 2. (a) Project to line 𝑂𝐷ሬሬሬሬሬሬ⃗ ; (b) sort codewords using line-projected values.

Figure 1. Flow of codeword index reordering scheme.

2.1. Sort Codewords by Projected Values

A sorted codebook is an essential component for a codeword index reordering scheme [4].
There is a VQ codebook CB = {cw0, cw1, · · · , cwm−1}, where m is the number of the code-
words in the codebook. A data hider will find an n-dimensional point D = {r1, r2, · · · , rn},

where r1, r2, · · · , rn are randomly generated using a random seed. A line
→

OD connecting
D and the origin O = {0, 0, · · · , 0} is a line that codewords in a codebook can project and
obtain their projected values. These projected values are denoted as λ1, λ2, . . ., λn using
Equation (1) and are to be used to sort the codewords in the codebook.

λk = cwk·
→

OD, 0 ≤ k ≤ m − 1. (1)

The codebook CB is sorted and resulted to a sorted codebook CB′ ={
cw′

0, cw′
1, · · · , cw′

m−1
}

.
An example of a codebook consisting of eight two-dimensional codewords is demon-

strated in Figure 2 to provide a better understanding of the projected values and the sorting
result according to their projected values.

Future Internet 2024, 16, x FOR PEER REVIEW 3 of 22

2. Background of the Work
Our novel scheme employs the principal idea of a vector quantization (VQ) code-

word index reordering scheme [4] as the basic technique to embed and extract data. This
section describes the data embedding and data extraction using the codeword index reor-
dering.

When there is a codebook, it is sorted first before embedding secret data. The data is
embedded through the new indices in a stego codebook. Figure 1 indicates the flow of the
codeword index reordering scheme including data embedding, data extraction, and im-
age recovery. The stego codebook with the new ordered indices is then sent to receivers
to extract the data.

Figure 1. Flow of codeword index reordering scheme.

2.1. Sort Codewords by Projected Values
A sorted codebook is an essential component for a codeword index reordering

scheme [4]. There is a VQ codebook 𝐶𝐵 = {𝑐𝑤଴, 𝑐𝑤ଵ, ⋯ , 𝑐𝑤௠ିଵ}, where 𝑚 is the number
of the codewords in the codebook. A data hider will find an n-dimensional point 𝐷 ={𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟௡}, where 𝑟ଵ, 𝑟ଶ, ⋯ , 𝑟௡ are randomly generated using a random seed. A line 𝑂𝐷ሬሬሬሬሬሬ⃗
connecting 𝐷 and the origin 𝑂 = {0, 0, ⋯ , 0} is a line that codewords in a codebook can
project and obtain their projected values. These projected values are denoted as 𝜆ଵ, 𝜆ଶ, …, 𝜆௡ using Equation (1) and are to be used to sort the codewords in the codebook. 𝜆௞ = 𝑐𝑤௞ ⋅ 𝑂𝐷ሬሬሬሬሬሬ⃗ , 0 ൑ 𝑘 ൑ 𝑚 − 1. (1)

The codebook 𝐶𝐵 is sorted and resulted to a sorted codebook 𝐶𝐵′ ={𝑐𝑤଴ᇱ , 𝑐𝑤ଵᇱ, ⋯ , 𝑐𝑤௠ିଵᇱ }.
An example of a codebook consisting of eight two-dimensional codewords is demon-

strated in Figure 2 to provide a better understanding of the projected values and the sort-
ing result according to their projected values.

(a) (b)

Figure 2. (a) Project to line 𝑂𝐷ሬሬሬሬሬሬ⃗ ; (b) sort codewords using line-projected values. Figure 2. (a) Project to line
→

OD; (b) sort codewords using line-projected values.

2.2. Data Embedding of the Codeword Index Reordering

When there is a secret data S = {s0, s1, · · · , sk}, sk = {0, 1}, the embedding proce-
dure is organized as follows:

Step 1: Initialize a stego codebook SCB.

Future Internet 2024, 16, 34 4 of 20

Step 2: Calculate the number of bits to embed

b = ⌊ log2(length(SCB)) ⌋. (2)

Step 3: Convert secret bits to a decimal index

(indx)10= (s0 ∥ s1 ∥ · · · ∥ sb−1)2. (3)

Step 4: Move the codeword scwindx out from CB′ and add to SCB.
Step 5: Repeat Step 2 through Step 4 until there are no codewords in CB′.
Step 6: Send SCB to receivers.
Using the example in Figure 1, the embedding results are illustrated in Figure 3.

Future Internet 2024, 16, x FOR PEER REVIEW 5 of 22

2.2. Data Embedding of the Codeword Index Reordering
When there is a secret data 𝑆 = {𝑠଴, 𝑠ଵ, ⋯ , 𝑠௞}, 𝑠௞ = {0, 1}, the embedding procedure

is organized as follows:
Step 1: Initialize a stego codebook 𝑆𝐶𝐵.
Step 2: Calculate the number of bits to embed 𝑏 = ⌊ 𝑙𝑜𝑔ଶ(𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝐶𝐵)) ⌋. (2)

Step 3: Convert secret bits to a decimal index (𝑖𝑛𝑑𝑥)ଵ଴ = (𝑠଴ ∥ 𝑠ଵ ∥ ⋯ ∥ 𝑠௕ିଵ)ଶ. (3)

Step 4: Move the codeword 𝑠𝑐𝑤௜௡ௗ௫ out from 𝐶𝐵′ and add to 𝑆𝐶𝐵.
Step 5: Repeat Step 2 through Step 4 until there are no codewords in 𝐶𝐵′.
Step 6: Send 𝑆𝐶𝐵 to receivers.
Using the example in Figure 1, the embedding results are illustrated in Figure 3.

Figure 3. Data embedding of a codeword index reordering scheme. Figure 3. Data embedding of a codeword index reordering scheme.

Future Internet 2024, 16, 34 5 of 20

2.3. Data Extraction of the Codeword Index Reordering

When a receiver receives a stego codebook SCB = {scw0, scw1, · · · , scwm−1}, the
stego codebook needs to be sorted by the projected values of codewords using the received

projecting line
→

OD before extracting secret data. The following steps showing how the
secret data are extracted:

Step 1: Project the codewords in SCB to the line
→

OD and sort the codebook by using
the projected values of the codewords to obtain the recovered codebook RCB.

Step 2: Initialize recovered secret RS.
Step 3: Initialize the current codeword index ci to 0.
Step 4: Match the current codeword scwi with the codewords in the recovered code-

book RCB and obtain the index si in the RCB.
Step 5: Convert (si)10 to a binary bit stream RS’ = (rs0 ∥ rs1 ∥ · · · ∥ rsk′)2.
Step 6: Append RS′ to RS.
Step 7: Increase the current codeword index ci by 1.
Step 8: Repeat Step 4 through Step 7 until all codewords in SCB are exhausted.
Continuing to use the example above, Figure 4 demonstrates how the data are extracted

from the stego codebook SCB.

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 22

2.3. Data Extraction of the Codeword Index Reordering
When a receiver receives a stego codebook 𝑆𝐶𝐵 = {𝑠𝑐𝑤଴, 𝑠𝑐𝑤ଵ, ⋯ , 𝑠𝑐𝑤௠ିଵ}, the stego

codebook needs to be sorted by the projected values of codewords using the received pro-
jecting line 𝑂𝐷ሬሬሬሬሬሬ⃗ before extracting secret data. The following steps showing how the secret
data are extracted:

Step 1: Project the codewords in 𝑆𝐶𝐵 to the line 𝑂𝐷ሬሬሬሬሬሬ⃗ and sort the codebook by using
the projected values of the codewords to obtain the recovered codebook 𝑅𝐶𝐵.

Step 2: Initialize recovered secret 𝑅𝑆.
Step 3: Initialize the current codeword index c𝑖 to 0.
Step 4: Match the current codeword 𝑠𝑐𝑤௜ with the codewords in the recovered code-

book 𝑅𝐶𝐵 and obtain the index 𝑠𝑖 in the 𝑅𝐶𝐵.
Step 5: Convert (𝑠𝑖)ଵ଴ to a binary bit stream 𝑅𝑆’ = (𝑟𝑠଴ ∥ 𝑟𝑠ଵ ∥ ⋯ ∥ 𝑟𝑠௞ᇱ)ଶ.
Step 6: Append 𝑅𝑆’ to 𝑅𝑆.
Step 7: Increase the current codeword index c𝑖 by 1.
Step 8: Repeat Step 4 through Step 7 until all codewords in 𝑆𝐶𝐵 are exhausted.
Continuing to use the example above, Figure 4 demonstrates how the data are ex-

tracted from the stego codebook 𝑆𝐶𝐵.

Figure 4. Data extraction of a codeword index reordering scheme.

3. Proposed Scheme
To protect the privacy of original cover images, our novel scheme encrypts the cover

image before data embedding using an encryption key. A content owner sends the en-
crypted image to a data hider to hide secret messages. The data hider sends the marked
images, the encryption key and the data hiding key to designated receivers after hiding
data. In order to be able to simulate the codeword table to manipulate index order as the
codeword index reordering scheme in Section 2 Background of the Work, Section 3.2
Codeword Table Formation describes how codeword tables are generated.

Figure 5 shows the framework of the proposed scheme. The content owner uses an
encryption key 𝑘௘ to activate a random number generator and uses the stream Cipher to
encrypt an image and generate an encrypted image. The encrypted image is then divided
into pixel-blocks and block-groups. In order to be reversible, the LSBs are used to record
the pixel-block index in its block-group. The LSB-replaced encrypted image is then sent
to the data hider. The data hider used the same method to divide pixel-blocks and block-
groups to create codeword tables. The codeword table is sorted by using projected values
to a line generated based on a data hiding key 𝑘ௗ. After sorting, the table indices are used
to hide secret messages. A marked image is generated and sent to receivers after secret
messages are embedded. A marked image is divided into pixel-blocks and block-groups

Figure 4. Data extraction of a codeword index reordering scheme.

3. Proposed Scheme

To protect the privacy of original cover images, our novel scheme encrypts the cover
image before data embedding using an encryption key. A content owner sends the en-
crypted image to a data hider to hide secret messages. The data hider sends the marked
images, the encryption key and the data hiding key to designated receivers after hiding
data. In order to be able to simulate the codeword table to manipulate index order as
the codeword index reordering scheme in Section 2 Background of the Work, Section 3.2
Codeword Table Formation describes how codeword tables are generated.

Figure 5 shows the framework of the proposed scheme. The content owner uses an
encryption key ke to activate a random number generator and uses the stream Cipher to
encrypt an image and generate an encrypted image. The encrypted image is then divided
into pixel-blocks and block-groups. In order to be reversible, the LSBs are used to record the
pixel-block index in its block-group. The LSB-replaced encrypted image is then sent to the
data hider. The data hider used the same method to divide pixel-blocks and block-groups
to create codeword tables. The codeword table is sorted by using projected values to a line
generated based on a data hiding key kd. After sorting, the table indices are used to hide
secret messages. A marked image is generated and sent to receivers after secret messages
are embedded. A marked image is divided into pixel-blocks and block-groups to form
the codeword tables using the same method as the data hider after receiving. When a
receiver owns a data hiding key kd, the codeword table is sorted using the key and the

Future Internet 2024, 16, 34 6 of 20

secret message can be extracted by finding indices of matched codewords. If a receiver has
an encryption key ke, the encrypted image can be recovered partially. If a receiver obtains
both keys, both the secret message and the encrypted image can be recovered with minor
distortions.

Future Internet 2024, 16, x FOR PEER REVIEW 7 of 22

to form the codeword tables using the same method as the data hider after receiving.
When a receiver owns a data hiding key 𝑘ௗ, the codeword table is sorted using the key
and the secret message can be extracted by finding indices of matched codewords. If a
receiver has an encryption key 𝑘௘, the encrypted image can be recovered partially. If a
receiver obtains both keys, both the secret message and the encrypted image can be recov-
ered with minor distortions.

Figure 5. Framework of block-group index reordering scheme.

3.1. Image Encryption
Content owners can use any of the existing encryption methods to protect the privacy

of the original images and send the encrypted images to third-party data hiders. The
Stream Cipher technique, an exclusive OR operation to encrypt a cipher stream generated
by using an encryption key 𝑘௘, is a well-known, simple, and efficient method to encrypt
images. When there is an original image 𝐼 of size 𝑀 × 𝑁, a pseudorandom matrix used
as an encryption key 𝑘௘ with the matching size of the image 𝐼 and whose values range
between 0 and 255 is generated by using a random seed value. The stream cipher is an
encryption algorithm which uses the encryption key 𝑘௘ in both encryption and decryp-
tion. A pixel value and its corresponded encryption key value are converted to 8-bit binary
system using Equations (4) and (5): 𝐼௜௝௫ = ቒ ூ೔ೕଶೣషభቓ 𝑚𝑜𝑑 2, (4)

where 𝑖𝑗 represents the (𝑖, 𝑗) coordinates, 1 ൑ 𝑖 ൑ 𝑀 and 1 ൑ 𝑗 ൑ 𝑁. 𝑘௘௜௝௫ = ቒ ௞೐೔ೕଶೣషభቓ 𝑚𝑜𝑑 2, (5)

where 𝑖𝑗 represents the (𝑖, 𝑗) coordinates, 1 ൑ 𝑖 ൑ 𝑀, 1 ൑ 𝑗 ൑ 𝑁, and 𝑥 is the bit order
from right to left and can be represented as 𝑥 = 1,2, ⋯,8. After binary conversion, a bit-
level XOR as Equation (6) is applied: 𝐼௘௜௝௫ = 𝐼௜௝௫ ⊕ 𝑘௘௜௝௫ . (6)

The encrypted image 𝐼௘௜௝௫ is converted back to a decimal encrypted image 𝐼௜௝ᇱ = ∑ 𝐼௘௜௝௫ × 2௫ିଵ௫଼ୀଵ . (7)

3.2. Codeword Table Formation

Figure 5. Framework of block-group index reordering scheme.

3.1. Image Encryption

Content owners can use any of the existing encryption methods to protect the privacy
of the original images and send the encrypted images to third-party data hiders. The
Stream Cipher technique, an exclusive OR operation to encrypt a cipher stream generated
by using an encryption key ke, is a well-known, simple, and efficient method to encrypt
images. When there is an original image I of size M × N, a pseudorandom matrix used
as an encryption key ke with the matching size of the image I and whose values range
between 0 and 255 is generated by using a random seed value. The stream cipher is an
encryption algorithm which uses the encryption key ke in both encryption and decryption.
A pixel value and its corresponded encryption key value are converted to 8-bit binary
system using Equations (4) and (5):

Ix
ij =

⌈ Iij

2x−1

⌉
mod 2, (4)

where ij represents the (i, j) coordinates, 1 ≤ i ≤ M and 1 ≤ j ≤ N.

ke
x
ij =

⌈ keij

2x−1

⌉
mod 2, (5)

where ij represents the (i, j) coordinates, 1 ≤ i ≤ M, 1 ≤ j ≤ N, and x is the bit order from
right to left and can be represented as x = 1, 2, · · · , 8. After binary conversion, a bit-level
XOR as Equation (6) is applied:

Ie
x
ij = Ix

ij ⊕ ke
x
ij. (6)

The encrypted image Ie
x
ij is converted back to a decimal encrypted image

I′ij = ∑8
x=1 Ie

x
ij × 2x−1. (7)

Future Internet 2024, 16, 34 7 of 20

3.2. Codeword Table Formation

After a data hider obtains the encrypted image I′, it is converted into a pixel stream.
Depending on the block size desired, it is broken into pixel-blocks. An owner can set the
number of blocks in a group to perform the index reordering technique which is derived
from the codeword index reordering detailed in Background of the Work. We are using
the same technique as the codeword index reordering to embed data into the block-groups
generated from the encrypted image.

After obtaining the encrypted image I′ which consists of M × N pixels, it is de-
noted as I′ =

{
p0, p1, · · · , p(M×N)−1

}
. The encrypted image is cut into pixel-blocks, and

each pixel-block contains n contiguous pixels. A current pixel-block can be denoted as
bc =

{
pn(c−1), pn(c−1)−1, · · · , pn(c−1)−(n−1)

}
, where c is the number of the current pixel-

block. After the pixel-blocks are formed, m pixel-blocks are grouped toobtainher to be a
block-group gl =

{
bm(l−1), bm(l−1)+1, · · · , bm(l−1)+(m−1)

}
, where l is the number of the

current block-group and m is the length of a desired codeword table for the codeword index
reordering detailed in Section 2. The total number of block-groups is K = (M×N)

(m×n) and the
block-groups in the encrypted image I′ can be represented as G = {g0, g1, · · · , gK−1}. A
codeword table containing m n-dimensional codewords is generated for each corresponding
block-group gl .

Figure 6 is an example of how pixel-blocks and block-groups are created for a 512× 512
image. When a pixel-block consists of 8 pixels and a block-group combines 255 blocks, there
are 32,768 pixel-blocks and 128 block-groups are formed in total for the encrypted image.

Future Internet 2024, 16, x FOR PEER REVIEW 8 of 22

After a data hider obtains the encrypted image 𝐼ᇱ, it is converted into a pixel stream.
Depending on the block size desired, it is broken into pixel-blocks. An owner can set the
number of blocks in a group to perform the index reordering technique which is derived
from the codeword index reordering detailed in Background of the Work. We are using
the same technique as the codeword index reordering to embed data into the block-groups
generated from the encrypted image.

After obtaining the encrypted image 𝐼ᇱ which consists of 𝑀 × 𝑁 pixels, it is de-
noted as 𝐼ᇱ = {𝑝଴, 𝑝ଵ, ⋯ , 𝑝(ெ × ே)ିଵ}. The encrypted image is cut into pixel-blocks, and each
pixel-block contains 𝑛 contiguous pixels. A current pixel-block can be denoted as 𝑏௖ ={𝑝௡(௖ିଵ), 𝑝௡(௖ିଵ)ିଵ, ⋯ , 𝑝௡(௖ିଵ)ି(௡ିଵ)}, where 𝑐 is the number of the current pixel-block. Af-
ter the pixel-blocks are formed, 𝑚 pixel-blocks are grouped toobtainher to be a block-
group 𝑔௟ = {𝑏௠(௟ିଵ), 𝑏௠(௟ିଵ)ାଵ, ⋯ , 𝑏௠(௟ିଵ)ା(௠ିଵ)} , where 𝑙 is the number of the current
block-group and m is the length of a desired codeword table for the codeword index re-
ordering detailed in Section 2. The total number of block-groups is 𝐾 = (ெ × ே)(௠ × ௡) and the
block-groups in the encrypted image 𝐼ᇱ can be represented as 𝐺 = {𝑔଴, 𝑔ଵ, ⋯ , 𝑔௄ିଵ} . A
codeword table containing 𝑚 n-dimensional codewords is generated for each corre-
sponding block-group 𝑔௟.

Figure 6 is an example of how pixel-blocks and block-groups are created for a 512 × 512 image. When a pixel-block consists of 8 pixels and a block-group combines
255 blocks, there are 32,768 pixel-blocks and 128 block-groups are formed in total for the
encrypted image.

Figure 6. Cutting the pixel stream into pixel-blocks and forming block-groups.

A codeword table for the block-group 𝑔଴ of the example in Figure 6 is illustrated in
Figure 7. The codeword table is treated as a codebook used in the codeword index reor-
dering to hide data at a later stage.

Figure 6. Cutting the pixel stream into pixel-blocks and forming block-groups.

A codeword table for the block-group g0 of the example in Figure 6 is illustrated
in Figure 7. The codeword table is treated as a codebook used in the codeword index
reordering to hide data at a later stage.

Future Internet 2024, 16, 34 8 of 20
Future Internet 2024, 16, x FOR PEER REVIEW 9 of 22

Figure 7. Constructing a codeword table for a block-group.

Figure 7. Constructing a codeword table for a block-group.

3.3. Pixel-Block Number Embedding

Before hiding data, recording the indices of pixel-blocks in a block-group is needed
for the image recovery. The original index of a pixel-block Nb in a block-group is calculated
based on the following:

Nb = bi mod m, (8)

where m is the number of pixel-blocks in a block-group and bi is the current pixel-block. For
example, the number of pixel-block b2 in block-group g0 is 2 and the number of pixel-block
b257 in block-group g1 is 1. Figure 8 shows a diagram on how pixel-blocks are numbered in
each block-group.

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 22

3.3. Pixel-Block Number Embedding
Before hiding data, recording the indices of pixel-blocks in a block-group is needed

for the image recovery. The original index of a pixel-block 𝑁௕ in a block-group is calcu-
lated based on the following: 𝑁௕ = 𝑏௜ 𝑚𝑜𝑑 𝑚, (8)

where 𝑚 is the number of pixel-blocks in a block-group and 𝑏௜ is the current pixel-block.
For example, the number of pixel-block 𝑏ଶ in block-group 𝑔଴ is 2 and the number of
pixel-block 𝑏ଶହ଻ in block-group 𝑔ଵ is 1. Figure 8 shows a diagram on how pixel-blocks
are numbered in each block-group.

Figure 8. Block numbers in block-groups.

Since there are 𝑛 pixels in a pixel-block, the least significant bit (LSB) [5] of each pixel
in the block is used to indicate its pixel-block number in a block-group. Figure 9 demon-
strates how to embed a calculated block number 𝑁௕ to LSBs. The LSB bit in each pixel
inside of a pixel-block is replaced with the binary bit value of its calculated block number
in its group. The example shows the decimal value of 1 which is the calculated block num-
ber for 𝑏ଵ in 𝑔଴.

Figure 9. LSB replacements in pixels according to the calculated block number in a block- group.

After embedding the calculated block numbers as metadata into the LSBs, the en-
crypted image 𝐼௘ is now an encrypted image embedded with image recovery infor-
mation. It is then sent to the data hider to hide secret data.

Figure 8. Block numbers in block-groups.

Since there are n pixels in a pixel-block, the least significant bit (LSB) [5] of each pixel in
the block is used to indicate its pixel-block number in a block-group. Figure 9 demonstrates
how to embed a calculated block number Nb to LSBs. The LSB bit in each pixel inside
of a pixel-block is replaced with the binary bit value of its calculated block number in its
group. The example shows the decimal value of 1 which is the calculated block number for
b1 in g0.

Future Internet 2024, 16, 34 9 of 20

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 22

3.3. Pixel-Block Number Embedding
Before hiding data, recording the indices of pixel-blocks in a block-group is needed

for the image recovery. The original index of a pixel-block 𝑁௕ in a block-group is calcu-
lated based on the following: 𝑁௕ = 𝑏௜ 𝑚𝑜𝑑 𝑚, (8)

where 𝑚 is the number of pixel-blocks in a block-group and 𝑏௜ is the current pixel-block.
For example, the number of pixel-block 𝑏ଶ in block-group 𝑔଴ is 2 and the number of
pixel-block 𝑏ଶହ଻ in block-group 𝑔ଵ is 1. Figure 8 shows a diagram on how pixel-blocks
are numbered in each block-group.

Figure 8. Block numbers in block-groups.

Since there are 𝑛 pixels in a pixel-block, the least significant bit (LSB) [5] of each pixel
in the block is used to indicate its pixel-block number in a block-group. Figure 9 demon-
strates how to embed a calculated block number 𝑁௕ to LSBs. The LSB bit in each pixel
inside of a pixel-block is replaced with the binary bit value of its calculated block number
in its group. The example shows the decimal value of 1 which is the calculated block num-
ber for 𝑏ଵ in 𝑔଴.

Figure 9. LSB replacements in pixels according to the calculated block number in a block- group.

After embedding the calculated block numbers as metadata into the LSBs, the en-
crypted image 𝐼௘ is now an encrypted image embedded with image recovery infor-
mation. It is then sent to the data hider to hide secret data.

Figure 9. LSB replacements in pixels according to the calculated block number in a block- group.

After embedding the calculated block numbers as metadata into the LSBs, the en-
crypted image Ie is now an encrypted image embedded with image recovery information.
It is then sent to the data hider to hide secret data.

3.4. Data Hiding

When the data hider receives the encrypted image Ie with embedded block numbers,
a data hiding key kd, and a secret message SM = {sm0, sm1, · · · , smk}, smk = {0, 1}, an
n-dimensional line L is generated according to the data hiding key kd. The pixels in each
pixel-block form a codeword and obtain a projected value by projecting the codeword to the
line L. A codeword table T is created for each block-group by using these codewords and
is sorted by their projected values. The sorted codeword table T′ is then used to embed the
secret bits by applying the codeword index reordering technique described in Section 2.2.

Algorithm 1 details the steps of how to embed the secret message SM:

Algorithm 1: Data Hiding.

Input
The encrypted image Ie, the pixel-block size n, the block-group size m, the data
hiding key kd, and the secret message SM.

Output A marked image Im.

1:
Obtain an n-dimensional line L for pixel-blocks in a block-group to project to by
using the data hiding key kd.

2: Initialize a marked image Im = {}.
3: Form pixel-blocks and block-groups based on sizes n and m.
4: FOR each block-group gc in the encrypted image Ie
5: Generate a codeword table T = {cw0, cw1, · · · , cwm−1} using gc
6: Initialize projected values PV = {}

7:

FOR each pixel-block bc in gc
Obtain projected value λc = bc·L
Append λc to PV.

END

8:
Sort codeword table T according to PV to obtain the sorted codeword table

T′ =
{

cw′
0, cw′

1, · · · , cw′
m−1

}
.

9: Initialize a stego codeword table ST = {}.

10:

WHILE SM is not empty and T′ is not empty
Calculate the number of secret bits that can be embedded by using

nsm = ⌊log2(length(T′))⌋,
Convert secret bits to a decimal index

(sm0 ∥ sm1 ∥ · · · ∥ smnsm−1)2 = (indx)10.
Move codeword cw′

indx out from T′ and add to ST.
END

11:
FOR each codeword stcwi in ST

Append stcwi to the marked image Im.
END

END
12: Export Im.

3.5. Data Extraction and Image Recovery

After receiving the marked image Im, the secret message can be extracted when a
receiver has the data hiding key kd. When a receiver has the encryption key ke, a recovered

Future Internet 2024, 16, 34 10 of 20

image with high visual quality can be obtained. If a receiver has both keys, the secret
message can be extracted and the recovered image can be obtained.

3.5.1. Data Extraction

If a receiver has a data hiding key kd, the secret data can be extracted. The marked
image Im is converted into a pixel stream first. Depending on the size of a pixel-block n
and the number of blocks m in a block-group received, it is divided into pixel-blocks and
block-groups first. A n-dimensional line L is generated by using the data hiding key kd. The
pixels in each pixel-block form a codeword and obtain a projected value by projecting the
codeword to the line L. A codeword table T is created for each block-group of the marked
image by using these codewords and is sorted by their projected values. Both the sorted
codeword table T′ and the codeword table T created from the marked image are used to
extract the secret data. The detailed steps are provided in Algorithm 2.

Algorithm 2: Data Extraction.

Input
The marked image Im, the size of pixel-block n, the size of block-group m, and
the data hiding key kd.

Output A recovered secret message RSM.

1:
Obtain the n-dimensional line L for pixel-blocks in a block-group to project to by
using data hiding key kd.

2: Initialize the recovered secret message RSM = {}.
3: Form pixel-blocks and block-groups based on sizes n and m.
4: FOR each block-group gc in the marked image Im
5: Generate a codeword table T = {cw0, cw1, · · · , cwm−1} using gc.
6: Initialize projected values PV = {}.

7:

FOR each pixel-block bc in gc
Obtain projected value λc = bc·L
Append λc to PV.

END

8:
Sort codeword table T according to PV to obtain the sorted codeword table

T′ =
{

cw′
0, cw′

1, · · · , cw′
m−1

}
.

9:

FOR each codeword cwc in the codeword table T
Find the index indx of cwc in T′ and remove cwc from T′.
Convert decimal index indx to binary secret bits

(indx)10 = (sm0 ∥ sm1 ∥ · · · ∥ smnsm−1)2.
Append secret bits to RSM.

END
END

10: Export RSM.

3.5.2. Image Recovery

If a receiver has an encryption key ke, a recovered image with high visual quality
can be obtained. The marked image Im is converted into a pixel stream first. Depending
on the size of a pixel-block n and the number of blocks m in a block-group received, the
marked pixel stream is broken into pixel-blocks and block-groups. The pixels in each
pixel-block form a codeword, and a codeword table T is created for each block-group of the
marked image by using these codewords. We can extract the original pixel-blocks’ indices
by extracting the values from the LSBs of pixels in pixel-blocks and recover the pixel values
by using the encryption key ke. Algorithm 3 goes through the recovery steps in more detail.

Future Internet 2024, 16, 34 11 of 20

Algorithm 3: Image Recovery.

Input
The marked image Im, the size of pixel-block n, the size of block-group m, and
the encryption key ke.

Output A recovered image RI.
1: Initialize the recovered image Ir = {}.
2: Form pixel-blocks and block-groups based on sizes n and m.
3: FOR each block-group gc in the marked image Im
5: Generate a codeword table T = {cw0, cw1, · · · , cwm−1} using gc.
6: Initialize block values BV = {}.

7:

FOR each pixel-block bc in gc
Obtain block value bvc from the LSB of each pixel in bc.
Convert bvc to decimal v.
Append v to BV.

END

8:
Sort codeword table T according to PV to obtain the sorted codeword table

T′ =
{

cw′
0, cw′

1, · · · , cw′
m−1

}
.

9:
FOR each codeword cw′

c in the codeword table T′
Append cw′

c to Ir.
END

END
Recover image RI by using encryption key ke to decrypt image Ir with bit XOR
operations.

10: Export RI.

4. Experimental Results

In this section, we conducted experiments on an Intel(R) Core(TM) i5-9500 CPU
utilizing the MATLAB environment, version 2017a, within the Windows PC operating
system, in order to assess the performance of the proposed solution and compare it with
some state-of-the-art (SOTA) schemes.

We evaluated the performance of the proposed data hiding scheme through experi-
mental analysis. A binary data stream S, generated by a random number generator, was
employed as the secret information. The two key factors that we pay attention during data
hiding are good visual quality and high embedding quantity. To keep the visual quality
means that the recovered images look as similar to the original cover images as possible.
To efficiently measure the embedding quantity, embedding capacity (EC) is calculated,
representing the total number of bits that the proposed scheme could embed in the image.
With the evolution of data hiding techniques, numerous metrics have been utilized to
assess the visual quality of the restored images. The commonly employed metrics include
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). The calculation
formulas are provided below:

MSE =
1

W × H

W

∑
i=1

H

∑
j=1

(
Oi,j − Ri,j)

2 , (9)

PSNR = 10log10
(255)2

MSE
(dB), (10)

SSIM =
(2µOµD + c1)(2σOD + c2)[

(µO)
2 + (µD)

2 + c1

][
(σO)

2 + (σD)
2 + c2

] , (11)

where W and H represent the width and height of the images, and Oi,j and Ri,j denote
the pixel values at position (i, j) for the cover image and the restored image. µ represents
the mean value used as an estimate for luminance; σ is the standard deviation used as
an estimate of contrast; σOD denotes the covariance between the original image O and

Future Internet 2024, 16, 34 12 of 20

the restored image R and serves as a metric for structural similarity; c1, and c2 are two
constants close to zero.

A higher PSNR value indicates less distortion caused by the hidden data. Typically,
PSNR values exceeding 30 dB suggest image distortion imperceptible to the human eye.
SSIM combines three factors—luminance, contrast, and structure—to assess the similarity
between two images. The SSIM range is from −1 to 1. As the value of SSIM approaches 1,
it demonstrates a higher degree of similarity between the two images.

At the same time, information entropy is selected to test the security of the en-
crypted image, that is, the randomness of the image histogram is calculated by the
following method:

entropy =
255

∑
pi=0

P(pi)log
1

P(pi)
, (12)

where pi represents the image pixel value between 0 and 255, and P(pi) is the probability
of the image pixel value pi occurring. An information entropy value closer to 8 means that
the encrypted image has higher randomness.

In Section 4.1, we evaluate the performance of our proposed scheme under different
test images. We give some execution results and security analysis in Section 4.2. Section 4.3
gives comparisons with other SOTA schemes.

4.1. Performances of Our Proposed Scheme

The embedding capacity of the proposed scheme is contingent upon the pixel-block
size and the codeword table size. Therefore, we initially conducted performance tests on
different test images by varying the pixel-block sizes in a codeword table. The group size
in Tables 1 and 2 is what we call the codebook table size.

Table 1. Performance of different block sizes with the same group size of 256.

Image Name Block Size Group Size EC PSNR SSIM

Airplane

1 × 8 256 197,888 51.1497 0.9956
2 × 4 256 197,888 51.1327 0.9956
4 × 2 256 197,888 51.1491 0.9956
2 × 8 256 98,944 54.1349 0.9978
3 × 8 256 64,932 55.9329 0.9985

Baboon

1 × 8 256 197,888 51.1499 0.9987
2 × 4 256 197,888 51.1469 0.9987
4 × 2 256 197,888 51.1329 0.9987
2 × 8 256 98,944 54.1787 0.9994
3 × 8 256 64,932 55.9347 0.9996

Barbara

1 × 8 256 197,888 51.1360 0.9972
2 × 4 256 197,888 51.1542 0.9972
4 × 2 256 197,888 51.1450 0.9972
2 × 8 256 98,944 54.1392 0.9986
3 × 8 256 64,932 55.9208 0.9991

Boat

1 × 8 256 197,888 51.1419 0.9972
2 × 4 256 197,888 51.1469 0.9972
4 × 2 256 197,888 51.1410 0.9972
2 × 8 256 98,944 54.1624 0.9986
3 × 8 256 64,932 55.9081 0.9991

Couple

1 × 8 256 197,888 51.1399 0.9975
2 × 4 256 197,888 51.1316 0.9975
4 × 2 256 197,888 51.1489 0.9975
2 × 8 256 98,944 54.1454 0.9987
3 × 8 256 64,932 55.9446 0.9992

Future Internet 2024, 16, 34 13 of 20

Table 1. Cont.

Image Name Block Size Group Size EC PSNR SSIM

Lena

1 × 8 256 197,888 51.1344 0.9960
2 × 4 256 197,888 51.1447 0.9960
4 × 2 256 197,888 51.1509 0.9960
2 × 8 256 98,944 54.1487 0.9980
3 × 8 256 64,932 55.9430 0.9987

Peppers

1 × 8 256 197,888 51.1362 0.9963
2 × 4 256 197,888 51.1452 0.9963
4 × 2 256 197,888 51.1435 0.9963
2 × 8 256 98,944 54.1419 0.9981
3 × 8 256 64,932 55.8990 0.9988

Table 2. Performance with different block-group sizes and different pixel-block.

Image Name Block Size Group Size EC PSNR NPCR UACI MAE

Airplane

1 × 8 256 197,888 51.15 49.90 0.1957 0.4990
1 × 6 64 180,048 51.15 49.89 0.1957 0.4989
1 × 4 8 155,648 51.14 49.98 0.1960 0.4998
1 × 2 4 131,072 51.14 50.06 0.1963 0.5006

Baboon

1 × 8 256 197,888 51.15 49.90 0.1957 0.4990
1 × 6 64 180,048 51.12 50.22 0.1969 0.5022
1 × 4 8 155,648 51.14 50.05 0.1963 0.5005
1 × 2 4 131,072 51.14 50.01 0.1961 0.5001

Barbara

1 × 8 256 197,888 51.14 50.06 0.1963 0.5006
1 × 6 64 180,048 51.15 49.95 0.1959 0.4995
1 × 4 8 155,648 51.14 49.98 0.1960 0.4998
1 × 2 4 131,072 51.14 50.02 0.1961 0.5002

Boat

1 × 8 256 197,888 51.14 49.99 0.1960 0.4999
1 × 6 64 180,048 51.15 49.88 0.1956 0.4988
1 × 4 8 155,648 51.14 50.00 0.1961 0.5000
1 × 2 4 131,072 51.13 50.07 0.1964 0.5007

Couple

1 × 8 256 197,888 51.14 50.01 0.1961 0.5001
1 × 6 64 180,048 51.14 49.97 0.1960 0.4997
1 × 4 8 155,648 51.14 49.99 0.1960 0.4999
1 × 2 4 131,072 51.13 50.08 0.1964 0.5008

Lena

1 × 8 256 197,888 51.13 50.08 0.1964 0.5008
1 × 6 64 180,048 51.14 49.98 0.1960 0.4998
1 × 4 8 155,648 51.14 49.97 0.1960 0.4997
1 × 2 4 131,072 51.14 49.97 0.1960 0.4997

Peppers

1 × 8 256 197,888 51.14 50.06 0.1963 0.5006
1 × 6 64 180,048 51.14 50.04 0.1962 0.5004
1 × 4 8 155,648 51.15 49.93 0.1958 0.4993
1 × 2 4 131,072 51.14 50.05 0.1963 0.5005

Table 1 lists the results of applying the proposed scheme to the test images for different
pixel-block size configurations with the same codebook table size. We observed that when
pixel-blocks have an identical number of pixels, the shapes of the pixel-blocks had no
effect at all on EC values depicted in Table 1; the shapes also had no significant impact on
PSNR and SSIM. Therefore, we could simplify our scheme by converting the encrypted
images to a pixel stream first and specifying the size of a pixel-block without the necessity
of specifying the width and the height of a pixel-block. However, the number of pixels
within a pixel-block had a significant effect on EC, and the larger the size of the pixel-block,
the less EC the proposed scheme could provide. Moreover, the larger the pixel-block, the
higher the PSNR and SSIM values of the recovered image when the size of the codebook

Future Internet 2024, 16, 34 14 of 20

table was the same. Simultaneously, we observed that the most efficient partitioning is to
have 2n pixel-blocks within a block-group when the size of a pixel-block is n.

In addition to these metrics, we also employed the number of pixels changing rate
(NPCR), unified average changed intensity (UACI), and mean absolute error (MAE) to
evaluate image distortion between the original and the restored images. The calculation
formulas for these metrics are as follows:

NPCR =
∑i,j D(i, j)

W × H
× 100%, (13)

D(i, j) =
{

1, O(i, j) ̸= R(i, j)
0, otherwise

, (14)

UACI = ∑|O(i, j)− R(i, j)|
W × H × 255

× 100%, (15)

MAE =
1

W × H ∑W
i=1 ∑H

j=1|O(i, j)− R(i, j)|, (16)

where W and H represent the width and height of the images, and O(i, j) and R(i, j) denote
the pixel values at position (i, j) for the cover image and the restored image.

NPCR is employed to compute the number of differing pixels between two images,
while UACI is utilized to calculate the average change in pixels between two images. Unlike
Table 1, Table 2 is a test of the proposed scheme with various codebook table sizes. From
Table 2, it can be clearly seen that as the size of the codebook table becomes larger, the EC
of the proposed scheme also becomes larger. Since the efficient pairing of codebook table
size and pixel-block size was utilized, the LSB of each pixel in a pixel-block was used to
record the original pixel-block index in a group, and the PSNR values of all tested scenarios
were around 51 dB. The PSNR values indicated that our recovered image had a good visual
quality. As shown in Table 2, the proposed scheme involves replacing the LSB of pixels
with the initial block index in a group after encrypting the image. Consequently, after
extracting information and decrypting the image, the LSB of each pixel cannot be fully
restored, with a 50% probability of being flipped. As a result, NPCR values are around
50% across various test images. UACI values are notably low, with the highest UACI not
exceeding 0.2%, indicating that the average pixel changes induced by the proposed scheme
are small, even if the images cannot be fully recovered. Mean Absolute Error (MAE) is
also an indicator for assessing image quality, where a smaller MAE value corresponds to
better image quality. From Table 2, we can see that the MAE values are small for all images.
In summary, the proposed scheme causes very little damage to the cover images when
embedding the secret data and the recovered images are very similar to the cover images.

4.2. Execution Results and Security Analysis

Figure 10 presents the performance results of various test images at different stages.
After image encryption, pixel values become disordered, rendering meaningful informa-
tion indiscernible, and the pixel distribution in the histogram of the encrypted image
is consequently uniform. Since our proposed data embedding scheme involves merely
scrambling the positions of encrypted pixels after recording the original block indices
using LSB replacements, the distribution of pixel values in the encrypted image does not
undergo substantial changes. The histogram distributions of the recovered images that
we are able to obtain after extracting the information are also very similar to the original
histogram distributions.

Future Internet 2024, 16, 34 15 of 20Future Internet 2024, 16, x FOR PEER REVIEW 17 of 22

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d1) (d2) (d3) (d4)

Figure 10. Execution results of our proposed scheme: (a1) is original “Airplane” image with 512 × 512 pixels. (a2,a3) are encrypted image and embedded encrypted image (block size = 1 × 8,
codeword table size = 256). (a4) is the decrypted image. (b1–b4) are the corresponding histograms
of (a1–a4). In (c,d), the results of “Baboon” (block size = 1 × 8, codeword table size = 256), are given.

In addition to information entropy, another way to analyze the differences between
adjacent pixels is to use the correlation coefficient to assess the correlation between adja-
cent pixels. A natural image has a high correlation between neighboring pixels normally,
but for a secure encrypted image, the lower the correlation between its neighboring pixels,
the more secure it is. It is defined as follows:

Corr = ∑ (𝑥௜ − 1𝑁 ∑ 𝑥௜ே௜ୀଵ)(𝑦௜ − 1𝑁 ∑ 𝑦௜ே௜ୀଵ)ே௜ୀଵට∑ ቀ𝑥௜ − 1𝑁 ∑ 𝑥௜ே௜ୀଵ ቁଶ × ∑ ቀ𝑦௜ − 1𝑁 ∑ 𝑦௜ே௜ୀଵ ቁଶே௜ୀଵே௜ୀଵ . (17)

We divide the image into pixel pairs, take the former of all pixel pairs as 𝑥௜ and the
latter of all pixel pairs as 𝑦௜, with 𝑁 denoting the number of pixel pairs, and then calcu-
late the correlation coefficient between them. Tables 3–5 were tested with a pixel-block
size of 8 and a codebook table size of 256. The information entropy and the pixel correla-
tion results for horizontal and vertical pairs are shown in Table 3 and Table 4, respectively.

Figure 10. Execution results of our proposed scheme: (a1) is original “Airplane” image with 512× 512
pixels. (a2,a3) are encrypted image and embedded encrypted image (block size = 1 × 8, codeword
table size = 256). (a4) is the decrypted image. (b1–b4) are the corresponding histograms of (a1–a4). In
(c1–c4,d1–d4), the results of “Baboon” (block size = 1 × 8, codeword table size = 256), are given.

In addition to information entropy, another way to analyze the differences between
adjacent pixels is to use the correlation coefficient to assess the correlation between adjacent
pixels. A natural image has a high correlation between neighboring pixels normally, but
for a secure encrypted image, the lower the correlation between its neighboring pixels, the
more secure it is. It is defined as follows:

Corr =
∑N

i=1

(
xi − 1

N ∑N
i=1 xi

)(
yi − 1

N ∑N
i=1 yi

)
√

∑N
i=1

(
xi − 1

N ∑N
i=1 xi

)2
× ∑N

i=1

(
yi − 1

N ∑N
i=1 yi

)2
. (17)

We divide the image into pixel pairs, take the former of all pixel pairs as xi and the
latter of all pixel pairs as yi, with N denoting the number of pixel pairs, and then calculate
the correlation coefficient between them. Tables 3–5 were tested with a pixel-block size of 8
and a codebook table size of 256. The information entropy and the pixel correlation results
for horizontal and vertical pairs are shown in Tables 3 and 4, respectively.

Future Internet 2024, 16, 34 16 of 20

Table 3. Entropy values of test images.

Image Name Original Image
Entropy

Encrypted Image
Entropy

Marked Image
Entropy

Airplane 6.705888 7.9993 7.9993
Baboon 7.357949 7.9993 7.9993
Barbara 7.632119 7.9993 7.9992
Boat 7.19137 7.9994 7.9993
Couple 7.058103 7.9992 7.9993
Lena 7.445507 7.9992 7.9992
Peppers 7.594429 7.9993 7.9993

Table 4. Horizontal and vertical correlation analysis.

Image Name
Original Image Encrypted Image Marked Image

Hor Ver Hor Ver Hor Ver

Airplane 0.9606 0.9584 −0.0019 −0.0033 −0.0019 −0.0080
Baboon 0.8667 0.7498 0.0010 −0.0034 0.0010 −0.0131
Barbara 0.8956 0.9588 −0.0009 −0.0028 −0.0009 −0.0138
Boat 0.9383 0.9715 0.0000 −0.0052 0.0000 −0.0087
Couple 0.9433 0.9534 −0.0035 −0.0027 −0.0034 −0.0091
Lena 0.9719 0.9850 0.0002 −0.0012 0.0001 −0.0112
Peppers 0.9730 0.9762 −0.0012 −0.0028 −0.0012 −0.0103

Table 5. NPCR and UACI analysis of test images.

Image Name
Encrypted Image Marked Image

NPCR UACI NPCR UACI

Airplane 99.8096 32.3892 99.61624 32.43519
Baboon 99.8096 27.9032 99.60213 27.58626
Barbara 99.8096 29.8222 99.60213 29.86593
Boat 99.8096 28.5168 99.61014 28.54057
Couple 99.8096 28.2082 99.63608 27.8268
Lena 99.8096 28.6750 99.61281 28.81635
Peppers 99.8096 29.6210 99.60632 29.64995

Table 3 provides measurements for the original, encrypted, and embedded encrypted
images of different test images. Clearly, the entropy values for the encrypted and em-
bedded encrypted images of each image are quite similar, as our proposed scheme only
employs one-bit LSB replacement on encrypted pixels and subsequently scrambles the
pixel positions. On the other hand, the entropy values for different encrypted images are
consistently close to 8, significantly higher than the entropy values of the original images.
Consequently, the distribution of pixel values in encrypted images exhibits heightened
randomness, thereby enhancing security.

As shown in Table 4, neighboring pixel values in the original image have strong
positive correlation both horizontally and vertically, while the pixels of encrypted and
marked images have only very low correlation both horizontally and vertically. Also, the
correlation between the marked image and the encrypted image does not change much
compared to the encrypted image both horizontally and vertically. This indicates that the
Stream Cipher encryption completely encrypts the image, and the proposed scheme that
utilizes the reordering of the codebook table to embed the secret data inherits this feature
and does not make the correlation between the pixels higher due to the embedded data.

The security of the proposed scheme is further analyzed in Table 5 using two metrics,
NPCR and UACI. The definition and computation of both NPCR and UACI have been
mentioned in Section 4.1. In terms of security analysis, the higher the NPCR value, the more
effective the encryption algorithm is, because the higher the number of different pixels,

Future Internet 2024, 16, 34 17 of 20

the harder the encrypted image is to crack. For two uncorrelated images, the theoretical
value of UACI is 33.33%. As shown in Table 5, for both encrypted and marked images, the
NPCR value and UACI value of the proposed scheme are close to the theoretical optimal
value, which indicates that our scheme can provide a high level of security against potential
attacks.

Table 6 shows the time in seconds spent by different stages of the proposed scheme on
different test images. The pixel-block size of the proposed scheme is 8, the codebook size
is 256, and 197,888 bits of secret data are embedded. From the table, we can see that the
proposed scheme spends 6.30 s in the embedding stage at most, and 2.85 s in the extraction
and recovering stage at most. Overall, the cost of time spent is acceptable.

Table 6. Experimental runtime on different test images.

Image Name Embedding Recovered
Image Extraction Extraction

and Recovery

Airplane 5.98 1.95 0.83 2.80
Baboon 6.30 2.00 0.78 2.85
Barbara 6.19 1.98 0.80 2.78
Boat 6.13 1.95 0.82 2.83
Couple 6.17 1.97 0.79 2.73
Lena 6.29 1.96 0.81 2.77
Peppers 6.18 1.98 0.77 2.77

4.3. Comparison with State-of-the-Art Schemes

In this section, we primarily compare our proposed scheme with some state-of-the-art
schemes for data hiding in encrypted images in terms of PSNR, SSIM, and embedding
capacity. In Table 7, it can be seen that the embedding capabilities of our proposed schemes
outperform all the other schemes. Moreover, our proposed scheme consistently provides
stable embedding capacity for any image, as long as the pixel-block size and the number
of blocks within a group remain unchanged. The independence of embedding capacity
from image content is attributed to our utilization of indices within each group for data
embedding. So, as long as the number of blocks in the group and the size of the pixel-blocks
are consistent, images of the same size will have the same embedding capacity. From
Table 7, it is evident that our proposed scheme also outperforms most SOTA methods based
on the PSNR values and SSIM values. Even though the PSNR is slightly lower than [17],
our proposed scheme achieves a PSNR of approximately 51 dB, which is adequate for
visual quality of a recovered image.

Table 7. EC, PSNR, and SSIM comparisons.

Image Qian and
Zhang [17]

Bhardwaj and
Aggarwal [21]

Wang
et al. [22]

Group
Size = 16

Group
Size = 64

Group
Size = 256

Lena
EC 77,385 65,536 131,072 155,648 180,048 197,888
PSNR 64 39 26.1 51.14 51.14 51.13
SSIM 0.9781 0.9417 0.8965 0.9960 0.9960 0.9960

Peppers
EC 77,385 65,536 131,072 155,648 180,048 197,888
PSNR 61.9 39 24.5 51.15 51.14 51.14
SSIM 0.9837 0.9446 24.5 0.9963 0.9963 0.9963

Baboon
EC 77,385 65,536 131,072 155,648 180,048 197,888
PSNR 46.8 39 20.31 51.15 51.12 51.15
SSIM 0.9918 0.9805 0.7739 0.9987 0.9987 0.9987

Airplane
EC 77,385 65,536 130,915 155,648 180,048 197,888
PSNR 69.7 39 25.73 51.14 51.15 51.15
SSIM 0.9824 0.9403 0.9073 0.9956 0.9956 0.9956

Future Internet 2024, 16, 34 18 of 20

In Figure 11, we further compare the PSNR of our scheme with more SOTA schemes
under different embedding capacities, with a pixel-block size of 8 and 256 blocks within a
codeword table. In Figure 11, we use the embedding ratio (ER) to represent the embedding
capacity (ER = EC/total number of pixels). As depicted in Figure 11, in most cases, the
PSNR values of other schemes tends to decrease with increasing embedding capacity. In
contrast, our proposed scheme consistently has a stable PSNR for the recovered image.
Therefore, as the amount of embedded secret data increases, the advantages of our proposed
scheme become more pronounced in terms of the PSNR and the SSIM of the recovered
image. As long as the embedding rate is greater than 0.25 bpp, the proposed scheme has
better visual quality and higher embedding capability than other schemes.

Future Internet 2024, 16, x FOR PEER REVIEW 20 of 22

Airplane
EC 77,385 65,536 130,915 155,648 180,048 197,888
PSNR 69.7 39 25.73 51.14 51.15 51.15
SSIM 0.9824 0.9403 0.9073 0.9956 0.9956 0.9956

In Figure 11, we further compare the PSNR of our scheme with more SOTA schemes
under different embedding capacities, with a pixel-block size of 8 and 256 blocks within a
codeword table. In Figure 11, we use the embedding ratio (ER) to represent the embedding
capacity (ER = EC/total number of pixels). As depicted in Figure 11, in most cases, the
PSNR values of other schemes tends to decrease with increasing embedding capacity. In
contrast, our proposed scheme consistently has a stable PSNR for the recovered image.
Therefore, as the amount of embedded secret data increases, the advantages of our pro-
posed scheme become more pronounced in terms of the PSNR and the SSIM of the recov-
ered image. As long as the embedding rate is greater than 0.25 bpp, the proposed scheme
has better visual quality and higher embedding capability than other schemes.

(a) Airplane (b) Baboon

(c) Lena (d) Peppers

Figure 11. PSNR comparisons with SOTA schemes[15-23].

5. Conclusions
In the proposed scheme, a content owner encrypts an image first using the Stream

Cipher technique with an encryption key and embedding pixel-block numbers in each
block-group by replacing LSBs of pixels in each pixel-block. The encrypted image with
embedding pixel-block numbers is then sent to a data hider to embed a secret message
and create a marked image using a data hiding key and the codeword table index reor-
dering technique. The marked image is sent to the receivers. When a receiver has the data
hiding key, the secret message can be extracted. When a receiver has the encrypted key,
the image can be reconstructed with minor distortions because of LSB replacements.

Figure 11. PSNR comparisons with SOTA schemes [15–23].

5. Conclusions

In the proposed scheme, a content owner encrypts an image first using the Stream
Cipher technique with an encryption key and embedding pixel-block numbers in each
block-group by replacing LSBs of pixels in each pixel-block. The encrypted image with
embedding pixel-block numbers is then sent to a data hider to embed a secret message and
create a marked image using a data hiding key and the codeword table index reordering
technique. The marked image is sent to the receivers. When a receiver has the data hiding
key, the secret message can be extracted. When a receiver has the encrypted key, the image
can be reconstructed with minor distortions because of LSB replacements.

With our experiment results, we are confident that the proposed scheme could achieve
our goal of increasing embedding capacity by a significant amount compared to the SOTA
schemes. Our experiments showed that the embedding capability with any cover image
is consistent as long as the sizes of pixel-blocks and block-groups were the same. As for
PSNRs, the results showed that the proposed scheme could outperform the SOTA schemes

Future Internet 2024, 16, 34 19 of 20

as well. Because of LSB replacements, our scheme has a limitation in that the images are
not fully recovered, yet the PSNR reaches 50 dB, which indicates that the images have good
visual performance.

Author Contributions: Conceptualization and methodology, J.-C.L., H.-X.C., C.-C.C. (Ching-Chun
Chang) and C.-C.C. (Chin-Chen Chang); software, H.-X.C.; validation, J.-C.L., H.-X.C., C.-C.C.
(Ching-Chun Chang) and C.-C.C. (Chin-Chen Chang); data curation, H.-X.C.; writing—original draft
preparation, J.-C.L. and H.-X.C.; writing—review and editing, J.-C.L. and H.-X.C.; supervision, C.-C.C.
(Chin-Chen Chang). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fiore, U. Selective Redundancy Removal: A Framework for Data Hiding. Future Internet 2010, 2, 30–40. [CrossRef]
2. Fiore, U.; Rossi, F. Embedding an Identity-Based Short Signature as a Digital Watermark. Future Internet 2015, 7, 393–404.

[CrossRef]
3. Pilania, U.; Tanwar, R.; Zamani, M.; Manaf, A.A. Framework for Video Steganography Using Integer Wavelet Transform and

JPEG Compression. Future Internet 2022, 14, 254. [CrossRef]
4. Liu, J.C.; Chang, C.C.; Lin, C.C.; Chang, C.C. Hiding Information in a Well-Trained Vector Quantization Codebook. In Proceedings

of the ACM International Conference on Signal Processing and Machine Learning (SPML), Tianjin, China, 14–16 July 2023.
[CrossRef]

5. Celik, M.U.; Sharma, G.; Tekalp, A.M.; Sable, E. Lossless generalized-LSB data embedding. IEEE Trans. Image Process 2005, 14,
253–266. [CrossRef] [PubMed]

6. Shi, Y.Q.; Li, X.; Zhang, X.; Wu, H.T.; Ma, B. Reversible data hiding: Advances in the past two decades. IEEE Access 2016, 4,
3210–3237. [CrossRef]

7. Zhang, W.; Wang, H.; Hou, D.; Yu, N. Reversible data hiding in encrypted images by reversible image transformation. IEEE Trans.
Multimed. 2016, 18, 1469–1479. [CrossRef]

8. Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible data hiding in encrypted images by reserving room before encryption. IEEE
Trans. Inf. Forensics Secur. 2013, 8, 553–562. [CrossRef]

9. Yi, S.; Zhou, Y. Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans.
Multimed. 2019, 21, 51–64. [CrossRef]

10. Yi, S.; Zhou, Y. Parametric reversible data hiding in encrypted images using adaptive bit-level data embedding and checkerboard-
based prediction. Signal Process. 2018, 150, 171–182. [CrossRef]

11. Pauline, P.; William, P. An efficient MSB prediction-based method for high-capacity reversible data hiding in encrypted images.
IEEE Trans. Inf. Forensics Secur. 2018, 13, 1670–1681.

12. Chen, F.; Yuan, Y.; He, H.; Tian, M.; Tai, H.M. Multi-MSB compression based reversible data hiding scheme in encrypted images.
IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 905–916. [CrossRef]

13. Puteaux, P.; Puech, W. A recursive reversible data hiding in encrypted images method with a very high payload. IEEE Trans.
Multimed. 2020, 23, 636–650. [CrossRef]

14. Wu, Y.; Xiang, Y.; Guo, Y.; Tang, J.; Yin, Z. An improved reversible data hiding in encrypted images using parametric binary tree
labeling. IEEE Trans. Multimed. 2020, 22, 1929–1938. [CrossRef]

15. Hong, W.; Chen, T.S.; Wu, H.Y. An improved reversible data hiding in encrypted images using side match. IEEE Signal Process.
Lett. 2012, 19, 199–202. [CrossRef]

16. Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2012, 7, 826–832. [CrossRef]
17. Qian, Z.; Zhang, X. Reversible data hiding in encrypted images with distributed source encoding. IEEE Trans. Circuits Syst. Video

Technol. 2016, 26, 636–646. [CrossRef]
18. Wu, X.; Sun, W. High-capacity reversible data hiding in encrypted images by prediction error. Signal Process. 2014, 104, 387–400.

[CrossRef]
19. Huang, F.; Huang, J.; Shi, Y.Q. New framework for reversible data hiding in encrypted domain. IEEE Trans. Inf. Forensics Secur.

2016, 11, 2777–2789. [CrossRef]
20. Ge, H.; Chen, Y.; Qian, Z.; Wang, J. A high capacity multi-level approach for reversible data hiding in encrypted images. IEEE

Trans. Circuits Syst. Video Technol. 2018, 29, 2285–2295. [CrossRef]
21. Bhardwaj, R.; Aggarwal, A. An improved block based joint reversible data hiding in encrypted images by symmetric cryptosystem.

Pattern Recognit. Lett. 2020, 139, 60–68. [CrossRef]

https://doi.org/10.3390/fi2010030
https://doi.org/10.3390/fi7040393
https://doi.org/10.3390/fi14090254
https://doi.org/10.1145/3614008.3614052
https://doi.org/10.1109/TIP.2004.840686
https://www.ncbi.nlm.nih.gov/pubmed/15700530
https://doi.org/10.1109/ACCESS.2016.2573308
https://doi.org/10.1109/TMM.2016.2569497
https://doi.org/10.1109/TIFS.2013.2248725
https://doi.org/10.1109/TMM.2018.2844679
https://doi.org/10.1016/j.sigpro.2018.04.016
https://doi.org/10.1109/TCSVT.2020.2992817
https://doi.org/10.1109/TMM.2020.2985537
https://doi.org/10.1109/TMM.2019.2952979
https://doi.org/10.1109/LSP.2012.2187334
https://doi.org/10.1109/TIFS.2011.2176120
https://doi.org/10.1109/TCSVT.2015.2418611
https://doi.org/10.1016/j.sigpro.2014.04.032
https://doi.org/10.1109/TIFS.2016.2598528
https://doi.org/10.1109/TCSVT.2018.2863029
https://doi.org/10.1016/j.patrec.2018.01.014

Future Internet 2024, 16, 34 20 of 20

22. Wang, X.; Chang, C.C.; Lin, C.C.; Chang, C.C. Reversal of pixel rotation: A reversible data hiding system towards cybersecurity in
encrypted images. J. Vis. Commun. Image Represent. 2022, 82, 103421. [CrossRef]

23. Yu, M.; Yao, H.; Qin, C. Reversible data hiding in encrypted images without additional information transmission. Signal Process.
Image Commun. 2022, 105, 116696. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jvcir.2021.103421
https://doi.org/10.1016/j.image.2022.116696

	Introduction
	Background of the Work
	Sort Codewords by Projected Values
	Data Embedding of the Codeword Index Reordering
	Data Extraction of the Codeword Index Reordering

	Proposed Scheme
	Image Encryption
	Codeword Table Formation
	Pixel-Block Number Embedding
	Data Hiding
	Data Extraction and Image Recovery
	Data Extraction
	Image Recovery

	Experimental Results
	Performances of Our Proposed Scheme
	Execution Results and Security Analysis
	Comparison with State-of-the-Art Schemes

	Conclusions
	References

