
Citation: Khazane, H.; Ridouani, M.;

Salahdine, F.; Kaabouch, N. A

Holistic Review of Machine Learning

Adversarial Attacks in IoT Networks.

Future Internet 2024, 16, 32.

https://doi.org/10.3390/fi16010032

Academic Editors: Georgios

Kambourakis and Gianluigi Ferrari

Received: 14 November 2023

Revised: 12 January 2024

Accepted: 15 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Review

A Holistic Review of Machine Learning Adversarial Attacks in
IoT Networks
Hassan Khazane 1, Mohammed Ridouani 1 , Fatima Salahdine 2,* and Naima Kaabouch 3,*

1 RITM Laboratory, CED Engineering Sciences, ENSEM, Hassan II University, Casablanca 20000, Morocco;
hassan.khazane-etu@etu.univh2c.ma (H.K.); mohammed.ridouani@etu.univh2c.ma (M.R.)

2 Department of Electrical and Computer Engineering, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA

3 School of Electrical and Computer Science, University of North Dakota, Grand Forks, ND 58202, USA
* Correspondence: fsalahdi@uncc.edu (F.S.); naima.kaabouch@und.edu (N.K.)

Abstract: With the rapid advancements and notable achievements across various application domains,
Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem.
Among these use cases is IoT security, where numerous systems are deployed to identify or thwart
attacks, including intrusion detection systems (IDSs), malware detection systems (MDSs), and device
identification systems (DISs). Machine Learning-based (ML-based) IoT security systems can fulfill
several security objectives, including detecting attacks, authenticating users before they gain access
to the system, and categorizing suspicious activities. Nevertheless, ML faces numerous challenges,
such as those resulting from the emergence of adversarial attacks crafted to mislead classifiers. This
paper provides a comprehensive review of the body of knowledge about adversarial attacks and
defense mechanisms, with a particular focus on three prominent IoT security systems: IDSs, MDSs,
and DISs. The paper starts by establishing a taxonomy of adversarial attacks within the context of IoT.
Then, various methodologies employed in the generation of adversarial attacks are described and
classified within a two-dimensional framework. Additionally, we describe existing countermeasures
for enhancing IoT security against adversarial attacks. Finally, we explore the most recent literature
on the vulnerability of three ML-based IoT security systems to adversarial attacks.

Keywords: adversarial attacks; adversarial examples; machine learning; deep learning; Internet of
Things; intrusion detection system; malware detection system; device identification system

1. Introduction

According to Statista [1], there will be about 30.9 billion interconnected IoT devices,
while non-IoT connections including smartphones, laptops, and computers are estimated
to be just over 10 billion units by 2025 globally. This large proliferation of IoT devices has
enabled a diverse array of applications across multiple domains [2], from healthcare and
smart homes to manufacturing and logistics, enabling a seamless transfer of data between
devices and services. However, this growth has also led to new security challenges [3], as
these devices are often resource-constrained, operate in heterogeneous environments, and
are deployed in physically insecure locations.

To detect and mitigate cyberattacks, Intrusion Detection Systems (IDSs) [4], Malware
Detection Systems (MDSs) [5], and Device Identification Systems (DISs) [6] are often
employed to monitor IoT network traffic and detect malicious activities [7–9]. ML [10,11]
techniques, including Deep Learning (DL) [12,13], have shown promise in enhancing the
effectiveness of these systems, by leveraging the ability of ML algorithms to learn from
data and identify patterns that indicate anomalous behavior.

Nonetheless, the application of ML techniques within IDSs, MDSs, and DISs intro-
duces new vulnerabilities. Attackers can potentially manipulate or bypass these systems
by exploiting the inherent nature of ML models, which involves learning and recognizing
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patterns. Adversarial machine learning attacks are a particular concern. Those attacks
on ML-based security systems involve injecting malicious input data called Adversarial
Examples to cause misclassification or bias or modify the ML model to produce incorrect
results. As illustrated in Figure 1, adversarial samples are designed by intentionally intro-
ducing a small perturbation to the initial inputs, to mislead the ML model into generating
an incorrect prediction [14,15].
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Figure 1. Generic process of adversarial attack.

Numerous surveys have been published that explore how adversarial attacks affect
the performance of ML-based systems in diverse domains, including, but not limited to,
computer vision [16–19], natural language processing [20,21], and speech recognition [22].
The majority of existing surveys are related to adversarial attacks against ML in the domain
of computer vision [16–18] and traditional network security [23,24]. However, these attacks
have received less attention in the field of IoT network security. Figure 2a illustrates the
growing focus of the research community on adversarial attacks. In contrast, Figure 2b
highlights the low number of published research in the context of IoT ML-based security.
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domains; (b) In the IoT domain only. The row data source is from [25] and it is completed based on
our research findings in the IoT domain from 2019 to July 2023. The forecast was projected through
quadratic curve modeling.

In the field of traditional network security, the authors of [24] presented a survey of
the current research landscape regarding the ML vulnerability to adversarial attacks. The
survey reviewed different varieties of adversarial attacks encompassing evasion attacks
and poisoning attacks and discussed their impact on various traditional network security
ML-based models such as IDSs and MDSs. The study also outlined various defensive
mechanisms that have been suggested to minimize the effects of adversarial attacks. How-
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ever, the survey’s main focus was on traditional network security, while the security of IoT
networks was very briefly discussed in a very short paragraph with a unique reference in
the IoT context literature. Jmila, H et al. [23] provided a comparative study of ML-based IDS
vulnerability to adversarial attacks and paid more attention to the so-called shallow models
(non-deep learning models). The authors assessed the resilience of seven shallow ML-based
and one Deep Neural Network (DNN), against a variety of adversarial attacks commonly
employed in state-of-the-art datasets using NSL-KDD [26] and UNSW-NB15 [27]. The
survey paid minimal attention to adversarial attacks in the field of IoT security, offering
only four references without any accompanying discussion. Alatwi et al. [28] discussed
adversarial black-box attacks against IDS and provided a survey of recent research on
traditional network security and Software-defined Networking (SDN). Within its scope, the
survey focused solely on reviewing research studies that employed adversarial generation
attacks using different variants of Generative Adversarial Networks (GAN). Meanwhile,
it overlooked the most widely used adversarial attack methods and defense strategies.
Furthermore, limiting this survey to the black-box attacks was of interest, as it closely
aligns with the most realistic circumstances for the adversary. However, studying the
white-box attacks could be more interesting and beneficial for IDS’s manufacturers who
have complete access to their system and seek to assess its resilience against adversarial
attacks, as well as in the scenario of insider attacks [29,30], where the attackers can have
access to sensitive resources and system information, the protection against white-box
attacks can be more challenging.

In the IoT network context, only a handful of published surveys have discussed
adversarial attacks against ML-based security systems. For instance, in the survey in [30],
the authors’ primary focus was to review and categorize the existing body of information on
adversarial attacks and defense techniques in IoT scholarly articles, with a unique emphasis
on insider adversarial attacks. The authors presented a taxonomy of adversarial attacks,
from an internal perspective, targeting ML-based systems in an IoT context. Additionally,
they offered real-world application examples to illustrate this concept. The article also
discussed defensive measures that can be used to resist these kinds of attacks in IoT.
However, the external (black-box) adversarial attacks, which represent a realistic scenario,
are not discussed, hence the Model Extraction attacks were not covered in the survey as the
insider adversary usually has full knowledge of the ML model. In [31], the authors surveyed
existing IDSs used for securing IoT-based smart environments such as Network Intrusion
Detection Systems (NIDS) and Hybrid Intrusion Detection Systems (HIDS). They provided
benefits and drawbacks of diverse anomaly-based intrusion detection methods, such as
signal processing model, protocol model, payload model, rule-based model, machine
learning, and others, where machine learning techniques require a brief overview without
discussing the vulnerability of those ML-based systems to adversarial attacks. The study
in [32] presented a thorough examination of ML-based attacks on IoT networks, offering a
classification of these attacks based on the employed ML algorithm. The authors sought
to explore a range of cyberattacks that integrated machine learning algorithms. However,
adversarial attacks received only a brief discussion as one category of ML-based attacks,
with mention of three adversarial attacks: the Jacobian-based Saliency Map Attack (JSMA),
DeepFool, and the Carlini and Wagner (C&W) attack, as well as defense methods but
they lack in-depth discussion. In [33], Li et al. surveyed adversarial threats that exist
within the context of Cyber-Physical Systems (CPS). CPS is a subset of IoT, where the
connection between cyberspace and physical space is provided by actuators and sensors.
As a result, the work presented in [33] was limited to sensor-based threats only, which are a
subset of network-based and side-channel attacks in the attack taxonomy of IoT networks.
He et al. [34] explored the disparity in adversarial learning within the fields of Network
Intrusion Detection Systems (NIDS) and Computer Vision. They accomplished this by
reviewing the literature on adversarial attacks and defenses against IDS, with a special
focus on IDS in traditional networks. The authors limited their study to evasion attacks
only, considering that NIDS are typically created in secure environments, in which case the
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external attackers lack access to the training data set. Furthermore, the authors provided a
taxonomy related to NIDS and not to adversarial attacks themselves.

In light of the information presented above and summarized in Table 1, there is a
notable scarcity of published surveys specifically addressing adversarial attacks against
ML-based security systems in IoT networks. The limited number of existing surveys tend
to have a narrow focus on the issue, with some solely concentrating on ML-based IDSs,
while disregarding the wider scope, which encompasses ML-based MDSs and ML-based
DISs. Also, some have been focusing primarily on insider threats while neglecting external
ones. Additionally, certain surveys exclusively examine black-box attacks, overlooking
white-box attacks.

To bridge these gaps, this survey offers a comprehensive review of the current research
landscape regarding adversarial attacks on IoT networks, with a special emphasis on explor-
ing the vulnerabilities of ML-based IDSs, MDSs, and DISs. The survey also describes and
classifies various adversarial attack generation methods and adversarial defense methods.

To the best of our knowledge, this survey will be the first attempt of its kind to
comprehensively discuss the holistic view of adversarial attacks against ML-based IDSs,
MDSs, and DISs in the context of IoT, making a significant contribution to the field. This
paper’s contributions are outlined as follows:

1. Revising and redefining the adversarial attack taxonomy for ML-based IDS, MDS,
and DIS in the IoT context.

2. Proposing a novel two-dimensional-based classification of adversarial attack genera-
tion methods.

3. Proposing a novel two-dimensional-based classification of adversarial defense
mechanisms.

4. Providing intriguing insights and technical specifics on state-of-the-art adversarial
attack methods and defense mechanisms.

5. Conducting a holistic review of the recent literature on adversarial attacks within
three prominent IoT security systems: IDSs, MDSs, and DISs.

The rest of this paper is organized as follows: Section 2 gives background about IoT
network architecture and its privacy and security perspective. Section 3 redefines the
threat model taxonomy in the IoT network context. Section 4 gives an overview of the
most popular adversarial attack generation methods. Section 5 elaborates on the existing
adversarial defense methods. Section 6 discusses the recent studies related to adversarial
attacks against ML-based security systems in IoT networks. Section 7 ends the paper with
challenges and directions for future works, and Section 8 concludes the paper.
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Table 1. Summary comparison of related surveys.

Ref. Year Network Major Contribution(s) Limitation(s)
Attacker’s Knowledge Security Systems Adversarial

Attack
Taxonomy

Adversarial
Attack

Methods

Adversarial
Defense
MethodsWhite-Box Black-Box IDS MDS DIS

[23] 2022 Traditional
Robustness evaluation of seven
shallow ML-based IDS against
adversarial attacks.

IoT network security is just
mentioned in four references with
no discussion.
Only three adversarial defense
techniques were mentioned.

3 3 3 5 5 3 3 5

[24] 2019 Traditional

Evaluation of different adversarial
attacks to ML models applied in
computer and traditional
network security.
Classification of adversarial attacks
based on security applications.
Risk identification using adversarial
risk grid map.

Mainly focused on traditional
network security while IoT network
security was very briefly discussed
in a very short paragraph.

3 3 3 3 5 3 3 3

[28] 2021 Traditional
Summarize recent research on
black-box adversarial attacks
against NIDS.

Focused on black-box attacks only.
Most popular adversarial attack
methods and defense methods were
not discussed

5 3 3 5 5 5 5 5

[30] 2022 IoT

Taxonomy of adversarial attacks
from insider (internal) perspective.
Real-life applications of adversarial
insider threats.

Focused on insider (white-box)
adversarial attacks only.
Model Extraction attacks were not
covered as the survey is limited to
insider adversarial threats where the
adversary has full knowledge
of the ML model

3 5 5 3 5 3 3 3

[31] 2018 IoT

Reviewed the existing IDSs used for
securing IoT-based smart
environments such as Network
Intrusion Detection Systems (NIDS)
and Hybrid Intrusion Detection
Systems (HIDS).

The vulnerability of ML-based
IDSs to adversarial attacks
was not covered.

5 5 3 5 5 5 5 5

[32] 2022 IoT

Overview of existing ML-based
attacks in IoT network.
Classification of ML-based
attacks based on the type of the
used ML algorithm.

Adversarial attacks were briefly
discussed as one type of various
ML-based attacks in IoT networks.
The authors mentioned some
adversarial attacks and defense
methods with no discussion.

3 3 3 5 5 5 5 5
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Table 1. Cont.

Ref. Year Network Major Contribution(s) Limitation(s)
Attacker’s Knowledge Security Systems Adversarial

Attack
Taxonomy

Adversarial
Attack

Methods

Adversarial
Defense
MethodsWhite-Box Black-Box IDS MDS DIS

[33] 2020 CPS
Surveyed adversarial threats within
the context of Cyber-Physical
Systems (CPS).

Considered only adversarial
attacks that exploit sensors in IoT
and CPS devices.
Limited to sensor-based threats only

3 3 5 5 5 5 5 3

[35] 2022 Traditional

Adversarial attacks on malware
detection systems
Adversarial malware evasion
threat modeling.

They were focused on the
computer and cybersecurity domain,
while the IoT network security
domain was overlooked.

3 3 5 3 5 3 3 5

[36] 2023 Traditional
Highlighting various types of
adversarial attacks against IDS in
the context of traditional networks.

IoT network security context
was not included.
Model Extraction attacks
were not covered.

3 3 3 5 5 3 3 3

[34] 2023 Traditional

Explored the disparity in
adversarial learning within the
fields of Network Intrusion
Detection Systems (NIDS) and
Computer Vision specifically
focusing on DL-based NIDS in
traditional network.

Mainly focused on traditional
network security while IoT network
security was very little discussed.
Poisoning and model extraction
attacks are not covered.

3 3 3 5 5 5 3 3

Our
Work 2023 IoT

Holistic review of ML adversarial
attacks in three prominent IoT
security systems: IDSs,
MDSs, and DISs.
Re-defining taxonomy of threat
methods in IoT context.
2D classification of both adversarial
attacks and defense methods.

3 3 3 3 3 3 3 3
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2. Background
2.1. Security and Privacy Overview

In the last twenty years, the potential applications of IoT have been steadily multi-
plying across various sectors paving the way for new business prospects [2,37,38]. Yet,
the emergence of IoT has simultaneously presented manufacturers and consumers with
new challenges [2,3,39]. One of the principal challenges lies in safeguarding the security
and privacy of both the IoT objects and the data they produce. Ensuring the security of
IoT networks is a complicated and arduous task due to the inherent intricacies within the
IoT network characterized by the interconnection of multiple heterogeneous devices from
different locations and exchanging information with each other through various network
technologies. As a result, IoT systems are notably vulnerable to privacy and security threats.

Before delving into those security threats in the IoT landscape, it is pivotal to explore
its security and privacy features. Overlooking these security measures can introduce
vulnerabilities into the framework. Through a thorough review of the literature on IoT
security [40–43], these features have been pinpointed. Figure 3 encapsulates the key security
and privacy features of the IoT infrastructure.
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Traditional security methods, which employ a predefined set of strategies and rules,
have exhibited several drawbacks when implementing specific features. They often over-
look new varieties of attacks and are restricted to pinpointing certain types of threats.
Hence, the emergence of advanced security solutions such as solutions powered by ar-
tificial intelligence. The utilization of ML algorithms has the potential to offer security
solutions for IoT networks, ultimately improving their reliability and accessibility. ML-
based security models can process large amounts of data in real time and continuously
learn from generated training and test data, which increases their accuracy as well as
enables them to proactively anticipate new attacks by drawing insights from previous
incidents. Our survey will limit the study to contemporary research on the vulnerability of
three ML-based IoT security systems: Intrusion Detection System (IDS), Malware Detection
System (MDS), and Device Identification System (DIS).

2.2. Internet of Things Overview

The IoT is one of the cutting-edge technologies in Industry 4.0, where the term “Things”
refers to smart devices or objects interconnected through wireless networks [44,45]. These
“Things” range from everyday household objects to advanced industrial instruments capable
of sensing, gathering, transmitting, and analyzing data. Such capabilities facilitate smart
decision-making and services enhancing both human life quality and industrial production.

At present, there is no agreed-upon structure for IoT architecture. The fundamental
framework of IoT comprises three layers: the perception layer, the network layer, and the
application layer [46]. Yet, based on the requirements for data processing and making
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intelligent decisions, a support or middleware layer, positioned between the network and
application layers, was later deemed to be essential [47]. Different technologies are utilized
within each of these layers, introducing various challenges and security concerns [2,48].
Figure 4 shows the four-layered IoT architecture showing various devices, technologies,
and applications along with possible security threats at each layer.
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• Perception layer: The bottom layer of any IoT framework involves “things” or endpoint
objects that serve as the bridge between the physical and the digital worlds. The percep-
tion or sensing layer refers to the physical layer, encompassing sensors and actuators
capable of gathering information from the real environment and transmitting it through
wireless or wired connections. This layer can be vulnerable to security threats such as
insertion of fake data, node capturing, malicious code, side-channel attacks, jamming
attacks, sniffing or snooping, replay attacks, and sleep deprivation attacks.

• Network layer: It is known as the second layer connecting the perception layer and
middleware layer. It is also called the communication layer because it acts as a
communication bridge, enabling the transfer of data acquired in the perception layer
to other interconnected devices or a processing unit, conversely. This transmission
utilizes various network technologies like LTE, 5G, Wi-Fi, infrared, etc. The data
transfer is executed securely, ensuring the confidentiality of the obtained information.
Nonetheless, persistent security vulnerabilities can manifest as data transit attacks,
phishing, identity authentication, and encryption attacks, and distributed denial-of-
service (DDoS/DoS) attacks.

• Middleware layer: It is also commonly known as the support layer or processing layer.
It is the brain of the IoT ecosystem, and its primary functions are data processing,
storage, and intelligent decision-making. The middleware layer is the best candidate
to implement advanced IoT security mechanisms, such as ML-based security systems,
thanks to its high computation capacity. Therefore, it is also a target of adversarial at-
tacks and other various attacks such as SQL injection attacks, cloud malware injection,
insider attacks, signature wrapping attacks, man-in-the-middle attacks, and cloud
flooding attacks.

• Application layer: It is the uppermost layer within the IoT architecture. It serves as the
user interface to monitor IoT devices and observe data through various application
services and tools, such as dashboards and mobile applications, as well as applying
various control activities by the end user. There are various use cases for IoT applica-
tions such as smart homes and cities, smart logistics and transportation, and smart
agriculture and manufacturing. This layer is also subject to various security threats
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such as sniffing attacks, service interruption attacks, malicious code attacks, repro-
gramming attacks, access control attacks, data breaches, application vulnerabilities,
and software bugs.

3. Adversarial Attack Taxonomy

Threat modeling is a classification process used in information security and risk
management to identify potential threats, vulnerabilities, and associated risks. This classifi-
cation approach is used in many research fields such as traditional network security [23,24],
intelligent networks [49], and IoT networks [30]. A threat taxonomy groups threats into hi-
erarchical classes based on common characteristics. This helps determine the best approach
for detecting and mitigating the threat. A variety of attacks require diverse approaches
depending on the nature of the attack and the specificities of the system being targeted.

In the study [23], the authors classified adversarial attacks in network security in
two dimensions only, knowledge and goal. This classification is very short, simplified,
and does not reflect other characteristics of adversarial attacks. The taxonomy proposed
in [24] is an extensive classification where in addition to the common classes, the authors
added two more classes, space and target. The space class includes feature space and
problem space sub-classes where feature space attack aims to modify or alter the features
without generating new instance, while problem space attack attends to modify the actual
instance itself to create an entirely new sample. This classification is not applicable in the
context of IoT networks in which the feature mapping is not invertible or not differentiable
due to inherent constraints of IoT network traffic. Furthermore, IoT traffic features can
be binary, categorical, or continuous. Moreover, the values of these features are closely
correlated, with some being constant and others being unalterable. Hence this classification
is applicable to unconstrained domains like computer vision, where the main feature is the
image’s pixels. Moreover, the target class given by this study [24] in which they classified
the threat between the physical domain target and ML model target is against the inherent
nature of adversarial attacks to fool ML Models.

Inspired by the adversarial attacks taxonomy framework proposed in [30,49], we
re-defined the adversarial attacks taxonomy based on four main classifications; the at-
tacker’s knowledge, the attack goal, the attacker’s capability, and the attacker’s strategy
as summarized in Figure 5. Our taxonomy is tailored towards including other adversarial
attack characteristics and IoT security system specificities that were not in the scope of
the studies [30,47]. The study in [30] was limited to insider attacks and white-box attacks,
where the adversary has full knowledge of ML models and data. Hence, the characteristics
of a black-box attack were not considered. In contrast, the study in [47] was limited to
poisoning attacks only, where the adversary adds malicious data during the training phase.
Hence, adversarial attacks during the testing and deployment phases were not considered.

Hence, our proposed taxonomy framework is a tailored approach to classify adversarial
attacks according to their common characteristics and consider the specificities of ML-based
IoT security systems. This will help researchers and practitioners to better understand the
potential risks, identify relevant vulnerabilities, and set feasible security objectives.
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3.1. Attacker’s Knowledge

One of the dimensions of threat model classification is the level of information and
knowledge accessible to adversaries concerning the ML model. Attack knowledge can be
classified according to the following levels:

• Full knowledge: This refers to white-box attacks, where the attacker possesses com-
plete awareness of the target ML system’s information. This means that the adversary
possesses complete and unrestricted access to the training dataset, ML model architec-
ture, and its hyper-parameters as well as the feature learning. This is generally not
feasible in most real adversarial attacks. However, the purpose of studying them is to
assess the vulnerability of the target ML system to all possible cases and scenarios.

• Partial knowledge: Referring to gray-box attacks, where the attacker possesses partial
information of the target ML system’s inner workings. This means that the adversary
may have limited access to the feature representations, training dataset, and learning
algorithm’s parameters. Using partial information, the attacker can create a practical
strategy to deceive the ML model.

• No knowledge: This corresponds to black-box attacks, where the attacker is entirely
unaware of the architecture and parameters of the target model. The adversary relies
solely on his capability to query the target ML system by inputting the chosen data
and monitoring corresponding results. These attacks are considered the most practical
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because they operate under the assumption that the attacker can only leverage system
interfaces that are readily accessible for typical use.

3.2. Attacker’s Goal

The attacker’s objective is to influence the outcomes of the ML system either by
misleading the system or by introducing perturbations to the input. The attacker’s goal can
be then outlined as follows:

• Security Infraction: Refers to security violations and can be classified into three main
dimensions.

• Availability Attack: The attacker intends to minimize the model’s performance at
testing or deployment phases, thereby making it unreliable and useless. Availability
attacks can be executed through data poisoning when the attacker gains control over a
portion of the training dataset, or through model extraction when the attacker predicts
some relevant parameters of the target model.

• Integrity Attack: Focuses on undermining the integrity of an ML model’s output,
leading to erroneous predictions made by the model. The attacker can induce an
integrity breach by executing an evasion attack during the testing or deployment
phases or a poisoning attack during the training phase.

• Privacy Attack: The attacker’s objective could involve gaining information about the
system data, leading to data privacy attacks, or about the ML model, resulting in
model privacy attacks.

• Attack Specificity: Based on their impact on the model output integrity, the attack
specificity can be divided into three distinct categories:

• Confidence Reduction: The adversary intends to decrease the prediction certainty of
the target model.

• Untargeted Misclassification: The adversary endeavors to change the predicted classi-
fication of an input instance to any class other than the original one.

• Targeted Misclassification: The adversary seeks to generate inputs that compel the
classification model’s output to become a particular desired target class or endeavors to
make the classification output for a specific input correspond to a specific target class.

3.3. Attacker’s Capability

Illustrates the impact of the adversary on the target ML system’s operation. The
efficiency of an adversarial attack is determined by the capability and strategy to manipulate
the classes and features of the training data or test data gathered from various IoT networks.
It is influenced by factors such as the quantity of malicious data introduced or altered
and the specific portion of the training or testing data that the attacker targets. The
categorization of attacks on ML models varies according to the stages within the ML model
pipeline: training phase, testing phase, and deployment phase.

• Training phase: In this phase, attacks on the ML model are more frequent than often
realized. The attacker aims to mislead or disrupt the model’s outcomes by directly
modifying the training dataset. Those kinds of attacks are known as “poisoning”
or “contaminating”, and they require that an adversary has a degree of control over
training data. The attacker’s tactics during the training phase are shaped by their
adversarial capabilities which can be classified into three distinct categories.

• Data Injection: The attacker lacks access to the learning model’s parameters and
training dataset, yet possesses the capability to append new data to the training
dataset, thereby inserting adversarial samples to fool or degrade the ML model’s
performance.

• Data Modification: The adversary cannot access the learning algorithms but can manipu-
late the training data, contaminating it before it is used to train the target model.

• Logic Corruption: The adversary can tamper with the learning algorithm of the target
ML model. In other words, the learning algorithm is susceptible to interference from
the opponent.
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• Testing phase: In testing, adversarial attacks do not alter the training data or directly
interfere with the model. Instead, they seek to make the model produce incorrect
results by maliciously modifying input data. In addition to the level of information
at the adversary’s disposal and, the attacker’s knowledge, the efficacy of these at-
tacks depends on three main capabilities: adaptive attack, non-adaptive attack, and
strict attack.

• Adaptive Attack: The adversary is crafting an adaptive malicious input that exploits
the weak points of the ML model to mistakenly classify the malicious samples as
benign. The adaptiveness can be achieved either by meticulously designing a sequence
of input queries and observing their outputs in a black-box scenario or through
accessing the ML model information and altering adversarial example methods that
maximize the error rate in case of a white-box scenario.

• Non-adaptive attack: The adversary’s access is restricted solely to the training data
distribution of the target model. The attacker starts by building a local model, choosing
a suitable training procedure, and training it using samples from data distribution to
mimic the target classifier’s learned model. Leveraging this local model, the adversary
creates adversarial examples and subsequently applies these manipulated inputs
against the target model to induce misclassifications.

• Strick Attack: The attacker lacks access to the training dataset and is unable to dy-
namically alter the input request to monitor the model’s response. If the attacker
attempts to request valid input samples and introduces slight perturbations to observe
the output label, this activity most probably will be flagged by the target ML model as
a malicious attack. Hence, the attacker is constrained to perform a restricted number
of closely observed queries, presuming that the target ML system will only detect the
malicious attacks after a specific number of attempts.

• Deployment phase: Adversarial attacks during the deployment or production phase
represent the most realistic scenario where the attacker’s knowledge of the target
model is limited to its outputs, which correspond to a black-box scenario. Hence,
the attack’s success during deployment time relies on two main capabilities, the pre-
sumption of transferability or the feedback to inquiries. Consequently, the attacker’s
capability during the deployment phase can be categorized into two distinct groups,
namely transfer-based attack and query-based attack.

• Transfer-based Attack: The fundamental concept underlying transfer-based attack
revolves around the creation of adversarial examples on local surrogate models in
such a way that these adversarial examples can effectively deceive the remote target
model as well. The transferability propriety encompasses two types: task-specific
transferability which applies to scenarios where both the remote victim model and the
local model are concerned with the same task, for instance, classification. Cross-task
transferability arises when the remote victim model and the local model are engaged
in diverse tasks, such as classification and detection.

• Query-based Attack: The core idea behind query-based attacks lies in the direct
querying of the target model and leveraging the outputs to optimize adversarial
samples. To do this, the attacker queries the target model’s output by providing inputs
and observing the corresponding results, which can take the form of class labels or
score values. Consequently, query-based attacks can be further categorized into two
distinct types: decision-based and score-based.

3.4. Attacker’s Strategy

Assuming different levels of knowledge available to the attacker, the adversary’s
strategy manifests as the optimal quantitative and qualitative choice of adversarial attack
that achieves the optimum effect of the attacker’s goal. Therefore, the attack strategy can
be categorized into attack effectiveness and attack frequency.

• Attack effectiveness: It can be elaborated by the way to inject a bias in the input data
to maximize the efficiency of the attack. In other words, it is nothing more than an
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optimization problem aimed at maximizing the loss function of the target ML algorithm
on a validation dataset or to minimize its loss function on a poisoned dataset.

• Attack frequency: Refers to the decision between a one-time attack and an iterative
process that updates the attack multiple times to enhance its optimization. While
iterative attacks often outperform their one-time counterparts, they come with the
trade-off of increased computational time and the chance of being detected by the
ML-based security system. In certain situations, opting for a one-time attack may be
adequate or the only practical option available.

4. Adversarial Attack Generation Methods for IoT Networks

Adversarial attacks have been extensively studied in various domains, in contrast to
the relatively limited attention they have received in the domain of IoT security, as shown
in above Figure 2. The techniques for generating adversarial attacks vary depending on the
nature of the data in the applied field. Hence the use of adversarial attack techniques in the
IoT security context may differ significantly from its conventional use in other domains
such as computer vision, for the simple reason that images and traffic data have different
attributes that affect their suitability for machine learning input. An image file is formed by
many pixels with the same attribute and every pixel consists of three values, representing
three distinct colors: red, green, and blue. The data related to IoT traffic consists of various
features, each representing specific physical meanings that are interconnected. In contrast
to images, where minor adversarial perturbations in pixel color values generally manifest
as only marginal overall effects, the alteration of specific pivotal features within IoT traffic
data may culminate in the forfeiture of vital information. Consequently, this undermines
the intrinsic behavioral robustness against malicious attacks.

Adversarial attack methods can be classified into three distinct groups: exploratory
attack methods, causative attack, and inference attack, depending on the stage where the
attack can be launched. They can additionally be classified according to the attacker’s
knowledge. Figure 6 summarizes the different adversarial attack generation methods in
two-dimensional (2D) classification.
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4.1. Exploratory Attack Methods

Those attacks, also called evasion attacks, are adversarial attacks launched during
the test phase. In the exploratory attack, the adversary tries to deceive the ML model
by modifying its input data in a manner that induces the model to incorrectly classify
the input. In other words, the attacker aims to evade the model detection by crafting a
malicious input that is incorrectly classified as benign. Because they occur during the test
phase, these attacks are the most feasible and frequently employed against intrusion and
malware detection systems. Exploratory attacks can manifest in two forms, white-box
attacks, in which the attacker possesses information about the training data or learning
algorithms, or black-box attacks, where the attacker lacks knowledge of the training data
and learning algorithms and relies solely on observations of the model’s input-output
behavior to generate adversarial examples. The most popular exploratory attack methods
used against ML-based systems in the context of IoT networks will be discussed in the
next subsubsections.

4.1.1. Fast Gradient Sign Method

Fast Gradient Sign Method (FGSM) is a straightforward and efficient method for
generating adversarial examples (AEs) [15]. Those AEs are inputs that have been intention-
ally modified in a way that optimizes the maximum quantity of perturbation applied to
each pixel (i.e., image) to induce incorrect predictions by an ML model. The FGSM works
by taking the gradient of the loss function relative to the input data and subsequently
perturbing the input data in the direction of the sign of the gradient. The magnitude of the
perturbation is established by a hyperparameter known as epsilon (ε), which controls how
much the input data are modified. The output result is called the AE and its formula can be
formalized by the Expression (1):

Xadversarial = X + ε.Sign(∇x J(θ, X, Y)) (1)

where ε represents a small value and ∇ denotes the gradient of loss function J relative
to the original input data (i.e, image) X, the original input class label Y, and the model
parameters θ.

The FGSM algorithm can be summarized in three steps. The first step computes the
gradient of the loss relative to the inputs, the second step scales the gradient to have a
maximum magnitude of ε, and the third step adds the scaled gradient to the input data
(i.e., image) X to create the adversarial example Xadversarial .

Although this method is fast for generating AEs, its effectiveness is lower than that of
other state-of-the-art methods for generating adversarial attacks because it generates only
one AE per input data point and may not be able to explore the full space of possible AEs.
Additionally, being a white-box attack is that it assumes full knowledge of the targeted
model. This requirement limits its applicability in scenarios where the adversary possesses
restricted access to the model’s internal details, but it remains useful for manufacturers to
assess the resilience of their ML models against adversarial attacks as well as in scenarios
of insider attacks [36].

4.1.2. Basic Iteration Method

Proposed by Kurakin et al. in 2017 [50], the Basic Iteration Method (BIM) represents
a basic extension of the FGSM, where instead of making a single large step, it adopts
an iterative approach by applying FGSM multiple times to an input with small step-size
perturbations in the direction that maximizes the model’s loss. The goal is to generate an
AE that appears similar to the original input but can mislead the model’s predictions.

The basic idea behind the method is to start with an initial estimation of the solution
and then iteratively improve the estimation by applying the Gradient Descent (GD) to
the current guess. The resulting adversarial sample is then clipped to limit the maximum
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perturbance for each pixel. The formula can be summarized by the following Expression (2).

Xadv
0 = X, Xadv

N+1 = ClipX+ε

{
Xadv

N + α.Sign
(
∇x J

(
Xadv

N , Y
))}

(2)

where J denotes the loss function, X is the original input data (i.e., image), Y is the original
input class label, N denotes the iteration count and α is the constant that controls the
magnitude of the disturbance. The Clip {} function guarantees that the crafted AE remains
within the space of both the ε ball (i.e., [x − ε, x + ε]) and the input space.

The BIM algorithm involves starting with clean data (i.e., image) as the initial input.
The gradient of the loss function is computed relative to the input, and a small perturbation
is added along the gradient direction, scaled by a defined step size. The perturbed input is
then clipped to ensure it stays within a valid range. These steps are iterated until a desired
condition is met or for a set number of iterations.

Although this method is simple to generate AEs, it might demand an extensive series
of iterations to find the most effective and optimal AEs, and this may be computationally
expensive and may not converge for all functions or initial assumptions.

4.1.3. Projected Gradient Descent

Projected Gradient Descent (PGD) extends the idea of BIM by incorporating projection
onto a feasible region or constraint set. Proposed by Madry et al. in 2018 [51], PGD is an
optimization method that is used to identify the minimum of a function that is subjected
to constraints. In the context of adversarial attacks, the feasible region often corresponds
to a set of allowed perturbations that respect certain constraints, such as a maximum
perturbation magnitude or spatial constraints.

The algorithm works by iteratively taking steps following the negative gradient
direction of the function, but with an added step of projecting the new point onto the feasible
region defined by the constraints. This ensures that the solution found by the algorithm
always satisfies the constraints. The formula can be summarized by the Expression (3).

∏Cε
(X′) = Argminz ∈ Cε

∥∥Z− X′
∥∥, Xadv

N+1 = ∏
Cε

{
Xadv

N + α.Sign
(
∇x J

(
Xadv

N , Y
))}

(3)

here Cε is constraint set where Cε = {z:d(x, z) < ε}, ∏Cε
denotes projection onto the set Cε,

and α is the step size. For example, the projection ∏Cε
(z) for d(x, z) = ‖x− z‖∞ is given

by clipping z to [x − ε, x + ε]. J dedenotes the loss function of the model, X is the original
input data (i.e., image), Y is the original input class label, N denotes the iteration count and
α is constant to regulate the perturbation magnitude.

PGD ensures that the solution falls within the feasible space, making it suitable for
solving constrained optimization problems. However, the projection step can be computa-
tionally expensive, particularly for complex constraint sets.

4.1.4. Limited-Memory BFGS

The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method is a non-
linear gradient-based optimization algorithm employed to minimize the quantity of per-
turbations introduced into images. It is a white-box adversarial attack introduced by
Szegedy et al. [14] and it differs from the FGSM in two key aspects: the Distance Metric
aspect and the Precision versus Speed aspect.

In terms of the distance metric, the L-BFGS attack is optimized for the L2 distance
metric, whereas the FGSM is designed for the L∞ (infinity) distance metric. However, from
the precision versus speed metric, the FGSM is known for its computational efficiency but
may not always produce AEs that are visually imperceptible from the original data. The
L-BFGS attack is formulated to generate AEs exceedingly similar to original inputs, but
this quest for accuracy often results in heightened computational time as a trade-off.
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By formalizing the optimization problem depicted in Equation (4), where the primary
aim is to minimize the perturbations r introduced to the original input (i.e., image) while
considering the L2 distance.

Arg minr f (X + r) = l s.t. (X + r) ∈ D (4)

here, X denotes the original input data (i.e., image), r is the perturbation simple within
the input domain D, f is the classifier’s loss function and l is the incorrect predicted label
(l 6= h(X)) of the adversarial example X’ = X + r.

By optimizing for the L2 distance and prioritizing precision over speed, the L-BFGS
attack aims to generate perturbations that result in small changes across all dimensions of
the input, rather than focusing on maximizing the change in a single dimension. Hence,
this method excels in generating AEs, yet its feasibility is limited by a computationally
demanding algorithm to explore an optimal solution.

4.1.5. Jacobian-Based Saliency Map Attack

The Jacobian-based Saliency Map Attack (JSMA) is a saliency-based white-box adver-
sarial attack method. It was proposed by Papernot et al. [52] to generate AEs capable of
deceiving the Deep Neural Networks (DNNs) by using the Jacobian matrix to identify the
most influential input characteristics that lead to a substantial change in the DNNs output.

Unlike FGSM, JSMA aims to reduce the perturbations by controlling the number of
features to be perturbated instead of the magnitude or quality of the perturbation. The goal
then is to manipulate only a small number of pixels within the image, rather than disturbing
the entire image, and monitoring the effects on the output classification. The observation
is conducted through the computation of a saliency map using the gradient output of the
network layer. Once the saliency map is calculated, the algorithm systematically identifies
the pixel within an image that would have the most significant impact on fooling the
neural network and proceeds to modify it. This iterative process continues until either the
adversarial image has reached the maximum permissible number of altered pixels, or the
intended deception is successfully achieved.

For an original input data (i.e., image) X, which is classified as label l, i.e., f (X) = l.
The attacker’s goal is to add a tiny perturbation δx to produce an adversarial sample X′

where f (X′) = f (X + δx) = l. This can be summarized by following expressing (5).

Arg minδx‖δx‖ s.t. f
(
X′
)
= f (X + δx) = l′ (5)

calculating the positive derivative for a given input sample X, the Jacobian matrix is
computed as expressed by the following Formula (6):

J f (X) =
∂ f (X)

∂X
=

[
δ f j(X)

δxi

]
i∈1...M; j∈1...N

(6)

When compared to FGSM, this technique demands more computational power due to
the computation of saliency values. Nonetheless, it significantly limits the number of
perturbed features, resulting in the generation of AEs that appear to be more similar to the
original sample.

4.1.6. Carlini and Wagner

The Carlini and Wagner (C&W) attack is an optimization-driven technique based
on the L-BFGS optimization algorithm. As proposed by Carlini et al. in [53], the C&W
attack introduces modifications to the objective function and removes the box constraints
typically used in L-BFGS. The authors evaluate three varieties of attacks according to three
distance metrics, L0, L2, and L∞. Furthermore, they use an alternative loss function, namely
hinge loss, instead of the cross-entropy loss used by L-BFGS. Additionally, they introduce a
novel variant denoted as k, transforming the problem from optimizing the perturbation δ
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to optimizing k to circumvent the box constraints. The optimization problem is formulated
by below Expressions (7) and (8).

min
δ

D(X, X + δ) + c. f (X + δ) s.t. X + δ ∈ [0, 1] (7)

X + δ =
1
2
[tanh(k)+1] (8)

where c > 0 is a suitably selected constant, δ denotes the adversarial perturbation, D(., .)
denotes the L0, L2, and L∞ distance metrics, and f (X + δ) define the loss function such
that f (X + δ) ≤ 0 if and only if the model’s prediction matches the attack target. k is the
new variant substitute δ as per the above Expression (8).

C&W attack is a white-box adversarial attack. However, this technique shows the
ability to transfer from unsecured networks to secured networks. This allows an adversary
with limited knowledge of an ML-based security system to carry out a black-box attack.
This method outperforms the L-BFGS method in crafting adversarial examples and has
demonstrated its efficacy in defeating state-of-the-art defense mechanisms like adversarial
training and defensive distillation; however, from a computation cost perspective, it is
more expensive than FGSM, JSMA, and others.

4.1.7. DeepFool Attack

DeepFool Attack (DFA) is an untargeted adversarial example generation technique
proposed by Moosavi-Dezfooli et al. in [54] to calculate the minimal Euclidean distance
(i.e., L2 distance metric) between the original input (i.e., image) and the adversarial exam-
ple’s decision boundary.

In neural networks, these decision boundaries invariably exhibit nonlinearity. How-
ever, to calculate a linear decision boundary that distinguishes samples from different
classes, the authors assume that the neural networks operate as entirely linear systems,
with class regions being defined by hyperplanes. From this linearization assumption, the
DF algorithm calculates the smallest perturbation needed to reach the decision boundary.
Then, from the new point, the same operation is iteratively performed multiple times until
an adversarial example is found. Formally the minimal perturbation needed to produce an
adversarial sample is expressed by (9).

δ(X| f ) = min
r
‖r‖2 s.t. f (X + r) 6= f (X) (9)

here r is the minimal perturbation, δ is the robustness of the affine classifier f to the original
input X for f (x) = WT .x + b where W is the weight of the affine classifier and b is the bias
of the affine classifier.

As white-box attack, the DFA method offers an efficient and precise approach to assess
the resilience of ML models. It achieves this by generating adversarial samples with smaller
perturbation sizes compared to those generated by FGSM and JSMA methods while having
higher deception ratios. However, it is more computationally expensive than both.

4.1.8. Zeroth-Order Optimization

Zeroth-order optimization (ZOO) is a type of adversarial attack that targets ML models
where the adversary has only partial knowledge about the targeted model and cannot
access its internal parameters or gradients. The attacker’s capability is limited to querying
the model’s output by providing inputs and observing the corresponding predictions. This
type of attacks is also known as black-box optimization attacks.

Proposed by Chen et al. [55], the ZOO technique estimates the gradient of the classifier
without accessing it ML model by using the symmetric difference quotient approach.

Based on the C&W attack method idea, Chen et al., in contrast, want to design
black-box attacks. Therefore, they used the probability distribution instead of using the
logit layer representation of a targeted model and they estimated the gradients of the
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targeted model by finite differences. Then, the optimization problem is formulated by
Expressions (10)–(13).

min
X′

∥∥X′ − X
∥∥

2+c. f
(
X′, t

)
s.t. X′ ∈ [0, 1]p (10)

where, p is a dimensional column vector and c > 0 is a regularization parameter. For X
is the original input (i.e., image) affiliated with the specified label l, X′ is the adversarial
sample affiliated with the specified label t (i.e., f (X′) = t 6= f (X) = l, where f (X′ + t) is
the loss function defined by below Expression (11):

f
(
X′, t

)
= max

{
max
l 6=t

log
[
F
(
X′
)]

l − log
[
F
(
X′
)]

t,−k
}

(11)

where F(X’) ∈ RK is the probability distribution of the back-box output, K is the number of
classes and k ≥ 0 serves as a tuning parameter to enhance attack transferability.

The approximated gradients, defined as ĝi, are computed using the finite differences
method called also symmetric difference quotient as per the Expression (12).

ĝi :=
∂ f (x)

∂xi
≈ f (x + hei)− f (x− hei)

2h
(12)

with h being a small constant and ei represents the i-th component of the standard basis
vector. ZOO can be used in Newton’s method with Hessian estimate ĥi as per the following
Expression (13).

ĥi :=
∂2 f (x)

∂x2
ii
≈ f (x + hei) + 2 f (x)− f (x− hei)

h2 (13)

Although this method has proven its efficacity in estimating the gradient and Hessian
while resulting in a similar performance to the C&W attack, without the requirement of
training substitute models or information on the target classifier; however, it necessitates a
considerable number of queries to the model, which can add to significant computational
costs and time requirements and may cause detection of the attacker in real scenarios.

4.1.9. One-Pixel Attack

The One-Pixel Attack (OPA) is a method used in adversarial ML to deceive image
classification models. Building upon the findings of JSMA’s success in misleading a network
through slight modifications to a few pixels in the input image, Su et al. conducted a
study [56] in 2019 that pushed the boundaries even further by showing successful fooling
of deep networks by altering as little as one pixel.

The authors used the Differential Evolution (DE) approach [57] to search for the
optimal locations and color values that can be modified and creating child-image. Each
child-image will be compared to the parent image and the criterion-based fittest is selected
for the next iteration. Ultimately, the adversarial example is generated by manipulating the
pixel of the last surviving child-image.

The used DE concept does not require knowledge about the system information, the
ML model parameters, or its objective function, which is suitable for generating adversarial
attacks in a black-box fashion. The problem statement can be mathematically defined as an
optimization problem in the following Expression (14).

max
e(x)∗

fadv(x + e(x)) s.t. ‖e(x)‖ ≤ L (14)

here, ft(x) is the probability of an image x = (x1, . . . , xn ) to be classified as class t and
e(x) = (e1, . . . , en) is the additive perturbation to the each of the n pixels of the image.
The constraint here is that the overall perturbation amount is limited to L. However, the
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authors used a different approach by modifying the constraint to restrict the quantity of
pixels that can be modified. The equation is slightly changed to the Expression (15)

max
e(x)∗

fadv(x + e(x)) s.t. ‖e(x)‖ ≤ d (15)

where d is a small number of dimensions and d = 1 in the case of OPA.
Although this method has proven its effectiveness in generating adversarial examples

with a single-pixel change, which keeps the overall appearance of the image almost the same
as the original sample and makes attack detection very challenging, evolutionary-based
algorithms are computationally expensive.

4.2. Causative Attack Methods

A causative attack, also called a poisoning attack, is an adversarial attack launched
while the model is being trained. In this attack, the attacker compromises the training
data set by manipulating it or when the ML classifier is trained with limited data and
requires additional training data to retrain itself. In this retraining process, the adversary
can interfere by introducing incorrect training data. The attacker aims to either degrade the
overall performance of the model or target specific training features or classes. This type of
attack assumes that the adversary has access to the learning procedure and can influence
the training data to deliberately introduce biases or inaccuracies in the model’s learning
process. Hence, causative attack is a kind of white-box or gray-box attack.

4.2.1. Gradient Ascent

The Gradient Ascent (GA) method is a causative attack proposed by Biggio et al. [58]
to significantly decrease the Support Vector Machine (SVM) classification accuracy by
inserting crafted data into the training dataset. The method identifies the values associated
with local maxima in the model’s test error. The authors utilize an incremental learning
approach, which seamlessly fine-tunes data point parameters, thus enabling them to
achieve an optimal solution by introducing carefully crafted data.

The attacker aims to discover a point (xc, yc) that, when added to the training dataset
Dtr = {xi, yi}n

i=1, xi ∈ Rd maximally decreases the SVM’s classification accuracy. The
attacker proceeds by drawing a validation dataset Dval = {xk, yk}m

k=1 and maximizing the
hinge loss function L(xc) of the SVM classifier induced on the validation dataset Dval and
trained on Dval ∪ (xc, yc) as per following Expression (16).

max
xc

L(xc) =
m

∑
k=1

(1− yk fxc(xc))+ =
m

∑
k=1

(−gk)+ (16)

where gk is the margin constraints impacted by xc and defined by the Expression (17).

gk = ∑
j 6=c

Qkjαj(xc) + Qkc(xc)αc(xc) + ykb(xc)− 1 (17)

here, α represents the dual variables of the SVM, which correspond to each training data
point. Qss denotes the margin support vector submatrix of Q.

The authors use the gradient ascent technique to iteratively optimize the non-convex
objective function L(xc). This optimization procedure presupposes the initial selection
of an attack point location x(0)c and in each iteration updates the attack point using the
formula xp

c = xp−1
c − tu, where p is the ongoing iteration, u is a norm-1 vector indicating

the attack direction, and t denotes the magnitude of the step.
Although this method is a first-order optimization algorithm that only requires the

gradient of the objective function calculation, it is sensitive to the starting parameter
settings. In case the initial values are too far from the optimal values, the algorithm will
most probably converge to a local maximum than a global maximum, or will slowly cover
an optimal solution especially, when the objective function is highly non-convex.
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4.2.2. Label Flipping Attack

Label-flipping attack (LFA) falls within the category of causative attack methods
where the adversary poisons the training dataset by flipping the labels. There are two
main methods to add label noise to the training dataset via LFA: random and targeted
label flipping. When employing random flipping, the attacker arbitrarily picks a subset
of training samples and alters their labels. In contrast, targeted label flipping involves
the adversary’s pursuit of the most optimal arrangement of label flips that maximizes the
classification error rate on the testing data, while adhering to the predetermined number of
allowed label flips.

The LFA method was proposed by Biggio et al. in [59] against SVM, following which
they improved the method via optimization-based poisoning attacks [58], where the authors
resolved a two-level optimization problem to ascertain the best poisoning samples that
maximize the hinge loss for SVM. Likewise, Xiao et al. [60] describe the attack strategy as a
bi-level Tikhonov regularization optimization problem, followed by the application of a
relaxed formulation to identify data instances with near-optimal label flip. Subsequently,
these optimization-driven poisoning attacks have been carried out against various types of
ML models, including neural networks [61,62] and deep learning [63].

4.2.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a category of ML frameworks that have
been used to generate adversarial attacks. Initially proposed by Goodfellow et al. [64],
GAN is composed of two deep networks: the generator (G) and the discriminator (D),
that compete with one another within the context of a zero-sum game. Designed as a
Conventional Neural Network (CNN) with two subnetworks, the generator’s goal is
to generate synthetic data instances that closely resemble those in the training set by
initializing its inputs with random noise. On the other hand, the discriminator’s goal is to
distinguish between synthetic samples produced by G and the original training dataset. A
backward propagation is used to enhance the accuracy of G. G receives feedback from D
through its loss and tries to minimize this loss while producing adversarial samples. The
process concludes when D is unable to differentiate between samples from the training set
and those produced by G.

Formally, G is trained to optimize for the probability of D committing wrong classifica-
tion, and the value function V(G, D) is defined by Goodfellow et al. in [14], by following
Expression (18):

min
G

max
D

V(D, G) = Ex∼pdata(x)logD(x) +Ez∼pz(z)log(1− D(G(z))) (18)

where pg(x) is the generator’s distribution over data x, pz(z) is a prior on input noise
variables. D(x) corresponds to the probability that x comes from the original dataset
rather than from the generated distribution pg. G

(
z, θg

)
is a differentiable representation

embodied by a multilayer perceptron parameterized by θg. The objective is to train D to
maximize the probability of correctly labeling the training samples, while simultaneously
training G to minimize it.

Since its introduction in 2014 by Goodfellow et al. [64], GAN has spawned numer-
ous variants and extensions. These variants address various challenges and limitations
associated with the original GAN formulation. For instance, Radford et al. [65] proposed
Deep Convolutional GANs (DCGANs) to produce high-quality images compared to fully
connected networks, and Mirza et al. [66] introduced a Conditional GAN (C-GAN) frame-
work that can produce images conditioned on class labels. Arjovsky et al. [67] proposed
Wasserstein GAN (WGAN) with a new loss function leveraging on the Wasserstein distance
to better estimate the difference between the real and synthetic sample distributions. Since
2014, more than 500 papers presenting different variants of GANs have been published in
the literature and can be all found in [68].
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Although GAN methods excel at generating realistic samples different from once used
in training this can help to evaluate the ML systems against adversarial attacks as well
as help in data augmentation in scenarios where the available training dataset is limited.
However, training GANs are typically characterized by high computational demands and
can exhibit considerable instability.

4.3. Inference Attack Methods

An inference attack, alternatively referred to as a model extraction or model stealing
attack, is an adversarial attack launched during the deployment or production phase.
Inference attack is a technique used by attackers to obtain sensitive information about an
ML model or its training data. In a black box scenario, the attacker does not possess access
to the inner workings of the model and only has access to its input and output interfaces.
The attacker may use various techniques to extract information about the model such as
query-based attacks, membership inference attacks, and model inversion attacks.

Orekondy et al. [69] introduced Knockoff Nets as a model-stealing technique that can
extract the features of a completely trained model through a two-step process. In the first
step, the attacker collects model-generated predictions through a series of input data queries.
Subsequently, the collected data–prediction pairs are utilized to construct a substitute model
referred to as a “knock-off” model. Likewise, Jagielski et al. [70] proposed a method that
involves creating an adversarial model that faithfully reproduces the architecture and
weights of the target oracle model. The method is called the Functionally Equivalent
Extraction (FEE) attack and prioritizes accuracy and fidelity objectives for model extraction.
Chen et al. [71] introduced the Hop Skip Jump Attack, a decision-based attack that estimates
the decision boundary of an ML model. The goal of this attack is to cross the estimated
boundary deliberately to cause a misclassification.

5. Adversarial Defense Methods in IoT Networks

In addition to the inherent nature of IoT devices, the ML-based security systems in IoT
networks are vulnerable to adversarial attacks. As demonstrated in the preceding section,
there are various ML-based techniques capable of creating adversarial examples that can
easily fool or degrade the performance of the ML models.

To detect and mitigate the various attack strategies discussed in Section 4, there has
been a surge in promising defense techniques introduced in recent years, all geared towards
enhancing the robustness and resilience of ML models against such attacks. However, the
challenge of countering adversarial attacks remains open and continues to elude researchers
to find an effective global solution. Most existing defense strategies lack adaptability against
various forms of adversarial attacks. While a particular method may successfully counter
one type of attack, it often exposes vulnerabilities that can be exploited by attackers who are
aware of the fundamental defense mechanism. Additionally, implementing those defense
strategies might result in performance burdens and potentially reduce the prediction
accuracy of the model in practical usage.

In this section, we discuss the recent advancements in adversarial defense methods,
and basing on various defense methods classifications in the literature [17,24,52,72–74], we
propose our two-dimensional classification. The first dimension is a defense mechanism
that can be a proactive defense mechanism or a reactive defense mechanism [52,72]. The
second dimension is a defense strategy of three types: network optimization strategy, data
optimization strategy, and network addition strategy [17]. In Figure 7 we summarize the
most famous defense methods in use today classified according to our two-dimensional
(2D) classification.
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5.1. Network Optimization

This strategy involves the modification of the original ML model parameters such
as adjusting or adding network layers, changing the loss and/or activation functions,
etc. In the literature, numerous proposed defense methods adopt network optimization
defense strategy; however, three famous defense methods are widely studied: Defensive
Distillation [63], Gradient Masking [75], and Gradient Regularization [76].

5.1.1. Defense Distillation

The concept of distillation was initially put forth by Hinton et al. [77]; it is founded
on the concept of transferring knowledge from complex networks to simple networks.
Taking cues from this, Papernot et al. [63] proposed to use this concept as a technique to
enhance the classifier’s resilience against adversarial inputs. For that, the authors proposed
a distillation variant called defensive distillation where instead of the traditional usage
of distillation that involves training a small model from a large model, the defensive
distillation suggests utilizing the knowledge acquired through the distillation process to
enhance the classifier’s ability to detect adversarial samples.

By setting the temperature T at which a neural network is trained on the Softmax
layer. The teaching network inputs are the original examples and labels, and the resulting
outputs show a high probability distribution across classes. Consequently, the proposal is
to make use of this output in training the distillation network that has the same architecture
as the teaching network, to produce a new probability distribution that considers new
labels. In the test phase, the authors set the temperature T to 1 to defend against adversarial
attacks, as increasing the empirical values of T during the training phase yields enhanced
distillation performance.

5.1.2. Gradient Masking

In the context of adversarial defense, gradient masking [75] involves intentionally
or unintentionally diminishing the effectiveness of a model’s gradients to thwart poten-
tial attacks. It encompasses a collection of defensive techniques that operate under the
assumption that “if the model is non-differentiable or if the model’s gradient is zero at data
points, then gradient-based attacks are ineffective” [78], this is because most adversarial
attack methods rely on the model’s gradient to create the adversarial samples. There-
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fore, by obfuscating or hiding gradients it makes it harder for attackers to craft effective
adversarial samples.

Folz et al. [79] proposed a gradient-masking method based on a defense mechanism,
called the Structure-to-Signal Network (S2SNet). It comprises an encoder and a decoder
framework where the encoder retains crucial structural details and refines the decoder
using the target model’s gradient, rendering it resistant to gradient-based adversarial
examples. Lyu et al. [80] proposed a technique based on gradient penalty into the loss
function of the network to defend against L-BFGS and FGSM. The study conducted by
Nayebi et al. [81] demonstrated how gradient masking can be achieved by saturating the
sigmoid network, leading to a reduced gradient impact and rendering gradient-based
attacks less effective. The authors compelled the neural networks to operate within a
nonlinear saturating system. Nguyen et al. [82] propose a new gradient masking approach
to protect against C&W attacks. Their method involves adding noise to the logit layer
of the network. Jiang et al. [83] introduce a defense method that modifies the model’s
gradients by altering the oscillation pattern, effectively obscuring the original training
gradients and confusing attackers by using gradients from “fake” neurons to generate
invalid adversarial samples.

5.1.3. Gradient Regularization

The concept of Gradient Regularization was introduced for the first time by [84]. It is
a method that seeks to enhance the generalization ability of the ML Model by penalizing
large changes in the output of the network, using regularization components within the cost
function. Ross et al. [76] use this concept to propose a promising defense method against
adversarial examples. The authors found that training differentiable models of DNNs
with gradient regularization enhances their resilience against adversarial perturbations.
Likewise. Lyu et al. [80], and Zhao and Griffin [85] applied a regularization technique to
bolster the algorithm’s robustness, yielding favorable outcomes in its ability to withstand
adversarial attacks. Dabouei et al. [86] introduced a combined approach involving gradi-
ent phase and magnitude regularization to improve the robustness of ensemble models.
Addepalli et al. [87] introduced a new regularization technique called Bit Plane Feature
Consistency (BPFC); this method utilizes information from higher bit planes to form a
preliminary understanding, and then refines predictions using only the lower bit planes.
Ma et al. [88] proposed a regularization framework called Second-Order Adversarial Regu-
larizer (SOAR) to improve the network’s resilience to L∞ and L2 limit-bound perturbations
produced by PGD [51].

As an adversarial defense method, the Gradient Regularization requires no prior
knowledge of an adversarial attack. However, the main drawback is that it doubles the
complexity of the training process. Yeats et al. [89] proposed a Complex-Valued Neural
Network (CVNN) framework to improve gradient regularization.

5.2. Data Optimization

Unlike the network optimization strategy, which tackles the training models, the
data optimization strategy involves modification of data used for training during the
training process or modification of input data during the test phase. This strategy mainly
includes three defense methods: Adversarial Training [51], Feature Squeezing [90], and
Input Reconstruction [91].

5.2.1. Adversarial Training

It is one of the proactive approaches to countering against adversarial attacks. The
fundamental goal is to intentionally add adversarial samples into the training set to increase
the regularity and robustness of the target model.

When Goodfellow et al. [15] proposed the FGSM attack, they also introduced for the
first time an adversarial training technique in the field of imaging by adding adversarial
samples to the training set. However, Madry et al. [51] were the inaugural researchers to
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theoretically formulate and provide proof through the perspective of robust optimization
for DL. Researchers have displayed a notable level of interest in this area of study. This led
to multiple contributions proposing several variants of adversarial training method trying
to overcome the limitations of this method, such as the data generalization and overfitting,
as well as the decreased efficiency to the black-box attacks and the cost can be substantial
due to the iterative nature of training the model with adversarial examples.

For large models and data sets, Kurakin et al. [50] made suggestions for adversarial
training. Building on the idea that brute force training regularizes the network and reduces
overfitting, Miyato et al. [92] proposed the ‘Virtual Adversarial Training’ approach to
smooth the outcome distributions of the neural networks. Zheng et al. [93] proposed the
‘stability training’ method to improve the resilience of neural networks against small distor-
tions. In their work, Tramèr et al. [94] put forth the Ensemble Adversarial Training (EAT) to
augment the diversity of adversarial samples. Song et al. [95] proposed a method known as
Multi-strength Adversarial Training (MAT), which integrates adversarial training samples
and diverse levels of adversarial strength. Kannan et al. [96] proposed the Mixed-minibatch
PGD (M-PGD) adversarial training approach, which combines clean and adversarial exam-
ples. Their approach includes a logit pairing strategy with two methods: pairing clean with
adversarial samples and pairing clean with clean samples. In the training process, Wang
et al. [97] propose to take into consideration the distinctive impact of misclassified clean
examples using the so-called Misclassification Aware adveRsarial Training (MART) method.
In the objective to solve the generalization issue, Farnia et al. [98] suggested a spectral
normalization-based regularization for adversarial training. Wang et al. [99] proposed a
bilateral adversarial training method, which involves perturbing the input images and their
labels during the training process. In their work, Shafahi et al. [100] proposed the Universal
Adversarial Training (UAT) method that produces robust models with only two tile the cost
of natural training. Vivek and Babu [101] also introduced a dropout scheduling approach
to enhance the effectiveness of adversarial training by using a single-step method. For the
overall generalization of adversarially trained models, Song et al. [102] suggested Robust
Local Features for Adversarial Training (RLFAT) that involves randomly reshuffling a block
of the input during training. Pang et al. [103] propose the integration of a hypersphere
method. This method ensures that features are regularized onto a compact manifold.

5.2.2. Feature Squeezing

It is built upon the core fundamental principle that a significant portion of the input
feature spaces have higher frequencies than required. Feature squeezing is a reactive data
optimization strategy that aims to reduce the space of potential adversarial examples by
applying operations that collapse multiple similar inputs into a single representative value.
Xu et al. [90] propose the use of two techniques for feature squeezing, namely Bit-Reduction,
and Image-Blurring, as a means to mitigate adversarial effects in image classification. The
target model provides predictions for both inputs—the original image and the squeezed
image. As a result, when a notable contrast emerges in these predictions, the image is
recognized as an adversarial sample. In other work, Xu et al. [104] used their methods
presented in [90] to mitigate against the C&W attack [53].

As an efficient and cost-effective adversarial defense method, feature squeezing greatly
reduces the freedom of the attacker to create adversarial samples. Although the technique’s
primary application is the field of the image, it might also be transferable to other do-
mains [105], especially in ML-based security systems in IoT networks [106].

5.2.3. Input Reconstruction

It is a reactive mechanism that aims to detect and mitigate the impact of adversarial
attacks. The fundamental concept behind input reconstruction is to convert adversarial
examples into legitimate data by eliminating the injected perturbations or noise in the orig-
inal data. By restoring the original input, the ML model can make more reliable predictions
by focusing on the original input and disregarding the introduced manipulations. A good
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example of this approach is proposed by Gu and Rigazo in [91], where an autoencoder
is used for cleaning the adversarial examples. A similar example is the ComDefend au-
toencoder proposed by Jia et al. [107]. In their work, Song et al. [108] proposed a detecting
mechanism based on the PixelCNN autoregressive model to reconstruct adversarial images
back to the training distribution.

Due to the inherent slowness of the autoregressive models as well as the difficulty
of the autoencoder to remove tiny adversarial perturbations, Ramachandran et al. [109]
introduced an accelerated variation of the model to expedite the process. In contrast,
Gao et al. [110] introduced an innovative approach that integrates a reconstruction module
with a denoising module. The reconstruction module is responsible for the restoration of the
original features, while the denoising module ensures the efficient removal of adversarial
perturbations, thereby enhancing the overall effectiveness.

5.3. External Model Addition

This strategy involves the use of auxiliary networks or modules to reinforce the
resilience of the target model against adversarial attacks. These additional components are
designed to detect or mitigate the effects of adversarial perturbations. Integrated defense
is one of the common approaches that incorporates an adversarial training module into
the training process to train the target neural network model. Another approach is AE
detection, where an add-on network or module endeavors to process the data either prior to
or subsequent to its transmission to the target model to assist in the detection and exclusion
of injected adversarial samples during the prediction phase.

5.3.1. Integrated Defense

It is a common approach that incorporates an adversarial training network or mod-
ule into the training process to train the target neural network model. One of the most
popular frameworks based on GAN [64] is proposed by Lee et al. [111] to develop a ro-
bust model that can effectively withstand FGSM attacks [15]. Leveraging on the GAN
training, the classifier is trained on both original and created samples. Consequently, the
classifier’s robustness against FGSM attacks surpassed that of the FGSM adversarially
trained model. In a similar approach, Yumlembam et al. [112] proposed a GAN archi-
tecture to train and robust an Android Malware Detection using Graph Neural Network
(GNN). Benaddi et al. [113] also used GAN to train Distributional Reinforcement Learning
(DRL)-based IDS to identify and mitigate minority network attacks while enhancing the
effectiveness and resilience of anomaly detection systems within the context of the Indus-
trial Internet of Things (IIoT). In their work, Li et al. [114] proposed Decentralized Swift
Vigilance (Desvig) framework, where a C-GAN [66] is integrated to train the network to
attain ultra-low latency and highly effective security measures in industrial environments.
Benaddi et al. [115] also used C-GAN [66] as an external training network to train and
enhance the robustness of Hybrid CNN-LSTM (CNN-Long Short-Term Memory)-based
IDS in IoT networks. Inspired by Auxiliary Classifier GAN (AC-GAN) [116] architecture,
Liu et al. [117] proposed a framework known as ROB-GAN, combining a generator, dis-
criminator, and PGD-based adversarial attacker as a tripartite game to parallelly enhance
both GAN training’s convergence speed and the discriminator’s robustness under strong
PGD adversarial attacks [51].

5.3.2. Adversarial Example Detection

This approach involves integrating an additional network or module that endeavors to
manipulate the input data either prior to or after transmitting it to the target model. Its pur-
pose is to aid in the identification and removal of adversarial input samples during the pre-
diction phase. To enhance and generalize the ability of defense methods, Meng et al. [118]
argue that it should not depend on the characteristics of adversarial examples originating
from a specific generation process. Instead, the primary goal should be to unveil common
inherent properties in the generation process of all adversarial examples. Therefore, the au-
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thors introduced a defensive framework called MagNet, which solely interprets the results
of the final layer of the target classifier as a black-box to detect adversarial samples. For that
reason, the MagNet framework is composed of two modules: a Detector and a Reformer.
The detector assesses the disparity or distance between a provided test sample and the
manifold. If this distance surpasses a predefined limit, the detector rejects the sample. Some
adversarial examples might be very close to the manifold of normal examples and are not
detected by the Detector. Then, the role of the Reformer is to receive samples classified
as normal by the Detector and eliminate minor perturbations that the Detector may have
missed. The output from the Reformer is subsequently fed into the target classifier, which
will conduct classification within this subset of normal samples.

Another family of defense approaches uses nearest neighbors. Cohen et al. [119]
introduced an innovative method for detecting adversarial attacks by leveraging influence
functions along with k-nearest Neighbor (k-NN)-based metrics. The influence function
is used to evaluate the impact of slight weight adjustments on a particular training data
point within the model’s loss function, with respect to the loss of the corresponding test
data point. On the other hand, the k-NN method is applied to explore the sorting of these
supportive training examples in the deep neural network’s embedding space. Notably,
these examples exhibit a robust correlation with the closest neighbors among normal
inputs, whereas the correlation with adversarial inputs is considerably diminished. As a
result, this combined approach effectively identifies and detects adversarial examples. In
another work, Paudice et al. [120] introduced a data sanitization approach geared towards
removing poisoning samples within the training dataset. The technique addresses label-
flipping attacks by utilizing k-NN to detect poisoned samples that have a substantial
deviation from the decision boundary of SVM and reassign appropriate labels to data
points in the training dataset. Shahid et al. [121] developed an extension of the k-NN-based
defense mechanism presented by Paudice et al. [120] to evaluate its efficacy against Label-
flipping attacks in the context of a wearable Human Activity Recognition System. The
authors showed that this enhanced mechanism not only detects malicious training data
with altered labels but also accurately predicts their correct labels.

Abusnaina et al. [122] proposed a cutting-edge adversarial example detection method
pioneering a graph-based detection approach. The method creates a Latent Neighborhood
Graph (LNG) centered on an input example to determine whether the input is adversarial
or not. Hence the problem detection of adversarial attacks is reformulated as a graph classi-
fication problem. The process starts with the generation of an LNG for every individual
input instance, after which a GNN is employed to discern the distinction between benign
and adversarial examples, focusing on the relationships among the nodes within the Neigh-
borhood Graph. To guarantee optimal performance in detecting adversarial examples,
the authors optimize the parameters of both GNN and LNG node connections. Then, the
Graph Attention Network (GAT) is employed to determine whether LNG originates from
an adversarial or benign input instance. By employing GAT, the model focuses on the
relevant nodes and their connections within the LNG to make an informed decision about
the adversarial nature of the input example.

6. Research Works in ML-Based Security Systems of IoT Networks

In this section, we explore the most recent literature on adversarial attacks in the
IoT network context. Specifically, we limit our study to the contemporary research on
the vulnerability of three ML-based IoT security systems, an Intrusion Detection System
(IDS), Malware Detection System (MDS), and Device Identification System (DISs), to the
adversarial attacks. The discussion offers a more general outlook on the used system
models, methods and techniques, tools, and datasets to evaluate those systems without
in-depth technical details, assuming that the previous sections already provided the readers
with the required knowledge of this area to understand the different experiment studies we
present. Table 2 gives a summary of research works related to ML-based security systems
in IoT networks.
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The researchers in [123] examined the impacts of adversarial attacks on a variant
of a Feedforward Neural Network (FNN) known as Self-normalizing Neural Network
(SNN) [124] for IDS in IoT networks. The authors conducted first a performance evaluation
of the two IDSes-based FNN and SNN in the absence of adversarial attacks using the
Bot-IoT dataset [125]. Then, they created adversarial samples from the Bot-IoT dataset
using FGSM, BIM, and PGD methods and they compared the performance of both models
against adversarial attacks in the testing phase. The authors demonstrated that while
the FNN-based IDS excels in some metrics, such as precision, accuracy, and recall in the
absence of adversarial attacks, the SNN-based IDS demonstrates greater robustness in
the presence of adversarial examples. Additionally, they analyzed the impact of feature
normalization on the ability of DL-based IDS to withstand adversarial attacks in the IoT
domain, demonstrating that this defensive approach can have a detrimental impact on the
model’s resilience to adversarial attacks.

In the context of MDS in IoT Networks, Luo et al. [126] proposed an adversarial
attack using a partial-model attack in which the attacker has control of a portion of the
available IoT devices. At the stage of data collection and aggregation in IoT systems, the
adversary poisons the data inputs by creating adversarial samples using controlled IoT
devices. The authors demonstrate that the SVM-based MDS of the IoT network is highly
vulnerable to adversarial attacks even when dealing with the manipulation of a small
portion of device-generated data. The authors deliberated on the importance of evaluating
the effectiveness of defense mechanisms and stated that they would investigate this in their
upcoming research.

Papadopoulos et al. [127] proposed to evaluate the robustness of both shallow and DL
models against adversarial attacks. Using the BoT-IoT [125] dataset, the authors adopted
a methodology that included two main approaches to assess the resilience of SVM-base
IDS and Artificial Neural Networks (ANNs)-based IDS against LFA and FGSM adversarial
attacks, respectively. In the first approach, targeted and untargeted label poisoning has been
used to flip up to 50% of training labels based on the LFA method to cause misclassification
by the SVM model. In the second approach, adversarial examples-based FGSM method
were experimented on the binary and multi-class ANNs to evade the detection measures.
In their experiments, the authors demonstrated a noteworthy probability for an attacker to
effectively manipulate or bypass the detection mechanisms. However, the study did not
cover the issue related to the imbalanced classes of the BoT-IoT dataset as well as the effect
of manipulating high-margin labels from the SVM hyperplane. Also, the study postponed
the analysis of the countermeasures’ effects on future work.
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Table 2. Summary of research works related to adversarial attacks in ML-based security systems of IoT networks.

Ref. Year Network
Security

System(s)
Target Model (s)

Dataset(s) Adversarial Attack
Methods

Threat Model(s) Threat Scenario
Adversarial Defense

TechniquesML DL

[123] 2019 IoT IDS FNN, SNN Bot-IoT FGSM, PGD, BIM - Evasion - White-box - Feature Normalization

[126] 2020 IoT IDS SVM Gaussian
Distributions

Gaussian
Distributions

- Model Extraction - Black-box 5

[127] 2021 IoT IDS SVM ANNs Bot-IoT LFA, FGSM
- Poisoning
- Evasion - White-Box 5

[128] 2021 IoT IDS Kitsune Kitsune (Mirai) Saliency Maps,
iFGSM

- Evasion
- Model Extraction - Black-box 5

[129] 2021 IoT IDS CNN, LSTM,
GRU

CSE-CIC-
IDS2018 FGSM - Evasion - White-box - Adversarial Training

[130] 2021 IoT IDS SVM, DT,
RF MLP UNSW-NB15,

Bot-IoT JSMA, FGSM, W&C - Poisoning - White-box 5

[131] 2021 IoT IDS 48 DT, RF,
BN, SVM

Smart Home
Testbed

Rule-Based
Approach

- Evasion - White-box - Adversarial Training

[132] 2021 IIoT IDS DNNs CIFAR-10,
GTSRB One-Pixel - Poisoning - White-box - Image Recovery

[115] 2022 IoT IDS CNN-LSTM Bot-IoT C-GAN - Poisoning - White-box - Adversarial Training
by C-GAN

[113] 2022 IIoT IDS DRL DS2OS GAN - Poisoning - White-box - Adversarial Training
by GAN

[133] 2022 IoT IDS DT FGMD, LSTM,
RNN MedBIoT, IoTID Rule-Based

Approach
- Poisoning - Black-box 5

[134] 2022 IoT IDS GCN, JK-Net UNSW-
SOSR2019 HAA

- Poisoning
- Model Extraction - Black-box 5

[135] 2022 IoT IDS DNNs CIFAR-10,
CIFAR-100 NGA - Poisoning - White-box - Adversarial Training

[136] 2021 IoT DIS RF, DT,
K-NN NN UNSW IoT

Trace IoTGAN
- Evasion
- Poisoning - Black-box - Device Profiling
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Table 2. Cont.

Ref. Year Network
Security

System(s)
Target Model (s)

Dataset(s) Adversarial Attack
Methods

Threat Model(s) Threat Scenario
Adversarial Defense

TechniquesML DL

[137] 2021 IoT DIS CVNN Generated Device
Dataset

FGSM, BIM,
PGD, MIM

- Poisoning - White-box 5

[138] 2022 IoT DIS GAP FCN, CNNs IoT-Trace CAM, Grad-CAM++ - Poisoning - Black-box 5

[139] 2022 IoT DIS LSTM-CNN LwHBench
FGSM, BIM, MIM,
PGD, JSMA, C&W,
Boundary Attack

- Evasion - White-box - Adversarial Training
- Model Distillation

[140] 2019 IoT MDS CFG-CNN CFG dataset GEA - Evasion - White-box 5

[141] 2020 IoT MDS CNN Drebin, Contagio,
Genome SC-LFA - Poisoning - White-box - LSD

- CSD

[112] 2023 IoT MDS GNNs CMaldroid, Drebin VGAE-MalGAN - Evasion - White-box - Adversarial Training
by VGAE-MalGAN
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Qiu et al. [128] studied adversarial attack against a novel state-of-the-art Kitsune IDS
within the scenario of black-box access in the IoT network. The authors designed a method
leveraging model extraction to create a shadow model with the same behaviors as the
target black-box model using a limited quantity of training data. Then, the saliency map
technique is used to identify the critical features and to reveal the influence of each attribute
of the packet on the detection outcomes. Consequently, the authors granularly modified the
critical features using iterative FGSM to generate adversarial samples. Using the Kitsune
(Mirai) [142] dataset in their experiments, the authors demonstrated that using their novel
technique to perturb less than 0.005% of bytes in the data packets secure an average attack
success rate of 94.31% which significantly diminishes the ability of the Kitsune IDS to
distinguish between legitimate and malicious packets.

Fu et al. [129] conducted an experiment to assess the efficiency of LSTM, CNN, and
Gated Recurrent Unit (GRU) models against adversarial attacks created by FGSM. The
evaluation was performed on the CSE-CIC-IDS2018 dataset [143], utilizing three distinct
training configurations: training with normal samples, training with adversarial samples,
and a hybrid approach involving pretraining with normal samples followed by training
with adversarial samples. The results revealed that adversarial training enhanced the
robustness of the models, with LSTM showing the most significant enhancement. How-
ever, it was observed that adversarial training also led to a reduction in the accuracy of
the models when dealing with normal examples. This phenomenon occurred because
adversarial training makes the models’ decision boundaries more adaptable to adversarial
examples, but at the same time, it results in a more fragile decision boundary for normal
samples. As a result, the ability of the models to correctly classify normal examples was
relatively undermined.

Pacheco et al. [130] assessed the efficiency of the popular adversarial attacks, JSMA,
FGSM, and C&W against various ML-based IDSes, such as SVM, Decision Tree (DT), and
Random Forest (RF), using multi-class contemporary datasets, BoT-IoT [125] and UNSW-
NB15 [27], that represents the contemporary IoT network environment. The study’s agenda
is to reveal how those several attacks can effectively degrade the detection performance of
the three selected target models in comparison to the baseline model Multilayer Perceptron
(MLP), and how the performance results vary over the two datasets. The results of the
experiment validated the potency of the aforementioned adversarial attacks to decrease the
overall effectiveness of SVM, DT, and RF classifiers, respectively for both datasets. However,
the decrease in all metrics was less pronounced in the UNSW-NB15 dataset when compared
to the Bot-IoT dataset. The limited feature set of Bot-IoT renders it more vulnerable to
adversarial attacks. Regarding the attacks, C&W proved to be the most impactful when
used with the UNSW-NB15 dataset. In contrast, the FGSM technique displayed robust
effectiveness on the Bot-IoT dataset. However, the JSMA had a lesser impact on both
datasets. From the classifier’s model robustness perspective, the SVM classifier experienced
the most significant impact, resulting in an accuracy reduction of roughly 50% in both
datasets. Conversely, the RF classifier demonstrated remarkable robustness compared to
other classifiers, with only a 21% decrease in accuracy.

Anthi et al. [131] proposed to evaluate the vulnerability of ML-based IDSes in an
IoT smart home network. Various pre-trained supervised ML models, namely J48 DT, RF,
SVM, and Naïve Bayes (NB) are proposed for DoS attack detection. Using a Smart Home
Testbed dataset [144], the authors suggested a Rule-based method to create indiscriminate
adversarial samples. For adversarial exploratory attack, the authors proposed to use
the Information Gain Filter [145], a feature importance ranking method, to select the
crucial features that best distinguish malicious from benign packets. Then, the adversary
proceeded to manually manipulate the values of these features, together and one at a time,
to force IDSes to wrongly classify the incoming packet. The experiential outcomes revealed
that the performance of all IDSes models was impacted by the presence of adversarial
packets, resulting in a maximum decrease of 47.2%. On the flip side, the use of adversarial
training defense by injecting 10% of generated adversarial samples into the original dataset
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improved the models’ robustness against adversarial attacks by 25% in comparison to the
performance results in the absence of adversarial defense. The approach proposed in this
study is restricted to the generation of adversarial examples specifically for DoS attacks,
with an exclusive focus on supervised ML-based IDSes.

Husnoo et al. [132] suggested a pioneering image restoration defense mechanism to
answer the problem of high susceptibility and fragility of modern DNNs to the state-of-
the-art OnePixel adversarial attacks within IIoT IDSes. The authors argue that the existing
solutions either result in image quality degradation through the removal of adversarial
pixels or outright rejection of the adversarial sample. This can have a substantial impact on
the accuracy of DNNs and might result in a hazard for some critical IoT use cases, such
as healthcare and self-driving vehicles. The proposed defense mechanism leverages on
Accelerated Proximal Gradient approach to detect the malicious pixel within an adversarial
image and subsequently restore the original image. In their demonstration experiments,
the researchers chose two DNNs-based IDS, LeNet [146] and ResNet [147], and they trained
them using the CIFAR-10 [148] and MNIST [149] datasets. The experimental outcomes
revealed a high efficacy of the suggested defensive approach against One-Pixel attacks,
achieving detection and mitigation accuracy of 98.7% and 98.2%, respectively, on CIFAR-10
and MNIST datasets.

Benaddi et al. [115] suggested an adversarial training approach to enhance the effi-
ciency of hybrid CNNLSTM-based IDS by leveraging C-GAN. The authors introduce the
C-GAN in the training pipeline to handle classes with limited samples and address the
data imbalance of the BoT-IoT dataset [125]. First, the IDS model is trained on the BoT-IoT
dataset, and specific classes with low performance, often those with sparse samples, are
identified. Subsequently, C-GAN is trained using these identified classes, and the generator
from C-GAN is utilized to retrain the IDS model, thereby improving the performance
of the identified classes. The authors plan to further enhance their model by exploring
strategies to defend against adversarial attacks to improve the CNNLSTM-based IDS’s
robustness. In their other work, the authors conducted a similar approach to enhance the
robustness and effectiveness of IDS in the IIoT [113]. The study suggests the application
of DRL in conjunction with a GAN to boost the IDS’s efficiency. By using the Distributed
Smart Space Orchestration System (DS2OS) dataset [150], the author’s experiments showed
that the proposed DRL-GAN model outperforms standard DRL in detecting anomalies in
imbalanced dataset within the IIoT. However, the proposed model demands substantial
computational resources during the training phase.

Jiang et al. [133] introduced an innovative framework called Feature Grouping and
Multi-model Fusion Detector (FGMD) for IDS against adversarial attacks in IoT networks.
The framework integrates different models, with each model processing unique subsets
of the input data or features to better resist the effects of adversarial attacks. The authors
used two existing IoT datasets, MedBIoT [151] and IoTID [152], to validate their model
in comparison with three baseline models DT, LSTM, and Recurrent Neural Network
(RNN) against adversarial examples which are generated based on a rule-based approach
that selects, alters and modifies the features of data samples. The experimental outcomes
validated the efficacy of FGMD in countering adversarial attacks, exhibiting a superior
detection rate when compared to the baseline models.

Zhou et al. [134] introduced a state-of-the-art adversarial attack generation approach
called the Hierarchical Adversarial Attack (HAA). This approach aims to implement
a sophisticated, level-aware black-box attack strategy against GNN-based IDS in IoT
networks while operating within a defined budget constraint. In their approach, the authors
used a saliency map method to create adversarial instances by detecting and altering
crucial feature complements with minimal disturbances. Then, a hierarchical node selection
strategy based on the Random Walk with Restart (RWR) algorithm is used to prioritize
the nodes with higher attack vulnerability. Using the UNSW-SOSR2019 dataset [153], the
authors assessed their HAA method on two standard GNN models, specifically the Graph
Convolutional Network (GCN) [154] and Jumping Knowledge Networks (JK-Net) [155],
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and considering three baseline methodologies, Improved Random Walk with Restart
(iRWR) [156], Resistive Switching Memory (RSM) [157] and Greedily Corrected Random
Walk (GCRW) [158] when compromising the targeted GNN models. The experiment
results proved that the classification precision of both GNN models can be reduced by
more than 30% under the adversarial attacks-based HAA method. However, the authors
did not examine the effectiveness of their HAA method in the presence of an adversarial
defense technique.

Fan et al. [135] argued the limitation of existing evaluation methods that use gradient-
based adversarial attacks to assess the Adversarial Training (AdvTrain) defense mecha-
nism [15,51,159]. The authors suggested an innovative adversarial attack method called
Non-Gradient Attack (NGA) and introduced a novel assessment criterion named Com-
posite Criterion (CC) involving both accuracy and attack success rate. The NGA method
involves employing a search strategy to generate adversarial examples outside the decision
boundary. These examples are iteratively adjusted toward the original data points while
maintaining their misclassification properties. The researchers carried out their experi-
ments on two commonly utilized datasets, CIFAR-10 and CIFAR-100 [148], to systematically
assess the efficiency of the AdvTrain mechanism. In this evaluation, NGA with CC serves
as the main method to measure the effectiveness of AdvTrain in comparison with four
gradient-based benchmark methods, FGSM, BIM, PGD, and C&W. The study deduced
that the robustness of DNNs-based IDSes of IoT networks might have been overestimated
previously. By employing NGA and CC, the reliability of DNNs-based IDSes can be more
accurately assessed in both normal and AdvTrain defense mechanism scenarios. At the
end of this study, the authors recognized their proposed NGA method drawback related to
convergence speed and promised to optimize it in their future works.

In the context of Device Identification Systems (DISes), Hou et al. [136] suggested a
novel method called IoTGAN, designed to tamper with an IoT device’s network traffic to
evade ML-based IoT DIS. Inspired by GANs, IoTGAN employs a substitute neural network
model in black-box scenarios as its discriminative model. Meanwhile, the generative
model is trained to inject adversarial perturbations into the device’s traffic to deceive the
substitute model. The efficiency of the IoTGAN attack method is evaluated against five
target ML-based DIS models: RF, DT, SVM, k-NN, and Neural Networks (NNs) proposed
in [160]. The experiments are conducted using the UNSW IoT Trace dataset [161], which
is collected within an authentic real-world setting, encompassing data from 28 distinct
IoT devices. The experiment outcomes showed that IoTGAN was successful in evading
the five target DIS models with a success rate of over 90%. The authors proposed a
defense technique called Device Profiling to countermeasure against IoTGAN attacks. This
technique leverages unique hardware-based features of IoT devices’ wireless signals such
as frequency drifting, phase shifting, amplitude attenuation, and angle of arrival. When
tested, Device Profiling maintained a high identification rate (around 95%), even under
IoTGAN attacks, indicating its resilience against such adversarial strategies.

Likewise, Bao et al. [137] assessed the susceptibility of ML-based DIS against adver-
sarial attacks in IoT networks. The study aims to evaluate the impact of state-of-the-art
adversarial attacks on the identification of specific wireless IoT devices based on received
signals. For that, the authors launch a single-step attack technique, FGSM, along with three
iterative attack techniques, i.e., BIM, PGD, and MIM (Momentum Iterative Method) in
targeted and non-targeted scenarios on CNN-based DIS leveraging on a Complex Value
Neural Network (CVNN) model [162]. In their experiments, the authors created a gener-
ated dataset that contains four main features: Signal Source, Power Amplifier, Channel
Attenuation, and Receiver Device. The generated dataset will serve as the foundation for
training the CVNN model, which will then be applied for device identification purposes.
Leveraging a combined set of evaluation criteria to better assess the model’s performance,
the study finds that iterative attack methods typically perform better than one-step at-
tacks in fooling ML-based DIS models. However, as perturbation levels increase, their
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success rate becomes stable. The outcomes also revealed the ML models’ susceptibility to
targeted attacks.

Kotak et al. [138] suggested a novel method to produce real-time adversarial examples
using heatmaps from Class Activation Mapping (CAM) and Grad-CAM++. They explored
the vulnerabilities of ML-based IoT DISes using payload-based IoT identification models
such as Fully Connected Neural Network (FCN), CNNs, and Global Average Pooling (GAP).
Using a portion of the publicly accessible IoT Trace dataset [161], these models processed
the first 784 bytes within the TCP payload and converted them into a 28 × 28 greyscale
image. Experiments involved manipulating unauthorized IoT device data and altering a
specific number of bytes to see how these adversarial examples perform when exposed to
the target models. Surprisingly, adversarial examples were transferable to varied model
architectures. The GAP model displayed unique behavior against these samples, hinting at
its defensive potential. Despite vulnerabilities in the target models, advanced architecture
like Vision Transformer [163] might resist these adversarial attacks better.

The researchers in [139] delved deep into the performance of ML-based IoT DIS using
hardware behavior identification. Therefore, the authors proposed a combined LSTM and
CNN (LSTM-1DCNN) model for IoT DIS and evaluated its robustness against adversarial
attacks where adversaries alter device environmental and contextual conditions such as
temperature changes, CPU load, and device rebooting to hinder its proper identification.
To assess the effectiveness of LSTM-1DCNN, the model was trained and tested using the
LwHBench dataset [164] and exposed to various adversarial attacks like FGSM, BIM, MIM,
PGD, JSMA, Boundary Attack, and C&W. The LSTM-CNN model showcased superior
performance, achieving F1-Score of 0.96 in average, identifying all devices with a True
Positive Rate (TPR) of 0.80 as threshold for device identification. When exposed to various
evasion adversarial attacks, the model remained resilient to temperature-based attacks.
However, certain evasion techniques such as FGSM, BIM, and MIM were successful in
fooling the identification process. In response, the researchers employed adversarial
training and model distillation as defense mechanisms. These mechanisms enhanced
the model’s robustness. The combination of adversarial training and model distillation
provides strong protection against various evasion attacks.

7. Challenges
7.1. Dataset

The scarcity of publicly accessible IoT datasets is evident. Most recent studies have
relied on the Bot-IoT [125], Kitsune [142], and CIFAR-10 [148] datasets. Thus, it is essential
to create an up-to-date dataset that captures the varied nature of recent IoT applications and
considers the newest emerging threats. This would enable a more accurate assessment of
IoT ML-based security systems against adversarial attacks in scenarios closely resembling
real-world use cases.

Another challenge related to the dataset is unbalanced classes. The procedure to train
an IoT ML-based security model involves feeding a specific ML algorithm with a training
dataset for learning purposes. Consequently, there is a risk when using datasets such as
BoT-IoT [125], UNSW-NB15 [27], and NSL-KDD [26], which are unbalanced with a larger
representation of benign data. Such datasets can cause the model to have a bias towards the
dominant classes, leading to the “accuracy paradox” problem. For an effective performance
evaluation of IoT ML-based security against adversarial attacks it must start by choosing
a well-balanced dataset. However, finding a balanced dataset is not always possible. To
counteract this, various data balancing methods can be employed:

• Under-sampling: Here, entries from the over-represented class are eliminated to
equalize the distribution between the minority classes and majority classes. However,
if the original dataset is limited, this approach can result in overfitting.

• Over-sampling: In this technique, we replicate entries from the lesser-represented
class until its count matches the dominant class. A limitation is that since the minority
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class has few unique data points, the model might end up memorizing these patterns,
leading to overfitting.

• Synthetic Data Generation: This method uses Generative Adversarial Networks
(GANs) to mimic the real data’s distribution and create authentic-seeming samples.

The last challenge from our point of view related to the dataset is features constraints.
Most of the studies overlooked the inherent constraints of IoT networks. In contrast
to unconstrained domains like computer vision, where the main feature for adversarial
perturbation is the image’s pixels, the structure of IoT network traffic features involves
a combination of different data types and value ranges. These features can be binary,
categorical, or continuous. Moreover, the values of these features are closely correlated,
with some being constant and others being unalterable.

Given the challenges presented by these data considerations, it is essential to engage
in a comprehensive discussion and comparison of datasets when evaluating IoT ML-based
security systems, adversarial attacks, or adversarial defense methods. Recent studies in the
literature focused on dataset benchmarking [165–168], aiming to elucidate the construction
procedures and characteristics of various benchmarking datasets. These studies offer
valuable insights for researchers, aiding them in quickly identifying datasets that align
with their specific requirements and maintaining the necessary conditions for simulating in
the most realistic IoT traffic flows.

7.2. Adversarial Attacks

Diverse methods for generating adversarial attacks have been employed, yet a promi-
nent observation is that a majority of these strategies (60%) rely on a white-box framework.
However, this threat model is often unrealistic for potential adversaries. In real-world situa-
tions, black-box attacks hold greater practicality, underscoring the need to comprehensively
tackle the challenges posed by these attacks and their corresponding defense strategies.

When examining attack methodologies, numerous techniques for crafting adversarial
attacks have been put forth. It becomes evident that FGSM holds the highest frequency of
usage, with JSMA and C&W attacks following closely. However, FGSM’s applicability in
the context of IoT ML-based security systems could be an impractical option, given that it
operates by perturbing each potential feature to create adversarial examples.

7.3. Adversarial Defenses

Many defense techniques showcased their robustness against some specific adversarial
attack but later fell victim to a minor modification of the attack. Additionally, an essential
aspect of defensive strategies involves their capacity to endure any form of attack. However,
most defense methods prove inadequate when confronted with black-box attacks.

Some defense ideas, like adversarial training and the application of GANs in various
variants, are repeated across various research studies. However, a noticeable gap exists in
research studies that introduce novel defenses or evaluate the effectiveness of alternative
existing adversarial defense mechanisms within the IoT ML-based security domain.

8. Conclusions and Future Works

This paper focuses on the research domain of adversarial machine learning within
the context of IoT security. We conducted a review of recent literature that addresses
the vulnerability of IoT ML-based security models to adversarial attacks. Our analysis
concentrated on three primary IoT security frameworks: Intrusion Detection Systems (IDS),
Malware Detection Systems (MDS), and Device Identification Systems (DIS).

Initially, we proposed a taxonomy that can be employed to identify adversarial attacks
in the context of IoT security. We subsequently classified adversarial attack techniques using
a two-dimensional framework. The first dimension pertains to the phase of attack initiation,
encompassing exploratory, causative, and inference attack methods. The second dimension
relates to the level of attack knowledge, distinguishing between black-box and white-
box attacks. Furthermore, we presented a two-dimensional classification for adversarial
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defense methods. In this scheme, the first dimension delves into defense mechanisms,
consisting of proactive and reactive approaches. The second dimension encompasses
defense strategies, which encompass network optimization, data optimization, and network
addition strategies. In the end, we reviewed the recent literature on adversarial attacks
within three prominent IoT security systems: IDSs, MDSs, and DISs.

In future works, we aim at using the most recent and realistic IoT dataset in which
classes are sufficiently balanced for unbiased learning. We also aim at developing a
technique that takes into consideration the nuanced connections between classes to reflect
the inherent constraints of IoT networks. Then, we propose an adversarial generation
method that maintains these conditions while minimizing the number of perturbed features
to ensure the creation of realistic traffic flows. For IoT security systems, we noticed that
most of the studies (65%) are dedicated to IDS. Therefore, we will give more attention to
MDS and DIS in our future works.
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