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Abstract: The Chicago Array of Things (AoT) is a robust dataset taken from over 100 nodes over four
years. Each node contains over a dozen sensors. The array contains a series of Internet of Things
(IoT) devices with multiple heterogeneous sensors connected to a processing and storage backbone
to collect data from across Chicago, IL, USA. The data collected include meteorological data such as
temperature, humidity, and heat, as well as chemical data like CO2 concentration, PM2.5, and light
intensity. The AoT sensor network is one of the largest open IoT systems available for researchers to
utilize its data. Anomaly detection (AD) in IoT and sensor networks is an important tool to ensure
that the ever-growing IoT ecosystem is protected from faulty data and sensors, as well as from
attacking threats. Interestingly, an in-depth analysis of the Chicago AoT for anomaly detection is rare.
Here, we study the viability of the Chicago AoT dataset to be used in anomaly detection by utilizing
clustering techniques. We utilized K-Means, DBSCAN, and Hierarchical DBSCAN (H-DBSCAN) to
determine the viability of labeling an unlabeled dataset at the sensor level. The results show that the
clustering algorithm best suited for this task varies based on the density of the anomalous readings
and the variability of the data points being clustered; however, at the sensor level, the K-Means
algorithm, though simple, is better suited for the task of determining specific, at-a-glance anomalies
than the more complex DBSCAN and HDBSCAN algorithms, though it comes with drawbacks.

Keywords: sensor network; IoT; anomaly detection; clustering; machine learning; neural networks;
Chicago AoT

1. Introduction

Faulty sensors, inaccurate sensor readings, and sudden changes in sensor data in
the IoT and sensor networks pose risks when utilizing these systems for monitoring and
detection. Anomaly detection (AD) seeks to identify these outliers in sensor readings. In
this work, we wish to test and evaluate the usefulness of the Chicago Array of Things (AoT),
a large, unlabeled dataset, for the purposes of anomaly detection by utilizing clustering
techniques to group anomalous readings at the sensor level.

With the proliferation of Internet-connected devices present in the market today at
a low cost to consumers, from smart health devices and home devices to smart vehicles,
proper anomaly detection for these devices is essential. Research in AD in IoT ranges
from fault detection [1,2] to time-series AD [3,4] to malware analysis [5,6]. Many of this
research points out one significant issue: the lack of available robust datasets to study AD.
The Chicago Array of Things is a robust dataset from over 100 nodes, each with over a
dozen sensors, spanning 4 years. The data collected include meteorological data such as
temperature, humidity, and heat, as well as chemical data like CO2 concentration, PM2.5,
and light intensity. The AoT sensor network is Internet-connected; thus, it is one of the
largest open IoT systems available for researchers to utilize its data. Most work referencing
Chicago AoT either provides context for its creation [7–11], or merely references the dataset
as previous work, without using it [12]. Some work utilizes a very small subset of the
data [13,14] for a specific purpose, such as urban heat island detection or data cleaning.
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This work is part of a multi-part analysis of the AoT. It focuses on utilizing clustering
techniques at the per-sensor level and ground-truth determinations from external sources to
determine present anomalies. The goal is to determine whether the AoT is viable for training
and evaluating anomaly detection machine learning (ML) models. Specifically, this work
analyzes independent, sensor-level clustering of the Chicago AoT using modern techniques
to automate the labeling process to produce two-class anomaly labels (anomalous/non-
anomalous) to train anomaly detection techniques. This work focuses on sensor-level
clustering to gain a baseline understanding of the data present. By ignoring spatial and
temporal contexts, we can understand how to group information in its simplest form before
adding context and complexity.

The Chicago AoT is a publicly available dataset produced for general research with
sensor data [8]. Its size, availability, and heterogeneity were the reasons for its use in this
research. Clustering-based approaches were selected since Chicago AoT is not labeled.
Due to their sheer size, manually labeling them would be time-consuming and practically
infeasible. In addition, assuming the existing data are nominal and augmenting them with
synthetic anomalous data may produce inaccuracies in the AD approaches, since natural
anomalies may exist in the data.

Due to the sheer size of the data, the number of nodes and sensors, spatial considera-
tion, and the time-series nature of the data, multiple different approaches using clustering
and a way to unify their results are needed to determine whether anomalies exist and can
be found accurately. In this work, we are focusing on clustering the data at the sensor
level. We focus on the closest nodes in the dataset to the ground-truth data—weather
data from the National Oceanographic and Atmospheric Administration (NOAA) Great
Lakes Environmental Research Laboratory (GLERL) station in Lake Michigan [15]. These
NOAA data are not used during clustering; their goal is to be used as analysis tools after
the clusters are formed.

1.1. Sensor Networks

Many devices produce data. These devices contain sensors. Sensors may exist alone
or coupled with other sensors. This grouping of sensors on a single device could identify
a connection. Sensors in a sensor network may share similar data bounds with other
sensors of the same type. This may identify another connection. Finally, sensors may be
influenced by or send data to and from one another for data fusion. This may identify a
third potential connection.

How you define a sensor network will determine how the sensors are connected. For
instance, a person’s home may contain many IoT devices (smart televisions, smart lights,
robotic vacuum, health devices, smart speakers, and utility monitoring devices). Some of
these devices may naturally interact with one another (a user’s smart speaker may link all
the home smart devices for a user’s control). Others may only be associated because they
are on the same computer network.

The industrial IoT contains many devices working together to monitor industrial
systems [16]. These systems generally report information to a monitoring system or
the industrial device in case of faults or errors. The medical IoT contains many health-
related sensors to notify patients and medical staff of health-related issues [17]. The
environmental IoT contains devices that monitor environmental conditions, including
weather and atmospheric composition [10]. This can include weather systems, atmospheric
particle sensors, and light and noise sensors. The urban monitoring IoT contains devices
that monitor conditions in an urban environment [8]. This can include environmental
IoT, cameras, traffic sensors, counters for vehicles, people, entrances/exits, etc. Marine
Monitoring sensor networks work similarly to the urban monitoring IoT, with cameras for
tracking boats, but they also include ocean monitoring buoys, acoustic sensors, and various
undersea sensors [18]. In all these cases, each network requires the ability to detect faults,
uncommon readings that indicate uniquely sensed data, or malicious attacks. For networks
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that produce time-series data, anomaly detection approaches focusing on time-series data
should be considered.

This work focuses on utilizing the Chicago Array of Things (Chicago AoT), a set of
Internet-connected nodes along the coast of Chicago, IL. Each node in the AoT contains a
set of sensors housed on circuit boards. The sensors on each circuit board are independent
of other circuit boards and their sensors. This is explained in detail in Section 2. This work
focuses on sensor-level anomalies, so the AoT network’s exact structure is out of scope.

1.2. Anomaly Designation

While a set of limiting thresholds can initially define an anomaly, this restriction is
arbitrary and may change based on context. Various AD approaches can infer some of
that context by viewing a sensor’s data concerning other sensors in the same network.
To determine how to perform AD, we must first define an anomaly. This is easier said
than done, as multiple sources may not agree on what an anomaly is. To clarify this, we
take queues from [16,19] to specify anomalies in three ways: (a) a periodicity or temporal
component, (b) a spatial component, or (c) a bounding component.

Anomaly Periodicity

Anomalies can be broken down into the following periodicities: (a) point, (b) clustered,
or (c) continuous.

Point periodicity implies no period. The anomaly is seen independent of other data
points. Clustered periodicity is an anomaly detected based on a set of abnormal readings
compared to historical readings. Continuous periodicity is when a fundamental shift occurs
in the sensor data, causing all data after a certain point in time to be markedly different from
the previous data. A continuous periodicity is a clustered anomaly as time t approaches
infinity. For clustered and continuous anomalies, some sliding window may be needed to
identify the periods.

The sensor’s location with other sensors must be considered for anomalies with a
spatial component. Techniques like graph neural networks (GNNs) [20] or R-Trees [21]
can be used to incorporate a spatial context to anomalies. Concerning the Chicago AoT,
the spatial component is a geo-position (latitude/longitude/altitude) that algorithms can
use to determine spatial anomalies (such as urban heat islands [14] or bad air quality
pockets [12]).

Furthermore, whether an anomaly has a spatial or temporal component, the basic
determination of what an anomaly is relies on some understanding of a sensor’s bounds.
We can look at this in three ways: (a) threshold, (b) static, and (c) lossy. A threshold anomaly
is data that fall outside a bounds α. This boundary is defined by recorded nominal data
readings. These anomalies become complicated to identify when the boundaries change
by time period (for example, changes in seasons) or by location (for example, sensors near
a lake vs. inland). A static anomaly (or set of readings) seems “frozen” in time. A frozen
reading is defined as a reading that matches (to the exact decimal) a previous reading (as
far as floating point measurements are concerned). The restriction that the readings be
identical is based on the tendency of sensors to have some inherent slight fluctuations in
measurements due in part to things like shifting atmosphere, sensor error, etc. [22]. A lossy
anomaly is an anomaly where a reading is expected at some period; however, for some
reason, it was not reported. Lossy and static anomalies are related but listed here separately
because they can tell a system differently. Lossy anomalies may indicate that the sensor
is down due to power issues, a fault, or network access. Static anomalies may suggest a
faulty or tampered sensor reading, but the sensor is still reporting lsomething.

If a dataset of sensor readings has its anomalies labeled, many common neural network
techniques (MLP, SVM, random forest, etc.) can be used; however, when the data are not
labeled, as is the case with Chicago AoT, to find anomalies, clustering techniques (K-Means,
DBSCAN, etc.) can be used. To further complicate things, since most sensor networks
produce data in a time-series format, any techniques used may need to utilize a time-series
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component (such as an autoencoder, LSTM, GRU, etc.) to find specific anomalies. A further
breakdown of anomaly detection, defining anomalies, and the state of the art can be found
in [23].

In the Chicago AoT, there are large gaps where a sensor may not produce data. For
this work, since we are focusing on sensor-level clustering, these gaps are ignored, as well
as any spatial context between nodes or temporal context between windows of time. This is
achieved by only including the sensor readings and not their timestamps during clustering.
Section 3.2 contains the detailed approach to preprocessing the data for this work.

1.3. Contributions

Our contributions to the field are as follows:

• An analysis of the Chicago AoT and its usefulness as a tool for anomaly detection in
IoT and sensor networks.

• An analysis of independent, sensor-level clustering techniques on the Chicago AoT, as
well as their role in labeling an unlabeled IoT dataset.

The remainder of this paper is organized as follows: Section 2 lists related work
performed with the Chicago AoT. Section 3 formally defines the problem statement, the
preprocessing techniques used on the data, the programming environment and tools used,
the clustering approaches trained in this work, and the metrics chosen for analysis. Section 4
reports the test configuration and analysis results. Section 5 wraps up the information
discovered in this work.

2. Related Work

Here, we report on the works that detail the development of the Chicago AoT, its
hardware platform, and its successor projects. In addition, we focus on recent works for
anomaly detection using IoT and sensor networks. For an in-depth analysis of AD in IoT,
please see [23].

2.1. The Chicago AoT, Waggle, Eclipse, and SAGE

The Waggle project [7] is the hardware platform used by the Chicago AoT. Developed
by Argonne National Laboratory, Waggle incorporates a modality of sensors into the
Waggle platform. In addition, virtualization of edge functions was added for researchers
to perform analysis and management using cloud services. The paper focuses mostly
on non-environmental sensing and is more interested in computer vision and counts of
pedestrians and vehicles in the wild.

This paper goes into detail about the components used in an AoT node. One computer
controls the node, including sensor reading, reporting sensor data, data integrity checks,
and managing security. This is only managed by system support staff, with the other
computer used for edge processing. This computer utilizes the data received by the node
to perform analysis. The node controller is in charge of transmitting any analyzed data.
The central management server called a beehive, collects the data, registers new nodes, and
manages encrypted connections between itself and the nodes. Security is handled by not
allowing listening services, making the nodes fully autonomous. The Beehive only receives
data from nodes and is available for interaction with system staff.

This paper points out the Waggle manager node used for managing the different
computers and payloads and its robustness to failure; the AoT nodes stay working despite
one or more sensor payload failures. Lastly, this paper emphasizes the need for privacy
when collecting sound and video data, mentioning that the AoT nodes preprocess images
before the data are sent to a cloud database.

The authors of [8] describe the AoT, its development, and the challenges and moti-
vations for its construction. The AOT was developed with three goals in mind: (a) data
analysis, (b) R&D for edge computing, and (c) R&D for new embedded hardware. These
goals were determined after a series of scientific workshops. Cooperation with a city
government and a modular hardware developer was needed. The city of Chicago, IL,



Future Internet 2024, 16, 28 5 of 23

USA, was chosen, and collaboration with Waggle, a platform designed for modularity and
sensing in remote environments, began. One significant challenge and interest was privacy
and usability; for the network to be viable if the Internet was lost and void of privacy issues,
AoT needed edge computing capabilities to process data at the node before data were
transferred to the cloud. This was performed so that audio and video were not transferred
to the cloud; only the desired data from those streams were transferred (sound level and
vehicle and person counts, respectively). An interesting thing to note here is that the goal of
creating the AoT was not to perform anomaly detection but to provide data for researchers,
a key reason for using this dataset in our research.

This work also goes into detail about the waggle infrastructure, which is a robust, mod-
ular structure allowing local data storage for situations where Internet access is temporarily
unavailable, secure encrypted communications between the hardware stack and the cloud,
safety management between all components of the system, ensuring the system can run
when one or more sensors are down permanently or temporarily, and redundant booting
in the case of a system boot failure. Since drift in sensor measurements can occur over
time and re-calibration of sensors over the whole network would be costly, measurement
corrections were performed on the data.

The authors of [9] reference the development of the Chicago AoT. This paper specifies
that SAGE is the successor to Chicago AoT, an NSF-funded collaborative project. It further
elaborates on the Waggle platform like previous papers have carried out. The work seen
in [10] is a similar product to Chicago AoT and another successor project. This paper
notes that many air sensors in the AoT dataset were susceptible to hardware failure during
transport. So, rather than replace the entire node when other sensors were working on
it, they left the nodes in place, allowing the remaining functional sensors to report data.
This paper evaluates a new modular, low-cost air quality sensing hardware platform called
Eclipse. This paper only compares to the AoT and focuses more on a new hardware
platform than on utilizing AoT data or Anomaly detection. Catlett et al. in [11] write a
documentation of the history of Chicago AoT and mention SAGE as its direct successor.
This work identifies in more layman’s terms the processes by which AoT and SAGE came
to be and the reasons for doing so. This paper points out that the AoT Team collaborated
with The Eclipse team to deploy the Eclipse sensors mentioned in [10].

2.2. Recent Advances in Anomaly Detection (AD) on IoT and AD Using Chicago AoT

In [24], Asanka et al. focus on utilizing multi-agent systems (MAS) and time-series
AD techniques to detect unusual human movements. The dataset utilized involved mo-
bile phone data. The time-series data were determined to be non-stationary using the
Dickey–Fuller technique, then converted to stationary using the min–max technique. Part
of their approach involved filling gaps in missing time-series data. They completed this by
utilizing a simple rule (fill in 0 s if there are 0 s previously and ahead) and regression using
root mean squared error. Boosted decision tree (BDT) regression was chosen for outlier
detection. Seasonal trend decomposition was used.

In [25], the focus is on finding faults in etching equipment used in Tool-to-Tool Match-
ing (TTTM) in semiconductor manufacturing. Their approach focuses on rapid gradient
shifting and deviations from the normal trend range. The first algorithm is called the gradi-
ent drift detection algorithm (GDD). The approach relies on the interpolation of missing
data and relies on a median value for determining the sensor range using bins of data. The
gradient of the data is found by differencing these median values. Rapid change detection
is performed using algorithms like Isolation Forest. The second algorithm is called trend
zone detection (TZD). A trend line is calculated between the data, smoothed, and adjusted.
A plane model like an SVM is used to detect deviations.

In [13], English et al. focus on how the environment, particularly air quality, affects per-
sonal health. It utilizes two datasets: the Chicago Health and Real-Time (CHART) project,
which contains health and daily activity impact on elderly Chicagoans, and the Chicago
AOT’s air sensor data. CHART collects GPS data and surveys on willing participants to
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determine activity and health. This work points out that 80% of CHART participants lived
within at least one AoT node, so the overlap between datasets is viable. Previous studies
were used to determine the ground truth of the AoT air pollutant data to determine the
minimum and maximum levels for certain gasses by checking if the AoT node exceeded
the highest or lowest values or where humidity was lower than 0 or higher than 100%. In
addition, any data points with less than 10 months of temp and humidity data available
were excluded from annual averages. To generate averages over the area, inverse distance
weighting over a 200 m × 200 m grid was utilized, and mean values within 250 m of
a CHART participant’s address were used to determine exposure. Correlation between
gasses was performed, and any highly correlated gasses were removed in favor of the
known “criteria air pollutants” they were correlated with.

Logistic regression models were fit based on the binary surveys performed by CHART
respondents using the Hosmer–Lemeshow test. To test the improvement of the fit using
the AoT data, likelihood ratio tests and Akaike’s and Bayesian information criteria were
used. Three models were used. The first model utilized air quality and weather conditions.
The second model was an individualized model based on surveys of health, demographics,
and length of time in the area. The last model combined the two to determine short and
long-term effects.

Notable results were that the air quality measurements in the area only affected
respiratory health in long-term residents, particularly due to higher levels of NO2, and
that while air pollutants do negatively affect overall health, due to the correlation between
the different pollutants, it is unclear which specific pollutants are the most egregious.
In addition, this work points out that when AoT data are compared to EPA data on
air pollutants for the area, an unknown amount of measurement error may have been
introduced due to the low-cost nature of the sensors in the AoT nodes.

One thing to note here is that this work does not focus on anomaly detection, but
rather the general usefulness of the AoT data, as well as how to correlate the data with
themselves and ground-truth measurements from outside the set.

The work in [12] utilizes time-sliced anomaly detection (TSAD) to discover spatial,
temporal, and spatial–temporal anomalies in segments of a large-scale sensing system. This
work utilized the AirBox dataset (out of Taiwan) to determine anomaly detection for air
pollutants. This work defines spatial, temporal, and spatio-temporal anomalies. TSAD
determines spatial anomalies using Tukey’s test, a temporal anomaly if data fall out of a
reasonable measurement drift. Spatial–temporal anomalies are determined if both occur.

Once this is completed, the results are fed into three other components: ranking,
emission detection, and malfunction detection. The ranking is used to determine how
well the device is performing, emission detection is used to determine, in real-time, the air
quality based on the anomalies seen, and malfunctioning devices if extreme values are seen
very often. This is essentially a set of heuristic or meta-heuristic tests, rules that may or
may not assume certain criteria must be followed. In addition, no comparison against other
methods was performed. While this work references Chicago AoT, it does not perform AD
work with it.

The driving factor for [14] is the danger of and necessity to eliminate urban heat
islands, a human-made condition where areas of urban development experience extreme
heat events. To facilitate this, this paper employs tensor factorization to impute missing
values and correct errors in sensor network data. This study uses the Chicago AoT dataset,
and NOAA data are used to compare and determine the ground truth. To do this, Tucker
ranking, nuclear and L2 norms, singular-value thresholding, and the alternating direction
method of multipliers framework were used in the factorization. The result was an output
free of outliers and contained complete (though imputed in places) data. This work focuses
on cleaning the data for analysis rather than generating a model that finds anomalies,
though it does seem to produce an anomaly tensor (ϵ). Exactly how these tensors are
created is not detailed in this paper. In addition, the focus was on removing the outliers,
not determining whether they provided anything of import.
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The work in [26] utilized satellite data and the Chicago AoT to predict urban heat
islands, where the temperature is significantly hotter than other portions of the city due to
lack of green space, shade, or less circulation. This work performed linear interpolation
on the bi-weekly satellite data to obtain daily data. For ML algorithms, random forest
regression (RFR), artificial neural network/multi-layer perceptron (ANN/MLP), support
vector machine (SVM), and polynomial regression were used. Mean squared error (MSE)
and mean absolute error (MAE) were used to evaluate model performance. This paper also
details how the data were processed, an important step in beginning an ML analysis. The
data were filtered by location and time; then, the data were collected in 10 m time-series
windows, reduced to an average value over that window, and anomalies were removed
based on temperature values that exceeded some sensor boundary or predetermined cutoff
value (rules-based AD). Other AD methods are performed on the same sensors on the
same node to find outlier cutoff values. To do this, quantiles determine an upper and lower
bounded “fence”. Again, this is a rules-based AD. The valid data from similar sensors are
then averaged again to produce a single attribute value to be used. To deal with missing
values in the data, multivariate imputation by chained equations was used [27].

For convenience, a summary of these approaches can be seen in Table 1.

Table 1. Summary of approaches reviewed.

Citation Goal Dataset Approaches Notes

[24] unusual human
movement detection phone position BDT regression, Seasonal

Trend decomposition uses last-value imputation

[25] fault detection T2T manufacturing GDD, TZD,SVM uses mean imputation

[13] personal health and
environmental factors CHART, Chicago AoT gridding, correlation,

logistic regression
focuses on correlation, not

anomaly detection

[12] AD in sensors Airbox
TSAD,Tukey’s test and

reasonable
measurement drift

utilized
heuristics/metaheuristics

for AD

[14] prediction of urban
heat islands

NOAA (ground truth),
Chicago AoT tensor factorization

removing of outliers (not
detection explicitly),
imputation was used

[26] prediction of urban
heat islands Satellite Data, Chicago AoT

AD using quantiles,
prediction using RFR, MLP,

SVM and
polynomial regression

rules-based AD, removal of
outliers for prediction,
rather than detection

3. Methodology

We aim to study the usefulness of clustering approaches on the Chicago AoT to
determine its usefulness for anomaly detection. Clustering was chosen since the Chicago
AoT is not labeled. The goal is to build a mechanism by which we can auto-label the dataset.
We focus on sensor-level clustering in this work. For this work, we are focusing on three
available clustering methods:

• K-Means: The baseline clustering algorithm.
• DBSCAN: A modern clustering algorithm.
• Hierarchical DBSCAN: A modification of DBSCAN that utilizes tree hierarchies in

its clustering.

Each clustering tool was chosen for its popularity and usefulness.
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3.1. Problem Statement

More formally, we define the problem here: Definition—Given a sensor dataset S
of dimension d, we aim to discover anomalies in S utilizing clustering algorithms. The
following expression can formulate that:

Sd => C(Sd) = Sd+1|S = Sn−m ∪ Sm (1)

where n is the total number of records in S, m is the number of anomalous records in
S, C is some clustering algorithm acting on S, and the d + 1st dimension in S represents
the anomaly label. Specifically, we aim to analyze various clustering algorithms on an
unlabeled sensor network dataset to produce a labeled dataset that can be used to train
deep learning techniques to perform more accurate AD in sensor networks as readings
arrive at the sensor. In this work, we focus on sensor-level clustering, treating each sensor
on a node as independent to determine the anomalies specific to the sensor.

3.2. Dataset Preprocessing

Each record in the Chicago AoT dataset is a single sensor reading from a single node
at a single point in time. Each node (over 100) reports all of that node’s sensor readings
periodically, around every 30 s. See Figure 1 for an example.

Figure 1. An example of the AoT data.

The first step is to prune the data that are irrelevant to the types of anomalies we
are interested in. The AoT records everything, from internal sensors used to manage the
thermal safety of computer parts to network logs to environmental data. The system-level
management logs are out of scope for our work, so they are removed from the set. This
reduces the size of the dataset and will speed up the processing of the data somewhat.

For data processing, the type of clustering that is to be performed needs to be defined.
Here, we specify three separate clustering paradigms: (a) node-level clustering, (b) spatial
clustering, and (c) temporal clustering. For this work, we focus on node-level clustering,
specifically sensor-level clustering on each node.

Node-level clustering is the process of determining, at the node level, how the sensor
data can be clustered. We treat each sensor as independent and ignore the time component
entirely or treat the timestamp as one of the feature vectors in the clustering algorithm.
For spatial clustering, sensor readings from neighboring nodes are taken into context
to determine whether the sensor readings show any localized phenomena. Temporal
clustering allows us to break whole sensor readings into windows to determine trends.
This allows us to determine whether the sensor readings are nominal for the time they are
recorded or whether some temporal phenomena have occurred. Lastly, properly merging
these three approaches together will provide us with more context of anomalies occurring
in the AoT. For this work, we focus on the independent sensors in node-level clustering
due to the size of the dataset and to obtain a baseline to enhance future multi-dimensional
node-level, spatial, and temporal analysis. Specifically, we utilize the one-sensor-per-row
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format native to the Chicago AoT and independently cluster each sensor and node. This
produces multiple results for labeling per node but allows us to analyze the performance
without considering the effects other sensors in a node would have on a result.

With this in mind, the dataset should be filtered by node ID for easier processing and
management. We can also visually inspect the readings of certain environmental sensors
and reference them against any ground truth we have available. We utilize local NOAA
weather data (temperature data) for this work. The NOAA data are available for public
use [15] and will act as our ground-truth reference.

By plotting the NOAA data against each Node ID’s temperature data, we can visually
(or through heuristics) determine some anomalous data. Since the NOAA data are only
for a specific point in the area and the AoT spans miles along the shore of the lake and
some interior of the city of Chicago, this only gives us a partial understanding of what each
node is seeing. In addition, the NOAA data only provide us with ground truth for some
of the sensors on a node. Therefore, we must decide which data (if any) to prune, how
much of the remaining data to use as feature vectors, and how (and whether) to normalize
these data.

Since each node has the potential to be heterogeneous, some nodes may have more
or different sensors than other nodes. In addition, since the distance to the NOAA station
varies from node to node, we limit the number of nodes to those closest to the NOAA station
with similar sensors. We also focus on temperature data as comprising a further limiting
factor without normalizing the records. For an example of the nodes in question, please see
Figure 2. The left side of the figure represents the zoomed-out location of the nodes off the
coast of Lake Michigan. The right side of the figure is the zoomed-in representation, where
you can make out individual sensors.

Figure 2. The data subset focused on for this work.

Lastly, many works, such as [14], incorporate imputation into their analyses. Impu-
tation is the process of filling in gaps of missing data. This helps reduce sparse matrices
generated when some sensor data are missing or if generalizing an entire dataset of hetero-
geneous nodes into a set that contains all sensors for all nodes on each row, where rows
corresponding to nodes that do not have those sensors are filled in with some sentinel value.
Unfortunately, while imputation allows the data to be more easily digested by various
algorithms, it has the downside of potentially biasing the data [28]. As such, we do not
impute data.

We treat each sensor separately for node-level clustering, running clustering algo-
rithms on each sensor type for a given node. Normally, this would be time-consuming, but
due to the available hardware, the spark module for accessing data, and the steps we took
to process the data for this analysis, the run-time for the clustering algorithms was reduced
significantly. The result was around 800,000 records per sensor, and we focused on the
4 nodes closest to the NOAA data, with each node containing 5 sensors for approximately
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16 million data points. No individual records for the sensors used in this research were
removed from the dataset.

3.3. Algorithms

The K-Means algorithm was first introduced in [29]. It is closely related to Lloyd’s
algorithm in [30], which generates Voronoi diagrams and was originally created for pulse–
code modulation. In K-Means, k random points are chosen as centroids of the desired k
clusters. The distance from each remaining point is then calculated between the centroids.
After all points are assigned to exactly one cluster, the centroid is then calculated again.
The process continues for several steps or until points are not re-partitioned. The distance
calculation used is the Euclidean distance (or L2 norm).

The K-Means algorithm is simple but effective. However, it is not guaranteed to obtain
globally optimal clusters. For a more detailed description of K-means, please see [29].

The DBSCAN algorithm was introduced in [31] and relies on clusters based on density
rather than distance to a centroid. Multiple definitions are used to define density in [31],
but the core rules are as follows:

• A single parameter, minPts, is used to determine density. This determines the minimal
number of points any other point is density-connected to.

• Density connectivity: a point is density-connected to another point if there is an
unbreakable chain of points from p to q; here, each point in the p-q chain is, at most, ϵ
apart in distance.

DBSCAN then merges clusters that are close to one another. This is performed by
finding the smallest p-q distance where p is in one cluster and q is in another. The clusters
are merged (i.e., combined to form a larger cluster) if this smallest distance is <= ϵ.

The benefits to using DBSCAN over other methods are it does not rely on defining
the number of clusters, the distance calculation can be different (unlike K-Means, which
generally requires L2 distance), and the number of parameters to test is reduced to 2: ϵ
and minPts. These hyper-parameters are global. The values can then be chosen through
evaluation or a heuristic posed in [31] relying on distance from an arbitrary point p to its
k-nearest neighbors. For a more detailed description of DBSCAN, please see [31].

Hierarchical DBSCAN (H-DBSCAN) is introduced in [32]. It is a variation of DBSCAN
and relies on a minimal spanning tree (MST) to generate a hierarchy for more advanced
clustering. To generate this hierarchy, a new metric, the mutual reachability distance, is
the maximal value of the core distances (ϵ) of points p, q, or the distance between them. In
contrast to the original DBSCAN algorithm, rather than merging clusters close together,
H-DBSCAN starts with one cluster and uses the MST to split clusters off by sorting the
MST by edge distance and splitting points off that match edge values. A new cluster is
formed if the points split off have at least minPts. This process iterates until all points have
been split from the MST. Each new cluster keeps a reference to its parent cluster.

From here, a stability value can be generated for each cluster. The stability of a leaf
cluster (a cluster with no children) is compared against the stability of the parent cluster.
If the child’s stabilities are higher than the parent cluster’s stability, these stability values
propagate to the next parent until root. Otherwise, the parent cluster’s stability propagates.
In this way, there are no multiple clusters representing the same point. H-DBSCAN can
also specify outliers in the data using information calculated for each point as the point
was being placed into a cluster. For more information, a detailed description can be found
in [33].

3.4. Metrics

Since we are looking at node-level clustering in the context of binary anomaly detection
(a reading is or is not an anomaly), and since we are considering all of a node’s sensors
independently to determine the cluster the reading falls into, we will determine the efficacy
of the techniques based on whether the NOAA ground-truth visual analysis confirms a
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reading was an anomaly or not; if so, we ask the following question: does the cluster group
in a way that verifies this (and by measuring the Davies–Bouldin Index of the clusters)?

The first criterion is straightforward: given a readout of NOAA data for the given
period and the weather sensor reading for the same period, are readings significantly
different than the NOAA data clustered together? The term “significantly different” is
subjective, so here, we define it as the mean value of the difference between the sensor
reading and the NOAA reading in the same time frame. We detail how we find the closest
value for a given sensor reading in Section 3.5.

The Davies–Bouldin Index (DB Index) was introduced in [34]. It is an internal cluster
evaluation scheme that uses quantities and features inherent in the dataset. The DB Index
is calculated by finding the maximal value based on adding the individual distances within
a cluster (intra-cluster distance) i and every other cluster in the set and dividing by the
distance between these clusters (inter-cluster distance), then summing up all the values for
all combinations of clusters and dividing by the number of clusters. The lower the value,
the better the result. The drawback of this method is that a good value reported by this
metric does not necessarily guarantee the best information was retrieved. The DB Index is
available in the standard Python sci-kit learn package and in [35]. Please see [34,36] for an
in-depth description. In brief, the DB index acts as a measure of the closeness and density
of the clusters.

DBIndex(U) = 1/k
k

∑
i=1

max
i ̸=j

{
∆(Xi) + ∆(Xj)

δ(Xi, Xj)

}
(2)

3.5. Testing

Here, we focus on node-level clustering; each node in the AoT is treated as a separate,
independent entity without contributing meaningful information to the other nodes. By
restricting our clustering, we can gain a baseline for how individual nodes in the AoT
see the world and pick up node-level anomalies. Due to the number of nodes in the set,
we chose n = 4 nodes in the dataset and performed clustering on them. The following
procedures will be observed:

• Temperature readings will be used to heuristically infer anomalies in the data when
directly compared to NOAA data. This comparison will be performed per the mecha-
nisms seen in Section 3.4.

• A node’s sensor data will be pruned only to have relevant sensor information present.
Reports such as network uptime, individual component IDs, a sensor’s location, etc.,
are outside the scope of this paper.

• A comparison using the DB Index listed in Section 3.4 will be used to determine the
efficacy of the clustering algorithms. Again, the lower the score, the better the clustering.

The four nodes chosen (f02f, 3d20, ba3b, 3f54) can be seen in Figure 2. The data for
these particular nodes span 2 years (2018–2019). We collected the relevant NOAA data,
which were collected from the NOAA GLERL Met Station at Latitude 41.78, Longitude
−87.76, just off the coast of Chicago, IL, USA, in Lake Michigan. The NOAA data are not
used as part of the clustering algorithms but only to compare clustering success.

Each node utilizes the same five Metsense sensors: bmp180, htu21d, pr103j2, tmp112,
and tsys01. Each of these sensors was part of the node’s meteorology sensing stack. These
specific sensors were used since they focused on meteorology (related to the NOAA data)
rather than internal sensing of the same parameter (temperature). All the other sensing
stacks on the node belonged to other sensing ontologies (such as internal monitoring,
counting items, air and light quality, etc.) and fell out of the scope of this work. The
hardware sheets for each sensor are available at [37]. Once the data were filtered to the
four nodes in question with five sensors each, each sensor was run through three clustering
algorithms: (a) K-Means, (b) DBSCAN, and (c) H-DBSCAN.

For the K-Means algorithm, there are two relevant parameters to set: the number of
clusters k and the maximum number of iterations to run the algorithm max_iter. We set k to
2 since we are interested in whether or not the data contain anomalies (a binary problem).
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For max_iter, we set the value to 100. This means the K-Means algorithm updates the k
centroids (and parses over the data) 100 times. This value was the default for the algorithm
and was kept for speed of execution.

For DBSCAN, ϵ and min_samples are the relevant parameters. The min_samples
parameter is used to determine a cluster’s “core” samples. The ϵ parameter calculates
the distance between elements to determine cluster size. The ϵ parameter was set to 3,
and min_samples was set to 5. The result is a large number of possible clusters. This was
performed for computational requirements bounded by the H-DBSCAN algorithm.

For H-DBSCAN, the min_samples parameter is present, but the other required param-
eter to be set is min_cluster_size. These values were set to 5. The result is an algorithm that
produces many different clusters. Even with this adjustment, H-DBSCAN failed to cluster
the tsys01 sensor on each node, so this information is omitted for this algorithm. Reasons
for setting the hyper-parameters in this way are explained in Section 3.6.

3.6. Experimental Evaluation

Python has a rapidly increasing set of data science and ML tools available. Among
them are pandas [38], and spark [39]. Pandas is a defacto data management package for
Python, but due to the sheer size of the AoT dataset, pandas cannot be used for initial
data preprocessing. The Apache Foundation developed Spark, a distributed big data
management system, to handle this. Spark is used for quick access and filtration of large-
scale datasets. Spark also contains basic clustering algorithms like K-Means, which we
use in this work. In addition, there are many ML tools available. For our approaches,
we leverage scikit-learn [40] and rapids [41]. For processing and clustering, scikit-learn
has powerful tools. Unfortunately, those tools are very slow when working on large
datasets. To solve this, NVIDIA backed the RAPIDS project, a set of open-source data
science libraries incorporating NVIDIA’s CUDA framework for GPU-level data processing.
RAPIDS provides both cuML, an extension to scikit-learn, and RAPIDS ML, a set of machine
learning tools inside RAPIDS that utilizes Spark. Both of these tools can leverage GPU
processing for faster analysis and clustering.

This work leverages two separate computers for processing: a main clustering machine
and a secondary clustering machine. The main clustering machine is a Lambda Vector
Server with:

• Two NVIDIA GeForce RTX 4090s with 24 GB RAM.
• AMD Ryzen Threadripper PRO 5975WX CPUs, with 32-Cores each running at 1.8 GHz.
• RAM—128 GB.

The secondary clustering machine is a Dell Precision 3551 with:

• A Razer Core external GPU enclosure connected via Thunderbolt housing an NVIDIA
RTX 4070Ti with 12 GB RAM.

• A 10th gen Intel Core i7 with 12 cores each running at 2.7 GHz.
• RAM—32 GB.

The main clustering machine was used to perform DBSCAN and K-Means clustering.
The secondary clustering machine was used to perform H-DBSCAN clustering (due to
cuML library issues found to affect the H-DBSCAN algorithm specifically). In addition,
initial filtration of the dataset was performed on the main clustering machine, with analysis
of the results performed on the secondary clustering machine. All timings present in this
paper for performance were based on runs on the secondary clustering machine and are,
therefore, much faster on the primary machine.

Python was the programming language used, and the libraries required are:

• Clustering—sklearn, PySpark, and cuML.
• Data processing—pandas and PySpark.
• Data typing—numpy.
• Visualization—dash and plotly.
• Interactive execution—jupyter and ipython.
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Visual Studio (VS) Code was the IDE used. The following extensions were used with
VS Code:

• Python language pack.
• Jupyter extension pack.
• Remote code execution extension using ssh.

Once the data were filtered, each sensor on each node ran through each algorithm.
The result was a prediction of the cluster for each record. The NVIDIA Rapids cuML
python library provides the DBSCAN and H-DBSCAN algorithms. This library allows the
clustering algorithms to leverage GPU execution rather than just CPU execution. The result
is an execution time that takes roughly 12 h to complete, with 12–16 min per algorithm
running on all 16 million records. The restrictions on H-DBSCAN’s hyper-parameters were
due to memory issues using the NVIDIA cuML library during execution. Values much
higher than 5 resulted in cuML errors. Analysis of the errors produced resulted in lowering
the values of min_samples and min_cluster_size.

To determine the efficacy of each clustering algorithm, we examine the individual
values of each sensor reading against the closest NOAA reading (by date). To perform this
efficiently, we must ensure that the NOAA data preceding the earliest sensor datum and
exceeding the last sensor datum is pruned. This will increase the speed by which each
sensor can find the closest NOAA reading (by date) to the present value. This is performed
using the algorithm in Algorithm 1.

Algorithm 1 Stripping unnecessary NOAA data
Input: sensor_data

minimum(nD,sD): min(nD, key = λ(d : abs(d − sD)))
for datum in sensor_data do

closestDate = minimum(noaaData[′date′], sensorData[′date′][0])
idx =where(noaaData[′date′] == closestDate)
noaaData[′date′] = noaaData[′date′][idx :]
closestDate = minimum(noaaData[′date′], sensorData[′date′][−1])
idx =where(noaaData[′date′] == closestDate)
noaaData[′date′] = noaaData[′date′][0 : idx + 1]

end for

The closest date is determined by measuring the difference in date between the first
sensor reading and all NOAA readings until the minimum is found. The index is saved,
and all proceeding data are stripped. The same thing occurs using the final sensor reading.
To find a comparison between a given sensor’s data and the ground-truth NOAA data, we
calculate the mean difference between the sensor’s readings and the NOAA data, using
the closest value to each sensor reading with code similar to the algorithm in Algorithm 1.
Here, instead of stripping data as seen in the algorithm, we track the index of the NOAA
data and start the comparison against the next sensor reading from that index, reducing the
computational complexity of a two-array comparison. We generate a difference between
the NOAA and sensor reading and store that value to be calculated as part of the mean later.
We determined some obvious anomalies after a cursory visual inspection of the data. These
anomalies include incredibly large discrepancies between a sensor reading and a NOAA
reading over the actual temperatures that are possible in the region. For an example of this
phenomenon, please see Figure 3, specifically the anomalies labeled 1 and 2. Each number
represents a different observed anomaly: (1) an out-of-bounds anomaly due to sensor
error, (2) missing NOAA data, (3) potential sensor startup jitters, and (4) random sensor
fluctuation. To avoid the erroneous readings represented by the value of 1 affecting the
mean calculation, we chose a large boundary condition for the difference between sensor
data and NOAA data of 50C. This value was chosen as it is just over regularly occurring
high temperatures in the hottest area on earth [42]. The result is a heuristic that pulls
unnaturally large sensor readings for temperature (and likely anomalies) out of the mean
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calculation. The value of 50 degrees Celsius (C) represents a bounding α for a threshold
anomaly, as discussed in Section 1.2. In addition, a small section of NOAA data is missing
during the given time frame. This is represented in the data by a value of −99 (represented
by anomaly label 2 in Figure 3. As such, when determining the closest value to a given
sensor reading, we ignore these values.

The scikit-learn Python library provided access to the DB index metric. Other metrics
for cluster analysis were considered, such as the Dunn Index and the Silhouette Score;
however, the available library for the Dunn Index required considerable memory unavail-
able on any machines used for this work, and the Silhouette Score (also available through
scikit-learn) took considerable computational time for the size of the dataset and was
disqualified due to time constraints.

Figure 3. Typical Errors. Colors indicate different sensors, with green indicating NOAA data.

This mean difference can be compared against the number of records in each cluster.
This and the DB Index can be used for results analysis.

4. Results

Here, we list the results of the various clustering algorithms, their index scores, and
the comparison against the NOAA ground-truth data. The sensor data themselves can be
seen in Figures 4–7. Notice that each node produces different sensor variations per sensor
and node, with some sensors and nodes producing more heuristic anomalies than others.
Particularly interesting is Figure 6, where no heuristic anomalies are visible, and Figure 7,
where very few are present.

To properly compare the cluster results of each algorithm to the ground-truth data,
we need to calculate the mean difference between relevant sensor readings and the cor-
responding (by date) NOAA reading. This was performed by heuristically stripping any
sensor readings more than 50 degrees Celsius (C) in value from the NOAA reading and any
NOAA readings before the first sensor reading, after the last sensor reading, and any miss-
ing readings. The difference between each sensor reading and the closest NOAA reading is
calculated here. This value is stored, and a mean difference between a given node/sensor
combination and the NOAA ground-truth data is calculated. We record ignored sensor
readings (readings outside the bounds α = 50 ◦C). These results can be seen in Table 2.
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Figure 4. Temperature sensor results for node f02f.

Figure 5. Temperature sensor results for node d620.
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Figure 6. Temperature sensor results for node ba3b.

Figure 7. Temperature sensor results for node 3f54.

Except for one node (ba3b), most sensors operate in individual ranges but generally
within a couple of degrees of their sensor counterparts on different nodes and one another
(except the bmp180 sensor). This may be attributed to exposure to the environment vs.
recording internal heat. What is beneficial is understanding the baseline (mean) difference
between what the sensor generally records and the ground-truth data. This can be used to
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determine how well specific clustering algorithms perform when clustering data into two
or more clusters.

Table 2. Calculated mean difference between NOAA and sensor reading and heuristically determined
anomalies for each sensor.

Node Sensor Mean Difference (C) Heuristic Anomalies

001e0610f02f bmp180 26.036459540641555 302,412
001e0610f02f htu21d 9.781522863456273 302,364
001e0610f02f pr103j2 11.049243296362324 91
001e0610f02f tmp112 8.374291058850147 325,022
001e0610f02f tsys01 9.172739785041829 302,405

001e06113d20 bmp180 25.16383727102557 146,584
001e06113d20 htu21d 13.681414767638573 146,585
001e06113d20 pr103j2 7.7000304252925496 0
001e06113d20 tmp112 7.462584734339503 185,959
001e06113d20 tsys01 8.381908452347583 146,672

001e0610ba3b bmp180 2.506072511582037 0
001e0610ba3b htu21d 2.267898950715112 57
001e0610ba3b pr103j2 4.2159915903387635 0
001e0610ba3b tmp112 2.388445906178256 14
001e0610ba3b tsys01 2.48385312219104 26

001e06113f54 bmp180 25.6783722548025 30,275
001e06113f54 htu21d 8.900733403493744 30,270
001e06113f54 pr103j2 9.7722823823438 59
001e06113f54 tmp112 7.994874787555069 89,119
001e06113f54 tsys01 9.143470380791154 30,269

We start with the K-Means algorithm. Since the user specifies the number of clusters
and we are interested in binary anomaly detection, we set the number of clusters to 2. The
values for the K-Means algorithm for each node and sensor can be seen in Table 3. We
see immediately that for most nodes and sensors, K-Means successfully determined the
same anomalies that were heuristically separated using the value of 50 degrees Celsius (C)
(which was arbitrarily chosen before data analysis was conducted). In 8 of the 20 sensors,
the number of heuristic anomalies significantly differed from the number of values in
the second cluster. For the first case (node f02f, sensor pr103j2), there were 16 previously
unknown NaN values for the sensor readings. K-Means detected these and clustered these
16 values in its cluster. For six of the remaining seven instances, the number of heuristic
anomalies was so small that K-Means discovered some other feature in the data that was
more prevalent. There was only one instance where K-Means failed to properly cluster the
heuristic anomalies (node 3f54, sensor htu21d), where the number of heuristic anomalies
matched other sensor instances where K-Means successfully matched the counts. The
specifics for this change are unknown as the sensor data are not significantly different from
another sensor on the same node (tsys01), which is clustered more succinctly.

For these next two clustering algorithms, the values of their hyper-parameters can
significantly affect the number of clusters created (clusters are created dynamically and
not chosen by the user). Due to execution issues and memory overflows due to internal
issues with the cuML library and H-DBSCAN running on this subset of data, we selected
lower values for the hyper-parameters for H-DBSCAN. To make the comparison fairer, we
also selected similar values for the hyper-parameters for DBSCAN. As a result, in some
instances, the amount of clusters created was significant. We report the number of clusters
generated as well as the largest two clusters (if two or more clusters were generated), as
well as any cluster that matches the number of points in the heuristic anomaly column, as
well as cluster −1 (if it exists), which represents “noise” in the data as calculated by the
algorithms. Tables 4 and 5 show the results.
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Table 3. K-Means cluster counts vs. heuristically determined anomalies for each sensor.

Node Sensor Clusters Heuristic Anomalies

001e0610f02f bmp180 0: 538,608, 1: 302,412 302,412
001e0610f02f htu21d 0: 538,656, 1: 302,364 302,364
001e0610f02f pr103j2 1: 869,380, 0: 16 91
001e0610f02f tmp112 0: 515,424, 1: 325,022 325,022
001e0610f02f tsys01 0: 538,615, 1: 302,405 302,405

001e06113d20 bmp180 0: 988,385, 1: 146,584 146,584
001e06113d20 htu21d 1: 988,382, 0: 146,585 146,585
001e06113d20 pr103j2 0: 725,652, 1: 410,257 0
001e06113d20 tmp112 0: 911,575, 1: 185,959 185,959
001e06113d20 tsys01 0: 988,298, 1: 146,672 146,672

001e0610ba3b bmp180 0: 140,726 0
001e0610ba3b htu21d 0: 139,592 57
001e0610ba3b pr103j2 1: 275,070, 0: 88,321 0
001e0610ba3b tmp112 0: 140,951 14
001e0610ba3b tsys01 0: 131,548 26

001e06113f54 bmp180 0: 876,676, 1: 30,274 30,275
001e06113f54 htu21d 0: 517,333, 1: 389,617 30,270
001e06113f54 pr103j2 0: 551,586, 1: 355,364 59
001e06113f54 tmp112 0: 817,833, 1: 89,119 89,119
001e06113f54 tsys01 0: 876,682, 1: 30,269 30,269

Table 4. DBSCAN cluster counts vs. heuristically determined anomalies for each sensor.

Sensor Notable Clusters Cluster Count Heuristic Anomalies

001e0610f02f

bmp180 0: 538,566, 3: 302,412, −1: 23 6 302,412
htu21d 3954: 302,364, 178: 989, −1: 166 3956 302,364
pr103j2 13: 741,737, −1: 98,564 17 91
tmp112 0: 514,774, 2: 325,022, −1: 10 4 325,022
tsys01 1: 532,990, 2: 302,405, −1: 4817 4 302,405

001e06113d20

bmp180 4: 623,832, 3: 364,467, 6: 146,584, −1: 7 8 146,584
htu21d 16: 361,405, 32: 146,585, −1: 16 788 146,585
pr103j2 194: 8314, 191: 8271, −1: 1 408 0
tmp112 7: 152,812, 9: 10,178, −1: 5 633 185,959
tsys01 2: 988,273, 0: 146,672, −1: 5 4 146,672

001e0610ba3b

bmp180 −1: 140,726 1 0
htu21d −1: 139,592 1 57
pr103j2 0: 363,391 1 0
tmp112 −1: 140,951 1 14
tsys01 −1: 131,548 1 26

001e06113f54

bmp180 0: 876,475, 5: 30,274, −1: 22 13 30,275
htu21d 4076: 30,270, 502: 618, −1: 393 4079 30,270
pr103j2 0: 906,874, −1: 38 5 59
tmp112 721: 30,270, 173: 3537, −1: 23 732 89,119
tsys01 49,675: 30,269, −1: 173,060 49,681 30,269
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Table 5. H-DBSCAN cluster counts vs. heuristically determined anomalies for each sensor.

Sensor Notable Clusters Cluster Count Heuristic
Anomalies

001e0610f02f

bmp180 2: 319,133, 4: 302,412, −1: 8 6 302,412
htu21d 4: 312,895, 16: 302,364, −1: 8 201 302,364
pr103j2 13: 741,737, −1: 98,564 17 91
tmp112 0: 514,774, 2: 325,022, −1: 10 4 325,022
tsys01 not clustered

001e06113d20

bmp180 4: 623,832, 3: 364,467, 6: 146,584, −1: 7 8 146,584
htu21d 16: 361,405, 32: 146,585, −1: 16 788 146,585
pr103j2 194: 8314, 191: 8271, −1: 1 408 0
tmp112 7: 152,812, 9: 10,178, −1: 5 633 185,959
tsys01 not clustered

001e0610ba3b

bmp180 1: 140,282, 0: 444 2 0
htu21d −1: 139,592 1 57
pr103j2 57: 3306, 73: 3296, −1: 3 522 0
tmp112 −1: 140,951 1 14
tsys01 not clustered

001e06113f54

bmp180 1: 503,497, 2: 373,091, −1: 6 6 30,275
htu21d 25: 212,746, 26: 199,184, 32: 30,270, −1: 21 287 30,270
pr103j2 484: 7897, 482: 7645, 230: 59, −1: 18 557 59
tmp112 7: 41,991, 9: 13,826, −1: 3 622 89,119
tsys01 not clustered

Interestingly, despite the algorithm chosen, node ba3b routinely clusters with one
cluster (often confusing both DBSCAN variants into believing all the data are noise). This is
interesting, considering that the small bounds for the hyper-parameters for DBSCAN and
H-DBSCAN tend to produce many clusters. As mentioned, H-DBSCAN failed to cluster
the tsys01 sensor due to library execution issues; therefore, that information is missing.

Overall, all three algorithms perform well in clustering together the heuristically
determined anomalies, with K-Means successfully clustering heuristic anomalies separately
11/17 times (64.71% success), DBSCAN having 10 matching or near-matching heuristic
anomaly counts and 7 misses (58.82% success), and H-DBSCAN having 7 matching or
near-matching heuristic anomaly counts and 6 misses (53.85% success). Most of the misses
for each algorithm (five for K-Means and DBSCAN, and four for H-DBSCAN) occurred
when very few heuristic anomalies were present in the data. Given that DBSCAN and
H-DBSCAN provide a method to treat small numbers of points as noise, it is not surprising
that the algorithms do not properly cluster the heuristic anomalies separately in these
cases. By definition of being restricted to only two clusters, K-Means would also find it
difficult to cluster such a small number of points in a separate cluster. Again, we specify
that no algorithm had access to the ground-truth data or the heuristic labels; all analysis
was performed after the runs were complete.

In addition to the analysis against the ground-truth data, we calculated the
Davies–Bouldin (DB) score for each node and sensor against each clustering algorithm. In
addition, any instance where only one cluster was present has no score since the DB score
requires at least two clusters to compare against. The results are seen in Tables 6–8.
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Table 6. The Davies–Bouldin scores for each node–sensor combination, K-Means algorithm.

Node Sensor DB Score

001e0610f02f bmp180 0.038824672921208406
001e0610f02f htu21d 0.07690979909983497
001e0610f02f pr103j2 na
001e0610f02f tmp112 0.02882118033585473
001e0610f02f tsys01 0.04384870955257482

001e06113d20 bmp180 0.036814840183613945
001e06113d20 htu21d 0.09983222742572292
001e06113d20 pr103j2 0.4865105225567226
001e06113d20 tmp112 0.029372036351903098
001e06113d20 tsys01 0.042269436817583314

001e0610ba3b bmp180 na
001e0610ba3b htu21d na
001e0610ba3b pr103j2 0.5345483627490976
001e0610ba3b tmp112 na
001e0610ba3b tsys01 na

001e06113f54 bmp180 0.041739643131029645
001e06113f54 htu21d 0.8394572503561166
001e06113f54 pr103j2 0.428926620784116
001e06113f54 tmp112 0.03241690084035104
001e06113f54 tsys01 0.04727127733130374

Table 7. The Davies–Bouldin Scores for each node–sensor combination, DBSCAN algorithm.

Node Sensor DB Score

001e0610f02f bmp180 0.4718700086311703
001e0610f02f htu21d 5.876686360715116
001e0610f02f pr103j2 17.36570049090865
001e0610f02f tmp112 0.4729803974388458
001e0610f02f tsys01 0.7183360242412649

001e06113d20 bmp180 0.7462073297124467
001e06113d20 htu21d 0.5838881087020173
001e06113d20 pr103j2 0.013257589483531482
001e06113d20 tmp112 0.36487164730951704
001e06113d20 tsys01 0.370089169290952

001e0610ba3b bmp180 na
001e0610ba3b htu21d na
001e0610ba3b pr103j2 na
001e0610ba3b tmp112 na
001e0610ba3b tsys01 na

001e06113f54 bmp180 0.9469419977288394
001e06113f54 htu21d 11.078222823066527
001e06113f54 pr103j2 1.7596756189000833
001e06113f54 Sensor tmp112 1.8624986844262612
001e06113f54 Sensor tsys01 6.097546251475771

The DB Scores are better (the clusters are more valid) the closer to 0 the value gets.
The K-Means algorithm has the best scores of all three algorithms, with all scores below
1 and most scores below 0.1. This would indicate the clusters chosen were dense and
separable. The DB Scores for DBSCAN were generally much higher, with all but 1 score
above 0.1 and 9 of 15 reported scores above 1. Some cases (node f02f, sensor pr103j2, node
3f54, and sensor htu21d) had very high DB score values. This indicates the clusters were
not that separable. This is likely due to the lack of dimensionality in the dataset. With
this metric, H-DBSCAN fared better than DBSCAN, having two scores below 0.1 and only



Future Internet 2024, 16, 28 21 of 23

three of fourteen reported scores above 1. H-DBSCAN also had two scores (node f02f,
sensor pr103j2, node 3f54, sensor pr103j2) with very high DB score values. This would
indicate better separability than DBSCAN but worse than K-Means.

Table 8. The Davies–Bouldin scores for each node–sensor combination, H-DBSCAN algorithm.

Node Sensor DB Score

001e0610f02f bmp180 0.5211068325684747
001e0610f02f htu21d 0.5322988964134147
001e0610f02f pr103j2 17.36570049090865
001e0610f02f tmp112 0.4729803974388458
001e0610f02f tsys01 not clustered

001e06113d20 bmp180 0.7462073297124467
001e06113d20 htu21d 0.5838881087020173
001e06113d20 pr103j2 0.013257589483531482
001e06113d20 tmp112 0.36487164730951704
001e06113d20 tsys01 not clustered

001e0610ba3b bmp180 0.9228684923154065
001e0610ba3b htu21d na
001e0610ba3b pr103j2 0.01511222997279345
001e0610ba3b tmp112 na
001e0610ba3b tsys01 not clustered

001e06113f54 bmp180 0.9694545711960667
001e06113f54 htu21d 1.56414130504102
001e06113f54 pr103j2 17.82433574172976
001e06113f54 tmp112 0.5977439467700165
001e06113f54 tsys01 not clustered

The takeaway from this analysis is that, with only a small subset of the available
data present in the Chicago AoT, ignoring multi-dimensional node level, spatial, and
temporal contexts, these clustering algorithms were still capable of automatically clustering
anomalies selected by a heuristic without the need to develop a rule to do so. This result
shows the promise of utilizing the Chicago AoT for more complex anomaly detection.

5. Conclusions

In this work, we discuss the Chicago Array of Things (AoT), its usefulness for anomaly
detection, and the capability of three well-known clustering algorithms (K-Means, DB-
SCAN, and H-DBSCAN) in sensor-level clustering to label the dataset.

We have shown that at the sensor level, these algorithms are capable of automatically
(without user input) separating the data in cases where there are large amounts of visually
discernible anomalies; that is, anomalies that, when seen by a user, would be flagged as
such, without the need to develop specific rules to do so. The drawback of this approach is
that, by focusing on the sensor level, these algorithms lack the context of multi-dimensional
data (for instance, treating all sensors on a node as a single multi-dimensional data point)
and spatial and temporal influences.

At the sensor level, when taking into account binary classification (anomalous/non-
anomalous), the K-Means algorithm, though simpler, is better suited for the task of de-
termining these heuristic anomalies than the more complex DBSCAN and HDBSCAN
algorithms. However, it has drawbacks (such as clustering NaN values as its cluster or
clustering based on other factors when very few heuristic anomalies exist in the data).

The results of this work show the potential for the Chicago AoT to be used as a tool for
training anomaly detection models by implementing more robust clustering mechanisms
with the data.
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