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Abstract: Network energy resources are limited in communication systems, which may cause energy
shortages in mobile devices at the user end. Active Reconfigurable Intelligent Surfaces (A-RIS) not
only have phase modulation properties but also enhance the signal strength; thus, they are expected
to solve the energy shortage problem experience at the user end in 6G communications. In this paper,
a resource allocation algorithm for maximizing the sum of harvested energy is proposed for an active
RIS-assisted Simultaneous Wireless Information and Power Transfer (SWIPT) system to solve the
problem of low performance of harvested energy for users due to multiplicative fading. First, in
the active RIS-assisted SWIPT system using a power splitting architecture to achieve information
and energy co-transmission, the joint resource allocation problem is constructed with the objective
function of maximizing the sum of the collected energy of all users, under the constraints of signal-
to-noise ratio, active RIS and base station transmit power, and power splitting factors. Second, the
considered non-convex problem can be turned into a standard convex problem by using alternating
optimization, semi-definite relaxation, successive convex approximation, penalty function, etc., and
then an alternating iterative algorithm for harvesting energy is proposed. The proposed algorithm
splits the problem into two sub-problems and then performs iterative optimization separately, and
then the whole is alternately optimized to obtain the optimal solution. Simulation results show that
the proposed algorithm improves the performance by 45.2% and 103.7% compared to the passive
RIS algorithm and the traditional without-RIS algorithm, respectively, at the maximum permissible
transmitting power of 45 dBm at the base station.

Keywords: active reconfigurable intelligent surfaces; simultaneous wireless information and power
transfer; iterative optimization; successive convex approximation

1. Introduction

Fifth-Generation Communication (5G) has significantly improved spectral efficiency,
energy efficiency, and performance by utilizing different advanced technologies [1–3]. As an
integral part of the smart connected society in 2030, Sixth-Generation Communication (6G)
will provide an all-round performance superior to 5G and cater to emerging smart services
and applications [4]. However, compared to 5G networks, 6G imposes higher requirements
on various performance metrics [5,6], which require higher spectral efficiency [7], higher
energy efficiency [8], and faster data rates [9]. To achieve these excellent performances,
many emerging technologies have been proposed, including Reconfigurable Intelligent
Surface (RIS). RIS has strong beam-pointing gains and can significantly reduce energy
usage and hardware expenses. It has become a very competitive technical solution to the
above challenges and has attracted widespread attention in industry and academia. [10–12].
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The Reconfigurable Intelligent Surface (RIS) is a programmable structure that can
change the electromagnetic properties of its own surface in real-time, making the direction
of signal propagation change, which is expected to build a new paradigm of 6G intelli-
gent programmable wireless environment [13]. MIMO, as a key physical layer technology
currently used in 5G communications, inevitably generates communication blocking, and
RIS can effectively solve the blocking problem in this communication process, which is
not only energy-efficient but also highly cost-effective [14]. Its basic principle is to arrange
adjustable panels on the surface of an outdoor building to reflect passive signals sent from
the base station in any desired direction, thus intrinsically manipulating the propagation
environment and achieving the goal of improving energy and spectral efficiency [15,16].
For RIS, there have been more research results [17–21]. For example, [17] investigated
the electromagnetic and physical properties of RIS, and the authors developed a signal
propagation attenuation model for wireless communication in free space after the inclusion
of RIS, which is applicable in various scenarios, revealing that the signal propagation
attenuation is not only related to the area of RIS, the distance from the transmitting end
and the receiving end to the RIS, but also the direction of radiation between the antenna
and the RIS unit, as well as the effect of the RIS’s long-/short-range action. Ref. [18] focuses
on the uplink of RIS-enabled multiuser MISO communication systems, and based on this,
a channel estimation framework based on parallel factorization is proposed. Ref. [19]
proposes a new concept of active RIS(A-RIS), which reduces the limitation of the “multi-
path fading” effect and solves the optimization problem of maximizing the summation
rate in an A-RIS-assisted MU-MISO system. The physical implementation of the active
RIS consists of two parts; first, the element has an internal phase-shift circuit which is
responsible for changing the phase of the signal; in addition to this, each active RIS element
is additionally equipped with an active reflection-type amplifier, which can amplify the
reflected signals at the cost of affordable power consumption and hardware cost. Partic-
ularly, the reflection-type amplifier can be realized by many low-cost methods, such as
current-inverting converter or asymmetric current mirror. Ref. [20] also points out that,
unlike passive RIS (P-RIS), A-RIS can both change the direction of the signal and increase
its strength. The “multiplicative fading” effect due to the presence of BS to RIS channels
and RIS to User K channels is overcome, and the size of the RIS is drastically reduced.
Ref. [21] added P-RIS and A-RIS to the same communication system, respectively, and after
comparing them, it was discovered that the A-RIS system saves more power than the P-RIS
system when the same performance is achieved.

The number of devices in 6G IoT communication has exploded, but the spectrum is
becoming more and more scarce, and the energy is becoming more and more limited. To be
able to effectively alleviate this problem, the Simultaneous Wireless Information and Power
Transfer (SWIPT) technology came into being, which can effectively alleviate the spectrum
and energy crisis [22,23]. Specifically, this technology can transmit signals to users while
performing information decoding (ID) and energy harvesting (EH). Since signal receivers
have different sensitivities, there are two typical receiver architectures in information
and energy co-transmission systems, namely, the time splitting (TS) architecture, which
uses time as the dividing factor, and the power splitting (PS) architecture [24], which
uses power as the splitting factor. With the PS architecture, any user can use a power
divider to split the power of the received signal into two parts in a specified ratio, one
for ID and the other for EH [25]. Ref. [26] investigates multiuser MISO networks with
simultaneous information and energy users under incomplete channel state information
by optimizing the information beam and energy so that the weighted sum of the total
harvested power is maximized. Further, [27] studied the power minimization problem
under power splitting architecture and proposed two algorithms, optimal and suboptimal,
with the suboptimal algorithm having lower complexity, and the results showed that the
power splitting architecture can save the power loss of the system in a better way compared
to the time splitting architecture. However, in the information and energy co-transmission
communication system, the path loss determines the level of energy harvesting at the
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user end. To reduce the path loss, the energy-harvesting efficiency can be significantly
improved by combining the RIS technology and multi-antenna technology using the dual
beam-forming gain of the base station (BS) and RIS.

1.1. Related Work

There have been many research results on the combination of RIS technology and
information and energy co-transmission technology [28–32]. For example, [28] investigated
the base station radiant power minimization problem in SWIPT-based RIS-assisted MIMO
communication networks in the hope of improving the energy utilization of the commu-
nication system to meet the needs of 6G green communication. Further, [29] investigates
a multi-user RIS-assisted MISO communication network based on SWIPT and achieves
base station (BS) transmits power minimization based on a nonlinear energy-harvesting
model, generalizing the results in [27]. Ref. [30] proposed a novel RIS-enhanced SWIPT
system based on an EMC framework, which improves energy efficiency by optimizing
the impedance parameters of the RIS elements with the active-shaped beam at the base
station. Ref. [31] investigated the problem of co-optimization of information rate and
energy harvesting in a SWIPT-based RIS-assisted MISO communication network. To solve
the problem, the optimal solution was obtained by using pricing-based, sequential, and
alternating optimization methods. Ref. [32] combines RIS-assisted SWIPT technology with
Unmanned Aerial Vehicle (UAV) technology and develops iterative algorithms using meth-
ods based on successive convex approximations and alternating optimization to maximize
the minimum average achievable rate for multiple devices. However, due to the defect of
P-RIS “multiplicative fading”, the actual capacity gain that can be brought by the existing
P-RIS is insignificant for typical communication scenarios with strong direct paths, which
leads to a significant reduction in the energy harvested at the user end and the lack of
existing research on the SWIPT-based multiuser RIS-assisted scheme for maximizing energy
harvesting at the user end under MISO communication networks.

1.2. Motivation and Contribution

To solve the problem of low energy harvesting at the user end caused by path loss
and “multiplicative fading” of P-RIS defects, this paper proposes a scheme to maximize the
sum of energy harvesting at the user end under multi-antenna and multi-user scenarios
for RIS-assisted multi-user MISO-SWIPT system. This ensures that the sum of the energy
harvested by the user is maximized.

The main contributions of this paper are summarised as follows:

1. A communication scenario for transmitting information from multiple antennae
to multiple users is considered, and a problem of jointly optimizing the BS beam
direction vector, RIS phase shift matrix, signal amplitude enhancement coefficients,
and power splitting factors to maximize the sum of energy harvesting at the user end
is constructed under the constraints of maximum transmit power at the base station,
power distribution ratio, and minimum signal to noise ratio at the user end. The
problem is strongly coupled due to the entanglement of variables and requires further
transformations.

2. To transform this non-convex problem into a standard convex problem, this paper uses
the overall BCD algorithm to split the optimization problem into two optimization
subproblems. First, we fix Θ and P to solve wk, ρk, tk. The optimization sub-objective
is power reduced using Taylor series expansion, and then the non-convex problem is
converted into a standard convex problem using semi-definite relaxation (SDR) and
successive convex approximation (SCA). The optimal solution to the subproblem is
obtained by continuous iterative optimization. Next, we fix wk, ρk, tk to solve Θ and P.
After transforming the objective function into a convex problem via slack variables,
the convex problem can be solved via semi-definite programming. The penalty-based
technique is then used to ensure that the obtained solution satisfies the rank one
constraint. However, the convex difference function obtained is not a standard convex
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problem. We use successive convex approximations and Taylor series expansions
to make it a standard convex problem. Then, iterative optimization is performed to
obtain the optimal solution. Finally, the optimal solution of the initial optimization
problem can be obtained by alternating the optimal solutions of the two optimization
subproblems with iterative optimization.

3. Three benchmark scenarios were considered based on the optimization problem, and
the simulation results demonstrate that the total sum of energy harvested at the user
end is maximized with the assistance of A-RIS. Compared with the three benchmark
scenarios, the total energy harvested by the user is significantly improved, and the
algorithms remain converged after several iterations. In addition, this paper also
demonstrates that the dynamic power splitting algorithm can better improve the sum
of energy harvested by the user compared to the average power splitting algorithm.

1.3. Notation Note

All bold uppercase letters appearing in this manuscript represent matrices, and bold
lowercase letters represent vectors. For a square matrix A, AH , AT , Tr(A), ∥A∥∗ and
Rank(A) denote its conjugate transpose, transpose, trace, trace paradigm, and rank, re-
spectively. In addition, A ⪰ 0 denotes that the square matrix is a semipositive definite
matrix. The diagonalization operation of the matrix is denoted by diag(·). ∥x∥, |x|, ∇x f (x),
and E[x] denotes the Euclidean paradigm, the absolute value, the gradient vector, and
the expectation of x. A circularly symmetric complex Gaussian (CSCG) random vector
is denoted as ∼ CM(µ, C), where C represents the covariance matrix and µ represents
the mean value. CM×N indicates M × N dimensional complex matrices. O stands for the
capital O symbol. The full names of all the abbreviations appearing in this paper are shown
in Table 1.

Table 1. Abbreviation correspondence table.

Abbreviations Full Name

5G Fifth-Generation Communication
6G Sixth-Generation Communication
RIS Reconfigurable Intelligent Surface

MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
A-RIS Active Reconfigurable Intelligent Surface
P-RIS Passive Reconfigurable Intelligent Surface

SWIPT Simultaneous Wireless Information and Power Transfer
ID Information Decoding
EH Energy Harvesting
TS Time Splitting
PS Power Splitting
BS Base Station

UAV Unmanned Aerial Vehicle
BCD Block Coordinate Descent

CSCG Circularly Symmetric Complex Gaussian
SDR Semi-Definite Relaxation
SCA Successive Convex Approximation
SDP Semi-Definite Program

1.4. Organization

The remaining paper is presented as follows. In Section 2, the system model of Multi-
user MISO A-RIS-assisted SWIPT system is first established and the optimization problem
is formulated. Section 3 presents the overall algorithm and the computational complexity
analysis. Simulations are executed in Section 4. Section 5 arrives at the conclusions of
this paper.
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2. System Models and Problem Modeling

In this paper, we study a multi-user, multi-input, single-output PS-SWIPT network
model in which RIS is introduced as an aid, as can be seen in Figure 1, which consists of a
BS, RIS, and k single-input channels of users, where the BS has M input channels and the
RIS has N reflector units. The set of users is defined as K = {1, · · · , K}(∀k ∈ K). The set
of array cells for RIS is N = {1, · · · , N}(∀n ∈ N ). Let G ∈ CN×M denote the flat fading
channel gain of the BS-RIS, hb,k ∈ CM×1 denote the flat fading channel gain of the BS-the
user k, and hr,k ∈ CN×1 denote the flat fading channel gain of the RIS-user k. All channels
experience quasi-static flat gradient fading that remains constant over several symbols [33].
Then the signal transmitted from the BS can be described as

x =
K

∑
i=1

wisi, (1)

where wi ∈ CM×1, ∀i ∈ K represents the beam-former and si denotes the information
symbol of user i satisfying E

[
|si|2

]
= 1, i ∈ K. In this way, the reflected signal of a P-RIS

with N reflective elements can be written as

r = Θx, (2)

where Θ = diag
(
ejθ1 , ejθ2 , . . . , ejθN

)
, θN ∈ [0, 2π) denotes the reflection coefficient matrix of

the RIS, and x denotes the signal transmitted from the base station (BS).
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If assisted by an RIS containing N reflective elements, the communication link can
be strengthened, resulting in an increase in the energy power available to the user. If the
base station (BS) transmits a signal strong enough to propagate through free space directly
to a single user k without being blocked or reflected en route, the role of P-RIS becomes
negligible due to the “multipath fading” effect. To maximize the sum of the energy collected
by all users in the communication area in any case, this paper adopts A-RIS to solve this
problem. The biggest difference between A-RIS and P-RIS is that A-RIS can amplify the
reflected signals, and compared with the traditional relay, A-RIS is smaller in size and
more flexible in layout. The output signal of the incident signal after reflection that occurs
through the A-RIS can be written as

r = PΘx + PΘv + ν, (3)
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where P = diag(p1, . . . , pN) ∈ RN×N represents the A-RIS amplification factor matrix with
all elements greater than 1, PΘv represents the dynamic noise at the A-RIS, and ν represents
the static noise at the A-RIS. In addition, ν ∼ CN

(
0N , σ2

v IN
)

is only related to the device
noise and input noise inherent in the A-RIS, whereas the static noise ν is not related to P
and can therefore be disregarded.

In the base station (BS) to the A-RIS channel, the signal received at the A-RIS can be
represented as

r̃ = PΘG
K

∑
i=1

wisi+PΘv. (4)

In an A-RIS to single user k channel, the signal received by the user k can be de-
scribed as

yk =
K

∑
i=1

hH
k wisi + hH

k PΘv + zk, ∀k, (5)

where hH
k = hH

r,kPΘG + hH
b,k represents the total channel gain from the base station to user

k, and zk ∼ CN
(
0, σ2

k
)

represents the complex Gaussian noise received at user k. At this
point, the base station (BS) uses the available time and frequency resources to transmit
signals to all single users, and the energy power received by the user is divided into two
parts ID and EH. We set ρk ∈ (0, 1) as the PS ratio, where part ρk is used for ID, so the
decoded signal from user k can be described as

yID
k =

√
ρkyk + nk, (6)

where nk ∼ CN
(
0, δ2

k
)

is the additional noise generated by the signal processing circuitry
of the single user k when performing information decoding. Part 1 − ρk is used for EH, so
the energy-harvesting signal of user k can be expressed as

yEH
k =

√
1 − ρkyk. (7)

Based on this, the signal-to-noise ratio at a single user k can be expressed as

SINRk =

∣∣∣hH
k wk

∣∣∣2
K
∑

i=1
i ̸=k

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2 + σ2
k +

δ2
k

ρk

, ∀k. (8)

For the energy-harvesting (EH) circuit, this paper adopts the linear model from the
literature [34], whose linear input power is denoted by PL

k . The energy harvested at user k
can then be described as

PL
k = ηk(1 − ρk)

(
K

∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2

)
, ∀k, (9)

where ηk ∈ [0, 1] represents the energy conversion efficiency of user k. In this paper, we
assume that the energy conversion efficiency of all users is 100%, i.e., ηk = 1.

After modeling the signal and energy, the sum of energy harvesting at the user end is
maximized by co-optimizing the base station beam-former, the PS ratio, and the RIS phase
shift/amplification factor, a problem that can be described as

(P1) : maxmize
wk ,Θ,P,ρk

f1 =
K

∑
k=1

PL
k , (10)
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s.t.

∣∣∣hH
k wk

∣∣∣2
K
∑

i=1
i ̸=k

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2 + σ2
k +

δ2
k

ρk

⩾ γk, (11)

K

∑
i=1

∥PΘGwi∥2 + σ2
v∥PΘ∥2 ⩽ pmax, (12)

K

∑
k=1

∥wk∥2
2 ⩽ PB, ∀k, (13)

0 < ρk < 1, ∀k, . (14)

where (10) is the sum of energy collected by the user, and the optimization objective in this
paper is to maximize it. Equation (11) is the signal-to-dry noise ratio constraint for user k,
and γk is the minimum signal-to-dry noise ratio threshold required for user k. Equation (12)
denotes the reflected power constraint of the A-RIS, and pmax is the maximum reflected
power threshold of the A-RIS. Equation (13) denotes the radiant power constraint of the BS,
and PB is the maximum radiant power threshold of the BS. Equation (14) represents the PS
factor scaling constraint. Since the variables are entangled with each other and strongly
coupled, the problem (P1) is non-convex and cannot be solved directly using the software
CVX, so the next step is to turn the problem (P1) into a convex problem.

3. Proposed Algorithm

To transform the problem (P1) from a non-convex to a convex problem, the variable tk
is introduced below, so (P1) can be rewritten in the following form:

(P2) : maxmize
wk ,Θ,P,ρk ,tk

f2 =
K

∑
k=1

t2
k , (15)

s.t.

∣∣∣hH
k wk

∣∣∣2
K
∑

i=1
i ̸=k

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2 + σ2
k +

δ2
k

ρk

⩾ γk, (16)

K

∑
i=1

∥PΘGwi∥2 + σ2
v∥PΘ∥2 ⩽ pmax, (17)

K

∑
k=1

∥wk∥2
2 ⩽ PB, ∀k, (18)

PL
k ⩾ t2

k , ∀k, (19)

0 < ρk < 1, ∀k. (20)

The problem (P2) is not a convex problem because the variables are entangled with
each other and there is a strong coupling relationship, so it cannot be solved by CVX, the
most popular method for solving convex problems. To solve this problem, the optimization
objective is first Taylor’s first-order expansion, due to the strong coupling relationship
between the variables, and then we use the overall BCD algorithm. After first fixing the
RIS phase matrix Θ and the signal strength increase coefficient P, Semidefinite Relaxation
(SDR) and Successive Convex Approximation (SCA) are used to optimize the base station
(BS) beam-former w, the PS ratio ρk and tk, iterating until convergence. The converged base
station (BS) beam-former w, and PS ratio ρk and tk are used as known quantities to design
the RIS phase matrix Θ and signal strength increase coefficient P. The outputs of the last
two components are optimized iteratively with each other until convergence.
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3.1. Optimizing wk, ρk, tk Given Θ and P

Since Θ and P appear as products in problem (P2), we define Y = PΘ such that
optimizing Θ and P is equivalent to optimizing the RIS precoding matrix of Y = PΘ =
diag

(
p1ejθ1 , · · · , pNejθN

)
. Next, the optimization objective (15) is transformed into a first-

order function using the following lemma.

Lemma 1 (Taylor series expansion formula). Assuming that the function f (x) has a derivative
of order n on some closed interval [a, b] containing x0 and a derivative of order (n + 1) on the open
interval (a, b), the following equation holds for any point x on the closed interval [a, b] [35]:

f (x) =
f (x0)

0!
+

f ′(x0)

1!
(x − x0) +

f ′′ (x0)

2!
(x − x0)

2 + · · ·+ f n(x0)

n!
(x − x0)

n + Rn(x), (21)

where Rn(x) = o
(
(x − x0)

n) represents the remainder term of the Taylor series expansion formula,
which can be ignored in the conversion since it is an infinitesimal term. A Taylor first-order
expansion of t2

k using Lemma 1 above gives

t2
k = t2

k0
+ 2tk0

(
tk − tk0

)
. (22)

In addition to this, this paper defines Wk = wkwH
k and Hk = hkhH

k ∀k so that (15) can
be transformed into the following form:

(P3) : maxmize
wk ,ρk ,tk

f3 =
K

∑
k=1

t2
k0
+ 2tk0

(
tk − tk0

)
. (23)

For (16), we define σ̃ = σ2
k +

δ2
k

ρk
. The following process can be obtained by shift-

ing terms: ∣∣∣hH
K wk

∣∣∣2
γk

−
K

∑
i=1
i ̸=k

∣∣∣hH
k wi

∣∣∣2 ⩾ σ2
v∥hH

r,kPΘ∥2 + σ̃,

Tr
(

hH
k hkwH

k wk

)
γk

−
K

∑
i=1
i ̸=k

Tr
(

hH
k hkwH

i wi

)
⩾ σ2

v∥hH
r,kPΘ∥2 + σ̃,

Tr(HkWk)

γk
−

K

∑
i=1
i ̸=k

Tr(HkWi) ⩾ σ2
v∥hH

r,kPΘ∥2 + σ̃ (24)

For (17) and (18), there is the following process due to ∥A∥ =
√

Tr(AH A):

K

∑
i=1

∥YGwi∥2 + σ2
v∥Y∥2 ⩽ pmax,

K

∑
i=1

Tr
(

YGWiGHYH
)
+ σ2

v∥Y∥2 ⩽ pmax (25)

K

∑
i=1

Tr
(

wkwH
k

)
⩽ PB, ∀k,

K

∑
i=1

Tr(Wk) ⩽ PB, ∀k, (26)
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For (19), due to PL
k = ηk(1 − ρk)

(
K
∑

i=1

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2
)

, ∀k, the following pro-

cess is assumed to be ηk = 1 for all users:

(1 − ρk)

(
K

∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2

)
⩾ t2

k , ∀k,

K

∑
i=1

∣∣∣hH
k wi

∣∣∣2 + σ2
v∥hH

r,kPΘ∥2 ⩾
t2
k

(1 − ρk)
, ∀k, (27)

K

∑
i=1

∣∣∣hH
k hkwiwH

i

∣∣∣2 + σ2
v∥hH

r,kY∥2 ⩾
t2
k

(1 − ρk)
, ∀k,

K

∑
i=1

Tr(HkWi) + σ2
v∥hH

r,kY∥2 ⩾
t2
k

(1 − ρk)
, ∀k. (28)

For (20), due to the use of SDR and SCA optimization methods, the rank-one con-
straints are to be relaxed on the original constraints, which can be expressed as

0 < ρk < 1, Wk ⪰ 0, ∀k. (29)

To make (P3) a convex problem, we relax the rank-one constraints. The optimization
objective of (P2) is to find the maximum value of t2

k , which can be equated to finding the
maximum value at the minimum point tk0 in the function t2

k . After expanding it with
Taylor’s first-order series, it is a first-order linear function, which can be solved efficiently
by CVX as the same constraints as in (P3), and the solution obtained by substituting tk as a
new tk0 repeats the process of solving and iterating until convergence, which leads to the
final wk, ρk, tk. These solutions have a unique rank and can be proved by solving the KKT
condition using the Lagrangian dyadic method [36].

3.2. Optimizing P,Θ Given wk, ρk, tk

After solving the problem (P3), the next step is to find suitable P and Θ so that they
satisfy the constraints of (P2), and we define θ =

(
p1ejθ1 , · · · , pNejθN

)H ∈ CN×1. To
make the problem easier to deal with, we use the variables ak,i = hH

b,kwi and θHbk,i =

hH
r,kYGwi, where Zk = diag

(
hH

r,k

)
diag(hr,k), ∀k ∈ K, Qk = diag(Gwk)(diag(Gwk))

H , and

bk,i = diag
(

hH
r,k

)
Gwi. This way, the optimization problem (P4) can be obtained via the

following steps.
For (P2), due to hH

k = hH
r,kPΘG + hH

b,k, (16) can be rewritten by the following process:

hH
k = hH

r,kYG + hH
b,k∣∣∣hH

k wk

∣∣∣2 =
∣∣∣hH

r,kYGwk + hH
b,kwk

∣∣∣2 =
∣∣∣θHbk,k + ak,k

∣∣∣2
K

∑
j=1
j ̸=k

∣∣∣hH
k wj

∣∣∣2 =
K

∑
j=1
j ̸=k

∣∣∣hH
r,kYGwj + hH

b,kwj

∣∣∣2 =
K

∑
j=1
j ̸=k

∣∣∣θHbk,j + ak,j

∣∣∣2

σ2
v∥hH

r,kPΘ∥2 = σ2
v

(
p1ejθ1 , · · · , pNejθN

)
diag

(
hH

r,k

)
diag(hr,k)

(
p1ejθ1 , · · · , pNejθN

)H
.

σ2
v∥hH

r,kPΘ∥2 = σ2
v θHZkθ



Future Internet 2024, 16, 20 10 of 20

∣∣θHbk,k + ak,k
∣∣2

K
∑

j=1
j ̸=k

∣∣∣θHbk,j + ak,j

∣∣∣2 + σ2
v θHZkθ + σ̃k

⩾ γk. (30)

For (17), it can be rewritten by the following process:

K

∑
i=1

∥PΘGwi∥2 =
K

∑
i=1

(
p1ejθ1 , · · · , pNejθN

)
diag(Gwi)(diag(Gwi))

H
(

p1ejθ1 , · · · , pNejθN
)H

,

K

∑
i=1

∥PΘGwi∥2 =
K

∑
i=1

θHQiθ,

σ2
v∥PΘ∥2 = σ2

v

(
p1ejθ1 , · · · , pNejθN

)(
p1ejθ1 , · · · , pNejθN

)H
,

σ2
v∥PΘ∥2 = σ2

v θHθ,

K

∑
i=1

θHQiθ + σ2
v θHθ ⩽ pmax. (31)

For (27), since hH
k = hH

r,kPΘG + hH
b,k, it can be rewritten by the following process:

K

∑
j=1

∣∣∣hH
k wj

∣∣∣2 =
K

∑
j=1

∣∣∣hH
r,kYGwj + hH

b,kwj

∣∣∣2
K

∑
j=1

∣∣∣hH
k wj

∣∣∣2 =
K

∑
j=1

∣∣∣θHbk,j + ak,j

∣∣∣2
σ2

v∥hH
r,kPΘ∥2 = σ2

v

(
p1ejθ1 , · · · , pNejθN

)
diag

(
hH

r,k

)
diag(hr,k)

(
p1ejθ1 , · · · , pNejθN

)H
,

σ2
v∥hH

r,kPΘ∥2 = σ2
v θHZkθ

K

∑
j=1

∣∣∣θHbk,j + ak,j

∣∣∣2 + σ2
v θHZkθ ⩾

t2
k

1 − ρk
, (32)

Thus, (P3) is transformed into (P4) as follows:

(P4) : Findθ, (33)

(P4) is not a convex problem because it contains quadratic inequality constraints,
and to turn it into a solvable convex problem, the SDR technique is used. Introducing
variables θ̃ =

[
θT 1

]T ∈ C(N+1)×1 and Sk,j =
[
bk,jbH

k,j, bk,jaH
k,j; bH

k,jak,j, 0
]
, ∀i ∈ K, T =

θ̃θ̃H ∈ C(N+1)×(N+1) can be defined, which requires T ⪰ 0 and T to satisfy the rank one
constraint. After relaxing the rank one constraints, (P5) can be obtained by rewriting it in
this way: ∣∣∣θHbk,k + ak,k

∣∣∣2 = θHbk,kθbH
k,k + θHbk,kaH

k,k + θbH
k,kak,k + ak,kaH

k,k∣∣∣θHbk,k + ak,k

∣∣∣2 = Tr(Sk,kT) +
∣∣ak,k

∣∣2∣∣∣θHbk,j + ak,j

∣∣∣2 = Tr
(

Sk,jT
)
+
∣∣∣ak,j

∣∣∣2
θHZkθ = Tr

(
Z̃kT

)
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Tr(Sk,kT) +
∣∣ak,k

∣∣2
γk

−
K

∑
j=1
j ̸=k

Tr
(

Sk,jT
)
− σ2

v Tr
(

Z̃kT
)
⩾ σ̃k, (34)

θHQiθ = Tr
(

Q̃kT
)

θHθ = Tr(T)

K

∑
i=1

Tr
(

Q̃kT
)
+ σ2

v Tr(T) ⩽ pmax, (35)

K

∑
j=1

Tr
(

Sk,jT
)
+
∣∣∣ak,j

∣∣∣2 + σ2
v Tr
(

Z̃kT
)
⩾

t2
k

1 − ρk
. (36)

In this way, the optimization problem (P4) is transformed into finding a suitable T
as follows:

(P5) : FindT, (37)

T ⪰ 0, (38)

where Q̃k and Z̃k in (35) and (36) have zero rows and zero columns more than the other
matrices. After the transformation of (P5) into an SDP problem, we can use CVX software
(version 3.0) to solve this convex problem. Due to the SDR technique, the resulting solution
does not satisfy the rank-one constraint. To obtain a solution with only a unique rank,
a penalty-based approach can be used. The rank one constraint can be described in the
following equivalent form:

∥T∥∗ − ∥T∥2 ⩽ 0.

For any given T ∈ Hm×n, the following equation holds if and only if the rank of T is 1:

∥T∥∗ = ∑
i

σi ⩾ ∥T∥2 = max
i

{σi},

where σi is the ith singular value of T. After adding the rank-one constraint, (P5) can be
rewritten in the following form:

(P6) : min
T

1
2µ

(∥T∥∗ − ∥T∥2) (39)

s.t.
Tr(Sk,kT) +

∣∣ak,k
∣∣2

γk
−

K

∑
j=1
j ̸=k

Tr
(

Sk,jT
)
− σ2

v Tr
(

Z̃kT
)
⩾ σ̃k, (40)

K

∑
i=1

Tr
(

Q̃kT
)
+ σ2

v Tr(T) ⩽ pmax, (41)

K

∑
j=1

Tr
(

Sk,jT
)
+
∣∣∣ak,j

∣∣∣2 + σ2
v Tr
(

Z̃kT
)
⩾

t2
k

1 − ρk
, (42)

T ⪰ 0, (43)

where µ is the penalty factor, and only when the value of µ reaches a very small value does
(P6) obtain a solution with only a unique rank. It is worth noting that (P6) is non-convex
because its optimization objective function is the subtraction of two convex functions,
which does not guarantee that the resulting difference is necessarily convex. This problem
can be solved by using the SCA technique. Using Taylor series expansion to represent Ψ(T),



Future Internet 2024, 16, 20 12 of 20

its first-order expansion can be used in place of ∥T∥2, and this is the global minimum since
Ψ(T) is a convex function and its first-order expansion is as follows:

Ψ(T) ⩾ Ψ(T i
)
+ Tr

(
∇H

T Ψ
(

Ti
)(

T − Ti
))

≜ Ψ̃(T), (44)

where ∇T∥Ti∥2 = ∇TuH
1 Tiu1 = ∇TTr

(
Tiu1uH

1

)
= u1uH

1 . Inside u1 is the eigenvector,

which corresponds to the largest eigenvalue of Ti. (P6) already has an optimization objective
function inside and hence is a feasibility problem; any solution that satisfies the constraints
and has a unique rank is optimal. Therefore, we can add additional optimization variables
to this so that the optimal solution obtained can have better performance. Therefore, it is
decided to optimize the SINR and harvest energy boundaries while satisfying the constraint
of having a unique rank. To obtain the optimal solution, two new relaxation variables τk
and ∆k are introduced as “SINR residuals” and “energy harvesting residuals”, respectively,
and with the introduction of the additional new variables (P6) can be rewritten as follows:

(P7) : minimize
T,τk ,∆k

f4 =
1

2µ

(
∥T∥∗ − Ψ̃(T)

)
−

K

∑
k=1

(ατk + β∆k), (45)

s.t.
Tr(Sk,kT) +

∣∣ak,k
∣∣2

γk + τk
−

K

∑
j=1
j ̸=k

Tr
(

Sk,jT
)
− σ2

v Tr
(

Z̃kT
)
⩾ σ̃k, (46)

K

∑
j=1

Tr
(

Sk,jT
)
+
∣∣∣ak,j

∣∣∣2 + σ2
v Tr
(

Z̃kT
)
⩾

t2
k

1 − ρk
, (47)

T ⪰ 0, (48)

τk, ∆k ⩾ 0, ∀k, (49)

The flowchart of the overall algorithm proposed in this paper is shown in Figure 2.
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Algorithm 1 Set the maximum number of iterations Lmax, j = 0, fix T, initialize t(0)k0
.

(1) while j ⩽ Lmax do

(2) Solve P(3), output w(∗)
k , ρ

(∗)
k , t(∗)k , update w(j+1)

k = w(∗)
k , ρ

(j+1)
k = ρ

(∗)
k , t(j+1)

k0
= t(∗)k

(3) Let j = j + 1
(4) end while
(5) Output w(∗)

k , ρ
(∗)
k , t(∗)k
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Algorithm 2 Set the maximum number of iterations Lmax, i = 0, fix T, initialize wk, ρk.

(1) while i ⩽ Lmax do
(2) Calculation of Ψ̃(T) according to (8)

(3) Solve P(7), output {T∗}, update
{

T(i+1)
}
= {T∗}

(4) Let i = i + 1
(5) end while
(6) Output {T∗}

Algorithm 3 Set the maximum number of iterations Lmax, l = 0, and initialize T = T(0).

(1) while l ⩽ Lmax do
(2) Given T(l) solves P(3) and outputs

{
wl

k, ρ
(l)
k

}
(3) Given

{
wl

k, ρ
(l)
k

}
solves P(7), output

{
T(l+1)

}
according to Algorithm 2 and update{

T(l+1)
}
= {T∗}

(4) Let l = l + 1
(5) end while
(6) Output {T∗}

Remark 1 (Complexity Analysis). The overall complexity of the proposed BCD algorithm
(Algorithm 3) arises from two components: Algorithm 1 for solving subproblem 1 and Algorithm 2
for solving subproblem 2. In each iteration of the BCD algorithm (Algorithm 3), we independently
address problems (23) and (45). To illustrate the complexity related to Algorithm 1, which addresses
the convex problem (23), its algorithmic complexity can be expressed as

O1 = I1 · O
(√

KM
(

K3M2 + K2M3
)

log
1
ϵ1

)
,

where ϵ1 represents the given solution accuracy, I1 denotes the number of iterations before conver-
gence, K is the total number of users, and M is the number of antennae. The algorithmic complexity
for solving the SDP problem (45) with Algorithm 2 can be expressed as

O2 = I2 · O
((

(3K + 1)
(

N3.5 + 3KN2.5
))

log
1
ϵ2

)
,

where ϵ2 represents the given solution accuracy, I2 denotes the number of iterations before conver-
gence, K is the total number of users, and N is the dimension of the semidefinite cone. In summary,
the overall complexity of the BCD algorithm (Algorithm 3) is given by

O3 = I3(O1 +O2),

where I3 represents the total number of iterations executed by Algorithm 3.

4. Simulation Results and Discussion

To validate the reliability of the proposed energy-harvesting sum maximization al-
gorithm at the user end, this paper compares the proposed energy-harvesting sum maxi-
mization algorithm at the user end with three benchmark scenario algorithms, respectively,
which are designed as follows: (1) A-RIS-assisted using average power splitting algo-
rithm (ρk = 0.5); (2) P-RIS-assisted algorithm; and (3) traditional RIS-assisted algorithm

without RIS. The propagation loss model L(d) = C0

(
d

D0

)−κ
is used in this paper, where

C0 = −30 dB denotes the propagation loss at D0 = 1 m, d denotes the link distance, and κ
represents the propagation loss index. The propagation loss indices from the base station
to the RIS and the user are assumed to be κBI = 3 and κBU = 3, respectively, and the propa-
gation loss index from the RIS to the user is assumed to be κIU = 2.2. It is assumed that
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all channels G, hb,k, hr,k undergo flat-terrain attenuation and maintain stability over time.
The other parameters of the proposed energy-harvesting sum maximization algorithm at
users are set as follows: the number of reflective units of the RIS N = 12; the number of
base station input channels M = 20; the number of users K = 4; the maximum number of
iterations Lmax = 200; the minimum signal-to-dryness-noise ratio required for each user
γk = 10 dB; the maximum radiant power of the A-RIS pmax = 10 mW; the maximum
radiant power of the base station antennae PB = 20 W; the noise power σ2

k = −80 dBm,
δ2

k = −80 dBm, σ2
v = −80 dBm; and the penalty factor µ = 5 × 10−7.

Figure 3 illustrates the convergence curves of the proposed algorithm for maximizing
the sum of energy harvesting at the user’s location under different channel conditions.
Channel 1 represents the BS-user K channel, channel 2 represents the BS-Passive RIS-user
K channel, and channel 3 represents the BS-A-RIS-user K channel. From Figure 3, it can
be observed that the proposed algorithm for maximizing the sum of energy harvesting at
the user’s location can reach a stable value relatively quickly after 2–3 iterations, demon-
strating good convergence. The stable value of the proposed algorithm under Channel
1 conditions is 35.1% higher than that under Channel 2 conditions. This improvement is
attributed to the A-RIS’s ability to provide additional transmit power to enhance signal
strength, overcoming the drawback of substantial signal degradation due to the passive
RIS’s inherent “multiplicative fading”. As a result, the user receives more energy, leading
to a larger sum of harvested energy at the user’s location. Furthermore, the stable value
of the proposed algorithm under Channel 2 conditions is 67.5% higher than that under
Channel 3 conditions. This is because the P-RIS can adjust its reflection array phase to
change the transmission beam direction of the base station antenna, thereby enhancing the
transmission efficiency of the beam. As a result, the user receives more energy, and the
proposed algorithm for maximizing the sum of energy harvesting at the user’s location
harvests more energy.
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Figure 4 illustrates the variation in total energy collected at the user’s location under
different transmission scenarios as the maximum allowable transmit power of the base
station changes. This encompasses considerations for the number of reflecting elements
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in the RIS and the number of antennae at the base station. The graph reveals that with an
increase in the base station’s maximum allowable transmit power, there is a corresponding
rise in the total energy collected at the user’s location for all algorithms. In comparison
to the P-RIS-assisted algorithm, the A-RIS-assisted algorithm, employing dynamic power
splitting, demonstrates gains of 36.5% and 45.2% when the base station’s maximum al-
lowable transmit power is set at 40 dBm and 45 dBm, respectively. This improvement is
attributed to the A-RIS’s ability to not only manipulate the phase of the reflected signal but
also amplify its transmit power, overcoming the significant signal power decay resulting
from dual-path loss. The P-RIS-assisted algorithm achieves gains of 48.7% and 40.3% when
the base station’s maximum allowable transmit power is 40 dBm and 45 dBm, respectively.
This is owing to the P-RIS’s capacity to achieve a high-array gain of the reflected beam by
adjusting the phase of the reflected signal. Compared to traditional RIS-assisted algorithms
without an RIS, the P-RIS-assisted algorithm provides gains of 48.7% and 40.3% when the
base station’s maximum allowable transmit power is 40 dBm and 45 dBm, respectively.
Furthermore, in terms of power splitting algorithms, both under A-RIS assistance, the
dynamic power splitting algorithm outperforms the average power splitting algorithm
(ρk = 0.5), resulting in increases of 21.7% and 23.5% in the total energy collected at the
user’s location when the base station’s maximum allowable transmit power is set at 40 dBm
and 45 dBm, respectively. This is due to the dynamic power splitting algorithm offering
greater optimization flexibility, allowing more power to be split to enhance the total energy
collected at the user’s location, consequently leading to a higher energy harvest.
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Figure 5 plots the comparison curves of the total energy collected by the user for
several different algorithms with different numbers of base station transmitting antennae,
where RIS has 12 reflective units, i.e., N = 12. As can be seen from Figure 5, the total energy
collected by the user under several algorithms increases accordingly after the increase in the
base station input channel M. The main reason for this is that the transmitting beamwidth
of the BS is fixed, and with the increase in the base station input channel, the transmitting
beamwidth of each antenna becomes narrower, which increases the additional array gain,
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and the available degrees of freedom of the system increases, and the performance improves
consequently, and the total amount of energy collected at the user end under the various
algorithms increases as well. Also, since the A-RIS has a feature that the P-RIS does not
have, i.e., the enhancement of the transmitted power of the reflected signals, it allows for
an increase in the power of the received signals at the user end, which results in more
power being used for energy harvesting (EH); thus, the A-RIS-assisted energy-harvesting
algorithm improves the sum of the energy harvested at the user end as compared to the
P-RIS-assisted energy-harvesting algorithms. In addition to this, the use of the dynamic
power partitioning algorithm is very effective in improving the total energy collected by
the user; this is because the dynamic power partitioning algorithm improves the degree of
freedom of the optimization so that more power can be used to improve the total energy
collected at the user end. Compared to the average power splitting algorithm (ρk = 0.5),
the dynamic power splitting algorithm is used to improve the total energy collected by the
user by 23.1% at the number of input channels M = 12.
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To evaluate the effect of different numbers of reflection units on the performance of
each algorithm, Figure 6 shows the effect of different numbers of reflection units on the
total energy collected from the user under each algorithm, where the number of input
channels at the base station is M = 20. It can be observed from Figure 6 that there is
no relationship between the total energy collected from the user and the reflection units
for the traditional algorithm without RIS assistance, mainly because the RIS has been
removed from the algorithm. This led to no change in the total energy captured by the
user as the number of reflection units increased. With the increase in the number of
reflection units, the energy collected by the user of the proposed three algorithms, namely,
the energy-harvesting algorithm with dynamic power splitting assisted by A-RIS, the
energy-harvesting algorithm with average power splitting (ρk = 0.5) assisted by A-RIS,
and the energy-harvesting algorithm assisted by P-RIS, increases and the performance of
the algorithms is also enhanced. This finding also laterally verifies that configuring more
reflection units can increase the reflection path from the base station to the user, further
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expanding the multipath propagation and making the received array gain at the user end
larger, and by optimizing the RIS phase shift, the received signal power at the user end is
enhanced so that more power is used to boost the total energy collected at the user end.
In addition, as shown in Figure 6, when using the energy-harvesting algorithm assisted
by the A-RIS, the total energy collected by the user is further increased because the A-RIS
amplifies the signal strength, and the total energy collected at the user end can be effectively
increased compared to the use of the P-RIS.
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Figure 7 shows the variation curves of the energy collection performance of several
different algorithms at the user end for different user-required minimum signal-to-dry-
noise ratio γmin, where the number of reflector units of RIS is N = 12 and the number of
base station input channels is M = 20. It can be seen from Figure 7 that with the increase in
the user-required sub-minimum signal-to-dry noise ratio γmin, the user’s energy collection
of several algorithms decreases correspondingly, and the total energy collected decreases
accordingly. The main reason for this phenomenon is that to satisfy the more stringent user
minimum SINR γmin constraint, the base station antenna (BS) needs to allocate more power
to the user for information decoding (ID), which results in less power left to be allocated for
energy harvesting (EH), resulting in lower energy harvested from the user. It can also be
seen that due to the presence of dual path losses, the sum of energy harvested by the user
by the P-RIS-assisted energy-harvesting algorithm does not differ significantly compared
to the conventional RIS-assisted energy-harvesting algorithm without RIS-assisted energy
harvesting. However, since the dynamic power splitting energy-harvesting algorithm
with A-RIS assistance proposed herein can give full play to the advantage that A-RIS can
amplify the reflected signal radiant power, it can overcome the defect of the “multiplicative
fading” of P-RIS so that the sum of energy harvested at the user end can be improved.
Further, the dynamic power partitioning algorithm increases the degree of freedom of
the optimization so that more power is available for energy harvesting (EH), resulting in
more energy harvested by the user. The sum of energy harvested at the user end with
the dynamic power splitting algorithm is improved by 70.1% compared to the energy-
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harvesting algorithm with average power splitting (ρk = 0.5) assisted by A-RIS when the
minimum required signal-to-dry noise ratio γmin = 2 dB at the user end is satisfied.
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5. Conclusions

This paper investigates how to solve the problem of the shortage of energy harvested
by users in communication systems based on the multi-user MISO system model using
the A-RIS-assisted SWIPT technique, which can significantly improve the sum of energy
harvested by users. In this paper, the problem of maximizing the sum of energy harvested
by the user is established under the constraints of the minimum signal-to-dry noise ratio
required by the user, the maximum power of active RIS, the maximum power of the base
station, and the PS ratio. The algorithm for maximizing the sum of energy captured by the
user is proposed through the joint optimization of the BS beam-former, power splitting
factor, RIS phase matrix, and signal strength increase. For the proposed optimization
problem, Algorithms 1–3 are used to transform the original problem into a convex problem
which is first solved by local iterations, and finally, the whole is optimized alternatively.
The numerical values show that the proposed algorithm has good convergence. At the
maximum allowable radiant power of 40 dBm and 45 dBm at the base station, the total
energy captured by the user using the A-RIS-assisted algorithm is improved by 48.7% and
40.3%, respectively, compared to the P-RIS-assisted algorithm. In addition, with A-RIS
assistance, the use of the dynamic power splitting algorithm improves the system degrees
of freedom by 21.7% and 23.5% of the total energy collected by the user compared to the
use of the average power splitting algorithm (ρk = 0.5), respectively.

Author Contributions: Conceptualization, L.L., S.L., M.W., J.X. and B.Y.; methodology, L.L., S.L. and
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curation, J.X. and B.Y.; writing—original draft preparation, L.L.; writing—review and editing, S.L.;
funding acquisition, S.L. All authors have read and agreed to the published version of the manuscript.
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