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Abstract: In the advanced 5G and beyond networks, multi-access edge computing (MEC) is in-
creasingly recognized as a promising technology, offering the dual advantages of reducing energy
utilization in cloud data centers while catering to the demands for reliability and real-time respon-
siveness in end devices. However, the inherent complexity and variability of MEC networks pose
significant challenges in computational offloading decisions. To tackle this problem, we propose a
proximal policy optimization (PPO)-based Device-to-Device (D2D)-assisted computation offloading
and resource allocation scheme. We construct a realistic MEC network environment and develop a
Markov decision process (MDP) model that minimizes time loss and energy consumption. The inte-
gration of a D2D communication-based offloading framework allows for collaborative task offloading
between end devices and MEC servers, enhancing both resource utilization and computational
efficiency. The MDP model is solved using the PPO algorithm in deep reinforcement learning to
derive an optimal policy for offloading and resource allocation. Extensive comparative analysis with
three benchmarked approaches has confirmed our scheme’s superior performance in latency, energy
consumption, and algorithmic convergence, demonstrating its potential to improve MEC network
operations in the context of emerging 5G and beyond technologies.

Keywords: multi-access edge computing (MEC); 5G networks; Device-to-Device (D2D); proximal
policy optimization (PPO); Markov decision process (MDP); computation offloading; collaborative
offloading; resource allocation

1. Introduction

With the development of fifth-generation mobile networks (5G) and more advanced
mobile communication networks, the number of mobile device users is expected to increase
from 5.17 billion to 7.33 billion by the end of 2023, according to Statista [1]. In this rapidly
evolving digital landscape, MEC servers, as a pivotal technology for enhancing the compu-
tational capabilities of mobile devices, offer users improved quality of service (QoS) and
quality of experience (QoE). By decentralizing cloud computing, the MEC adeptly manages
burgeoning data traffic, mitigates network congestion, and curtails latency, evolving to
incorporate diverse technologies, including WiFi [2] and fixed access [3] (ETSI ISG [4]).

Amidst such advancements, MEC networks face the intricate challenge of efficient
task management and coordination due to their compositional complexity and inherent
variability. This complexity is further augmented in distributed layouts, which, unlike their
centralized counterparts that optimize globally, offer escalated flexibility and scalability,
essential for vast networks operating without central oversight.
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Device-to-Device (D2D) communication has surfaced as a promising paradigm within
MEC to bolster collaborative offloading efforts [5]. Studies [6,7] have exemplified enhance-
ments in network capacity, energy efficiency, and latency reduction through D2D-facilitated
offloading. In resource-constrained environments, Zhou et al. employed the game theory
to devise a D2D-assisted offloading algorithm optimizing task computation time [8], while
Xiao et al. tackled the content caching through an improved multi-objective bat algo-
rithm [9]. Abbas et al. considered cooperative-aware task offloading to balance the number
of completed tasks against energy and cost [10], and Li et al. proposed a security-conscious,
energy-aware task offloading framework [11].

While the existing research has laid a robust groundwork for harnessing idle computa-
tional resources in MEC, optimizing the utilization of these resources remains a significant
challenge. The integration of D2D technology introduces a spectrum of offloading modal-
ities and platforms, enriching user services but also complicating offloading decisions
with additional considerations like local computational capacities and the availability of
proximate nodes.

Addressing the dynamic, transient nature of D2D-integrated MEC networks, this
paper proposes a PPO-based D2D-assisted computation offloading and resource allocation
scheme. As shown in Figure 1, we consider a single unit in the MEC network, including
two access points (APs) and multiple requesters and collaborators deployed at the edge
of the network, where the user equipment (UE) can choose the appropriate computation
method, such as local computation, edge computation, D2D computation, and migration
computation, according to its own needs within the coverage of the APs. Our contribution
is as follows:

• We construct an authentic MEC network environment mirroring the actual MEC
architecture, utilizing ad hoc wireless technology and computational devices, moving
beyond mere simulation-based studies.

• Considering the MEC network’s complexity, dynamics, and randomness, we refine
the neural network training features on the UE to include CPU utilization, transmis-
sion delay, task execution time, task count, and the aggregate of transmission and
computation energy consumption.

• We introduce a PPO-based D2D-assisted computational offloading and resource al-
location scheme to amplify terminal device resource utilization. By formulating a
Markov decision process (MDP) model, we seek to minimize the time loss and energy
consumption, deriving an optimal offloading strategy via PPO application.

• The experimental results show that our scheme outperforms the other three baselines
in terms of delay, energy consumption, and algorithm convergence.
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The remaining sections are organized as follows. In Section 2, we review the related
work. Section 3 defines the system model, including the communication and computation
models, and formally defines the D2D auxiliary computation offloading and resource
allocation problem. Section 4 describes the MDP model for this problem and the specific
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application of the PPO algorithm to this experiment. Section 5 describes the experimental
environment and parameter settings and compares this scheme with three other baselines.
Section 6 concludes the paper.

2. Related Work

In the multi-access edge computing (MEC) domain, computational offloading emerges
as a multifaceted challenge, demanding innovative solutions [12–14], which are crucial for
enhancing network efficiency. Research in this domain has predominantly concentrated on
three approaches: mathematical optimization algorithms, control algorithms, and artificial
intelligence (AI)-driven optimization algorithms. Among these, AI and machine learning
(ML)-based algorithms have shown particular promise in dynamic and complex MEC
environments due to their adaptability and learning capabilities [15].

The studies to date have focused on optimizing latency and energy consumption dur-
ing computational offloading. Abbas et al. utilized meta-heuristic algorithms, such as ant
colony, whale, and grey wolf optimization, to establish an offloading strategy aimed at min-
imizing energy and delay, albeit within the confines of a singular MEC server context [16].
While meta-heuristic algorithms are robust, their complexity and numerous parameters
often complicate the tuning process. In the realm of control algorithms, Lin et al. proposed
drone-assisted dynamic resource allocation leveraging Lyapunov optimization to ensure
delay efficiency and reliability of offloading services [17]. Chang et al. contributed a bal-
anced framework using SDN-based controller load balancing with Lyapunov optimization
for improved offloading efficiency and reduced latency [18].

The precision of mathematical optimization for linear problems contrasts with its con-
strained adaptability to dynamic changes, whereas control algorithms excel in system stability
and robustness but can be complex and less suitable for non-linear systems. Deep reinforce-
ment learning (DRL), marrying deep learning with reinforcement learning, has emerged as a
potent approach in MEC for managing dynamic tasks, with techniques like deep Q-network
(DQN) and advantage actor–critic (A2C) algorithms gaining traction [19–21].

With the endeavor to overcome the limitations of mathematical optimization algo-
rithms and control class algorithms, many researchers have used DRL methods for their
self-learning and self-adaptation qualities in MEC resource allocation. In [19], the authors
demonstrated the superiorities and applications of ML and deep learning (DL) methods in
MEC environments for two key tasks: automatic identification and offloading of “untrusted
tasks” and task scheduling on MEC servers, in particular using a flow-shop-like scheduling
approach. Gao et al. developed an enhanced scheme based on the deep deterministic policy
gradient (DDPG), which exhibited notable performance in reducing energy consumption,
managing load status, and minimizing latency. However, this scheme did not adequately
consider the involved behavioral characteristics of the devices [20]. To minimize the com-
puting delay and energy consumption of UE, Liang et al. used DQN and DDPG to process
large-scale state spaces and obtained the task offloading ratio and power allocation suitable
for each UE. Silva et al. utilized A2C, empowered UEs to make intelligent offloading
decisions, and demonstrated efficacy in simulated OpenAI Gym scenarios but did not fully
capture the dynamism of mobile devices [21].

Although DRL demonstrates its superiority in resource management, the challenge of
high user concurrency persists, often impacting QoS and QoE due to resource contention,
and the challenge of high user concurrency persists, often impacting QoS and QoE due to
resource contention [22]. D2D communication’s potential in offloading via high-speed, di-
rect connections between devices has thus garnered academic focus. Li et al. addressed the
energy consumption optimization problem for UE-assisted MEC computational offloading
in mobile environments and proposed a DRL-based computational offloading model for
D2D-MEC. Finally, they demonstrated that this scheme consumes the least amount of en-
ergy and cost in continuous time [23]. Lin et al. investigated a D2D collaborative computing
offloading design for two users dynamically exchanging computational loads over a D2D
link. The design achieved minimax optimization for a given finite time horizon [24]. Guan
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et al. studied the multi-user collaborative partial offloading and computational resource al-
location problem, using a DQN algorithm to maximize the number of collaborative devices
to maximize the computational resources under the maximum latency constraint of the ap-
plication and limited computational resources [25]. Liu et al. investigated a computational
offloading scheme in a multi-user UAV system, where a UAV with a computational task
can offload part of the task to a nearby assistant to satisfy a latency constraint [26]. Fan et al.
used the Lagrange multiplier method to solve the problem of computing resource allocation
and adopted a greedy strategy to select D2D users, substantially reducing the average
execution delay of the task [27]. They all increase the computing power by increasing the
number of devices rather than fully utilizing the per-device computing resources.

D2D communication, a key component in enhancing MEC, has also received significant
attention. Its ability to facilitate high-speed, short-range connections makes it a valuable
asset in offloading tasks. However, research in this area has often focused on increasing
the computational power through additional devices rather than optimizing per-device
resource utilization. Our study contributes to this field by proposing a PPO-based D2D-
assisted computation offloading and resource allocation scheme. This scheme not only
addresses the dynamic nature of MEC networks but also optimizes resource utilization at a
per-device level, filling a critical gap in the current research landscape.

3. System Model

In this study, we propose a D2D-assisted MEC server computation offloading and
resource allocation scheme for multi-access edge computing scenarios. This model aims to
minimize the total offloading cost, including task execution time and energy consumption.
The proposed system model, as shown in Figure 2, is crucial to understanding how UE
can optimize offloading decisions based on the device state, proximity to computational
resources, and the nature of computational tasks. The system model consists of three parts:
the network model, the communication model, and the computational model, which will
be introduced in detail.
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Figure 2. MEC offloading model.

3.1. Network Model

The network model consists of multiple UEs and distributed MEC servers. In an
ad hoc network [28,29] environment, each UE can generate computationally intensive
tasks, while the MEC servers and available computing nodes nearby provide the necessary
computational resources. M represents the maximum workload of the MEC server and C
represents the maximum computational resources provided by the MEC server. Among the
network entities, let U = {1, 2, 3, . . . , i, . . . , N} as the set of all UEs in the network. All UEs
can be represented as UEi = {mi, fi, ti, ri, si}, where mi denotes the size of the user task. fi
is the operating frequency of the CPU for processing computational tasks and ti represents
the maximum tolerable time for the current UE transmission or computation. The variable
ri represents the current computing state. When UEi executes a computation task, ri = 1;
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otherwise, ri = 0. The variables si ∈ {0, 1, 2, 3} denote the system offloading decision set,
representing different offloading strategies. The variables S = {si, i ∈ U} represent the
system offloading strategies, which represent different offloading decisions: si = 0 for local
computation, si = 1 for offloading the task via D2D, si = 2 for offloading the task via the
current MEC, and si = 3 for migrating the task to another MEC server, which is called
migration calculation in this article.

3.2. Communication Model

The communication model defines the channels through which UEs and MEC servers
interact. When an UE requires the edge server computation, the computation task for
offloading must be transferred from the UE to the AP, and then the AP is assigned to the
MEC server for computation. This process requires data transmission over the network, so
the network bandwidth is one of the key factors affecting the overall system performance.
To optimize the offloading process, we conceptualize a communication model that imposes
a bandwidth limit between the UE and the AP. This measure is designed to ensure equitable
bandwidth distribution among UEs, thereby mitigating potential network congestion. It
simultaneously governs energy expenditure while striving to maintain an equilibrium
between system performance and operational costs. The details are as follows: we take
B = {1, 2, ... , B} as the set of communication links of the AP. Wb is the bandwidth of the AP
and we divide the available bandwidth resource of the AP into equal-width subchannels
Wsub, then the bandwidth of each subchannel can be denoted as Wsub,b = Wb/B. The
matrix Mb denotes the transmission state of the AP, Mb = [0, 1], b ∈ B, and Mb = 1
indicates that the AP provides an offloading service on its communication link. Mb = 0
indicates that no offloading service is being provided on its communication link. Thus, the
bandwidth resource is denoted as:

∑
b∈B

MbWsub,b. (1)

In the resource-constrained scenario, when the requester offloads the task to the MEC
server, the task is first sent from the UEi to the AP via wireless transmission. We assume that
the wireless channel state remains constant while each computational task is transmitted
between the UE and the AP. pi,b denotes the transmission power that requester i sends
to the AP, hi,b denotes the channel gain during its transmission, σ2 represents the power
of the noise, di,b denotes the distance between the requester UEi and the AP, and θ is a
standardized path loss propagation exponent so that the path loss can be denoted as d−θ

i,b ;
then, the signal-to-noise ratio (SNR) can be computed as:

SNRi,b =
pi,bhi,bd−θ

i,b

σ2 . (2)

After obtaining the SNR, the transmission rate from the requester to the AP can be
calculated as

Ri,b = Wsub,blog2(1 + SNRi,b). (3)

In order to avoid the interference of UEs transmitting between D2D communication
links, we assume that each D2D communication link can be obtained as an orthogonal
subchannel; then, Wi,c denotes the bandwidth of the subchannel. Similarly, we denote the
signal-to-noise ratio of the D2D communication link, then the transmission rate of D2D
communication between requester UEi, and collaborator c is denoted as follows:

Ri,c = Wi,clog2(1 + SNRi,c). (4)

Since the executor that performs the task of the requester may be a MEC server or
another UE (collaborator), based on the above expression, the transmission rate between
the requester UEi and the executor may be expressed as Ri,b or Ri,c.
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3.3. Computational Model

We studied four computing models for devices to choose from under the MEC net-
work environment: local computing, D2D peer devices computing, edge computing, and
migration computing. The computation delay and energy consumption for each model are
as follows.

3.3.1. Local Computing

If the computational requirements of the computing tasks are within the processing
power of the UE, the device performs computing tasks locally. We assume that the CPU in
UEi operates at a frequency of fi, with ci representing the local computational power in
terms of CPU cycles. Therefore, the local computation time can be calculated as follows:

tlocal
i =

ci
fi

. (5)

Parameter k is based on the findings presented in reference [30]. Local energy con-
sumption can be mathematically represented as

Elocal
i = k fi(c i)

2. (6)

Incorporating the influence of chip architecture [31], the effective switching capacitance
κ is introduced in the equation. The total energy consumption is provided by the following
expression (α, β are loss factors):

Clocal
i = αtlocal

i + βElocal
i . (7)

3.3.2. Edge Computing

When the computing power of local devices is not enough to efficiently handle tasks
or to handle tasks that require a fast response, edge computing can provide lower latency
due to its proximity to the data source. The mi is the size of the task from the requester UEi
and Ri,b represents the rate at which UEi transmits tasks to the MEC server, transmission
delay is

ttran
i,b =

mi
Ri,b

. (8)

The time requirement of edge computing is

tedge
i,b =

cedge
i

f edge
i

. (9)

pi,b denotes the transmission power that requester UEi sends to the MEC server. The
transmission energy loss is denoted as

Etran
i,b = pi,bttran

i,b . (10)

Computation energy loss is denoted as

Eedge
i,b = pi,btedge

i,b . (11)

The total consumption, including the loss of time and energy, provides

Cedge
i = α

(
ttran
i,b + tedge

i,b

)
+ β

(
Etran

i,b + Eedge
i,b

)
. (12)

3.3.3. Migrating the Computation

When the MEC server experiences an excessive workload or when neighboring servers
have available resources, the UEi can migrate its computational tasks to the adjacent
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servers. This migration incurs additional transmission overhead for the UEi, which involves
transferring data between MEC servers. The magnitude of the transmission overhead is
determined based on the allocated computational resources provided by the target server

in response to the migration request from the UEi. The i, b′ in tmig
i,b′ , tedge′

i,b′ , and Emig
i,b′ signifies

the transmission from UEi to the AP where another MEC server is located; therefore, the
transmission delay is

tmig
i,b′ =

mi

Rmig
i

+ Zmig
i . (13)

Assuming that the migration cost only depends on the task size, which is denoted as
Zmig

i = δmi, the transmission energy loss is

Emig
i,b′ = pi,b′ t

mig
i,b′ . (14)

The computational delay and energy consumption of the UEi is computed based
on the resource allocation strategy of the migration server, with the computational for-
mula remaining unchanged. Consequently, the total cost of the migration computation is
expressed as

Cmig
i = α

(
tmig
i,b′ + tedge′

i,b′

)
+ βEmig

i,b′ . (15)

3.3.4. D2D Device Computing

mi is the size of the task and Ri,c represents the rate at which the requester, UEi,
transmits tasks to the collaborator; thus, the transmission delay is

ttran
i,c =

mi
Ri,c

. (16)

ccollaborator
i and f collaborator

i represent the number of CPU cycles required by the collabo-
rator UEi to complete the computational task mi of the requester UEi, and the current CPU
working frequency, respectively. The time requirement of D2D computing is

td2d
i,c =

ccollaborator
i

f collaborator
i

. (17)

pi,c denotes the transmission power that requester UEi sends to the collaborator. The
transmission energy loss is denoted as

Etran
i,c = pi,cttran

i,c . (18)

Computation energy loss is denoted as

Ed2d
i,c = pi,ctd2d

i,c . (19)

The total consumption provides

Cd2d
i = α

(
ttran
i,c + td2d

i,c

)
+ β

(
Etran

i,c + Ed2d
i,c

)
. (20)

3.4. Problem Formulation

To enhance the efficiency of computational task offloading, we constructed a mathe-
matical model tailored to minimize the total execution cost within the MEC framework.
This mathematical model integrates the inherent complexities of the network’s architecture,
the communication resource in use, and the dynamics computation at play in MEC envi-
ronments. Recognizing the finite nature of MEC server resources and the associated costs
of server utilization, our model incorporates economic considerations. Specifically, due to
MEC servers having limited resources, assuming that each strategy repeatedly selects an
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edge computing strategy will lead to a high cost. Therefore, we assigned very low rewards
to successively select strategies for MEC as a main task processor; however, even if such a
strategy emerges, it slowly disappears in the iterations.

We used the following equation to express the cost consumption of the four task
offloading strategies of the UE:

Cue
i =


Clocal

i si
Cd2d

i si

Cedge
i si

Cmig
i si

, ∀i ∈ Ui, si ∈ {0, 1, 2, 3}. (21)

Since the aim of this study was to minimize the total cost of delay and energy con-
sumption of UEs, the bandwidth resources of AP should be satisfied:

∑
b∈B

MbWsub,b ≤Wb, (22)

where Wb represents the bandwidth of AP. Call represents all UE devices, which can be
calculated as

Call =
N

∑
n=1

Cue
i , ∀i ∈ Ui. (23)

Under the constraints of maximum tolerable delay and energy consumption, the
problem is expressed as

MinCall
C1 : si ∈ 0, 1, 2, 3, ∀i ∈ UEi;

C2 : tlocal
i + ttran

i,b + tedge
i,b + ttran

i,c + td2d
i,c + tmig

i,b′ + tedge′

i,b′ < ti, ∀i ∈ Ui;

C3 : Elocal
i + Etran

i,b + Eedge
i,b + Etran

i,c + Ed2d
i,c + Emig

i,b′ + Eedge′

i,b′ < Ei, ∀i ∈ Ui;
C4 : ∑ N

n=1Ci ≤ Call , ∀i ∈ Ui.

(24)

Based on satisfying the QoS and QoE required by users, the solution of this problem can
be expressed as solving the minimum total offloading cost C under the optimal offloading
policy vector S.

4. Multi-Objective Deep Reinforcement Learning Based on the PPO Algorithm

In this section, we introduce the application of the proximal policy optimization (PPO)
algorithm, a robust deep reinforcement learning approach, under the MEC environment.
The PPO model was chosen for its notable benefits in multi-objective optimization, charac-
terized by stability, adaptability, and efficient sample utilization, making it highly suitable
for the dynamic and uncertain environments of MEC. The problem of computational of-
floading and resource allocation was first constructed as a Markov decision process (MDP)
model, and the PPO algorithm was used to obtain the optimal solution.

4.1. Markov Decision Process

Our approach constructs the computational offloading and resource allocation problem
as an MDP. The MDP is defined by a state space encompassing key metrics like transfer
latency, computational delay, energy consumption, an action space for offloading strategies,
and a reward function designed to minimize latency and energy consumption. This
formulation is crucial for generating optimized offloading policies based on the current
state of the network. In the context of computational offloading and resource allocation
within the edge environments, we define the MDP as a quintuple, encompassing the state
space (S), action space (A), state transition probability matrix (P), reward function (R), and
the discount factor (γ). The crux of the MDP’s application in this scenario lies in its ability
to generate a policy that dictates offloading decisions based on the current state.
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• State: The state of the environment consists of several metrics for the local device, the
MEC server, and the collaborator devices. Transfer latency used by the computational
tasks, computational latency, transfer energy consumption, computational energy
consumption, CPU utilization of the current device, and the number of computational
tasks.

• Action: The action space consists of four offloading strategies: local computing, D2D
computing, edge computing, and migration computing.

• Probability: The state probability transfer matrix can be expressed as

Pa
ss′ = P

[
St+1 = s′

∣∣St = s, At = a
]
. (25)

• Reward: The rewards are provided at each episode. Considering the goal of minimiz-
ing UE latency and energy consumption, the defined reward should be negatively
correlated with this goal. It can be expressed as follows:

R(s, a) =
N

∑
n=i

γ
(

Clocal
i − Cd2d

i − Cedge
i − Cmig

i

)
, ∀i ∈ Ui. (26)

• γ: is the discount factor, γ ∈ [0, 1].

For the computational model of the system, the state can be composed of a number of
metrics from the local device, the MEC server, collaborator devices, and the offloaded device.
After executing each decision, the agent will receive an immediate reward to measure the
goodness of the current decision [32]. The reward function is shown in Equation (26), and
the value of the state is dependent on the current reward versus the possible future reward.
The return of state is defined as follows:

Gt = Rt+1 + γRt+2 + γ3Rt+3 + . . . + γnRt+n =
∞

∑
n=0

γnRt+n+1. (27)

γ is used to estimate the current value of future rewards, then the long-term payoff
can be expressed as the expected value of Gt, defined as

V(st, π) = Eπ [Gt] = Eπ [Rt+1 + γV(st+1, π)]. (28)

V(st, π) denotes the value function of state s under a given strategy π, St denotes the
next state, and π denotes the strategy.

The problem is thus formulated as solving the optimal policy π∗ of the system model
to maximize the long-term value of the model V(s, π), expressed as follows:

π* = argmax︸ ︷︷ ︸
π

V((st+1, π)). (29)

4.2. PPO Algorithm Application

The application of the PPO algorithm is directed at optimizing the policy function
using a neural network. This approach is particularly adapted to navigating the complexi-
ties of the non-convex optimization challenges characteristic of intricate MEC scenarios.
PPO distinguishes itself by balancing the exploration of innovative strategies with the
exploitation of established, efficacious actions facilitated by its distinct objective function
and policy update methodology. This allows for effective handling of the non-convex
optimization problem prevalent in complex MEC scenarios. The PPO algorithm, with its
objective function and policy update mechanism, ensures a balance between the exploration
of new strategies and the exploitation of known effective actions [33].

To evaluate the versatility of various reinforcement learning (RL) algorithms and
to fine-tune hyperparameters for broader applicability, we decoupled the environmental
module from the neural network. This separation enables the environmental module to



Future Internet 2024, 16, 19 10 of 17

focus exclusively on generating environmental feedback and computing rewards, a critical
step in enhancing the scheme’s generality, as illustrated in Figure 3. The environmental
module’s interfaces, namely reset and step, are integral to the RL process. The reset interface
initializes or refreshes the environment to a baseline state, providing the initial observation
post-training initiation or episode completion. In contrast, the step interface progresses
the environment in response to the agent’s actions, delivering subsequent observations,
instant rewards, termination flags, and additional context-specific data. This delineation of
responsibilities ensures a coherent and systematic interaction between the PPO algorithms
and the environment module, promoting an efficient learning cycle predicated on action-
derived feedback.
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Within the neural network module, the PPO algorithm updates the neural network
parameters based on state returns by sampling historical offloading data. This process
involves two distinct neural networks: the actor network, which is responsible for updating
the current policy by determining action probabilities, and the critic network, which evalu-
ates the policy’s expected returns. The functions of the actor and critic neural networks
are to update and evaluate the current strategy, respectively. Upon receiving the current
environment state as input, the actor network employs the neural network’s parameters, θ,
to ascertain the likelihood of undertaking a particular action within state s. Concurrently,
the critic network computes the value of the current policy, effectively estimating the ex-
pected returns. This dual-structured approach enables the PPO algorithm to harmoniously
balance the need for exploration, which involves experimenting with novel actions with the
necessity of exploitation or optimizing known effective actions. Through this iterative in-
teraction, the PPO algorithm learns and hones strategies, progressively navigating towards
an optimal policy.

The objective function of the policy, denoted as J (θ) (Equation (30)), integrates with
Ât, the estimator of the advantage function with time step t, and πθ is the strategy function.

J(θ) = Et

[
πθ(at|st)

πθold(at|st)
Ât

]
, (30)

J(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
. (31)

The PPO algorithm utilizes the principle of importance sampling to update the strategy
with the experience generated by the old strategy. It solves the redundant process in
reinforcement learning that requires recollecting experience after each policy update, thus
effectively utilizing past experience and speeding up the learning process. The principle
of importance sampling requires rt(θ) (expressed as Equation (32)) to be as close to 1 as
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possible, and here, a restriction is placed on the objective function of the online network,
see Equation (31), in which ε is generally taken to be 0.2 [34].

rt(θ) =
πθ(at|st)

πθold(at|st)
. (32)

Optimal policies can be obtained by optimizing the metric based on gradient-based
algorithms: θt+1 = θt + α∇θ J(θt), where ∇θ J is the gradient of J with respect to θ, t is the
time step, and α is the optimization rate. Summarizing the above, the algorithm training
process is presented in Algorithm 1.

Algorithm 1 Training the algorithm of PPO.

Initialize Clip factor ε, discount factor γ, learning rate λa and λc, update times of each training
step Rp, actor network θ, critic networkω, and replay buffer;
For episode = 1, . . ., 500,
Obtain the Observation from the environment;
Execute the action a[n];
Evaluate reward r[n], policy entropy S(s[n]), the log-probability of a[n],
and store these variables in the experience buffer;
Store the transition {s[n], a[n], r[n], s[n+1]} into experience buffer;
If mod (n, N) = 0 then reset the training environment;
end if n = n + 1;
Calculate the advantage function A[n];
for up = 1, . . ., Rp do
Calculate the current policy entropy S(s[n])
Calculate the update ratios rt(θ) = πθ(at|st)/πθold(at|st)

Update actor θ and criticωwith the transitions in the experience buffer according to
θ← θ− λa∇actorJ(θ) and ω← ω− λb∇criticJ(θ) ;
Update the policy entropy and log probability in the experience buffer;

end for Clear experience buffer;
end for Output policy parameters θ and critic parametersω.

5. Performance Evaluation

This section evaluates the performance of the proposed PPO-based D2D-assisted
computation offloading and resource allocation scheme in a realistic MEC environment.

5.1. Experiment Setup

In this study, we deployed a real MEC network environment. As shown in Figure 4,
this edge network consists of two APs, three UEs, and two MEC servers. The APs and
UEs were all modeled by a Raspberry Pi 4B, which consumes an average of 6.4 W in
operation and 2.7 W in idle mode [35]. All UEs were equipped with RPi Camera V2
model 8-megapixel external cameras and were randomly dispersed in an environment
with a radius of approximately 5 m centered on the AP. The UEs had a local computational
power of 1.5 GHz. The two MEC servers were simulated by personal laptops, which were
configured with an 11th Intel(R) Core (TM) i5@2.40GHz CPU, NVIDIA 1650Ti GPU, and
16 GB RAM.

On top of putting the MEC environment in place, we introduced a real-time surveil-
lance recognition system based on the YoloV5 algorithm [36] as a computational task for
each UE, with the size of a computational task ranging from 370 kb to 450 kb, generating
20 unprocessed 256 × 256 images per second as a pending task. After testing, all UEs and
MEC servers fulfilled the requirements for running the YOLOv5 object detection algorithm.
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Subsequently, we analyzed the actual performance of the random scheme, DQN
scheme, A2C scheme, and PPO scheme in edge computing. The network environment
parameters and the training parameters of the four schemes are shown in Table 1. The user
devices were uniformly distributed in an area with a radius of approximately 5 m. Our
proposed PPO Scheme consists of the actor, a policy network responsible for generating
actions, together with the critic, a value function network for estimating the value or the
advantage of a state to guide the policy updates. The structure of the actor network consists
of an input layer consisting of 15 neurons, two hidden layers containing (128, 64) neurons,
and an output layer containing a fully connected layer. The weights of the actor network
are updated by maximizing the agent’s objective function, whereas the weights of the critic
network are updated by minimizing the loss of the mean-square error between the estimate
of the value function and the true return. The activation function was ReLU, the current
empirical data and the Adam optimizer were sampled during the weight update process,
and the learning rates of the actor network and the critic network were set to 1× 10−4 and
5× 10−4, respectively.

Table 1. Environment settings.

Description Parameters Values

The bandwidth of the wireless channel W 10 MHz
The maximum transmission power of UEs PUE

i 14.5 dBm
The maximum transmission power of the MEC server Pmec server

i 20 dBm
The data size of the task mi 370–450 kb

The computational power of UEs f UE
i 1.5 GHz/s

The computational power of the MEC server f mec server
i 4.2 GHz/s

Transmission rate of UEs Ri,b -
Transmission rate of the MEC server Ri,c -

We compared our PPO-based approach against three baseline algorithms: random
scheme, DQN scheme, and A2C scheme. These comparisons aimed to demonstrate the
superiority of our approach in various MEC scenarios. We compared the proposed PPO
algorithmic scheme with a random offloading strategy, DQN strategy, and A2C strategy.

• Random Scheme: Each task randomly selects the execution device, including edge
servers, migration to other edge server computation, D2D computation, and local
computation.

• DQN Scheme: The DQN (deep Q-network) algorithm [37] is a deep reinforcement
learning method that combines traditional Q-learning and deep learning techniques.
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Its core features include the use of deep neural networks to approximate the Q-function
so as to learn strategies directly from the complex.

• A2C Scheme: The A2C (advantage actor–critic) algorithm is a widely used method
in the field of reinforcement learning [38], which is a variant of the AC algorithm.
The A2C algorithm improves this framework by introducing the advantage function,
which improves learning efficiency and stability.

• PPO Scheme: PPO can be considered an improved version of the AC algorithm that
introduces a limit on the magnitude of policy updates to prevent excessive policy
changes in a single update [39]. This approach aims to avoid excessive jumps in the
strategy space, thus improving the stability of the learning process.

For the above four frames, the training parameters are shown in Table 2.

Table 2. Hyperparameters of algorithms.

Parameters Values

Learning rate λa, λc (PPO and A2C) 1× 10−4, 5× 10−4

Learning rate λ(DQN) 1× 10−4

Discount factor γ 0.98
Clipping factor ε 0.2
Entropy factor ψ 0.01

Replay buffer size of DQN 10,000
Sample size in the empirical buffer 64

Activation functions and optimizers ReLu, Adam
Hidden sizes 128, 64

5.2. Experimental Analysis

In this study, we analyzed the performance of four frameworks during the training
process by recording their action selection and reward values, as illustrated in Figure 5a,b.
Regarding convergence, the reward value of the PPO algorithm stabilized around step 340,
while the A2C algorithm and the DQN algorithm showed stabilization at approximately
steps 400 and 430, respectively. However, the random policy consistently demonstrated
low reward values from the 57th step onward and was thus not considered for conver-
gence analysis. Through an in-depth examination of the result, it became evident that
reinforcement learning algorithms play a crucial role in offloading decisions. Notably, the
PPO algorithm exhibited superior convergence compared to the other three benchmarked
algorithms, as shown in Figure 5b.
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Figure 6a shows the line graphs of the average reward value of the four schemes.
The random scheme was in a low reward state compared with the other three schemes,
and the average reward fluctuated slightly around −24 after 57 steps; the average reward
value of the DQN scheme was around −5.0 after convergence, the average reward value
of the A2C scheme was around −3.7 after convergence, and the average reward was still
on the rise after 400 steps, while the average reward value of the PPO scheme was over
−5.0 after convergence. The PPO scheme had an average reward value of around −3.3
after convergence and was relatively smooth, better than the other three baselines. In
terms of training stability, the stability of the PPO algorithm was better than the other three
baselines within 0–150 steps, DQN was more stable between 151 and 400 steps, and the A2C
algorithm was smoother after 400 steps. Overall, DQN performed better in terms of stability.
From Figures 5b and 6a, we observed that the DRL algorithm effectively adapts to complex
edge computing environments through end-to-end optimization and thus achieves better
performance compared to the randomness strategy. Whereas the randomness strategy
lacks targeted decisions, and its results do not provide meaningful information, we further
focused on the DQN algorithm, A2C algorithm, and PPO algorithm.
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Secondly, as shown in Figure 6b, we recorded the weighted average of the delay and
energy consumption during the training process. Time cost represents the cumulative sum
of transmission delay and computation delay. Energy cost encompasses the combined sum
of transmission energy consumption and computation energy consumption. The ultimate
average cost is the weighted sum of time cost and energy cost, with the respective weight
parameters for time cost and energy cost determined by the neural network. PPO had
the highest average total cost in 0–30 steps, and as the algorithms were trained, it became
gradually smoother after 300 steps at around 2.87, which was the lowest average total cost
compared to the other algorithms, and the overall view of the weighted average of the total
cost was more stable.

As shown in Figure 7a,b, the performance metrics of delay and energy consumption
were compared among the different algorithms. The DQN algorithm demonstrated rel-
ative stability in both delay and energy consumption; however, its learning efficacy was
marginally outpaced by the A2C and PPO algorithms. After 300 steps, the A2C algorithm’s
performance in the delay reduction closely approximated that of the PPO algorithm, yet
it lagged slightly behind in energy consumption efficiency. Overall, when evaluating the
learning outcomes, the PPO algorithm emerged as the superior performer in comparison to
the DQN and A2C models, particularly in terms of optimizing the trade-off between the
delay and energy consumption.
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6. Conclusions

In this paper, we proposed a PPO-based D2D-assisted computation offloading and
resource allocation scheme for multi-access edge computing environments. The proposed
approach leverages the actor–critic based on the PPO method in reinforcement learning
to optimize offloading decisions based on the task attributes and device performance,
resulting in reduced latency and lower energy consumption. Additionally, the collaborative
offloading strategy between the D2D and MEC servers greatly improved the utilization of
the edge computational resources. The implementation of this scheme marks a significant
advancement in addressing the complex challenges inherent in the MEC networks, par-
ticularly relevant in the evolving 5G landscape. However, we recognize the limitations in
the current study: one being the time-varying nature of the communication model channel
parameters as influenced by the environment and the other being the protection of sensitive
user information and data during D2D communication. In the future, we will extend
our work. On the one hand, we will use real-time monitoring and sensing techniques to
accurately measure the dynamic characterization of channel parameters, and on the other
hand, we will incorporate privacy-preserving aspects into the common offloading process
within D2D-assisted MEC networks.
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