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Abstract: The Internet of Things (IoT) uptake brought a paradigm shift in application deployment.
Indeed, IoT applications are not centralized in cloud data centers, but the computation and storage
are moved close to the consumers, creating a computing continuum between the edge of the network
and the cloud. This paradigm shift is called fog computing, a concept introduced by Cisco in 2012.
Scheduling applications in this decentralized, heterogeneous, and resource-constrained environment
is challenging. The task scheduling problem in fog computing has been widely explored and
addressed using many approaches, from traditional operational research to heuristics and machine
learning. This paper aims to analyze the literature on task scheduling in fog computing published in
the last five years to classify the criteria used for decision-making and the technique used to solve the
task scheduling problem. We propose a taxonomy of task scheduling algorithms, and we identify the
research gaps and challenges.

Keywords: fog computing; task scheduling; internet of things; machine learning; deep learning;
cloud computing

1. Introduction

The current era has witnessed a paradigm shift in the landscape of the information
and communication technology industry with the emergence of the Internet of Things
(IoT). IoT represents a groundbreaking technological revolution that has extended Internet
connectivity beyond the boundaries of traditional smart devices such as smartphones and
tablets, enabling a wide range of appliances, including sensors, machines, and vehicles,
to connect and communicate seamlessly. This revolutionary phenomenon has paved the
way for various applications and services, including healthcare, medical treatment, traffic
control, energy management, vehicle networks, and many others [1].

With its centralized processing capabilities, cloud computing faces significant chal-
lenges in meeting the performance requirements of Internet of Things (IoT) applications [2].
This is primarily due to the limited bandwidth and high latency between the cloud and
IoT devices. However, a promising solution, known as fog computing, was introduced by
Cisco in 2012, establishing a computing continuum between remote cloud datacenters and
IoT devices. Fog computing extends the cloud to the network’s edge, providing a platform
for executing latency-sensitive tasks in fog servers close to the edge devices. Delay-tolerant
or compute-intensive IoT applications can be placed to the cloud.

In this context, selecting the appropriate fog node to offload the computation is
paramount. Scheduling decisions (i.e., selecting a fog node for computation offloading)
consider many factors, like energy consumption, limited resource availability, and low
response time. Task scheduling in fog computing has been widely investigated in recent
years [3–5]; the problem has been solved using different techniques, and various optimiza-
tion criteria have been adopted. This study aims to sort out the state-of-the-art literature to
answer the following research questions:

RQ1: What performance-related metrics drive the task scheduling decisions in fog computing?

Future Internet 2024, 16, 16. https://doi.org/10.3390/fi16010016 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16010016
https://doi.org/10.3390/fi16010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0004-9014-0580
https://orcid.org/0000-0002-3118-5058
https://doi.org/10.3390/fi16010016
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16010016?type=check_update&version=1


Future Internet 2024, 16, 16 2 of 22

RQ2:What techniques are used to solve the task scheduling problem in fog computing?
RQ3:What are the open challenges of task scheduling in fog computing?

Unlike previous surveys, our review takes a contemporary, comprehensive approach,
addressing the latest developments and research directions in fog task scheduling. We
reviewed many recent publications and learned about emerging technologies and real-
world uses from various sources. A key innovation introduced through our literature review
is the development of a novel taxonomy and classification framework. This framework
integrates state-of-the-art technologies and classifies the current task-scheduling techniques.
Researchers can better grasp the changing fog computing landscape with its help, as it
offers a comprehensive reference guide and acts as a dynamic roadmap.

In this research paper, we conduct a comprehensive literature review of the existing
research work done in the fog computing task scheduling field. Key contributions are:

• The definition of a taxonomy for task scheduling algorithms in fog computing, which
classifies them along two dimensions: the technique for solving the scheduling prob-
lem and the metric used to make scheduling decisions.

• A comprehensive literature review of existing scheduling algorithms, particularly
focusing on intelligent dynamic scheduling techniques based on machine learning,
fuzzy logic, reinforcement learning, and deep reinforcement learning, describing their
strengths and weaknesses.

• Identification of the research gaps and challenges for task scheduling in fog computing
for future research work in this field.

The remainder of this paper is organized as follows. Section 2 explains the concept
of fog computing, its architecture, and its characteristics. The task scheduling problem is
fog computing is formulated in Section 3. Section 4 introduces the research methodology
adopted. The categorization of the literature is proposed in Section 5. The analysis of
the optimization criteria is presented in Section 6, and the analysis of problem solution
techniques is discussed in Section 7. Research gaps and challenges are presented in Section 8.
Finally, Section 9 concludes the paper.

2. Fog Computing: Architecture and Characteristics

The fog computing architecture consists of three layers [6]: the Edge layer, the Fog
layer, and the cloud layer (cf. Figure 1).

At the Edge layer are the edge nodes, devices such as mobile phones, sensors, smart
vehicles, smart watches, etc. Edge nodes sense and capture data in diverse geographical
locations, eventually pre-process data, and finally send data to the Fog layer for processing
or storage.

In the Fog Layer are located the Fog nodes, which can be routers, access points,
switches, gateways, firewalls, or dedicated servers [7]. Fog nodes provide computation
and storage services and are organized into fog colonies. A Fog Colony is managed by
a control node, which is in charge of distributing the colony’s workload among the Fog
nodes, checking the Fog nodes’ health state, and exchanging colony status information
with other controllers to eventually use computing and storage services in remote colonies,
e.g., when the colony capacity is exhausted or for moving edge nodes. A Fog controller can
also use cloud computing and storage services. A Fog colony serves a set of edge nodes
that can change over time.

The cloud layer offers scalable computational services and highly available, durable,
and large-scale storage solutions. A fog controller uses the cloud layer for storing data
that is not needed close to users or performing intensive computations not requiring low
latency [8].
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Figure 1. Fog computing architecture.

In this paper, we assume the fog nodes execute IoT applications providing services to
the edge nodes. We consider an IoT application composed of multiple software components
(tasks) that can be executed at the edge, in the fog, or on the cloud layers. When deploying
an IoT application to cater to a single edge node or a group of edge nodes, the control node
of the closest Fog colony takes scheduling decisions for the application’s tasks. Schedul-
ing decisions are based on the computational demand and available resources, and on
functional and non-functional requirements.

The architecture described above generalizes what has been proposed in the literature.
According to [3], the fog computing architecture is a heterogeneous environment containing
multiple fog layers and the cloud; fog and cloud servers are collaborative, and tasks
are dependent.

The authors of [9] depict the architecture integrated with mobile edge computing
(MEC). The model consists of user level, edge level, and remote level. At the edge level,
devices are multiple, and requested tasks are heterogeneous. MEC contains virtualization
technology that provides computing, storage, and network resources. The edge layer
comprises a homogeneous environment and a single layer. According to the model, an ap-
plication has dependent tasks. One main drawback is that it is not robust in case of broken
network connections or insufficient power.

A three-layer network architecture consisting of an IoT device layer, a fog layer, and a
cloud layer has also been proposed in [10]. The IoT layer routes requests from IoT devices
to the fog layer using intelligent gateways. The fog layer consists of a collection of fog
nodes with a fog controller or broker. The fog controller distributes tasks between the
fog and cloud layers. The fog controller also manages the scheduling of tasks across
the fog nodes and coordinates their available resources. The cloud layer consists of data
centers with significant computing power. The tasks are characterized by the fact that
they are indivisible, non-preemptible, and independent, which makes them unsuitable for
being divided into sub-tasks. Fog nodes are heterogeneous, meaning each node differs
from others.

Characteristics

The main fog computing characteristics are geographical distribution [11], decentral-
ization [1], heterogeneity [12], real-time interaction, low latency [13], and mobility [14].
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Fog computing is a decentralized computing infrastructure in which data, computing,
storage, and applications are geographically distributed and located between the data
source and the cloud [11]. There is no central server to manage computing resources and
services. Therefore, fog nodes are self-organizing and collaborate to provide end users with
real-time IoT applications [1].

Fog nodes are deployed and operated independently, forming a heterogeneous compu-
tation and storage network. Fog computing exhibits versatility in operating across multiple
platforms [12].

Fog computing sustains real-time interaction rather than batch processing. Real-time
refers to a system required to respond within a specific time frame. This category of
applications includes real-time e-health, traffic data transmission, aviation operations,
and critical industrial process monitoring systems [13]. Fog computing distinguishes itself
from cloud-based paradigms by offering efficient and rapid real-time responses.

Mobility is an intrinsic trait of several fog applications to improve users’ experi-
ence [14]. Many IoT devices are moving objects (like vehicles), demanding connected
service through their path. Hence, decision engines should oversee the process of migrat-
ing application components and select appropriate replacement servers as necessary. Due
to the mobility of fog nodes, the selection of tasks for fog nodes has been made dynamically.

Low latency is critical for delay-sensitive applications such as video surveillance,
live streaming, and data analytics. Fog computing enables the emergence of the latency-
sensitive Internet of Things network to support real-time applications. The fog is closer
to end devices. Therefore, the latency in response is much less than that of cloud comput-
ing [13].

3. Task Scheduling Problem in Fog Computing

Task scheduling is a problem addressed in many papers, e.g., [15–21]. In [15], the au-
thors formulated task scheduling problems as Markov Decision Processes (MDP). Their
novel solution helps to place the task in the fog nodes or the cloud data center. The objective
of the placement problem addressed is the minimization of time and cost of delivery of
services in fog-based IoT applications. Long Mai et al. [17] considered the task scheduling
problem as selecting appropriate fog nodes to minimize long-term computation latency.
Due to the high complexity of the real-time task, deploying all tasks in the fog environment
is challenging. The authors introduce a method founded on reinforcement learning, espe-
cially using an evolutionary strategy for task distribution between fog servers. The research
defines the training environment as the system consisting of fog servers and their respec-
tive buffers. Researchers use the buffer utilization of available fog nodes to represent the
environment states. The authors of [20] stress the importance of dynamic task scheduling,
which becomes crucial to utilize the resources at fog and cloud layers to improve QoS.
In their approach, after making an allocation choice, the fog server will be responsible for
providing the resources for a particular task.

There are studies where the task scheduling problem is solved in specific application
domains, like smart manufacturing, vehicular applications, and mobile edge computing.
Yin et al. [21] present a new task-scheduling model computing that can be applied in smart
manufacturing, where tasks can support essential network functions or new services and
applications. In such a delay-sensitive and resource-constrained domain, task scheduling
became a challenge. Wang et al. [18] formulated the task scheduling problems for fog
computing applied in the smart production domain and proposed a hybrid heuristic-
based algorithm. They described the problem as independent tasks assigned to fog nodes,
in which task scheduling aims to minimize the time and energy consumption costs through
a reasonable allocation. They aim to allocate multiple tasks to multiple fog nodes based
on the given constraints. Karimi et al. [19] devised deep reinforcement learning-based
solutions for vehicular application tasks. The task placement is chosen between Multi-
access Edge Computing (MEC) and the cloud. The main challenge is to find an optimal
task scheduling strategy and maximize the vehicular application task’s acceptance rate.
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As a result, they got less response time for an application. Zheng et al. [16] present a
comprehensive investigation of the problem of task migration in mobile edge computing
systems. The fundamental issue is the increase in mobility possibilities and the dynamic
changes in mobility patterns in connection with autonomous vehicles. A DQN-based task
scheduling algorithm is proposed, in which an agent can learn an optimal task migration
policy from past experience, even without knowing the users’ mobility patterns.

This work considers scheduling IoT applications in a fog computing environment.
An IoT application, represented in Figure 2, provides data, information, or actuating
functions to the requesting clients. The application is an ensemble of software components
that perform dependent or independent tasks [22]. The objective of the task scheduling
problem is to assign tasks to computational nodes to meet the IoT application’s QoS
requirements and consider the fog nodes’ future processing commitments [23]. In the fog
environment model, we consider computational nodes to be constrained regarding CPU,
memory, disk, bandwidth, or battery lifetime. Figure 3 shows the scheduler can assign tasks
to edge, fog, or cloud nodes. Although tasks can be classified as dependent or independent,
we consider independent tasks with heterogeneous resource demand.

Figure 2. Placement of application tasks.

Figure 3. Task scheduling architecture in fog environment.

Objectives and Constraints

IoT applications run in constrained environments and, at the same time, have perfor-
mance and availability requirements. When it comes to the scheduling problem, the sched-
uler has to achieve its own objectives (e.g., minimization of the timespan or maximization of
the resource usage) considering both constraints of the environment (e.g., CPU and memory
capacity) and the application’s requirements (e.g., response time and availability), which
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translate into the problem’s constraints. Performance metrics measure schedulers’ objec-
tives and applications’ requirements. In Section 5, we will analyze the literature regarding
performance metrics optimized by the scheduler. Table 1 shows what the applications’ and
environments’ constraints are used in the literature.

Table 1. Task scheduling problem’s constraints.

Application’s Constraints Use in Literature

Response time [3,11,19,20,24–27]
Completion time [3,4,28–31]
Execution time [21,31–38]
Processing time [30]

Delay [5,8,10,11,15–18,20,21,27,28,32,37,39–54]
Availability [10,30,43]

Environment’s constraints

Energy consumption [3,4,7,10,15,18,20,24,26,28,29,36,39,41,42,44,46,
47,49–51,55–58]

The amount of CPU available [15,17,30,32,33,35,36,39,43,46,49,55,56]
The amount of memory available [15,32,33,35,47,51,56]

The amount of storage [15,20,28,30,32,33,36,40,47]
Battery lifetime [28,49,57]

Computing capacity of fog node [28]
Data size of task [43]
Network usage [44,46]

4. Research Methodology

As mentioned in the introduction, this paper aims to answer the following research
questions: What performance-related metrics drive the task scheduling decisions in fog
computing? What techniques are used to solve the task scheduling problem in fog comput-
ing? and What are the open challenges of task scheduling in fog computing?

In undertaking our research, we employed a Systematic Mapping Study (SMS) method-
ology with the primary objective of systematically organizing and categorizing literature
spanning the last five years in fog computing [59,60]. Our literature search commenced
by identifying seminal works in the field, serving as the foundational starting point for
our study. From this initial stage, we systematically traced forward citations using the
snowballing technique, a key component of the SMS methodology [61]. At each stage
of the mapping process, we meticulously considered various dimensions, encompassing
decision-making criteria and techniques utilized in addressing the task scheduling problem
within fog computing. The SMS methodology facilitated the systematic categorization
and visualization of the literature, offering a comprehensive overview of the research land-
scape [59]. The resulting taxonomy of task scheduling algorithms and the identification
of research gaps and challenges stand as direct outcomes of our SMS methodology. This
approach ensured a rigorous and structured analysis of the literature, providing valuable
insights into the evolving domain of fog computing task scheduling.

The search string used to gather papers is (“task scheduling” OR “job scheduling”)
AND (“fog computing” OR “edge computing”) AND (“IoT” OR “Internet of Things”) AND
(“challenges” OR “issues” OR “solutions”).

We used the Boolean operators “OR” and “AND” to refine the results we obtained.
The use of “AND” limited the search results to articles containing both keywords, while
“OR” expanded the search scope to include articles containing either.

Our literature search, conducted from 2018 to October 2023, employed a targeted
search string, applied to major Digital Libraries (DLs). The initial search returned a substan-
tial pool of papers totaling 200. To ensure a robust dataset, we implemented a systematic
deduplication process. Following this meticulous process, we arrived at a final set of
71 papers for detailed analysis. The temporal distribution of these articles is presented in
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Figure 4. Notably, about 50% of the papers were published in 2021–2022, reflecting the
contemporary nature of our selected studies.

2018

16.9%

2019

12.7%
2020

16.9%

2021

24%

2022

22.5%

2023
7%

Figure 4. Year of publication of the selected papers.

Our screening process is structured into two distinctive stages to ensure a meticulous
and unbiased selection of studies [62]:

1. Initial Screening: Deduplication: rigorous deduplication is conducted to eliminate
duplicate records from the database, ensuring a clean dataset. Title and abstract
examination: The initial screening phase involves a detailed examination of titles
and abstracts. This preliminary assessment is essential to minimize biases, including
potential publication bias.

2. Secondary Screening: Full study screening and critical appraisal: The second phase
comprises a comprehensive evaluation of the full texts of selected studies. We meticu-
lously followed predefined inclusion and exclusion criteria throughout the screening
process, as detailed in Table 2. These criteria served as a robust framework for assess-
ing the relevance and quality of each identified study.

Table 2. Selection criteria.

Inclusion Criteria Exclusion Criteria

Written in English In Press Articles
Areas: Computer Science and Engineering Not written in English

Type: Conference Proceedings, Journal Article Short papers, Extended abstract
Papers published before 2018

Figure 5 highlights that a significant portion of our final set of papers has been pub-
lished in IEEE journals, indicating both the credibility and relevance of our selected studies.

We employed a two-fold approach to comprehensively survey the literature on task
scheduling in fog computing, integrating the snowballing technique and the Quasi-Gold
Standard [63]. This method allowed us to explore both direct and indirect citation relation-
ships, contributing to a nuanced perspective on the task scheduling landscape. The snow-
balling technique was applied from August 2021 to January 2022. Starting with seminal
works, we systematically traced forward citations over three iterations. Each round in-
volved meticulous examination of references in identified studies. By January 2022, we
concluded the process, ensuring a comprehensive and up-to-date exploration of task
scheduling in fog computing.
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Elsevier

23.94%

IEEE

29.58%

Springer

15.5%

MDPI

12.68%

ACM Digital Library

4.22%
Other Libraries

14.08 %

Figure 5. Publisher of the selected papers.

5. Taxonomy for Task Scheduling Algorithms in Fog Computing

To design task scheduling algorithms, selecting appropriate metrics for optimization
criteria and choosing the appropriate problem formulation and solution techniques is
important. Therefore, we have decided to classify the literature along two dimensions:
metrics for optimization criteria and problem-solution techniques.

5.1. Optimization Criteria

The purpose of performance evaluation metrics in fog computing is to gauge the
effectiveness and efficiency of the system and ensure that it meets the expected quality of
service for end users [2]. In addition, they can potentially define the utility or function that
the fog provider wants to optimize. Figure 6 shows the metrics considered.

Figure 6. Category of performance metrics used in the optimization criteria.

5.1.1. Cost

Costs can be related to computation, communication, resource usage (other than CPU
and network), and energy consumption.

Computation cost. Performing a task on a fog node or device is called computation
cost. It covers the time, energy, and resources used to complete the computation [15].
Depending on the difficulty of the task and the fog node’s capabilities, computation costs
might change.

In the Cloud–Fog system, carrying out a task results in costs tied to processing, memory
consumption, and bandwidth utilization. The cost estimated when node Ni processes the
task Tk is expressed as [33]:

Cost(Tk
i ) = cp(Tk

i ) + cm(Tk
i ) + cb(Tk

i )
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Processing cost is defined as:

cp(Ti
k) = c1 ∗ Exect(Ti

k)

where c1 is the CPU usage cost per time unit in node Ni, and Exect(Ti
k) is the execution time

of Tk processed in node Ni. Letting c2 be the memory usage cost per data unit in node Ni
and Mem(Tk) be the memory required by task Tk, the memory usage cost is:

cm(Ti
k) = c2 ∗ Mem(Ti

k)

Task Tk processed in node Ni needs an amount of bandwidth Bw(Tk), which is the
sum of input and output file size. Let c3 be the bandwidth usage cost per data unit; the
bandwidth usage cost is defined as follows:

cb(Ti
k) = c3 ∗ Bw(Ti

k)

Total cost for all tasks to be executed in Cloud–Fog system is calculated as follows:

TotalCost = ∑
Ti

k∈NodeTasks

Cost(Ti
k)

Communication cost. Tasks may need to be transferred between fog nodes for pro-
cessing in a distributed system like IoT and fog computing [64]. Communication cost
includes the overhead of transferring data, such as bandwidth usage, latency, and energy
consumption between nodes [40].

Resource cost. Fog nodes have constrained CPU, memory, and storage capabilities.
In the context of fog computing, resource cost entails efficiently assigning and utilizing
computing resources essential for the effective execution of tasks. This encompasses the
utilization and consumption of a range of resources, such as computational power, storage,
and communication bandwidth. The term reflects the comprehensive expenditure needed
to ensure efficiency within a fog computing environment.

Energy cost. Energy efficiency is a crucial factor for many IoT and fog computing
devices as they are battery-powered. The cost of energy consumption is dependent on the
amount used for communication and processing [56].

5.1.2. Energy Consumption

Different models for energy consumption have been proposed in the literature. The more
relevant ones are reported here.

Energy consumption derives from different activities executed by a fog node, such as
computation and data transmission. For example, if the j-th edge device wants to transfer
the i-th task at time t, the total energy consumption is calculated as the sum of the energy
required for computation (Ecomp) and the energy needed for data transmission (Etran),
defined as follows [49]:

Ecomp(i, j, t) = α1ci( f j)
2

Etran(i, j, t) = α2si/r(t)

Etotal = Ecomp + Etran

where α1 and α2 are the coefficient of energy consumption in computing and transmission,
f j is the CPU clock frequency of mobile devices, r(t) is the network transmission rate at
time t, and si and ci are the content size and the amount of computation.

In [41], the energy consumed to process as task i in a fog node is denoted as E f . More-
over, as the task is transmitted from the end-user to the fog node, the energy consumption
for data transmission and reception is denoted by Ei

t and Ei
r, respectively. The authors

express the total cost at the fog node side as follows:
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E f = Ei
t + Ei

r + αCi
f

where α Ci
f is the weighted transmission energy with α being the relative weight and Ci

f
being the relative cost for processing task i at the fog node.

5.1.3. Latency

Latency in fog computing task scheduling signifies the time delays during different
stages of task execution. It is a vital performance metric influencing overall system respon-
siveness and efficiency. Reducing latency is essential for meeting real-time requirements,
enhancing user satisfaction, and optimizing resource use in fog computing. Scheduling al-
gorithms strive to minimize latency by efficiently assigning tasks, handling communication,
and adapting to dynamic system changes [46].

5.1.4. Response, Execution, and Completion Time

Response time is the time between sending a request to the server and completing the
task execution. An increase in the response time will cause latency and delays. Response
time includes both the network latency and the time for the computation. The response
time of processing task ti on fog node f j is calculated as the sum of the specified node’s
execution time plus the task’s transmission time from the source to the destination [46]:

RT(Xij) = Et(Xij) + Trttotal(Xij)

where Xij refers to the assignment of task ti to fog node f j, Trttotal(Xij) is the total transmis-
sion time of tasks from the edge device to the appropriate fog node f j, and Et(Xij) is the
execution time of the task in the fog node.

If the task is processed locally, the response time equals the local serving time. If a
task is scheduled, the total response time is the sum of the task transmission time to the
fog node through the wireless network, the processing time on the fog node, and the
transmission time back to the IoT devices. If the fog node is overloaded, the processing
time at the fog is replaced by the transmission time between the fog node and the remote
cloud, the processing time on the cloud and the transmission time back to the fog node [65].

Execution time is the total run time for the fog application, and it is measured in
milliseconds. For task computing on a fog server, the processing of task n is divided into
two phases. The first phase is the transmitting phase where the industrial sensor sends task
data to fog through wireless transmission. The second phase is the fog-computing phase
where task n is executed in the fog. Fog processing delay for each task is the sum of the
delay due to transmitting task data through wireless links and fog-server computing time.
The formula is as follows [4]:

T f
n,m =

dn,m

rn,m
+

Cn,m

f f
n,m

where f f
n,m the computational demand of a fog server for a particular task (n) as perceived

from the perspective of a specific fog node (m). Here, n indicates task number, and m
indicates the fog node number. Cn,m is the completion time, dn,m is the input data size,
and rn,m is the data transmission rate for task n.

Completion time of a task n is determined as the time it takes to complete execution.
It includes the wait and processing times of the task. The completion time CTn,m of a task n
can be expressed as follows [4]:

CTn,m = RTn,m + Tn,m

where Tn,m defines the execution time of the task n and RTn,m represents ready time that
the earliest completion time for all its dependent tasks.
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5.1.5. Availability

This is the ability of a system to ensure the data are available with the desired level of
performance in normal as well as in fatal situations, excluding scheduled downtime. It is a
ratio of Mean Time Between Failure (MTBF) to reliability (Mean Time Between Failure +
Mean Time To Repair). The following formula can be applied to calculate availability [66]:

Reliability = MTBF + MTTR

Availability = MTBF/Reliability

5.2. Problem Solution Techniques

In a fog-based IoT environment, application service requests can be made at the level
of the IoT device, the fog servers, or the cloud data centers [67]. Proper task scheduling al-
gorithms determine the best allocation of incoming tasks for each application service, which
may consist of a sequence of tasks. We propose a task-scheduling algorithm classification
based on the technique used for problem formulation and solution. The categorization is
presented in Figure 7.

Figure 7. Category of task scheduling algorithms.

5.2.1. Mathematical Programming-Based Approaches

These methods frame the scheduling problem as an optimization challenge.
For task scheduling in fog computing, two mathematical programming models are

used: Integer Linear Programming (ILP) and Mixed Integer Linear Programming (MILP).
However, these approaches demand significant computational resources. They may be
affected by the size and intricacy of the problem, thus being better suited for small and
medium-sized fog computing systems than larger-scale ones.

Integer Linear Programming is a well-known mathematical technique involving de-
veloping a mathematical model representing the task scheduling problem as a set of linear
equations and constraints. In fog computing task scheduling, ILP can allocate tasks to
devices to minimize the overall completion time or maximize the utilization of available
resources while also considering constraints related to device capabilities and network
conditions [21].

Mixed Linear Integer Programming is frequently utilized to address optimization
problems involving discrete and continuous variables and non-linear functions in the
constraints or objective function. In fog computing task scheduling, MILP can be used to
assign tasks to devices to minimize the overall completion time or maximize the utilization
of available resources. MILP can also incorporate constraints related to device capabilities
and network conditions, ensuring that the assigned tasks can be executed efficiently.

5.2.2. Heuristic-Based Approaches

Heuristic algorithms offer an alternative optimization technique for task scheduling
in fog computing [68]. These algorithms leverage a set of rules to direct the search for an
optimal solution, eschewing reliance on a mathematical model. They can assign tasks to
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devices based on various criteria, such as device availability, processing power, and net-
work latency. Heuristic algorithms are well-suited for handling large-scale systems where
the computational complexity of mathematical models, such as ILP and MILP, can become
impractical. Heuristic solutions are also combined with mathematical programming mod-
eling to determine the optimal solution and satisfy a predefined set of constraints and
objectives [18].

5.2.3. Meta-Heuristic-Based Approaches

Meta-heuristic algorithms improve a candidate solution iteratively using high-level
heuristics that guide the search for a good solution, rather than relying on a mathematical
model [34]. Compared to heuristic algorithms, meta-heuristics algorithms can escape local
optima and explore a larger portion of the search space, leading to better quality solutions.
Some widely used meta-heuristic algorithms in fog computing task scheduling include
Genetic Algorithms, Particle Swarm Optimization, and Ant Colony Optimization [3].

5.2.4. Hybrid Approaches

Hybrid task scheduling algorithms in fog computing refer to approaches that combine
two or more approaches to achieve better performance. These algorithms leverage the
strengths of multiple scheduling techniques, such as heuristics, meta-heuristics, or opti-
mization methods. The hybrid nature allows these algorithms to exploit complementary
features of the different methods to improve scheduling decisions [69].

5.2.5. Reinforcement Learning-Based Approaches

Reinforcement Learning is a subset of machine learning that aims to train agents
to make decisions that maximize rewards within a given environment. Reinforcement
Learning-Based Approaches refer to fog computing task scheduling algorithms that employ
Reinforcement Learning principles to optimize the system’s performance [70]. These
approaches can handle complex scheduling scenarios and are adaptable to the changing
conditions of the system.

5.2.6. Deep Reinforcement Learning-Based Approaches

Deep Reinforcement Learning (DRL) integrates reinforcement learning principles
with deep neural networks, empowering agents to learn and decide in intricate environ-
ments. When implemented in fog computing task scheduling, DRL facilitates adaptive
and intelligent decision-making, accommodating fog environments’ dynamic and diverse
characteristics [19]. This strategy can potentially enhance resource utilization efficiency,
minimize latency, energy consumption and boost overall system performance.

This approach can help manage the system’s variability and unpredictability in fog
computing, such as dynamic workload and resource availability. Deep Reinforcement
Learning-based approaches can handle complex scheduling scenarios and adapt to chang-
ing system conditions.

5.2.7. Fuzzy Logic Approach

Fuzzy logic is a mathematical framework capable of handling uncertain and imprecise
information [30]. In task scheduling, this approach can aid in managing the system’s
environmental unpredictability and variability, such as fluctuating workload and resource
availability, typical of fog computing.

6. Literature Mapping
Optimization Criteria

Table 3 maps the studied literature with the optimization criteria described in Section 5.1
and is used to make scheduling decisions. The metrics authors consider more often are
energy consumption, latency, and cost. Less frequently, research work use response time,
execution time, completion time, and availability.



Future Internet 2024, 16, 16 13 of 22

Table 3. Decision-making features.

Cost Energy Latency Exec. Resp. Completion Availability
References Time Time Time

[15,37,41,49,50] ✓ ✓ ✓

[5,9,16,17,45,48,52–54] ✓

[32,33,71] ✓

[10,39,42,44,46] ✓ ✓

[40] ✓

[3] ✓ ✓ ✓ ✓

[4,18,28] ✓ ✓

[21,34,68] ✓

[51] ✓ ✓

[19,25,27] ✓

[35,38,72] ✓ ✓

[36,73] ✓ ✓ ✓

[43,74,75] ✓

[55,57,58] ✓

[20] ✓ ✓ ✓ ✓

[24,29] ✓ ✓ ✓

[56] ✓ ✓

[47] ✓ ✓ ✓

[11] ✓ ✓

[30] ✓ ✓

[31] ✓ ✓

[26] ✓ ✓

[64] ✓ ✓

[6] ✓ ✓

Task scheduling requires different decision-making metrics depending on workload,
resource availability, deadlines, and specific optimization goals. The choice of appropriate
decision-making metrics for task scheduling also hinges on the nature of the comput-
ing environment, the type of tasks being scheduled, and the overall system architecture.
Moreover, considerations like real-time requirements, task dependencies, and the dynamic
nature of workloads play a crucial role in determining the most effective decision metrics
for optimal task scheduling.

Three evaluation metrics (cost, energy, latency) are considered in [15], focusing on
minimizing average End-to-End (E2E) service delay, managing computation costs within
resource and deadline constraints, and enhancing energy efficiency during periods of heavy
task loads. The following metrics have been considered in [20,37,41,49,50] as well.

The authors [3,20] have extensively examined decision metrics. Tuli et al. [3] present
a methodology to minimize energy consumption, response time, cost, and completion
time within Edge–Cloud environments. Bukhari et al. [20] contribute significantly to
comprehending essential criteria by accentuating overall latency, energy consumption,
response time, and operational cost reduction. The authors of [5,9,16,17,19,21,25,27,34,
40,43,45,48,52–55,57,58,68,71,74,75] have explored the only the effect of one performance
metric on scheduling decisions.
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The significance of incorporating energy consumption and latency metrics into the
decision-making process is demonstrated in [10,39,42,44,46]. Zhao et al. [39] utilized energy
consumption and delay metrics within homogeneous fog networks. They considered the
energy expended during task execution and the power consumed during task scheduling.
Additionally, they established that the average traffic delay for each mobile fog node is
directly linked to the average number of unexecuted computation tasks. Other authors offer
innovative strategies for fog computing task scheduling, utilizing fuzzy reinforcement learn-
ing, centralized DDQN algorithms, and efficient schedulers to reduce energy consumption
and latency. The emphasis is on enhancing efficiency in dynamic and resource-constrained
environments, with a focus on optimizing performance metrics for IoT devices.

Execution time and cost metrics have been investigated together by [32,33,35,36,38,72].
Tsai et al. [32] examine CPU processing power, CPU usage cost, memory usage cost,
and bandwidth usage cost as operating cost factors alongside timespan, representing
execution time, in their assessment framework. Their approach focuses on minimizing
execution time with higher priority unless there is a tradeoff where minimizing total
operating costs becomes more crucial than execution time. The specific value of the tradeoff
coefficient (λ) is determined based on factors such as budget constraints or the desired
response time level. Considering these collective contributions, the papers provide unique
perspectives on optimizing task scheduling in Cloud–Fog environments, with a specific
focus on processing large-scale Internet of Things (IoT) applications. The introduction
of inventive algorithms such as Time-Cost aware Scheduling (TCaS) and the application
of a Deep Reinforcement Learning (DRL)-based solution underscores the emphasis on
delicately balancing execution time minimization and effective monetary cost management.
This collaborative initiative aims to propel efficiency and resource utilization within highly
distributed computing platforms, effectively addressing pivotal challenges in the realm of
fog computing and IoT applications.

Scheduling algorithms that aim to reduce, or in general to optimize, the energy
consumed by a fog-based system are studied in [3,4,10,15,18,20,24,26,28,29,36,37,39,41,42,
44,46,49–51,55–58,73]. Scheduling based on latency is proposed in [5,9–11,15–17,20,30,37,
39,41,42,44–50,52–54,64].

Computation cost is considered in [15,40,72,73]. This cost in fog computing task
scheduling refers to the resources used for task execution which is a critical factor impacting
system efficiency and performance. The cost of communication as decision criteria is
studied by [33,40,47,64,73], while in [20,32,33,40,47], the authors studied the influence of
resource costs, and in [29,36,41,47,49,56], they consider energy costs. The authors focus
on optimizing different costs to enhance the overall efficiency and performance of fog
computing task scheduling.

The importance of execution time metrics while building an optimal task scheduling
solution is considered in [21,31–36,38,47,51,68,72,73]. Response time is used for scheduling
decisions in [3,6,11,19,20,25–27,29]. A few papers [3,4,6,18,28,30,31] take into account
completion time metric.

The often-neglected metric is availability, which remains critical in fog computing
environments and has been discussed by [43,74,75].

7. Literature Review of Problem Solution Techniques
7.1. Integer Linear Programming Algorithms

Tsai et al. [32] studied a policy for optimal task scheduling that minimizes execution
time, conserves network bandwidth, and reduces operating costs. As the size of the problem
increases, the computational complexity of the proposed approach experiences a rapid rise,
which limits its effectiveness (Table 4).

Fonseca et al. [31] proposed also an ILP formulation of the task scheduling problem
whose goal is to minimize the execution time and makespan of fog computing applications.
The task scheduler determines where the applications should be executed on the fog or
cloud infrastructure.
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Table 4. Techniques to solve the task scheduling problem.

Task Scheduling Algorithms Use in Literature

Integer Linear Programming [31,32]
Heuristic and Meta-heuristic [26,34,38,52,53,68]

Hybrid [18,28,58,69]
Reinforcement Learning [8,27,54,64,72,74]

Deep Reinforcement Learning [3,5,15,16,19,35,36,41,43]
Fuzzy Logic [30,51,71,75]

7.2. Heuristic and Meta-Heuristic-Based Solutions

Canali et al. [53] formulate the scheduling problem as a mapping between edge nodes
(e.g., sensors) and fog nodes to ensure a high quality of service (QoS) regarding latency
and response time. A genetic algorithm is proposed to find the sub-optimal solution.
The limitation of the genetic algorithm is that it may not converge to the optimal solution
every time. The analysis conducted by the authors did not include considerations for
energy consumption and cost concerns.

Aburukba et al. [52] propose an ILP formulation for the scheduling problem to mini-
mize latency in IoT applications operating in a hybrid fog–cloud computing environment.
The optimization problem was solved using a genetic algorithm accounting for various
request characteristics, including priority, processing time, and location. A drawback of the
solution is that it does not facilitate pre-emptive scheduling.

Souri et al. [34] formulate the task scheduling problem as a nondeterministic poly-
nomial problem solved by means of a population-based meta-heuristic algorithm, which
minimizes the total execution time of tasks while fulfilling the Quality of Service (QoS)
requirements of Cyber–Physical System applications.

Abdulredha et al. [38] address the task-scheduling problem for the deployment of
bag-of-tasks applications on the Cloud–Fog environment. The proposed solution is the
Evolutionary Task Scheduling algorithm, which uses an evolutionary approach. Experi-
mental results demonstrate that the algorithm balanced completion time and financial cost
for a set of tasks in the Cloud–Fog system. However, the paper does not address several
critical issues, including resource utilization, load balancing, and energy efficiency.

Vakilian et al. [26] introduced a population-based meta-heuristic, the Cuckoo Algo-
rithm, to minimize response time and reduce energy consumption costs associated with
scheduling in fog networks. Their algorithm has drawbacks, such as neglecting to adjust
CPU frequencies for nodes and failing to segment traffic scheduling into multiple requests.

Aburukba et al. [68] proposed a meta-heuristic approach that utilizes the genetic
optimization algorithm to allocate computation requests from static IoT devices. Their
approach’s main objective is to minimize missed deadlines and timely fulfillment of re-
quests using a mixed integer programming optimization model. The proposed model
considers various delays, including transmission delays, queuing delays at networking
devices, and task execution delays at the fog and cloud layers. Their solution was compared
with the simulation environment’s round-robin and priority scheduling techniques.

7.3. Hybrid Algorithms

Wang et al. [18] proposed an hybrid heuristic framework incorporating Particle Swarm
Optimization (PSO) and Ant Colony Optimization (ACO) algorithms. It is worth noting
that the PSO algorithm is recognized for its quick search speed, whereas the ACO algorithm
is particularly known for its ability to achieve greater precision. The authors considered
factors such as completion time, energy consumption, and reliability.

Khaleel et al. [69] introduces a hybrid multi-criteria decision-making (Hybrid-MCD)
model which minimize application response time by integrating iterative critical path
search and layer-based priority rationing (LPR). Moreover, their application placement
strategy utilizes a Deadline-aware stepwise Reliability Optimization (DARO) algorithm
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to reassign tasks along the non-critical path. This process serves to elevate the overall
reliability of the application.

Hosseinioun et al. [58] introduced a hybrid Invasive Weed Optimization and Culture
(IWO-CA) evolutionary algorithm to addresses energy-aware task scheduling. The authors
consider leveraging the Dynamic Voltage and Frequency Scaling (DVFS) technique to
regulate the energy consumption of fog nodes by adjusting their voltage and frequency
levels based on workload demand.

The study conducted by Defude et al. [28] aimed to decrease task completion time and
energy consumption. Their proposed approach utilizes a population-based meta-heuristic
technique crafted to choose the most optimal fog nodes. This novel approach, called
Opposition-based Chaotic Whale Optimization Algorithm (OppoCWOA), combines Whale
optimization algorithm (WOA), Opposition-based learning, and Chaos theory.

7.4. Reinforcement Learning Based Algorithms

Guo et al. [54] propose a reinforcement learning-based task-scheduling scheme for
vehicular edge computing networks. The scheme aims to minimize the processing delay
of all tasks by assigning the tasks to the edge device, a mobile edge computing servers
(fog node), or the cloud server. While their deep Q-learning algorithm may enhance
the effectiveness of solutions for complex scenarios with many vehicles, the scheduling
approach may not adapt well in dynamic environments.

Peng et al. [27] have employed an alternative approach based on reinforcement learn-
ing (RL) to reduce latency and enhance the security for both fog nodes and Internet of
Things (IoT) tasks.

Cheng et al. [72] formulate the task scheduling problem in fog computing as a DAG
task scheduling problem in a heterogeneous computing system. Reinforcement learning is
used to solve the problem. They consider three main performance metrics in the evaluation
phase: schedule length ratio, speedup, and scheduling algorithm’s running time.

Farhat et al. [74] presented a novel cloud scheduling approach utilizing a reinforcement
learning-based model, which effectively employs fog resources to alleviate the burden
on the cloud. Their study primarily focuses on understanding user request behavior,
and their proposed decision model accounts for temporal and spatial factors. However,
their placement decision policy requires refinement concerning the selection of services
to incorporate.

Dehury et al. [8] proposed a novel concurrent reinforcement learning placement
approach for optimizing service delivery in fog and cloud environments. The proposed
model incorporates the users’ attributes, such as distance and service usage intensity,
as constraints in the placement process. They are motivated by a need to address service
delivery issues by achieving optimal distribution of service loads between fog and cloud
computing platforms while maintaining a high service quality during service delivery.

Pandit et al. [64] has developed an alternative task scheduling policy that relies on
reinforcement learning principles. This study aims to reduce both the overall computational
latency and communication costs. The proposed solution relies on a two-level neural
network (NN). The first-level neural network assesses whether the data stream can be
processed within the resource-constrained edge/fog environment or whether it should be
sent directly to the cloud. The second level NN then schedules the tasks received from the
first level NN to the fog layer, considering the available fog devices.

7.5. DRL-Based Scheduling Algorithms

Zheng et al. [16] present a solution to the task migration problem using deep reinforce-
ment learning. The problem involves determining the optimal time and location to move
services using the Markov decision process, without prior knowledge of the user’s mobility
pattern. The authors aimed to reduce migration time.

Ilager et al. [3] proposed a deep reinforcement learning model to enable the scheduler
to adjust to changing environments through asynchronous updates quickly. This novel idea
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achieves lower energy consumption than existing reinforcement learning models, allowing
the scheduling of resource-intensive tasks on more powerful machines. A weakness of the
proposed approach is the need for continuous profiling of CPU, RAM, disk, and bandwidth
demand of new tasks in real edge-cloud environments. This could result in additional
computational overhead.

Karimi et al. [19] focus on Mobile Edge Computing, and propose a task scheduling
algorithm that relies on deep reinforcement learning and incorporates a resource allocation
strategy that involves task migration among edge and central cloud servers. With an
appropriate scheduling strategy, they can achieve a shorter response time. However, one
drawback of their solution is a reallocation policy, which is necessary since time-sensitive
application tasks may arrive at an edge server when resources are insufficient, requiring
immediate execution.

Sami et al. [35] model the scheduling problem as an MDP and use deep reinforcement
learning techniques to optimize the service placement decision to satisfy QoS requirements.
The simulations demonstrate that the proposed DRL-based approach is more effective
than heuristic-based solutions for time-sensitive service placement problems. Their main
goals are to reduce the number of unfulfilled requests, the number of fog nodes chosen for
placement, the number of high-priority services that were not allocated, and the distance of
the chosen fog nodes from the users requesting services.

Goudarzi et al. [36] propose a novel approach for addressing the application place-
ment problem in heterogeneous fog computing environments using a distributed deep
reinforcement learning technique.

Shi et al. [43] describe a study that uses Deep Reinforcement Learning (DRL) tech-
niques applied to Vehicle-to-Vehicle communication to optimize the utility of scheduling
tasks and minimize delay in a fog computing environment that supports vehicle heterogeneity.

Kumar et al. [41] aims to decrease energy consumption and latency in heteroge-
neous fog environments by proposing a binary offloading strategy based on deep learning
that leverages several parallel deep neural networks (DNNs) to facilitate the scheduling
decision-making process. After the decision outputs are stored in a relay memory, they
are used to train and test all neural networks. Notably, in real-time scheduling, their
proposal may require the continuous allocation of resources. Additionally, in a dynamic
fog environment where user mobility is critical, their strategy may not be a viable option
for data offloading patterns.

Qian et al. [5] formulated a two-step decision problem in cloud–edge based group-
distributed manufacturing systems. The scope of the traditional task scheduling problem
has been expanded in this paper to include deadline constraints. The authors approach the
task placement problem in two steps: first, they prioritize tasks, and second, they schedule
the tasks based on their priorities. The proposed approach based on deep reinforcement
learning aims to minimize the total delay time of task scheduling by employing two agents:
one for prioritizing tasks and another for selecting the suitable node. One challenge that
remains to be addressed is the reduction of model training time.

Gazori et al. [15] focused on addressing task scheduling to reduce latency and com-
puting costs while also meeting resource and deadline constraints. To tackle this problem,
the authors proposed using either machine learning-based reinforcement learning algo-
rithms or rule-based heuristic algorithms. They suggested that deep reinforcement learning
could improve decision-making in resource-constrained environments and formulated a
solution using the Markov Decision Process framework. Their proposed solution was a
Double Deep Q-Learning (DDQL)-based scheduling algorithm that determines whether to
assign a task to a fog node or to a cloud data center. While the DDQL-based scheduling
algorithm yielded significant results in simulations, there is still a need to enhance the
efficiency and effectiveness of the agents’ learning process for this novel idea.
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7.6. Fuzzy Logic-Based Scheduling Algorithms

Parimi et al. [30] proposed approach involves assigning tasks in the fog layer to the
nodes with the least load, leading to a significant decrease in the waiting time required
to complete these tasks. The decision-making algorithm applies task scheduling to fog
and cloud resources based on fuzzy logic. Furthermore, the study overlooked the essential
aspect of energy consumption.

An alternative task scheduling approach was introduced, where tasks are selected from
a set and transferred to a fog node in a sequential list [71]. This study uses a fuzzy logic-
based scheduling method that guarantees task deadlines. The priority values determine
the degree of urgency for executing the tasks. However, the study did not consider energy
consumption and costs. The authors also overlooked the potential benefits of using cloud
computing to reduce system costs.

Esseghir et al. [51] examine how user preferences are affected by the constraints of
fog nodes and prioritize the reduction of delay and energy consumption. They propose
an approach to task scheduling that uses ranked lists and considers user preferences and
fog node constraints. The method utilizes a linguistic and fuzzy quantified proposition to
prioritize the fog nodes.

Buyya et al. [75] present a QoS-aware approach to placing applications that prioritize
the different location requirements for applications, considering the multiple users’ expec-
tations. The proposed method evaluates fog instance capabilities based on the current state.
Fuzzy logic determines the expected rating for application placement requirements, consid-
ering multiple user expectation parameters and the capability rating of fog instances, which
is determined by their various state parameters. They aim to maximize the overall gain in
Quality of Experience (QoE) for the user by prioritizing a less congested network, ensuring
sufficient allocation of resources, and minimizing the time taken to process applications.
The authors did not take into account the energy consumption of fog nodes.

8. Research Gaps and Challenges

In what follows, we discuss research gaps and challenges, organizing them along
the dimension used for mapping the literature, i.e., optimization criteria and problem
solution techniques.

8.1. Optimization Criteria

Producing scheduling decisions that balance contrasting goals like cost, energy con-
sumption, and time (latency or execution time or response time or Completion time)
is a challenge. Only 16% of studies consider the above-mentioned optimization criteria,
and other works focused on cost and time or energy consumption and cost. Finally, there are
research works that base their scheduling decision only on a single optimization criterion
(c.f Table 3). Hence, research efforts should focus on multi-objective scheduling algorithms.

An important gap to fill is the study of availability-aware scheduling algorithms. Fog
nodes are typically unreliable because they could lose network connectivity, because they
can fail, or simply because they can decide to quit a fog colony. Despite this intrinsic
unreliability, very few works (about 5%) investigate how to maximize availability, and no
one proposes solutions for trading off high availability goals with the other optimization
criteria (c.f Table 3).

Another research challenge is to design mobility-aware scheduling algorithms ac-
counting for the dynamic movement of devices within a fog environment, where their
locations, connectivity, and processing capabilities are subject to change [14]. To overcome
this obstacle, algorithms and strategies must be implemented to handle device mobility
efficiently. Tasks can be assigned to the most appropriate resources while accommodat-
ing changing network topologies and the impact on real-time application requirements.
Mobility-aware scheduling algorithms are essential for maintaining the reliability and
efficiency of fog computing systems, especially when device movement and changing
conditions are involved.
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8.2. Problem Solution Techniques

The literature analysis shows that the research community largely adopts machine-
learning solutions to solve the task scheduling problem. In this area, a challenge and gap
to fill is the design of explainable ML models that allow the verification of the scheduling
decision produced.

Another challenge is the design of autonomous task scheduling algorithms. This chal-
lenge involves creating intelligent and responsive scheduling algorithms that can operate
effectively and autonomously adapt their decisions in dynamic, real-time fog computing
environments, ensuring that tasks are executed efficiently and meet application-specific
needs [64]. This includes factors such as variations in device resources, network condi-
tions, task workloads, and application priorities. Self-adaptive schedulers continuously
monitor the environment and can dynamically reconfigure task assignments, priorities,
and resource allocations.

9. Conclusions

In summary, our exploration of the fog computing domain’s task scheduling land-
scape reveals a notable evolution marked by substantial expansion and transformative
changes. Through an extensive literature review, we have uncovered crucial insights into
the challenges, solutions, and future prospects of task scheduling in fog computing.

At the heart of fog task scheduling lies the persistent pursuit of efficiency, encompass-
ing resource allocation, low-latency delivery, energy consumption, and cost-effectiveness.
Our analysis underscores the dynamic nature of this field and the ongoing efforts to
optimize scheduling processes.

Significantly, our review identifies several critical research gaps that signal a pressing
need for further investigation. These gaps include the exploration of AI-driven scheduling
using explainable ML techniques, the development of innovative autonomous task schedul-
ing algorithms, and the consideration of mobility-aware, availability-aware, and multi-
criteria task scheduling.

These key takeaways emphasize the imperative for continuous advancement in fog
computing task scheduling to fully unlock its potential across diverse domains. By ad-
dressing these challenges and gaps, the fog computing community can pave the way for
enhanced efficiency, reliability, and adaptability in task scheduling, contributing to the
continued growth and impact of fog computing.
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