
Citation: Kabamba, H.M.;

Khouzam, M.; Dagenais, M.R. Vnode:

Low-Overhead Transparent Tracing of

Node.js-Based Microservice

Architectures. Future Internet 2024, 16,

13. https://doi.org/10.3390/

fi16010013

Academic Editors: Jerry Chou and

Wu-Chun Chung

Received: 18 November 2023

Revised: 14 December 2023

Accepted: 15 December 2023

Published: 29 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Vnode: Low-Overhead Transparent Tracing of Node.js-Based
Microservice Architectures
Herve M. Kabamba 1,* , Matthew Khouzam 2 and Michel R. Dagenais 1

1 Computer and Software Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada;
michel.dagenais@polymtl.ca

2 Ericsson Canada, Montréal, QC H4S 0B6, Canada; matthew.khouzam@ericsson.com
* Correspondence: herve.kabamba-mbikayi@polymtl.ca

Abstract: Tracing serves as a key method for evaluating the performance of microservices-based
architectures, which are renowned for their scalability, resource efficiency, and high availability.
Despite their advantages, these architectures often pose unique debugging challenges that necessitate
trade-offs, including the burden of instrumentation overhead. With Node.js emerging as a leading
development environment recognized for its rapidly growing ecosystem, there is a pressing need
for innovative performance debugging approaches that reduce the telemetry data collection efforts
and the overhead incurred by the environment’s instrumentation. In response, we introduce a
new approach designed for transparent tracing and performance debugging of microservices in
cloud settings. This approach is centered around our newly developed Internal Transparent Tracing
and Context Reconstruction (ITTCR) technique. ITTCR is adept at correlating internal metrics from
various distributed trace files to reconstruct the intricate execution contexts of microservices operating
in a Node.js environment. Our method achieves transparency by directly instrumenting the Node.js
virtual machine, enabling the collection and analysis of trace events in a transparent manner. This
process facilitates the creation of visualization tools, enhancing the understanding and analysis of
microservice performance in cloud environments. Compared to other methods, our approach incurs
an overhead of approximately 5% on the system for the trace collection infrastructure while exhibiting
minimal utilization of system resources during analysis execution. Experiments demonstrate that our
technique scales well with very large trace files containing huge numbers of events and performs
analyses in very acceptable timeframes.

Keywords: cloud; microservices; distributed tracing; transparent tracing; trace analysis; debugging;
performance; monitoring; Node.js; trace context

1. Introduction

The swift advancement of technology has propelled the widespread adoption of
microservice architectures, which highlight key aspects like availability, resilience, fault
tolerance, and enhanced collaboration among teams. In such an architecture, each compo-
nent operates independently and communicates through efficient, lightweight protocols.
These architectures are highly favored due to their facilitation of collaborative efforts and
their capability to meet modern challenges in application design, development, mainte-
nance, and deployment [1]. They bolster the system’s resilience, effectively manage failures,
and seamlessly adapt to scaling requirements. Nonetheless, these advantages come with
certain challenges, particularly due to the heterogeneity of the components, issues in service
allocation, and notably, concerns regarding overall system performance [2].

Debugging issues in microservice architectures poses significant difficulties. System
malfunctions can compromise the user experience, and identifying the root cause of these
issues can be difficult based on the information at hand. Even with error indications
from protocol headers like HTTP, the process of diagnosing issues can be challenging.

Future Internet 2024, 16, 13. https://doi.org/10.3390/fi16010013 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16010013
https://doi.org/10.3390/fi16010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0006-9590-1187
https://doi.org/10.3390/fi16010013
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16010013?type=check_update&version=1


Future Internet 2024, 16, 13 2 of 20

Additionally, arranging the components in a way that maintains system attributes such as
availability and low latency introduces intricacies [3,4]. The challenges of debugging [5–9]
and component arrangement [10] have been addressed through the implementation of
distributed tracing techniques [11–18]. However, applying these methods necessitates
instrumenting the application’s source code, which brings additional overhead and the
risk of altering the application’s behavior. Other strategies extend instrumentation to
dependencies to minimize changes at the application level.

Transparent tracing, in contrast to distributed tracing, allows for the collection of
system telemetry data without the need for a prior instrumentation phase. Therefore,
developers are not required to modify the application’s source code to insert trace points.
On the other hand, tracing a system incurs an additional cost, which must be considered
by any collection approach. Developing tracing methods that have a minimal impact
on the system is necessary for applications where performance is a primary requirement.
Although overhead issues have partly been addressed through sampling methods [19,20],
both approaches to instrumentation present challenges. Instrumenting at the dependency
level may fail to capture internal application logic issues like bugs, whereas instrumenting
the application’s source code could potentially alter its functioning. Both methods entail
modifications to the application, necessitating human effort and incurring extra costs.

The burden of instrumentation efforts has led to the development of strategies aimed at
reducing these costs across several research domains [21,22]. In the context of microservices,
this issue has recently been addressed by advocating for the use of proxies Santana et al. [23]
as an intermediary layer for transparent tracing. However, while this spares the application
from source code modifications, it shifts the burden to setting up and configuring the
proxies. Additionally, their operation involves intercepting system calls to insert trace
contexts into requests, which can be problematic in public clouds where kernel access might
be restricted. We propose an innovative approach for tracing and debugging microservices
in the Node.js environment, which is designed to address the limitations of existing
methods while ensuring full transparency.

This approach distinguishes itself in two key areas: (1) it obviates the need for develop-
ers to invest effort in establishing a collection infrastructure that includes instrumentation,
and (2) it transparently analyzes collected traces, leading to visualization tools that map
the interactions among microservices, thereby enabling the debugging of performance
issues in a completely transparent manner. The focus on Node.js stems from its complex,
asynchronous environment. However, this approach could potentially be extended to other
environments such as Java, Golang, and more.

The remainder of this paper is organized as follows. Section 2 introduces the basic
concepts of the study. Section 3 discusses related works on the subject. Section 4 presents
the proposed approach for tracing and analysis. Section 5.1 presents the results of our work,
leveraging some use cases to highlight its pertinence and relevance. An evaluation of our
tool is conducted in Section 5.2. In Section 5.3, we discuss the results obtained, whereas in
Section 6, we draw some conclusions.

2. Basic Concepts
2.1. Microservice Architecture

The microservice architecture is recognized as an application development strategy
that involves breaking down applications into a series of loosely interconnected compo-
nents. Its growing popularity can be attributed to the ease it brings to continuous delivery
and its ability to enhance the scalability of applications [22]. Within this architectural
framework, each component operates independently, managing a distinct function of the
application. Communication between these components is facilitated through clearly estab-
lished, lightweight protocols, typically using APIs. A key advantage of the microservice
architecture is the autonomy of its components, which grants development teams the flexi-
bility to update and deploy individual services without impacting the overall application.



Future Internet 2024, 16, 13 3 of 20

This approach leads to a more streamlined development process and greater agility in
software development [23].

While microservices offer numerous benefits, they also pose challenges in debugging.
With an architecture comprising multiple heterogeneous components, performance mon-
itoring tools must take this diversity into account. Typically, instrumentation is carried
out on each component using tracing libraries specific to the component’s environment.
To gain a comprehensive view of the system’s health, it is crucial to use distributed tracers.
A benefit of microservice architectures is that the instrumentation phase can be treated
as an application update, allowing for its flexible integration into the application deploy-
ment pipelines. The health of microservices can also be monitored using logs, but the
cost of this strategy becomes prohibitively high when the application consists of multiple
nodes. The challenge lies not only in interpreting the inter-causalities among nodes but
also in managing the large volume of data, which quickly becomes unmanageable. Tracing
remains the best way to address this problem, as it enables understanding the system’s
operation as a whole and, if necessary, identifying bottlenecks.

2.2. Distributed Tracing

Distributed tracing is a strategy for collecting execution data from modern systems,
particularly microservice architectures. It traces the lifecycle of a request as it passes through
all the nodes in the system. Distributed tracing provides a hierarchical view of the trace,
where one can observe the time a request spends on each service [7]. Distributed tracing was
introduced to address the complexities of distributed architectures, which are not suited to
traditional debugging and tracing methods. In microservice environments, components
need to interact to produce a result. In other words, when a request is issued from a
particular node, it may need to interact with several other services in the infrastructure
to return the result. In this context, when an issue arises along its path, it is necessary to
identify where the bottleneck occurs to resolve the problem.

Traditional tracing techniques are not suitable because they are generally used for
debugging monolithic applications. In the case of microservices, tracing involves injecting
a trace context into the request headers to identify it throughout its lifecycle. In this way,
the request can be properly aligned and hierarchized according to the service level it
invokes over time. The various calls made by microservices during their interactions can
thus be traced to understand the overall performance of the system [6].

Distributed tracers such as Google Dapper [7] and Zipkin [24] have revolutionized
technology by offering the ability to collect data from each request, their execution times,
and the causalities between services in the infrastructure. Furthermore, analyzing the
collected trace data can be complex. Distributed tracing systems generate a large amount
of data, and interpreting these data often requires advanced data analysis skills and a
deep understanding of the system’s architecture [13]. Distributed tracing continues to
evolve, with new improvements and integration into increasingly sophisticated tools and
platforms. Therefore, it is necessary to propose tools that address shortcomings and bring
more flexibility to the ecosystem.

2.3. Node.js Environment

Node.js, an open source environment, originates from the JavaScript V8 engine it
is built on. It has brought the versatility of server-side JavaScript programming since its
beginning in 2009. Node.js revolutionized the web ecosystem by enabling developers to
use JavaScript for server-side application development. Distinctive for its non-blocking,
event-driven nature, Node.js is well suited for high-performance applications. Its archi-
tecture is asynchronous and built on a single-thread model. In a Node.js application,
a primary process known as the event loop orchestrates the execution of various events in
different execution phases.

Tasks or events submitted for execution are first queued in a specific queue based
on the event’s nature. The event loop traverses these phases, dequeues the events in



Future Internet 2024, 16, 13 4 of 20

each queue, and executes them. For blocking events such as I/O operations, a thread
pool is used to delegate execution and avoid blocking the event loop. Node.js is a multi-
layered system. Internally, it comprises several components that work together to yield
a result. However, at the lower layers of the operating system such as in the kernel
space, the Node.js process appears as a black box that makes system calls or generates
context switch events. From this perspective, it is challenging to discriminate events being
executed. A significant unresolved issue is linking high-level information such as requests
and invoked JavaScript functions to actions performed in the V8 engine and the Libuv
orchestration layer.

Current tools only allow for the visualization of high-level information, such as a
request’s duration or the execution time of a service or JavaScript function. However,
when such information is provided by distributed tracing tools, debugging is necessary to
trace back to the cause. Debugging such issues in Node.js is extremely challenging since,
as a single-thread system, all concurrent request executions are conflated into the same
process. Distinguishing which request is causing performance issues is difficult because
even if a service shows high latency, it does not necessarily mean the service itself is at fault.
For instance, the event loop might have been blocked by the execution of a non-optimized
function, thus propagating the error to other pending requests. Therefore, it is important to
develop methods suitable to these environments.

3. Related Works

Recent research has demonstrated that distributed tracers are crucial for enabling
the monitoring of interactions among microservices, as studied by Sampaio et al. [10].
This experience demonstrates the need for a more lightweight technique to trace such fine-
grained architectures. Santana et al. [23] suggested a novel transparent tracing methodology
that leverages the kernel of the operating system to intercept system calls associated with
communication among microservices. They proposed using a proxy that adds a neutral
layer to the microservice to intercept its interactions and correlate the information to
deduce the causalities associated with the various requests. The interception of system calls
ensures application tracing transparency, but the developer is responsible for configuring
the infrastructure.

Statistically extracted dependency structures from documentation were used in service
discovery by Wassermann and Emmerich [25], while fault detection was addressed by Chen
et al. [26] through middleware instrumentation to log the respective components that pro-
cess a particular request. A degree of transparency could be achieved, but such an approach
requires developers to dedicate significant time to library instrumentation. The distributed
tracers Dapper and X-trace, proposed by Sigelman et al. [7] and Fonseca et al. [11], re-
spectively, are able to trace the whole request lifecycle, exposing its flow and helping in
diagnosing issues throughout execution. They rely on trace context injection mechanisms
to reconstruct the context of the trace. A prior instrumentation phase of the application is
required to activate the collection mechanism. In contrast to these approaches, our method
does not inject the trace context into the request. It leverages the internal asynchronous
mechanism of Node.js to reconstruct the request path.

Tracing request path strategies was also addressed by Kitajima and Matsuoka [27] using
heuristics. Request causality diagnosing algorithms were proposed by Aguilera et al. [28].
Both approaches offer a degree of transparency but rely on middleware instrumentation. Gan
et al. [29] introduced Seer, an online debugger designed to foresee quality of service (QoS)
violations in cloud-based applications. Their research was conducted on a microservices
framework, employing Memcached, which shares functional similarities with Redis as an
in-memory database.

The process of debugging performance issues using Seer requires an instrumentation
phase for microservices. This step is also implemented in the Memcached data store, with a
particular focus on polling functions and various network interface queues. Seer has the
ability to predict QoS violations using a model developed from deep learning techniques



Future Internet 2024, 16, 13 5 of 20

applied to upstream traces. By instrumenting the functions responsible for managing
packet queuing at the data store level, Seer can effectively identify potential bottlenecks,
especially those involving Memcached.

A comparison of tracing approaches is provided in Table 1. The various existing
approaches to instrumenting microservices can be classified into three distinct groups.
These groups include instrumentation methods using distributed tracing, transparent
instrumentation methods utilizing service meshes, and approaches based on instrumenting
middleware and libraries. Each of these methods offers advantages and disadvantages,
and the choice of which method to use is heavily influenced by the specific context in
which it will be applied. Distributed tracing tools, for instance, offer a straightforward
way to gather information about system executions and interactions, providing a user-
friendly interface for identifying bottlenecks and diagnosing performance issues within
distributed environments.

Table 1. Comparison between state-of-the-art approaches and Vnode

Distributed Tracing Service Meshes Vnode

Incurred overhead Low Medium Low

Ease of deployment Medium Medium Very easy

Cost of deployment High Medium low

Ease of use Easy Medium Easy

Impact Very relevant Relevant Relevant

However, these methods are primarily designed to capture interactions among com-
ponents, typically offering granularity in the order of milliseconds and occasionally mi-
croseconds. They are less suitable for capturing host system-level executions that require
a much higher level of granularity, which is often expressed in nanoseconds. The second
category of microservice instrumentation relies on service meshes to achieve transparent
tracing of interactions among microservices. This approach leverages the capabilities of
service meshes to seamlessly discover infrastructure components and insert proxies that
intercept low-level interactions.

While this method brings transparency to data collection, it presents two significant
challenges. Firstly, it necessitates privileged access to the system, as it relies on system
calls to capture information about microservice interactions. Such privileged access is
generally unavailable in public cloud infrastructures. Secondly, it requires configuration
efforts to deploy the collection’s infrastructure, effectively shifting some of the workload
associated with instrumentation, as proposed by distributed tracing tools, to the setup of
the collection infrastructure.

The third category, in contrast, emphasizes instrumentation at the library or middle-
ware level. This approach offers the advantage of minimizing alterations to the application’s
source code. Nevertheless, it still requires dedicated instrumentation efforts and, conse-
quently, may introduce changes to the system’s behavior.

Vnode, on the other hand, employs an entirely different approach. It relies on compre-
hensive instrumentation of the runtime to enable seamless tracing of applications that use
it. Vnode utilizes a specific technique called ITTCR to identify and reconstruct causality
in interactions among different microservices running under Node.js. Importantly, this
approach is applicable to various runtimes, including Java, Golang, etc.

4. Proposed Solution
4.1. System Architecture

The diagram depicted in Figure 1 illustrates the operational framework of the system.
Given that each microservice is deployed in a container, LTTng [30] (Linux Tracing Toolkits
Next Generation) is enabled on each one to capture traces. This produces several CTF



Future Internet 2024, 16, 13 6 of 20

(Common Trace File)-formatted local trace files. A file aggregator retrieves these files for
importing them as an experiment into Trace Compass (TC) (https://projects.eclipse.org/
projects/tools.tracecompass (accessed on 2 November 2023)), where analyses are conducted.
These analyses involve building an execution model based on the state system technology,
constructed from the trace’s extracted attributes.

The State History Tree (SHT) [31] is a highly efficient data structure employed in the
creation of the model while reading the trace. It is used to store the attributes extracted
from the trace as well as various analysis-related data. TC provides the framework for
modeling and developing such data structures. The optimization technique employed
enables the model to be queried in logarithmic time. It provides multiple features for
the organization of the traces and the objectivity of the analyses. This is achieved by
employing multi-abstraction, highlighting, and filtering. TC enables the definition of the
desired granularity of performance measurements and the application of analyses within
the desired time limits.

Figure 1. Example of a trace collection architecture used in our approach.

The trace is collected by inserting tracepoints into the internal Node.js layers. LTTng
is used to conduct static instrumentation. The tracepoints are initially inserted at the
level of the C++ bindings that interface with the native JavaScript modules, specifically
the functions handling socket communications in Node.js. Then, it is possible to extract
the necessary information pertaining to the various sockets and their attributes for the
correlation and context reconstruction stages.

Information on the request attributes (methods, addresses, and ports) is transmitted di-
rectly from native JavaScript modules to the C++ bindings. In this manner, the expense of
parsing HTTP requests is avoided and an LTTng probe is inserted at that juncture. The engine
that generates asynchronous resource identification numbers is probed during the second
instrumentation step. This technique enables accessing at the origin the identifiers of the
execution contexts associated with the asynchronous resources, as well as the identifiers
of the execution contexts of the resources that generated them. In addition, it enables
monitoring their entire lifecycle from creation to destruction.

Therefore, the costly Node.js Async Hooks API is unnecessary for monitoring the
asynchronous resources. Tracing is performed directly within the VM, which significantly
reduces the overhead in this context. LTTng has become known as the fastest tracer in the
world and incurs minimal system overhead. It permits the creation and collection of events,
which are then loaded into TC. Developed extensions in the latter facilitate the creation of
event analyzers and handlers. It is a free, open source tool that allows for the analysis of

https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass


Future Internet 2024, 16, 13 7 of 20

traces and logs. The extensibility of the system enables the creation of graphs and views,
as well as the extraction of metrics.

4.2. Framework Implementation

In this section, we present the implementation of our transparent tracing technique.
It unfolds in two main stages. The first stage involves collecting execution traces across
various microservices by going through a Node.js virtual machine instrumentation phase.
This phase enables the establishment of a transparent execution trace collection infrastruc-
ture. In other words, it automatically captures events generated by interactions among
microservices, without requiring developers to manually instrument their systems using
distributed tracers.

The second stage involves conducting an analysis to build a model based on finite
state machines and SHTs (State History Trees). The analysis entails traversing the trace
events, extracting attributes, and calculating the metrics necessary for model construction.
TC is a highly efficient framework that provides an environment for building finite state
systems and can handle traces containing millions and billions of events. This is made
possible through the construction of a specific on-disk data structure called an SHT. Devel-
oped views can then query the model to display information for performance debugging
of microservices.

4.2.1. Instrumentation and Transparent Trace Collection Technique

Microservice interactions occur through message passing across network sockets.
In microservices using HTTP as the communication protocol, when one microservice wants
to send a message to another, it first establishes a connection with the remote component.
Internally in Node.js, native modules managing network sockets communicate with the
Node.js virtual machine to request information about the created socket context. In a
single-threaded environment like Node.js, multiple events are managed concurrently.
Node.js implements an internal mechanism to track different asynchronous resources by
assigning them an identifier.

For instance, if a function with identifier “12” first creates a socket, this socket might
receive identifier “13”, implying that this new resource was created in the “12” context. Sim-
ilarly, any new resource initiated within the socket’s context will have “13” as its execution
context, in addition to its own resource identification number. Managing asynchronous re-
sources in environments like Node.js is extremely complex and challenging. Async Hooks,
an experimental API, was proposed to track the lifecycle of these asynchronous resources.
However, this API is costly in terms of system performance, sometimes increasing the
overhead by up to 50%.

For most production applications, this overhead is not tolerable. This is because each
call to the API requires crossing the JavaScript/C++ barrier of the V8 engine, which incurs
a very high cost on the system. The proposed solution circumvents this by addressing and
collecting information directly at the source, that is, at the level of the engine responsible for
generating the asynchronous resources. In other words, our solution involves definitively
instrumenting the Node.js virtual machine to transparently collect network communication
data. Figure 2 shows the internal process of execution context creation at the VM level when
a network connection is established. It can be observed that when a microservice sends a
message to another component, Node.js native network modules request the context from
the asynchronous resource manager.

This manager initializes the new resource and assigns it a generated number. The num-
ber assigned to the created socket allows for the identification of the execution context
of objects. For example, when a response to a request returns, Node.js checks the socket
number (context) in the request header to route it to the waiting resource. This is a Node.js
multiplexing function, given its single-threaded nature. To trace the interactions among
microservices, five main tracepoints were inserted into the native module and the Node.js



Future Internet 2024, 16, 13 8 of 20

virtual machine: http_server_request, http_server_response, http_client_request,
http_client_response, and async_context.

Figure 2. Process of internal initialization and creation of asynchronous resources inside Node.js.
Each created resource is assigned an identifier (context information) along with the ID of the resource
that triggered its creation. Node.js functions (tracee) ask the VM for socket resource creation and
context through native modules. The process is instrumented and captured by the tracer.

The http_server_request tracepoint is activated when the server receives a request to
process, such as when a microservice receives a specific request. The http_server_response
tracepoint is activated when the server returns a response after processing the request.
The http_client_request tracepoint is activated when a component emits a request, for ex-
ample, when a microservice contacts another microservice. The http_client_response
tracepoint is activated when the response is returned to the sender.

Figure 3 shows how this process unfolds when a request is issued by a microservice.
First, native network functions obtain the socket context information containing the socket
number and the number of the resource that created it to preserve the hierarchy and
execution sequence. The creation and initialization of the new resource by the VM trigger
an event captured by LTTng (the event is recorded as async_context). This event exports
various information in its attributes, including the identification number of the created
resource, the identification number of the parent resource, and the resource type. After the
request is sent by the native network functions, the http_client_request tracepoint is
activated and captured by LTTng. It is exported with the attributes, as represented in
Figure 2.

When the destination microservice receives the request, as observed in Figure 4, the re-
quest is first decoded by Node.js network functions, and at the same time,
the http_server_receive tracepoint is activated. The event is exported to LTTng along
with all its attributes, as shown in Figure 4. At the end of the request processing, the request
is returned, activating the http_server_response tracepoint, which is also exported along
with all its attributes. Activating the different tracepoints produces a file in CTF format at
the end of system tracing. Figure 5 depicts a part of the trace experiment. Some events
are not included to optimize the view. This file, containing the transparently collected
information, can be very large depending on several factors, such as the system load or the
duration of its tracing. Therefore, it is crucial to employ automated methods to analyze the
trace to extract relevant information. The next section addresses the new analysis approach
we propose in this work.

4.2.2. Pattern-Based Context Reconstruction Formalization for Trace Analysis

When conducting analysis using TC, a state system is built. The states encompass all
the events that are deemed acceptable by the analyzer for the purpose of instantiating and
activating the different system transitions. Our approach for reconstructing the execution
contexts of all the requests relies on identifying specific sequences of system transitions.
These sequences are retrieved from the global state system and serve as the detected
patterns. By traversing the trace to construct the state system, concurrent state subsystems
belonging to the global system are identified and correlated with the concurrent requests to



Future Internet 2024, 16, 13 9 of 20

which they are bound. The obtained state system can be regarded as a finite state machine
consisting of six components.

Figure 3. Internal communication process when sending a request. The Node.js function (tracee)
asks for the socket resource context and creation. The event is captured by the tracer along with the
context information. After receiving the information, the message is sent by the Node.js function
through native modules. The event is captured by the tracer.

Figure 4. Internal handling of incoming requests. The incoming message is first decoded by native
modules, and the event is captured by the tracer to signify the receiving of the request. The runtime
then executes the service. The receiving of an incoming message triggers a resource of type “HTTPIN-
COMINGMESSAGE” within the VM. The event is captured by the tracer. After sending the result
back, the sending event is also captured by the tracer.

Let M be a finite state machine:

M =< P, F, B, G, s, tr > (1)

where P represents the state space; F represents the event space; B represents the ac-
tion space; G represents a subset of P; s represents an element of P, the initial state; and
tr : P × F −→ P × A represents the state transition function

tr(p, f ) = (q, b) (2)

TR : E∗ −→ P∗ × B∗ (3)

where X∗ represents all the sequences of members belonging to X. In other words, the pat-
terns that model the execution of the concurrent requests in the state system are sequences
of members of the global state system. The transition function can be extended as defined
in Equation (2). In this case, if p is the active state of M and if there is an occurrence of



Future Internet 2024, 16, 13 10 of 20

event f , then q becomes the new active state of the system; therefore, action b is taken.
The handling of events during the execution of the analysis makes the system transition to
multiple states. For each state, related actions are undertaken.

tr(s, p) = (k, a) (4)

tr(k, t) = (w, b) (5)

tr(w, h) = (n, c) (6)

TR(pth) = (skwn, abc) (7)

Figure 5. Part of the user traces file collected from Node.js microservices and merged as an experi-
ment. The events and their attributes are presented (some attributes are removed for clarity).



Future Internet 2024, 16, 13 11 of 20

Consider the events p, t, and h; the states s, k, and w; and the actions a, b, and c defined
in Equations (4)–(6). Then, pth is an event sequence in F∗. As defined by Equation (7),
the system should transition from its initial state, s, to k and then to w and n. For each
transition, the system will perform the actions a, b, and c. The inputs to the model are
the different accepted events from the trace while the handler is running. Actions are
taken for each of the accepted events required to construct the global state system and
build the SHT. The patterns are modeled as a subset of the global state system identifying
transition sequences.

4.2.3. Trace Analysis Technique

Performance debugging in microservices involves a phase of trace collection that
necessitates system instrumentation. This step is crucial for gathering the necessary data to
interpret the system’s operation. An analysis abstracts the system’s overall functioning to
avoid delving into the minutiae of the data extracted from the system. However, effective,
robust, and rapid methods are required to utilize the data collected in the initial phase,
as the files can become exceedingly large, containing millions or even billions of events.
This necessitates the use of tools capable of handling such vast quantities. Our approach
conceptualizes system executions as finite state machines. A request is viewed as an
automaton transitioning through states based on trigger events. The automaton sequence
of transitions represents a series of events occurring during system execution.

Our method achieves transparency in the analysis by matching pattern sequences
observed during request executions. An initial understanding of system activity based
on the collected traces allows for the identification of recurring patterns in microservice
interactions within Node.js. We then model these patterns as finite state machines to
understand the system’s various states to debug its performance. We utilize TC to load the
trace for our analyses. TC extensibility enables the development of visualizations based
on these analyses, providing essential tools for the analysis of system performance. To
preserve the different states of the automaton, we use a particular expandable data structure
optimized for supporting very large file sizes, known as an SHT. In Figure 6, it can be seen
that a request arrives at the gateway microservice, which must redirect it to the relevant
service’s microservice.

In this case, activating the http_server_request tracepoint initiates the state machine
and sets it to the “receive request” state. To preserve this state, in the highest level of
the hierarchy, the automaton state is recorded in the SHT with the data extracted from
its attributes. The automaton transitions to the next state when the async_context event
is encountered in the trace, and its attribute type is “after”. Here, the sockid value of
the previous http_server_request event is matched with the ctx_id attribute of the
async_context event, ensuring that the current event occurs within the context of the
ongoing request.

The next state is activated when the async_context event’s attribute type is “con-
structor”. At this level, the id attribute value is matched with that of the previous state
(48518 and 48518), ensuring that the reconstructed sequence is linked to the initial request.
The automaton transitions to the next state when the async_context event type value
equals “TCPWRAP”. To maintain the sequence context, the id attribute is matched with the
ctx_id of the previous state (48694 and 48694). The next automaton transition occurs when
the async_context event type value is “GETADDRINFOREQWRAP”, with its ctx_id
matched to the previous state (48696 and 48696). Finally, the system transitions to the next
state when the async_context event type value is “HTTPCLIENTREQUEST”. Here, the id
attribute value must be one order higher than the previous state (48698 and 48697).

At this point, the asynchronous sequences that the received request passes through
within the gateway microservice before being forwarded to the intended microservice
are transparently reconstructed. This state sequence is the model followed by Node.js to
communicate with microservices via HTTP (REST API). The type attribute values are ob-
tained directly from the Node.js virtual machine, representing the different asynchronous



Future Internet 2024, 16, 13 12 of 20

resources created during request execution. Each system state is recorded along with
its attribute values in the SHT. The context allows for hierarchically inserting states and
attributes into the SHT to form a hierarchy defining the sequence of automaton execution,
including their start and end, thus enabling visualizations to extract information for study-
ing system performance. The outcome of the analysis yields a structured and hierarchical
representation of the diverse interactions across microservices, achieved through a fully
transparent process.

Figure 6. Internal process of communication between two microservices. The capturing of information
is conducted internally from the VM of both Node.js processes executing the two microservices.

5. Results

In this section, we demonstrate the capabilities of our tool using three use case
scenarios. The objective is to effectively articulate the anticipated outcomes derived
from the utilization of Vnode. The Nodejs-Restful-Microservices application (https:
//github.com/tudtude/MICROSERVICE-RESTful-Nodejs (accessed on 4 November 2023))

https://github.com/tudtude/MICROSERVICE-RESTful-Nodejs
https://github.com/tudtude/MICROSERVICE-RESTful-Nodejs


Future Internet 2024, 16, 13 13 of 20

is utilized for this purpose. This application is a complete microservice architecture devel-
oped with Node.js that uses Redis as an in-memory store. We subsequently evaluate the
overhead incurred from the use of our technique in comparison to other state-of-the-art ap-
proaches.

5.1. Use Cases

In this section, we present three practical use cases to demonstrate the efficacy of
our tool.

5.1.1. GET Request Tracing and Visualization

In the initial use case, simultaneous requests are executed in order to retrieve specific
information pertaining to an individual user. The requests made are of the GET type.
Executing these requests after deploying the application generates multiple CTF-formatted
trace files. As described previously, they are aggregated and imported as an experiment
into TC. Figure 7 depicts the visual outcome of our analyses. The reconstruction of the
alignment of request execution flows based on their respective contexts can be observed.
After receiving the request, the server transmits it to the user microservice. The request is
then forwarded to the Redis gateway since the data reside in the memory of the Redis data
structure. The Vnode facilitates the transparent horizontal alignment of requests and can be
seamlessly integrated into the application development and operation pipelines.

Figure 7. Execution of the GET request reconstructed by the analysis. On the left, the port numbers of
the requests are depicted along with the nested microservice nodes traversed and aligned according
to their service execution order, as reconstructed by the ITTCR.

5.1.2. POST Requests Tracing and Visualization

The second use case involves the sending of POST requests to place item orders.
Figure 8 demonstrates the capability of Vnode to smoothly rebuild request execution con-
texts, depicting the output of the analysis execution. In contrast to the initial use case,
upon receipt of the request by the server, it is promptly forwarded to the microservice
responsible for handling orders. As the operation entails the insertion of data into the
database, the microservice executes the operation directly, bypassing the Redis gateway.

When analyzing the two use cases, the particular feature of Vnode regarding the
reconstruction of the communication architecture becomes evident. The strength of Vnode
resides in its capacity to enable developers to comprehend and visualize the communication
architectures of microservice systems implemented in Node.js. The developer does not
need to grasp the application code or inner workings to comprehend how its components
interact internally. Vnode reconstructs each API call execution sequence transparently and
presents the results through a visual and interactive tool.



Future Internet 2024, 16, 13 14 of 20

Figure 8. Execution of the POST request. On the left, the port numbers of the requests are depicted
along with the nested microservice nodes traversed and aligned according to their service execution
order, as reconstructed by the ITTCR.

5.1.3. Tracing and Visualizing Requests Passing through Proxy Microservice

In this third scenario, requests are sent to a user authentication service to obtain the
tokens necessary for user session validity. As shown in Figure 9, in this case, once the
request reaches the gateway microservice, it is automatically redirected to the authentication
microservice. After processing the request, the latter redirects it to the microservice acting
as a proxy for the user service before being redirected again to the user microservice, which
retrieves user information from the Redis database through the Redis gateway microservice.

Aligning the spans enables the complete visualization of the time the request spent in
each microservice. By combining the microservice view with the Redis one, as depicted in
Figures 9 and 10, it can be observed that the execution of the “get” command on the Redis
server took an extremely short time, only 40 microseconds. However, the request took at
least 18 milliseconds to complete. It is clear that the majority of this time was spent on the
interactions among the microservices.

These results demonstrate how a system trace can be collected and analyzed in a
completely transparent manner without requiring developer intervention. To the best of our
knowledge, there is currently no approach that enables this. In this context, the execution
flow and operational architecture of the microservices can be visualized without prior
knowledge of the system’s implementation.

Figure 9. Request sent through the authentication service.



Future Internet 2024, 16, 13 15 of 20

Figure 10. Request sent through the authentication service. The Vnode analysis can be transparently
combined with another analysis (Redis) to debug performance issues in both environments. The ex-
ecution of the GET method called in Node.js can be seen within Redis while user information is
being retrieved.

5.2. Evaluation

This section presents an evaluation of our tracing approach. We carried out experi-
ments in different scenarios for the purpose of validating our strategy and comparing it to
state-of-the-art approaches. The system configuration was an I7 core with 16 GB of RAM
and a 500 GB SSD. The Nod.js versions used were 12.0, 16.0, and 17.0.

5.2.1. Objectives

A comprehensive assessment was conducted to evaluate the performance of our
solution with respect to the incremental cost incurred by the system being evaluated.
The process encompassed three primary parts: (i) an evaluation of the overall overhead
incurred by the implementation of our tool; (ii) a comparison of the overhead associated
with our tool in relation to other tracing methodologies; and (iii) an assessment of metrics
that directly influence the development and operation of microservices.

Table 2. Defined experimental parameters.

Parameter Value

Number of executed requests 1200

Time between requests Randomly generated
(Gaussian distribution)

Tracing configurations
No Tracing

State-of-the-art Rbinder
Our strategy

5.2.2. Experiments

We utilized the Nodejs-Restful-Microservices application to generate the user traffic
for the experiments. The response time was selected as the metric for evaluation because
it accurately reflects the user experience, as highlighted by Menasce [32]. The param-
eters employed in our investigations are presented in Table 2. Apache Jmeter (https:
//jmeter.apache.org/ (accessed on 24 October 2023)) was utilized to generate 1200 HTTP
POST requests directed at the “add user” operation and 1200 HTTP GET requests directed at
the “get user” operation, both with the longest critical paths.

We considered three evaluation scenarios when carrying out our experiments. First,
the evaluation of the application was performed without the use of any instrumentation.
In this particular scenario, the microservices were deployed with their original Node.js
versions without any alterations, and the average response time was observed. JMeter

https://jmeter.apache.org/
https://jmeter.apache.org/


Future Internet 2024, 16, 13 16 of 20

was employed for the purpose of generating the user load. In the second scenario, the ap-
plication was instrumented using Open Telemetry (https://opentelemetry.io/ (accessed
on 4 November 2023)), and the average response time was also observed. In the third
scenario, the application was deployed using the strategy proposed by Santana et al. [23],
and the average response time was also observed. In the final scenario using our technique,
the instrumented Docker images of Node.js were deployed alongside the application, and
the response times were also observed.

In order to evaluate the effectiveness of the Rbinder technique [23], we implemented it
in conjunction with our microservice application and proceeded to configure the different
proxies accordingly. No system call activation was performed in our strategy; only the
Node.js Docker images were deployed alongside the application. The technique imple-
mented did not necessitate changes to the application deployment procedure. One of the
benefits of this approach is its ability to provide transparency in both the deployment and
tracing processes. The analyses are characterized by transparency, as they can generate
visual results without any involvement from the developer.

The process requires starting the LTTng tracer on every container to capture the appli-
cation trace and then halting the tracer and automatically aggregating the traces. The mi-
croservices are then imported into the TC platform, where an analysis is executed and a
visualization depicting the interactions among these microservices is generated.

5.3. Discussion

The outcomes of the experiments depicted in Figure 11a show that the response times
of the application executed using our method incurred a low overhead on the system
compared to the uninstrumented application. The average response time for the “get user”
operation was 4.7 ms (standard deviation: 1.33) when no instrumentation was conducted,
5.1 ms (standard deviation: 1.18) when distributed tracing was employed, 5.35 ms (standard
deviation: 1.05) when the Rbinder strategy was employed, and 5.07 ms (standard deviation:
1.23), when our strategy (Vnode) was employed.

In the second scenario, experiments were conducted by initiating POST requests for
the “user add” operation. The obtained response times are depicted in Figure 11b. It is
clear that the supplementary cost associated with tracing, on average, was consistently of
a comparable magnitude, similar to the preceding scenario. The mean response time for
the untraced program was 4.1 ms (standard deviation: 1.33), 4.29 ms (standard deviation:
1.37) when using distributed tracing, 4.6 ms (standard deviation: 1.46) when using Rbinder,
and 4.3 ms with Vnode. An examination of the overhead resulting from tracing using our
approach reveals that it is comparable to state-of-the-art approaches, incurring only a 5%
cost on the traced system. Figure 11c illustrates the central processing unit (CPU) utilization
in the scenario when the application was executed without any tracing. Comparing the
aforementioned data with those in Figure 11d, which illustrates the CPU utilization while
employing our proposed methodology, a slight increase in resource use was observed.

Given that the execution time of the analyses required to build the model is strongly
dependent on the number of events contained in the trace, it is important to measure
the time required on various trace file sizes. Figure 11e,f, respectively, depict the CPU
utilization and time to run the analysis according to the trace sizes. For different sizes of the
trace, the needed time is presented. The experiments show that our technique is optimized
to run with very good times. This is due to the nature of the data structure (SHT) used,
enabling access in logarithmic time.

The LTTng tracer had a minimal impact on the system, as the activation of a tracing
point incurred a nanosecond-level overhead. LTTng is the fastest software tracer avail-
able [30]. The evaluation of the collection and analysis infrastructure using our approach
demonstrates all the advantages it offers. Firstly, the induced overhead was relatively low
on the system in terms of CPU and memory usage. In the first case, this can be justified
by the tracer used and the optimization of the inserted tracepoints. In the second case,
memory usage was not significantly impacted despite the size of the trace files, which can

https://opentelemetry.io/


Future Internet 2024, 16, 13 17 of 20

contain millions and billions of events, simply because the data structure constructed was
disk-based. It depends primarily on disk write speed, especially during model construction.

(a) Average response times for
microservice operation “user get”

(b) Average response times for
microservice operation “user add”.

(c) RAM usage in no-tracing and Vnode
scenarios.

(d) CPU usage in no-tracing and Vnode
scenarios.

(e) Trace size versus analysis time. (f) CPU usage when running analyses.

(g) RAM usage when running analyses.

Figure 11. Experimental results and impact on physical resources.

In the case of distributed tracing, the tracing overhead is acceptable, but using this
strategy requires an understanding of the application’s source code for instrumentation.
This involves additional human costs and alters the application’s behavior. To spare
developers from these instrumentation efforts, an approach based on a “proxy envoy”,
called Rbinder, has been proposed. However, while it offers the advantage of transparently
tracing the application, it still requires developers to invest significant time in setting up
the collection’s infrastructure, especially in configuring the proxies. In contrast to these
approaches, our approach enables transparent tracing without any developer intervention.
Developers are not required to establish the collection’s infrastructure. Only the images
of Node.js containers are replaced with instrumented images and deployed seamlessly,
without modifying the development pipeline procedures.



Future Internet 2024, 16, 13 18 of 20

6. Conclusions

This work introduced a novel approach for tracing and performing performance de-
bugging in Node.js microservice architectures. It stressed the importance of maintaining
trace transparency to reduce the costs associated with instrumenting and deploying trace
collection infrastructures. By adopting a tracing paradigm that relies on context reconstruc-
tion through Node.js virtual machine instrumentation, we developed a specific technique
for correlating multi-layer metrics.

In this way, developers can avoid the burden imposed by the instrumentation phase.
Furthermore, automated analysis is performed on the collected data to create a high-level
model that can be queried through developed views, enabling a better understanding of
system operations and the identification of performance bottlenecks.

The presented approach not only enables transparent tracing of microservices but
also offers a framework for uncovering the operational architecture of microservices.
Consequently, without delving into the intricacies of the application’s source code to
comprehend component interactions, our technique can be utilized to visualize the com-
plete communication architecture of microservices transparently. An intriguing possibil-
ity is to expand the collection architecture to support other communication protocols,
such as WebSockets. Another potential avenue for further exploration involves con-
ducting a thorough investigation into the root causes of performance issues that our
approach facilitates pinpointing for the purpose of conducting root-cause analyses. The
sources of the analyses, comprising the TC plugins can be accessed from the public reposi-
tory https://git.eclipse.org/r/q/owner:hervekabamba%2540gmail.com (accessed on 16
November 2023).

Author Contributions: H.M.K.: Paper writing, running experiments, literature review. M.K.: Val-
idation and administrative stuff. Manuscript review. M.R.D.: Supervision, results discussion and
validation. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council
of Canada (NSERC) under grant Alliance project ALLRP 554158-20, in collaboration with Prompt,
Ericsson, Ciena, AMD, and EfficiOS; and the APC was funded by author Herve M. Kabamba.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We would like to gratefully acknowledge the Natural Sciences and Engineering
Research Council of Canada (NSERC), Prompt, Ericsson, Ciena, AMD, and EfficiOS for funding
this project.

Conflicts of Interest: Herve M. Kabamba received financial support from Polytechnic Montréal.
Michel Dagenais received a research grant from the Natural Sciences and Engineering Research
Council of Canada (NSERC) in collaboration with Prompt, Ericsson, Ciena, AMD, and EfficiOS.
Matthew Khouzam is an employee at Ericsson Canada.

References
1. Newman, S. Building Microservices; O’Reilly Media Inc.: Sebastopol, CA, USA, 2015.
2. Lewis, J.; Fowler, M. Microservices: A Definition of This New Architectural Term. Available online: https://martinfowler.com/

articles/microservices.html (accessed on 14 December 2023).
3. Aznavouridis, A.; Tsakos, K.; Petrakis, E.G. Micro-service placement policies for cost optimization in Kubernetes. In Proceedings

of the International Conference on Advanced Information Networking and Applications, Sydney, NSW, Australia, 13–15 April
2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 409–420.

4. Ding, Z.; Wang, S.; Jiang, C. Kubernetes-oriented microservice placement with dynamic resource allocation. IEEE Trans. Cloud
Comput. 2022, 11, 1777–1793. [CrossRef]

5. Sharma, D.; Poddar, R.; Mahajan, K.; Dhawan, M.; Mann, V. Hansel: Diagnosing faults in OpenStack. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments and Technologies, Heidelberg, Germany, 1–4 December 2015; ACM:
New York, NY, USA, 2015; p. 23.

6. Sambasivan, R.R.; Zheng, A.X.; De Rosa, M.; Krevat, E.; Whitman, S.; Stroucken, M.; Wang, W.; Xu, L.; Ganger, G.R. Diagnosing
Performance Changes by Comparing Request Flows. In Proceedings of the NSDI, Boston, MA, USA, 30 March–1 April 2011;
Volume 5, p. 1.

https://git.eclipse.org/r/q/owner:hervekabamba%2540gmail.com
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://doi.org/10.1109/TCC.2022.3161900


Future Internet 2024, 16, 13 19 of 20

7. Barroso, L.A.; Burrows, M.; Plakal, M.; Sigelman, B.H.; Stephenson, P.; Beaver, D.; Jaspan, S.; Shanbhag, C.; Dapper, A. Large-
Scale Distributed Systems Tracing Infrastructure. 2010. Available online: https://research.google/pubs/dapper-a-large-scale-
distributed-systems-tracing-infrastructure/ (accessed on 14 December 2023).

8. Tak, B.C.; Tang, C.; Zhang, C.; Govindan, S.; Urgaonkar, B.; Chang, R.N. vPath: Precise Discovery of Request Processing Paths
from Black-Box Observations of Thread and Network Activities. In Proceedings of the USENIX Annual Technical Conference,
San Diego, CA, USA, 14–19 June 2009.

9. Gelle, L.; Ezzati-Jivan, N.; Dagenais, M.R. Combining distributed and kernel tracing for performance analysis of cloud applications.
Electronics 2021, 10, 2610. [CrossRef]

10. Sampaio, A.R.; Kadiyala, H.; Hu, B.; Steinbacher, J.; Erwin, T.; Rosa, N.; Beschastnikh, I.; Rubin, J. Supporting Microservice
Evolution. In Proceedings of the Software Maintenance and Evolution (ICSME), 2017 IEEE International Conference on IEEE,
Shanghai, China, 17–22 September 2017; pp. 539–543.

11. Fonseca, R.; Porter, G.; Katz, R.H.; Shenker, S. {X-Trace}: A pervasive network tracing framework. In Proceedings of the 4th
USENIX Symposium on Networked Systems Design & Implementation (NSDI 07), Cambridge, MA, USA, 11–13 April 2007.

12. Kaldor, J.; Mace, J.; Bejda, M.; Gao, E.; Kuropatwa, W.; O’Neill, J.; Ong, K.W.; Schaller, B.; Shan, P.; Viscomi, B. Canopy: An
End-to-End Performance Tracing And Analysis System. In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, 28 October 2017; ACM: New York, NY, USA, 2017; pp. 34–50.

13. Mace, J.; Roelke, R.; Fonseca, R. Pivot tracing: Dynamic causal monitoring for distributed systems. In Proceedings of the 25th
Symposium on Operating Systems Principles, Monterey, CA, USA, 4–7 October 2015; ACM: New York, NY, USA, 2015; pp. 378–393.

14. Qiu, H.; Banerjee, S.S.; Jha, S.; Kalbarczyk, Z.T.; Iyer, R.K. {FIRM}: An intelligent fine-grained resource management frame-
work for {SLO-Oriented} microservices. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), Virtual Event, 4–6 November 2020; pp. 805–825.

15. Tobey, A.; Spees, S. Tracing Bare Metal with {OpenTelemetry} 2022. Available online: https://www.usenix.org/conference/
srecon22americas/presentation/tobey (accessed on 14 December 2023).

16. Kusuma, G.Y.; Oktiawati, U.Y. Application Performance Monitoring System Design Using Opentelemetry and Grafana Stack. J.
Internet Softw. Eng. 2022, 3, 26–35. [CrossRef]

17. Cassé, C.; Berthou, P.; Owezarski, P.; Josset, S. A tracing based model to identify bottlenecks in physically distributed applications.
In Proceedings of the 2022 International Conference on Information Networking (ICOIN), Jeju-si, Republic of Korea, 12–15
January 2022; pp. 226–231.

18. Schröder, S. Observability in Mobile and Web Based Applications-How to Effectively Track and Monitor Performance and User
Activity Metrics. 2023. Available online: https://aaltodoc.aalto.fi/items/31ef6b87-8845-4ec2-822a-06ec02a5638a (accessed on 14
December 2023).

19. Fani Sani, M.; van Zelst, S.J.; van der Aalst, W.M. The impact of biased sampling of event logs on the performance of process
discovery. Computing 2021, 103, 1085–1104. [CrossRef]

20. Liu, C.; Pei, Y.; Cheng, L.; Zeng, Q.; Duan, H. Sampling business process event logs using graph-based ranking model. Concurr.
Comput. Pract. Exp. 2021, 33, e5974. [CrossRef]

21. Luk, C.K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.; Lowney, G.; Wallace, S.; Janapa Reddi, V.; Hazelwood, K. Pin: Building
customized program analysis tools with dynamic instrumentation. In ACM SIGPLAN Notices; ACM: New York, NY, USA, 2005;
Volume 40, pp. 190–200.

22. Wang, Z.; Sanchez, A.; Herkersdorf, A. Scisim: A software performance estimation framework using source code instrumentation.
In Proceedings of the 7th International Workshop on Software and Performance, Princeton, NJ, USA, 23–26 June 2008; ACM:
New York, NY, USA, 2008; pp. 33–42.

23. Santana, M.; Sampaio Jr, A.; Andrade, M.; Rosa, N.S. Transparent tracing of microservice-based applications. In Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 1252–1259.

24. Zipkin: A Distributed Tracing System. Available online: https://zipkin.io/ (accessed on 14 December 2023).
25. Wassermann, B.; Emmerich, W. Monere: Monitoring of service compositions for failure diagnosis. In Proceedings of the

Service-Oriented Computing: 9th International Conference, ICSOC 2011, Paphos, Cyprus, 5–8 December 2011; Proceedings 9;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 344–358.

26. Chen, M.Y.; Kiciman, E.; Fratkin, E.; Fox, A.; Brewer, E. Pinpoint: Problem determination in large, dynamic internet services. In
Proceedings of the International Conference on Dependable Systems and Networks, Washington, DC, USA, 23–26 June 2002; pp. 595–604.

27. Kitajima, S.; Matsuoka, N. Inferring calling relationship based on external observation for microservice architecture. In
Proceedings of the Service-Oriented Computing: 15th International Conference, ICSOC 2017, Malaga, Spain, 13–16 November
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 229–237.

28. Aguilera, M.K.; Mogul, J.C.; Wiener, J.L.; Reynolds, P.; Muthitacharoen, A. Performance debugging for distributed systems of
black boxes. ACM SIGOPS Oper. Syst. Rev. 2003, 37, 74–89. [CrossRef]

29. Gan, Y.; Zhang, Y.; Hu, K.; Cheng, D.; He, Y.; Pancholi, M.; Delimitrou, C. Seer: Leveraging big data to navigate the complexity of
performance debugging in cloud microservices. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, Providence, RI, USA, 13–17 April 2019; pp. 19–33.

30. Desnoyers, M.; Dagenais, M.R. The LTTng Tracer: A Low Impact Performance and Behavior Monitor for GNU/Linux. Available
online: https://www.kernel.org/doc/ols/2006/ols2006v1-pages-209-224.pdf (accessed on 14 December 2023).

https://research.google/pubs/dapper-a-large-scale-distributed-systems-tracing-infrastructure/
https://research.google/pubs/dapper-a-large-scale-distributed-systems-tracing-infrastructure/
http://dx.doi.org/10.3390/electronics10212610
https://www.usenix.org/conference/srecon22americas/presentation/tobey
https://www.usenix.org/conference/srecon22americas/presentation/tobey
http://dx.doi.org/10.22146/jise.v3i1.5000
https://aaltodoc.aalto.fi/items/31ef6b87-8845-4ec2-822a-06ec02a5638a
http://dx.doi.org/10.1007/s00607-021-00910-4
http://dx.doi.org/10.1002/cpe.5974
https://zipkin.io/
http://dx.doi.org/10.1145/1165389.945454
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-209-224.pdf


Future Internet 2024, 16, 13 20 of 20

31. Montplaisir-Gonçalves, A.; Ezzati-Jivan, N.; Wininger, F.; Dagenais, M.R. State history tree: An incremental disk-based data
structure for very large interval data. In Proceedings of the 2013 International Conference on Social Computing, Washington, DC,
USA, 8–14 September 2013; pp. 716–724.

32. Menasce, D.A. QoS issues in web services. IEEE Internet Comput. 2002, 6, 72–75. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MIC.2002.1067740

	Introduction
	Basic Concepts
	Microservice Architecture
	Distributed Tracing
	Node.js Environment

	Related Works
	Proposed Solution
	System Architecture
	Framework Implementation
	Instrumentation and Transparent Trace Collection Technique
	Pattern-Based Context Reconstruction Formalization for Trace Analysis
	Trace Analysis Technique


	Results
	Use Cases
	GET Request Tracing and Visualization 
	POST Requests Tracing and Visualization
	Tracing and Visualizing Requests Passing through Proxy Microservice

	Evaluation
	Objectives
	Experiments

	Discussion

	Conclusions
	References

