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Abstract: Nowadays, a vehicle can contain from 20 to 100 ECUs, which are responsible for ordering,
controlling and monitoring all the components of the vehicle itself. Each of these units can also send
and receive information to other units on the network or externally. For most vehicles, the controller
area network (CAN) is the main communication protocol and system used to build their internal
network. Technological development, the growing integration of devices and the numerous advances
in the field of connectivity have allowed the vehicle to become connected, and the flow of information
exchanged between the various ECUs (electronic control units) becomes increasingly important and
varied. Furthermore, the vehicle itself is capable of exchanging information with other vehicles, with
the surrounding environment and with the Internet. As shown by the CARDIAN project, this type of
innovation allows the user an increasingly safe and varied driving experience, but at the same time,
it introduces a series of vulnerabilities and dangers due to the connection itself. The job of making
the vehicle safe therefore becomes critical. In recent years, it has been demonstrated in multiple
ways how easy it is to compromise the safety of a vehicle and its passengers by injecting malicious
messages into the CAN network present inside the vehicle itself. The purpose of this article is the
construction of a system that, integrated within the vehicle network, is able to effectively recognize
any type of intrusion and tampering.

Keywords: automotive; cybersecurity; CAN bus; IoT; intrusion detection systems; Bayesian network

1. Introduction

As we can seen in CARDIAN project [1], the CAN protocol was conceived in the
1980s by Robert Bosch Gmbh for connecting ECUs and is still the main communication
protocol used in the automotive environment today [2]. The standard that regulates the
protocol defines the physical level and the data-link level; the other levels of the ISO/OSI
model are therefore established by the network designer. The type of communication
is serial and asynchronous; furthermore, it allows multi-master type communication.
The communication system is of a differential type, and based on the configuration, the
dominant or recessive bit level can be chosen; in fact, we speak of wired and coding when
the dominant bit is 0 and wired or decoding when the dominant bit is 1. This type of coding
occurs by connecting the various nodes of the network in parallel through ports.

The communication protocol is based on sending messages, which will always be
equipped with an ID field and which can be equipped with a data field. The ID field
intrinsically contains the concept of priority, as it is the first part of the message to be
transmitted, depending on the coding installed on the bus; a higher (wired or) or lower
(wired and) ID may have a higher priority than another. Each ECU can participate in the
communication both in transmission and in reception. In the event that two messages are
produced simultaneously, the message with the highest priority will be sent, while the
“conflicting” message will be blocked and sent as soon as the bus is free again.
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The CAN architecture was designed to be lightweight and robust, unencrypted, un-
segmented and authentication-free, so that CAN messages can flow freely to and from
each ECU.

In each vehicle, there are 2 CAN buses: one at high speed, with a baud rate ranging
from 40 kbit/s up to 1 Mbit/s, used for communication between the nodes critical for the
safety of the vehicle and the driver, and for command transmission, and one at low speed,
with a baud rate ranging from 40 kbit/s to 125 kbit/s, used for all other ECUs.

Cars and light vehicles must comply with the SAE J1979 standard [3], which defines the
transmission and decoding of the parameters necessary for vehicle diagnostic operations.
Heavy vehicles (buses, trucks, etc.) must, however, comply with the SAE J1939 protocol [4].
These standards define the communication protocol, the connector to use, the data format
and their decoding using dedicated dbc files.

The integration of services and functions inside a car has introduced the presence of
numerous attack surfaces [5]. These interfaces can be divided according to their access
point and according to their range of action:

• Physical access point: access occurs by connecting a device directly to the CAN
network; this can occur via a USB port connected to the infotainment system, by
accessing the OBD port, etc.

• Short-range access points: access occurs via a connection with a device that can be
located up to a maximum of 300 m away.

• Long-range access points: access occurs via connection to the Internet; the device connected
to the network can be attacked, and controlled, by devices very distant from it.

A connected vehicle can be connected to the Internet to provide services linked to
the manufacturer’s proprietary platform or third-party platforms. Based on what was
previously stated, the CAN bus presents numerous vulnerabilities [6], in particular:

• Due to the lack of authentication, every device connected to the bus can transmit and
receive all data on the CAN bus. Given its nature, it is not able to prevent unauthorized
devices from connecting to the bus and sending harmful messages to all control units.
By accessing the bus, hackers can send malicious messages to any ECU on the network.
Security in this context is only guaranteed by the lack of documentation: hackers
must dedicate time and resources to decode the CAN protocol before they can launch
malicious attacks on a particular vehicle.

• All control units are connected to the same network. This feature is one of the main
reasons why this type of protocol has been successful for automotive networks, as it allows
to considerably reduce the wiring necessary for point-to-point connections between the
various subsystems. However, this implies that a component dealing with, for example,
infotainment is able to communicate with subsystems critical to the safety of the vehicle
and the driver. Some manufacturers are starting to segment the network to separate safety-
critical systems. As far as design is concerned, however, cross-communication between
safety-critical and non-safety-critical systems is still widely used.

• CAN was designed in the 1980s to be light and robust, when car hacking was not a
reality and the computing capabilities of the various control units were not particularly
developed; therefore, adding some type of encryption would only slow down the sending
and decoding of messages, potentially leading to the clogging of the network. However,
because CAN traffic is not encrypted, it can easily be intercepted, altered, modified and
reproduced. In Table 1, it is possible to see a summary of the presented scenario.

Table 1. Automotive vulnerabilities.

Vulnerability Consequences

Lack of authentication Any device can access the network
Lack of segmentation Access to critical ECUs

Lack of encryption Intercepted and altered messages
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2. Background on Cybersecurity in Automotives: Methods and Related Works

The problem of safety in the automotive sector has emerged in recent years, and
several research institutes have developed various techniques aimed at providing adequate
protection for the CAN bus present on board vehicles. The main techniques analyzed are
as follows:

2.1. Network Segmentation

The network segmentation mechanism [7] is the most direct protection system. Using
this technique, it is possible to establish a priori which components of the system must
participate in the communication of a given subnetwork; any attack is thus limited to a
particular area. The connection between the subnetworks is managed through particular
ECUs that act as gateways. This protection model is currently used on commercial vehicles
as it is very simple to implement. This system is not sufficient to guarantee the protection of
the vehicle when the compromised node actually turns out to be the gateway. Furthermore,
this type of network configuration makes the maintenance of the network itself more
expensive and difficult.

2.2. Encryption

Various encryption systems have been developed [8] which are not particularly com-
putationally expensive. Numerous companies, both automakers and otherwise, have
developed their own encryption techniques. Unfortunately, it has been demonstrated that
these can be easily bypassed by potential attackers. The main problem with using this tech-
nique arises from the fact that, in order to be effectively implemented, the data field of the
message must have a fixed width. This problem can be solved by separating the messages
of larger width into various messages, but this solution can only be used if the data traffic
on the bus is very low, in complete contrast to recent technological developments. The
use of this technique is also linked to the use of ECUs equipped with adequate calculation
capacity for the generation and management of dynamic decryption keys; otherwise, if we
consider the life time of a commercial vehicle, it is highly possible that the pre-installed
static decryption key will be exposed.

2.3. Authentication

Currently, there are authentication systems [9] that allow response times for authen-
tication of around 50 us. These are based on the use of “trust groups”, which are in turn
equipped with secret keys. This method is particularly effective when these groups are
few compared to the number of ECUs. The protection mechanism consists in sending an
authentication message after each transmitted frame, the data traffic is therefore always
doubled. The main problem, similarly to what happens with the segmentation method,
arises when one of the ECUs belonging to one of the trust groups is compromised.

2.4. Intrusion Detection Systems

To overcome the problems of the protection systems described previously, intrusion
detection systems (IDSs) can be used [10]. The installation of an IDS does not compromise
data traffic on the bus nor does it require the modification of the various CAN controllers,
necessary for the use of encryption and authentication techniques as well as the struc-
ture of the network itself. The main intrusion detection methods can be divided into
two categories:

• Signature-based: the system identifies the presence of attacks through the use of
databases in which different types of attacks are present. It is clear that this method is
not particularly effective if the type of attack has not been previously described.

• Anomaly-based: the system is responsible for analyzing the behavior of the network
and is able to recognize any deviations from normal behavior. Unlike signature-based
approaches, it can easily identify attacks that are not yet known.

In the next section the main anomaly-based methods will be described.
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3. Intrusion Detection Systems in Automotives

The design and implementation of an intrusion detection system must take into
account the following critical issues [10]:

• Limited resources: the ECUs inside a vehicle are typically equipped with small memo-
ries, little computational power and limited bandwidth.

• Real-time operation: CAN messages are generated and transmitted in real time;
delaying a message and generating queues can therefore become critical during com-
munication. The messages must be processed by the other ECUs as soon as they are
received, in order to guarantee the correct functioning of every part of the vehicle.

• CAN traffic management: the CAN traffic management protocol is different from
typical internet communication protocols; for example, CAN messages always have a
broadcast type operation.

• Unstable connections: since these are moving systems, they could move in areas with
limited or even no connection to the network. The use of IDS systems connected to
the network must take into account the fact that such areas may exist, guaranteeing
smooth operation offline, even for long periods of time.

• Weight, dimensions and cost: the installation of an IDS can affect the topology of the
network to which it is connected; it must therefore be chosen appropriately so as not
to require an excessively expensive modification of the network.

3.1. Main Cyberattack Techniques

Starting from the analysis of the CAN bus, the possible attack types can be divided
into two categories [11]:

• Attacks based on transmission frequency;
• Attacks based on message content.

Frequency-based attacks generally aim to compromise the operation of the entire
bus, effectively causing it to stop functioning. The most obvious type of frequency-based
attack is DoS (denial of service) [12]. This technique consists in sending messages with the
highest priority and zero content in rapid succession. In this way, all other messages will
be delayed, causing malfunctions in the ECUs, which can even go offline and stop actively
participating in the communication. A very similar type of attack is the fuzzy attack, which
consists in sending numerous messages with random IDs and contents. This type of attack
still leads to the compromise of the bus, but is more difficult to identify.

Attacks based on the content of the message do not aim to destroy the bus, but to
compromise the nodes. This type of attack can be used to disable some peripherals (such
as the brakes), suspend the sending of data, or report non-existent faults. Furthermore, on
some types of vehicles, it can allow an attacker, connected remotely, to take control of the
vehicle itself. This type of attack typically occurs by sending messages structured in an
identical manner to those typically present on the bus; these can be generated by external
devices connected to the bus, or by nodes of which it is possible to take control.

This category also includes man-in-the-middle attacks, which request a great deal of
information from the vehicle via remote frames, and then send that information to some
externally connected device.

This type of attack can be recognized directly by interpreting the messages circulating
on the bus (Table 2).

Table 2. Main cyberattack categories.

Type of Attack Consequences Detection

DoS Network saturation Analysis of the data present on the bus
Fuzzy Processing of altered data Behavioral data analysis

Man-in-the-middle Theft of sensitive data Data interpretation
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3.2. Intrusion Detection Techniques

As explained in the previous section, the main attack identification techniques can
be divided into signature-based and anomaly-based. Signature-based techniques are
ineffective against unknown attacks; therefore, we proceed to describe different approaches
for anomaly detection [13–15].

An anomaly-based system observes the behavior of the system in real time, and when
it deviates from the expected normal function, it triggers an alarm signal. It is clear that in
order to create an adequately effective system, the training phase of the system becomes
critical (Table 3). In order to create normal operating profiles, the following approaches are
typically used [16,17].

Table 3. Approaches for IDS development.

Approach Advantages Disadvantages

Data frequency-based
approach Simplicity of implementation Cannot identify all types

of attacks

Machine learning approach Effectiveness in identifying
anomalous situations Computational complexity

Statistical approach High accuracy Does not recognize
replay-type attacks

Approach based on the
electrical analysis of the

CAN bus

Direct analysis of the
operating state of the bus High levels of False Positives

3.3. Bayesian Network Technique

A further method for identifying attacks involves the use of probabilistic approaches [18,19].
This method is based on the use of machine learning techniques aimed at training a system
that is able to classify the attack state on a system by providing the probability that it being
under investigation is the result of an attack. The technique considered involves the use of
Bayesian networks.

A Bayesian network is a graphical model that represents the dependency relationship
between a given number of variables [20].

Its structure can be represented through the use of a directed graph: a graph equipped
with directed nodes and arcs. This is a feedforward structure: starting from any node
and following the direction of the arcs, it is not possible to return to the node itself or to
nodes whose hierarchical level is higher. Each node represents a variable whose possible
state, unique and mutually exclusive with respect to the others, is associated with a certain
probability value, while the arcs between nodes indicate a dependence relationship between
the variables represented by them: if two nodes are not directly connected, they are
conditionally independent [21].

TPCs are associated with nodes that have parents, i.e., that are connected to at least
one edge that points to them: tables containing the probabilities of the values of the node
conditioned by the possible combinations of values of the parent nodes. In those nodes
that do not have parents, there will instead be a prior probability table which will simply
express the probabilities for each value of the node variable.

Inference on Bayesian networks is a statistical inference process in which Bayes’
theorem is exploited to estimate and update the probability of a hypothesis as soon as new
evidence is collected. The theorem allows us to express a conditional probability in terms
of the opposite conditional probability, weighing it appropriately [22].

4. Case Study

In the previous sections, the main vulnerabilities in the automotive sector have been
shown, as well as the main related countermeasures; the main techniques for intrusion
detection have also been analyzed. Furthermore, it has recently been demonstrated how
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easy and possible it is to break in and inject malicious messages into the CAN bus of a
vehicle, accessing it remotely through the infotainment system.

This paper will describe the creation of an intrusion detection system based on the
use of a Bayesian network, which, connected directly to the CAN bus, controls the flow of
messages in order to detect anomalies and intrusions. The Bayesian network was structured
starting from the analysis of the automotive domain ontology.

The data used for training and validation of the network are real data, acquired from
the CAN bus of a heavy vehicle, in SAE J1939 format. This dataset was modified by
inserting attacks at regular time intervals, as described in [23].

4.1. Automotive Domain Ontology

For the representation of a domain of interest, ontologies are increasingly used. This
type of representation allows us to describe all the relevant entities of a particular domain
of interest, and the relationships between them, through the use of a data structure.

For the automotive domain, one of the most used ontologies is the one built by
the Automotive Ontology Working Group [24] (Figure 1), a consortium of companies
and individuals whose aim is to develop this ontology with the aim of guaranteeing an
increasingly better interoperability of data within the automotive industry and to create
a place where researchers and professionals can collaborate to advance developments in
this sector.
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The ontology used is represented in the following figure. From it, it is clear that the car
object is characterized by numerous properties, listed in the table below. The data which,
in turn, have properties are called types.

4.2. Three-Step Algorithm

The intrusion detection methodology consists of three phases and is described in
patents No. 102021000009548 and No. EP 22168635.5 (see Figure 2).
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The first phase includes the acquisition of data within time windows of standard
duration. Within these windows, it may happen that multiple messages containing the
same information may be repeated; in this case, the data that will be forwarded to the
second step will be the result of the averaging operation between these. On the contrary, if
the data are not present within the time window, they will be replaced by the value 0.

The second phase concerns the identification of the driving scenario (e.g., urban
driving, motorway, etc.). The sequence of data produced by the first phase is analyzed and
compared with the predefined scenarios using the Jaccard index. At that point, the scenario
that will be used as a reference will be the one whose Jaccard index has the highest score.

The Jaccard index, also known as the Jaccard coefficient, is defined, for two sets called
A and B, by the following equation:

J =
|A ∩ B|
|A ∪ B| (1)

The identification of the scenario allows the selection of the Bayesian network to be
used, and more precisely, the values contained in the a priori and conditional probability
tables, which describe each node of the network.

The third phase involves the use of the Bayesian network. The data produced by the
first phase are fed to the Bayesian network, which will provide as output the probability
that this data set was determined by an attack.

4.3. System Architecture

The system has been developed in such a way as to have direct access to the vehicle’s
CAN bus like a normal ECU (see Figure 3), which will be able to signal the presence of an
attack by sending a file in json format via MQTT protocol to the node to which the device
is connected.

From a hardware point of view, the device is made up of the Minized board produced
by Avnet. The board’s SoC consists of an ARM-Cortex-A9 single core processor and an
Artix 7 FPGA. A CAN controller is also directly connected to this SoC, making it necessary
to install only the CAN transceiver. In order to connect it, it is necessary to configure,
using the Vivado software, version 2020.1, the enabling of the CAN controller peripheral
integrated into the System on Chip, as well as its connection to the pins of the Pmod2 port
by modifying the xdc file associated with the project. The CAN controller used in this
phase is the Transceiver SN65HVD230. This device interfaces directly to the CAN bus via
the CAN-H and CAN-L lines, and takes care of the conversion between the differential
signal coming from the bus and the serial one used by the CAN controller.

The AXI bus is also connected to the CPU of the device, which is used for the connec-
tion and transfer of data between the CPU and the FPGA. The following figure highlights
the AXI peripheral, which is connected directly to the CPU unit of the Zynq SoC (Advanced
Micro Devices, Inc., Santa Clara, CA, USA).
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The Bayesian network will be connected downstream of the AXI peripheral, using
the AXI GPIO component (see Figure 4). For each of these components, the manufacturer
Xilinx makes IP available already integrated into Vivado.
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The system created in hardware, including a Bayesian network connected to the AXI
bus and including the enabling of the CAN controller, is used as the basis for compiling
the Petalinux operating system. Petalinux is a particular Linux distribution optimized for
embedded systems and systems based on System on Chip containing FPGAs.
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Using the Vivado software, the hardware file containing the part relating to the device
peripherals and the bitstream relating to the Bayesian network are exported.

Subsequently, the operating system is compiled and configured, which is finally
installed on the board. The programs used for the acquisition of CAN messages, for
communication with the AXI interface and for sending messages via MQTT, are written in
C, with the integration of the Mosquitto and cantools libraries.

There are two scripts in use, and they are executed in parallel; the management of
active threads is delegated to the operating system.

4.4. Deployment of Bayesian Network

The Bayesian network was built after a careful analysis of approximately 300 h of
acquisition, distributed across four different vehicles, operating in the same conditions
and compatible with the SAE J1939 protocol. From the analysis of the data produced, it
emerged that only a small number of parameters are suitable for analysis, as they are sent
on the bus at intervals of less than 10 ms. Furthermore, only data presenting at least one
variation during the driving and, therefore, acquisition period were used.

The nodes of the network, and the definition of the classes to which the data belong,
have been described in the previous section (Figure 5).
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Figure 5. Structure of the Bayesian network.

The following table highlights, explicitly and for each of the nodes, their parent nodes,
i.e., those nodes whose state inevitably conditions the state of the node itself. The Bayesian
network was then implemented using Vivado software in VHDL language.

The hardware structure of a Bayesian network [25] is very simple; each node is
composed of the following:

• a memory unit containing the a priori and conditional probability distributions;
• a multiplier, already described by the IPs present within Vivado, for calculating

probabilistic inference.

Nodes that do not have parents implement a ROM memory, so it is possible to treat
the input data as an address. However, the nodes which do have parents carry out the
calculation of the output probability by applying the previously mentioned Bayes’ theorem.
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As can be seen from Figure 6, each node receives as input a memory address of variable
width, depending on the node, and a probability represented with a 16-bit fixed point
coding. Following each multiplication, in order to guarantee the uniformity of the data, a
truncation is carried out, taking only the 16 most significant bits. The final attack detection
node contains a comparator, so as to provide an affirmed output only if it exceeds the
threshold of 0.5.
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Figure 6. Hardware deployment of the Bayesian network.
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5. Experimental Results

In this section, the testing phase will be described and the results obtained will
be highlighted.

In the previous section, it was shown how the entire system was built in order to
evaluate the performance of a Bayesian network in recognizing intrusions starting from a
sequence of CAN messages present on the bus. These messages, in the situation examined,
contain all the information relating to the status of the vehicle.

The calculation of the prior and conditional probabilities of each node was carried out
in Python, using the Pomegranate library.

The Pomegranate module deals with implementing probabilistic models from the
simplest, such as probability distributions, to the most complex, such as Bayesian networks.
This module was developed on the idea that all probabilistic models can be represented as
probability distributions. This vision allows the various models to be developed in a light
and flexible way. Furthermore, each model has numerous integrated features, including
various types of learning. It allows us to implement Bayesian networks that use different
types of distributions on each feature. Finally, with a few commands, starting from a known
number of pieces of evidence, it is able to determine the posterior probability associated
with all the nodes of the network.

The probability distributions were determined from the acquired and pre-processed
data. The training dataset was constructed as described in [24]. Four types of attacks have
been defined:

• DoS attack: messages with CAN ID composed of only zeros and a random data field
are injected every 0.3 milliseconds;

• Fuzzy attack: messages with CAN ID composed of random ID and random data field
are injected every 0.5 milliseconds;

• Gear attack: the message with ID and SPN relating to the current gear is injected, with
a random data field every millisecond;

• RPM attack: the message with ID and SPN relating to the current RPMs is injected,
with a random data field every millisecond.

For each interval containing one or more malicious messages, the attack value is set to
1; otherwise, it is set to 0. The number of messages acquired before data entry is 10,900,724;
from these data, another four datasets were generated, one for each type of attack. Each
data set is composed of the first 50% (5,450,362 messages in 150 h) of normal operation;
the remaining part presents the injection of attacks. The network was then trained with a
total of 20,058,781 message frames, of which 19,781,678 were malicious. Once the network
was trained, it was tested first by using a real dataset lasting 1 h, and then with datasets
containing the previously described attacks, of the same duration. The tests were carried
out by sending messages directly to the CAN bus of the device using a USB-CAN converter.

The first important parameter to consider is the system response time. The timestamps
of the instant in which the last message of the time window is sent and the timestamp in
which the processing produces the json file were analyzed. To classify the results obtained,
the following cases were distinguished:

• True Positives (TP): presence of an attack and correct reporting of this;
• True Negatives (TN): absence of attacks and recognition of this absence;
• False Positives (FP): absence of attacks but reports of attacks;
• False Negatives (FN): presence of an attack but no recognition of it.

Using the confusion matrix, the reference parameters such as precision, recall and
f1-score were calculated.

The first case analyzed, a dataset without malicious messages, produced the following
results: (Tables 4–12)
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Table 4. Lack of attacks.

Attacks/Detected Yes Not

Yes 0 63

No 0 3678

The second case, a dataset hacked by DoS attack, produced the following results:

Table 5. DoS attack.

Attacks/Detected Yes Not

Yes 17,501 230

No 22 1831

The third case, a dataset hacked by fuzzy attack, produced the following results:

Table 6. Fuzzy attack.

Attacks/Detected Yes Not

Yes 27,311 132

No 42 1736

The fourth case, a dataset hacked by Gear attack, produced the following results:

Table 7. Gear attack.

Attacks/Detected Yes Not

Yes 50,121 111

No 34 1735

The fifth case, a dataset hacked by RPM attack, produced the following results:

Table 8. RPM attack.

Attacks/Detected Yes Not

Yes 50,117 110

No 35 1740

The results obtained showed the following performances in terms of precision, recall
and f1-score:

Table 9. Precision.

Type of Attack Value (Percentage)

No attack ND

DoS 0.998

Fuzzy 0.998

Gear 0.999

RPM 0.999
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Table 10. Recall.

Type of Attack Value (Percentage)

No attack ND

DoS 0.987

Fuzzy 0.995

Gear 0.997

RPM 0.997

Table 11. F1-Score.

Type of Attack Value (Percentage)

No attack ND

DoS 0.992

Fuzzy 0.996

Gear 0.998

RPM 0.998

Table 12. Response time.

Type of Attack Response Time (Milliseconds)

No attack 91 ms

DoS 92 ms

Fuzzy 89 ms

Gear 85 ms

RPM 93 ms

6. Conclusions

The developed system shows how it is possible to use probabilistic approaches based
on Bayesian networks for the recognition of cyber attacks present on the CAN bus; in fact,
approximately 99% of attacks were correctly classified. This was possible thanks to the
high number of samples, which allowed the correct training of the network. The averaging
operation carried out during data collection made it possible to create an effective index of
the status of the vehicle in a given frame, and the high presence of attacks has guaranteed the
entire system to be able to respond correctly to numerous types of attacks. The application of
domain ontologies allowed an optimal description of the vehicle characteristics, avoiding
the presence of nodes that could have led the system to never converge to an optimal
solution. The response times of the system are very low thanks to the use of a HW
accelerator built on FPGA, allowing real-time operation. The structure of the network
obtained, implemented on FPGA, shows the limited consumption of resources, thus also
managing to reduce energy consumption. Future developments include, in addition to
testing in a controlled real environment, also the implementation of contextual datasets
that can better react to the conditions surrounding the vehicle. Once it has been verified
that the system is also effective in this environment, it will be possible to develop strategies
for the exclusion of malicious nodes or for the avoidance of malicious data flows.

7. Patents

This research work is based on Italian patent No. 102021000009548, registered on
14 April 2021, and International Patent pending No. EP 22168635.5, registered on 14 April 2022.
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