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Abstract: The increased penetration of Distributed Energy Resources (DERs) in electricity markets
has given rise to a new category of energy players, called Aggregators, whose role is to ensure fair
remuneration for energy supplied by DERs, and support the smooth feeding of the intermittent
energy produced into the distribution network. This paper presents a software solution, described
as a design pattern, that governs the interaction between an Aggregator and DERs, leveraging
blockchain technology to achieve a higher degree of decentralization, data integrity and security,
through a properly designed, blockchain-based, smart contract. Thus, the proposed solution reduces
the reliance on intermediaries acting as authorities, while affording transparency, efficiency and trust
to the energy exchange process. Thanks to the underlying blockchain properties, generated events
are easily observable and cannot be forged or altered. However, blockchain technology has inherent
drawbacks, i.e., mainly the cost of storage and execution, hence our solution provides additional
strategies for limiting blockchain usage, without undermining its strengths. Moreover, the design
of our smart contract takes care of orchestrating the players, and copes with their potential mutual
disagreements, which could arise from different measures of energy, providing an automatic decision
process to resolve such disputes. The overall approach results in lower fees for running smart contacts
supporting energy players and in a greater degree of fairness assurance.

Keywords: blockchain; smart contracts; design patterns; energy market

1. Introduction

The growing adoption of Distributed Energy Resources (DERs), such as small-scale
green energy producers that feed into the main grid energy gathered by photovoltaic power
plants or small wind turbines, has given rise to Aggregators, a new category of energy play-
ers in electricity markets [1–3]. Aggregators play a crucial role by ensuring fair and reliable
compensation for the energy supplied by DERs and facilitating the seamless integration of
intermittent energy production from renewable sources into the distribution network [4].
An Aggregator is responsible for supplying an overall baseline power (aggregate power) to
a higher-level entity (company), hereafter termed the Operator, which manages electric lines
and other power grid devices to serve residential, commercial, and industrial consumers.

From the viewpoint of system software architecture, researchers are actively exploring
various approaches to aggregating and coordinating DERs, with a view to addressing key
challenges and enabling efficient energy management. While standards like OpenADR
(Open Automated Demand Response, https://www.openadr.org, accessed on 25 July 2023)
are available to address the goal of interoperability among different systems (by a common
format for message exchange), several other noteworthy, high-level, concerns are still
awaiting satisfactory solutions. Such concerns include, e.g., reliable orchestration and data
storing, incentives to behave fairly, resolution of potential disagreements, etc.

Thanks to its decentralized nature, blockchain is immune from vulnerabilities caused
by single points of failure. Also, blockchain-run code, or smart contracts, can be used to
store on the blockchain permanently data that cannot be altered later on and are visible to
any interested player, thus ensuring transparency and fairness, and reinforcing trust. For
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these reasons, blockchain has been widely acknowledged as an effective framework for
designing distributed applications and achieving decentralization and transparency [5–7].

Nevertheless, in this respect, there are several outstanding issues. To begin with,
simply relying on efficient consensus algorithms to ensure the consistency of the blockchain
state is, admittedly, not sufficient to prevent malicious behavior by participants. When
employing a technology that is known to be vulnerable to attacks, this possibility must
constantly be addressed [8–10]. In addition, while the blockchain has the potential to
reduce disagreements due to its transparency feature, current approaches lack specific
procedures for addressing and resolving disputes that may arise between a DER and the
Aggregator [11–15]. Moreover, many approaches use the blockchain essentially to handle
financial and energy balances [16–20], and, due to the large amount of interactions and
data typical in the energy market, possibly incur in excessive cost for the use of blockchain
computing and storage resources.

This paper proposes a design pattern, named Proof of Flow (PoF), which governs the
interactions between DERs, providing electrical energy to the system, and an Aggregator
that manages the DERs according to the energy flows it detects and the requests made by
the Operator. Accordingly, the proposed framework, besides catering for the transparent
and efficient coordination of DERs with a view to ensuring fair remuneration, addresses
the case where a DER is unable to provide the amount of energy it committed to offer,
and provides means for the resolution of any potential disputes. In addition, this pattern
minimizes blockchain access and related costs in terms of fees incurring when running a
smart contract. We consider a localized scale setting, such as a microgrid or a small energy
community comprising a few dozen DERs, where the Aggregator is physically linked to
the DERs it manages. This enables seamless energy transfer and measurement, while data
exchange occurs via the blockchain when needed.

The PoF pattern leverages a smart contract we implemented in Solidity, called “ARIA”
(Aggregator Renewable Integration Agreement), which oversees the interaction between
energy players. It works in conjunction with a smart contract called “Vault” to maintain
and manage a balance for rewarding DERs and the Aggregator. We first introduced the
Vault smart contract in the context of the “Treasury Manager” design pattern [21].

Blockchain technology gives support to the verifiability of smart contract code and
the permanence of storage, ensuring their immutability, regardless of potential tampering
that could occur in a single host, thus ensuring security, transparency and ultimately trust.
Specifically, our solution relies on blockchain to make sure that algorithms governing
energy players are immutable, and generated events can be easily observed, cannot be
questioned, and cannot be lost. However, the data storage we employ is outside the
blockchain, this reduces the frequency of blockchain accesses, the storage space needed,
hence the associated costs. Data recorded outside the blockchain in a set of external
hosts are then ordered temporally, regardless of local clocks, by exploiting, as a surrogate
timestamp, the blockstamp, i.e., the hash of the latest block stored in the blockchain. As data
are stored on external hosts, labeling them with blockstamps ensures that all actors can
assign them temporal identifiers, which depend on the blockchain state and maintain a
pace consistent with the blockchain itself. This functionality plays a crucial role in our
system’s dispute-resolution measures. Disputes could arise when a DER has not received
the expected amount for the energy production, then energy measures from different smart
meters have to be compared for given timeframes.

In short, the approach outlined leverages the blockchain, and its decentralised nature,
to address the trust-related issues that may arise in traditional cloud-based systems, while
minimizing the vulnerabilities associated to solutions relying on a disputable central
authority. Furthermore, the proposed PoF pattern, with some expedients, succeeds in
greatly reducing the typical costs that would arise from a naive, indiscriminate usage of
blockchain computation and storage resources, without sacrificing the level of trust such
an usage would straightforwardly—albeit expensively—afford.
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The remaining sections of the paper are structured as follows. Section 2 discusses the
related work in the literature. Section 3 introduces blockchain technology, smart contracts,
and describes the Treasury Manager design pattern. Section 4 describes and explains the
proposed pattern. Section 5 highlights potential issues that may arise in implementing the
pattern. Finally, Section 6 draws the authors’ conclusions.

2. Related Work

Multiple papers addressing the interaction between DERs and Aggregators have been
proposed. Technologies such as IoT, artificial intelligence, and blockchain were discussed
in the context of the optimization of the energy industry to address challenges related to
security, authorization, and data integrity [22]. Blockchain technology and smart contracts
in the energy sector were employed to have a decentralized approach balancing energy
demand and supply [23].

A blockchain architecture was used to share the aggregator’s role across all devices
on a microgrid network with the goal of minimizing the energy provision costs while
considering the operational limitations of the distribution network and DERs, ensuring
both operational feasibility and fair payments to all parties involved. In addition, to
tackle the optimization problem, the Alternating Direction Method of Multipliers (ADMM)
algorithm was used to obtain solvable subproblems assigned to each respective node across
the network [24].

To manage the various actors involved in the generation, trade, and consumption
of green energy, cloud storage and Energy Web blockchain technology (https://www.
energyweb.org/, accessed on 25 July 2023) were used in combination to ensure the im-
mutability and authenticity of data. Information about production and consumption was
stored in the cloud, while their corresponding hash signatures (having a smaller footprint)
were stored on-chain. The inherent trust feature of blockchain technology ensured secure
and indisputable transactions [25].

A decentralized energy trading system based on consortium blockchain technology
and credit-based payment schemes was proposed to ensure secure and decentralized
energy trading, specifically in microgrid scenarios. To enable fast payments, peer nodes
can request “energy coins” loans from credit banks which are participants in the network.
Additionally, the Stackelberg game theory was used to determine an optimal loan pricing
strategy that maximizes economic gains for credit banks [11].

A blockchain-based system was used to make smart contracts address transparency
issues in the process of managing aggregated DERs, by storing on the blockchain oper-
ational data when a control event is triggered by the VPP. Stored data include supplied
power, timestamps, and deviations. Then, a smart contract was used to publish such data
and make payments to DERs [12].

Aggregators were proposed to implement state changes in devices by using local
hardware and Hyperledger Fabric blockchain technology (https://www.hyperledger.org/,
accessed on 25 July 2023) to create a decentralized energy trading platform, enabling DERs,
that in this case are prosumers (entities that both produce and consume energy), to trade
surplus energy. At the start of each market round, prosumers transmit the amount of extra
energy they can provide or absorb from the microgrid. A smart contract was used to match
these values and determine energy injection or withdrawal from the grid [13].

A smart contract executing on an Ethereum blockchain, with a proof-of-authority
(PoA) consensus algorithm, was proposed to coordinate DERs and minimize energy costs,
while enabling prosumers to update their energy trading decisions, optimize energy trading
scheduling, and participate in demand response activities [14].

A sub-metering device was designed to locally collect energy flow data employed to
handle demand response actions on the blockchain. Data science and machine learning
algorithms were used to produce load-demand and electricity price forecasts using collected
data and weather forecasts [16].

https://www.energyweb.org/
https://www.energyweb.org/
https://www.hyperledger.org/
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A framework, built on the Ethereum platform in a consortium environment using
the PoA, was proposed to record energy and monetary transactions among the entities
involved to improve DER visibility and the verification of transactions in the wholesale
energy market. The blockchain verifies transactions, executes smart contracts, and records
events [17].

A platform was designed to assess blockchain solutions’ performance in various sce-
narios within modern grids, with the goal of accelerating the development of solutions
for efficient energy exchange. The platform offers a collection of reusable services that
connect existing grid tools with the blockchain, along with an environment that allows
developers to abstract connection and performance measurement activities. The authors
employed HyperLedger Fabric to implement a blockchain-based app that allows Aggre-
gators to participate in wholesale markets under the oversight of a Distribution System
Operator. Off-chain databases are also used to store operational data like measurements,
configurations, and processing logs [18].

To address the vulnerability of single point of failure, a governance platform based
on blockchain and smart contract was proposed to enhance secure and resilient control
services for DERs. It operates during outages until normal functionality is restored [26].

A model was proposed to have the Aggregator coordinate users in the microgrid
and provide data collected from consumers and prosumers to the blockchain. By using a
smart contract, it matches supply and demand employing a double auction mechanism.
Inter-planetary File System (IPFS https://ipfs.tech, accessed on 25 July 2023) was used as a
decentralized data storage. By leveraging blockchain technology a more efficient energy
use was obtained [19].

The integration of DERs, including a microgrid, utility-scale batteries and solar panels,
was proposed, by means of smart contracts, allowing to adjust the desired output for
each DER in response to grid needs, and establishing criteria for each participant and
compensating them, using a token reflecting the quantity of energy generated, the type of
energy resource, and the sort of ancillary service [20].

The above papers investigated the use of blockchain technology to develop frame-
works enabling the efficient management of energy players. Blockchain has been proposed
as a solution to overcome the single points of failure and enhance security, transparency, and
automation, by using smart contracts. However, relying merely on the inherent characteris-
tics of blockchain is not sufficient to effectively transition to a decentralized management
of DERs. Blockchain technology has some limitations [21] that must be taken into account.
None of the above approaches explicitly addresses the issues of unprocessed transactions,
transactions cost, and on-chain storage costs. However, regarding the first two, the majority
of the above proposals refer to private or consortium blockchains, implicitly assuming
that transactions, whether they are payments or smart contract invocations, are always
processed and that their associated fees are not subject to the fluctuations observed in
public blockchains. These assumptions have allowed the authors to focus on the impact of
consumer prices or producer revenues. Nevertheless, given the inherently slower nature of
blockchain code execution, compared to a client-server architecture, and considering that
data are stored permanently, further advances for optimizing blockchain access are needed.
Regarding the storage, several proposals combined cloud and on-chain storage without
providing specific strategies to prevent single points of failure. In addition, even smart
contracts may represent a weakness: a bug or poor programming techniques could lead to
the loss of their funds [21]. The above said approaches discussed the use of smart contracts
in a general context, emphasizing their role in automation, however without providing
details on how to mitigate such a risk.

From a broader perspective, not all the forces at play in governing the energy players
were considered in previous works. The proposed solutions do neither incentivize or
penalize the participants according to their behavior, nor do they address the issue of data
veracity that is broadcast to the blockchain. Finally, none of them proposed a method to

https://ipfs.tech
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automate the resolution of potential disagreements in the measurement of the amount of
energy fed into the power grid.

In our proposal we put forward a solution that can adopt a public blockchain like
Ethereum while considering not only the inherent constraints of blockchain technology
in general, but also the specific limitations that Ethereum may have when compared to
private or consortium blockchains. Our main results include: (i) a software architecture
that governs the actors involved in a distributed green energy system, without resorting to
a centralized authority to store data (Section 4); (ii) incentives for actors to behave fairly,
thanks to the use of ranking, rewards and penalties (Sections 4.1 and 4.2); (iii) a way to
check the truthfulness of data measuring energy production (Section 4.2); (iv) a solution
to limit the interactions with the blockchain, hence lowering execution fees (Section 4.2);
(v) an automatic procedure to manage disagreements (Section 4.4).

3. Background

This section highlights the core features of blockchain technology and smart contracts,
discusses some of their limitations, and describes the Treasury Manager design pattern
used to hold the balance of the contract [21].

3.1. Blockchain

A blockchain is a peer-to-peer distributed ledger that stores cryptographically signed
transactions in an append-only list of linked blocks, namely the chain [27]. Blockchain
technology combines different well-known concepts, such as digital signatures, crypto-
graphic hashing functions, and decentralized consensus algorithms, to validate transactions
without relying on a central authority [28–31]. Once written, the content of a blockchain
is immutable and cannot be deleted, otherwise the entire data recorded become invalid.
This feature ensures the provenance, integrity, and authenticity of data, preventing tamper-
ing. Consensus among all peer network nodes, called Validators, which reach a common
agreement on the state of the distributed ledger, ensures the reliability of the blockchain.
The consensus algorithm also discourages dishonest behavior by making it economically
disadvantageous for a Validator to deviate from the expected protocol behavior [5].

Blockchains are classified as either public (permissionless) or private (permissioned).
Public blockchains provide a decentralized system in which users can view transactions,
write data, and run validator nodes. Private blockchains need permission to access and
are governed by a limited number of nodes, which are often controlled by the company
that created the network [32]. This approach allows for prioritizing scalability and security,
while sacrificing decentralization. A consortium blockchain is a form of private blockchain
in which equally powerful validators, from multiple organizations or entities, share the
responsibility of maintaining the blockchain network and ensuring its integrity and security.
Consortium blockchains provide a balance between decentralization and control.

3.2. Smart Contracts, Block Time, Gas

Ethereum [5] was the first blockchain that introduced the innovative possibility of
executing user programs on a virtual machine, called the Ethereum Virtual Machine (EVM),
that operates under each Validator node within its network. These programs, or “smart
contracts”, are compiled to bytecode and deployed to the blockchain. They can be executed
requesting a transaciton towards their addresses and can independently maintain their
own balance. Once stored on the blockchain, smart contracts’ bytecode cannot be modified,
reflecting the immutable feature of the blockchain. However, they can be removed by the
owner, i.e., the entity owning the private key of the address that deployed the contract. The
advent of smart contracts has turned the blockchain into a global computer accessible from
a variety of different devices, making it a general-purpose technology that extends beyond
finance and offers opportunities to leverage the blockchain as a backend for designing
distributed applications, offering enhanced transparency, security, traceability, and trust
across various sectors.
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In the blockchain domain, time is marked by the block time, which refers to the average
time it takes for the network to generate an additional block. e.g., in Ethereum, a new block
is minted every 12 s, except in unexpected conditions. Consequently, a transaction that
proposes a new state based on the prior state of the blockchain will face at least a 12-second
delay [33,34]. Moreover, smart contracts’ execution is limited by a maximum amount of
“gas” consumption allowed. Gas is a metaphor that quantifies the computational effort
required while executing a smart contract, which results in a financial cost that users have
to pay to execute the code [35].

3.3. Treasury Manager Design Pattern

Generally, many smart contracts manage users’ balances. When the code of a smart
contract has to change to meet new requirements or to fix bugs, then a new version of the
contract has to be deployed and the accumulated financial reserve has to be transferred to
the latest version, then the previous version will be deleted. However, for such a balance
transfer operation expensive gas fees could incur [36].

The Treasury Manager pattern has been devised to avoid the need to transfer the
accumulated reserve from the old smart contract to the latest version, thereby avoiding the
gas fees (see Figure 1). The following participants constitute the Treasury Manager.

• Registry smart contract that stores the address of the Service smart contract [37].
• Service smart contract that provides a useful service.
• Vault smart contract that retains the financial reserve and manages user balances.

Figure 1. Treasury Manager pattern after the Service Contract has been updated.

Registry acts as a proxy and hands to client the requested Service address. When the
Service is updated, its new address is stored in Registry, ensuring that clients always access
the current version of the service. This solution enables users to interact with new versions
of Service seamlessly, even though the new smart contracts have different addresses. Vault
is responsible for managing users’ accounts and balances, and can only be triggered by
Service to authorize withdrawals and deposits. Service, which runs the business logic, can
be updated independently of Vault, which remains unchanged and continues to hold all
balances. The new Updated Service will refer to the same Vault contract, hence this approach
avoids the need to transfer the accumulated reserve from one wallet to another, thereby
saving expensive gas fees.
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After deploying a new version of the Service contract (Updated Service Contract), the
owner of the contracts, (see Sections 4.6 and 4.8), will store its address in the Vault contract,
allowing the Updated Service contract to become the only entity authorized to interact with
the Vault to unlock users’ coins (hence, old Service Contract cannot deposit or withdraw
any amount anymore).

Treasury Manager is used by the Proof of Flow pattern to hold, manage, and maintain
the energy players’ balances, as well as handle DERs’ and Aggregator’s deposits and
rewards.

4. Proof of Flow Design Pattern

To provide a clear and unified framework that defines the roles, responsibilities,
and interactions between DERs and Aggregators, we propose the Proof of Flow design
pattern. We assume that DERs only operate as energy producers, i.e., they inject energy
into the power grid. Furthermore, the Aggregator acts on behalf of the Operator, which is
responsible for coordinating the overall energy grid. Proof of Flow design pattern aims
at providing efficient and seamless coordination between the entities involved, enabling
effective integration of DERs into the grid, and solving potential disputes. We describe the
pattern according to the typical sections found in the GoF book [38].
Name

Proof of Flow.
Intent

Assist the actors responsible for the energy production and transmission to interact
with each other and trace data to reward producers and solve potential disagreements on
the amount of energy produced.
Motivation

Consider an Aggregator orchestrating DERs aiming at providing electrical energy to
the system in a localized, small-scale setting. DERs use local smart meters to measure and
locally store the energy production data which, typically, are sent to the Aggregator. This
acknowledges the offers of energy from selected DERs whose production goes into the
distribution network.

Data consisting of measured energy produced and delivered, as well as commands
and agreements between several parties are crucial for all the actors to work together. If
such data and messages are exchanged over the cloud, a trusted authority is needed to
hold them, and ensure their veracity. However, when none of the involved entities are
an undoubted authority, then it is difficult to make one emerge as trusted. By leveraging
blockchain technology, it is possible to forgo the cloud-based trusted authority while
assuring transparency, immutability, and decentralization in the exchange process.

Blockchain technology offers the possibility to record data in a permanent storage, in
such a way that they cannot be modified, deleted or disputed. Blockchain nodes, running
smart contracts and storing data, consume gas for such operations. The consumed gas is
an operating cost, equivalent to real currency, that need to be paid. Such a cost has to be
minimised for making the solution based on blockchain sustainable.

Moreover, the blockchain nodes cannot determine by themselves whether received
data are accurate, hence a mechanism is needed to solve potential disagreements on the
truthfulness of data.
Applicability

Use the Proof of Flow pattern to replace reliance on a trusted authority holding data
in the cloud by recurring to blockchain technology, in a cost-effective and efficient manner,
and when the need to solve disputes could arise.
Structure

Figure 2 shows the structure of the Proof of Flow design pattern, the energy players,
the proposed smart contracts, and all the interactions among them.
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Figure 2. The structure of the Proof of Flow design pattern.

The DER that is depicted has an energy meter (DM1) physically linked, by a power
line, to an energy meter of the Aggregator (AM1). The latter, in turn, has multiple energy
meters, each associated to the power lines connecting to other DERs.

There are several interactions with and between smart contracts, according to the
wallet address invoking a function of the smart contract. e.g., ARIA, as can be seen, only
accepts deposits, which it routes to Vault, and does not allow withdrawals. Instead, it
forwards withdrawal requests to Vault, which will approve or deny them according to the
available unlocked balance associated with the specified wallet address.
Participants

The participants of the Proof of Flow design pattern are the following.

• ARIA (Aggregator Renewable Integration Agreement) smart contract, holding a list of
active and prospective DERs, keeps energy balances for DERs and triggers payments
to DERs that have provided energy and to the Aggregator, for its role in governing
them.

• DERs, namely energy resources, such as solar panels, wind turbines, and batteries,
participate as energy producers and transfer energy into the electrical grid.

• Aggregator coordinates DERs by monitoring their energy contributions, and ensures
the compensation for the energy they supply.

• Smart meters measure and record energy flow in real-time, then cryptographically sign
and locally store the measured energy flow, frequently.

• Operator manages the network transporting energy to consumers.
• Registry smart contract stores the address of the current version of ARIA.
• Vault smart contract holds coins or tokens and manages financial balances.

Data recording energy produced by DERs, and received by the Aggregator, are used
to provide evidence of energy balance that is needed for resolving potential disagreements
in detected and recorded energy flows.
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Collaborations
The Aggregator is in charge of providing the aggregate energy, produced by DERs, to

the Operator. Its responsibility is to govern DERs located within the same grid, by utilizing
ARIA. It must guarantee that DERs with varying baselines (i.e. the standard level of energy
production), comply with the established rules and criteria, by monitoring their energy
contributions and adherence to the requests, and ensure that they are rewarded accordingly
for their contributions.

Here we provide an overview of the interactions governed by the pattern, while details
are in the following subsections.

A DER can join a community, managed by an Aggregator, by invoking the associated
ARIA’s Join() function. Together with the request, some parameters are given, notably
the quantity of kilowatts that the DER can inject into the grid, the requested price of the
energy, and the security deposit. If the DER meets the criteria and the number of maximum
prospective-DERs has not been reached before, then it is accepted as prospective DER;
otherwise, the transaction is reverted (see Section 4.1 for details on joining a community).
A DER that has been accepted as an energy provider measures the produced energy,
and stores the measures locally (by means of a smart meter provided by the Operator).
The energy produced by the DER is transmitted to the Aggregator, which measures the
energy received by each DER using its own smart meters, and stores measures locally (see
Section 4.2 for details of interactions during energy production). The Aggregator checks
whether the agreements with each DER have been satisfied and if so, it periodically invokes
ARIA’s SweepEpoch() function to compensate DERs (see Section 4.3 for details on rewards
management). If a disagreement between energy provided and compensation arises, then
DERs can ask the Operator to resolve a dispute (see Section 4.4 for details on resolving
disputes). Additionally, Vault is used to hold financial balance and, while executing ARIA’s
SweepEpoch() function, Vault can be asked to transfer a compensation into the DERs’ and
the Aggregator’s accounts, for their energy production or coordination work, respectively.
Registry is used to store and provide ARIA’s most up-to-date address, which can only be
modified by the contract owner (the Operator). If there is a need to deploy a new version
of ARIA, the Operator will update the new address in the Registry; the Registry will
publish an event to notify all participants of the ARIA replacement; finally, the participants
can request the Operator for the source code of this new ARIA version, to inspect it and
compare its bytecode with the one stored on the blockchain. As for blockchain storage,
ARIA emits events that carry payment receipts and messages to the players, which will be
stored on-chain.

Collaboration between the said participants is described according to three phases:
DERs joining an energy community; DERs producing energy; rewarding for produced
energy. Such phases are detailed in the following subsections. Another subsection details
how the energy players can requests the Operator to resolve disputes, if needed.

4.1. Phase 1: A DER Joins an Energy Community

To participate in the system and provide electric power, DERs need to register as
energy providers by invoking the ARIA Join() function.

This registration process involves transferring a security deposit to Vault which, if the
DER is accepted, creates an account associated with the DER’s wallet address. Additionally,
the DER communicates the following parameters that characterize it, that are stored in
ARIA, and will be used in subsequent activities:

• The ID of the smart meter;
• Category: type of the DER, representing the specific source of energy used;
• Power output: namely the maximum capacity or amount of electric power it can

generate and supply to the energy grid over a given time period t;
• Availability: the schedule of the DER, specifying the time periods during which it can

actively participate in energy provision;
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• Flexibility: the capability of the DER to modulate its energy production based on
varying requirements;

• Compensation: the desired price expected by the DER for the supplied energy; the
energy price is proposed by the DER and when ARIA analyses whether to include the
DER among the energy suppliers, the proposed price can be deemed satisfactory;

• Wallet address: the unique identifier of the DER in the blockchain, allowing identifica-
tion and tracking, that is the sender of the registration transaction and represents the
DER univocally.

These parameters are stored by the Join() function in a list that holds the prospective-
DERs, enabling ARIA to determine whether to authorize a DER to transmit energy. When
a DER is allowed to feed the grid, it is notified via a blockchain event (see Sections 4.5
and 4.7) and its address is moved from the list of prospective-DERs to the active DERs’ pool.
The security deposit provided by the DER serves as a countermeasure against unreliability
and is used in cases of non-compliance or failure to fulfill obligations.

During the acceptance waiting period, if the DER cancels its subscription before
actively participating in the energy provision, the security deposit can be redeemed. Al-
ternatively, it can be redeemed at the end of the contract period if it has not been used to
pay fines in case the DER failed to meet its obligations or violated the terms and conditions
set by ARIA. Similarly, the Aggregator is required to stake a deposit to ensure the proper
functioning and adherence to the rules of the system, and may face penalties imposed by
the Operator, as described in Section 4.4.

This mechanism incentivizes DERs and the Aggregator to comply with the system’s
requirements by holding them financially responsible for their actions.

To successfully implement the pattern, we make the following assumptions.

1. The pattern’s time interval is synchronized with the block time of the blockchain. i.e.,
ARIA’s SweepEpoch() function (see Section 4.7), cannot be executed more frequently
than the block time.

2. When we refer to “time”, we intend the validation of a certain number of blocks in
the blockchain starting from a specific block.

3. We use the term “epoch”, denoted as E, to define a specific duration of time, univocally
identified by a progressive nonce, that is represented by a fixed number of blocks.

4. We use the term “blockstamp” to denote a reference of a specific block in the blockchain,
represented by its hash, that provides a reliable mechanism for avoiding synchro-
nization issues. This value is used to establish a temporal cadence that is derived
from the blockchain, allowing to overcome some issues that may arise when adopting
timestamps. Timestamps might not provide an accurate time reference, as clocks can
be tampered with or subject to malfunctions. Furthermore, unlike a timestamp, a
blockstamp establishes a definitive temporal order in relation to the blockchain state
and events, and is synchronized with the blockchain’s pace.

5. We use the term “smart meter” to refer to a customizable device that, under the
hood, is composed of two elements: an energy meter and a device with storage and
computation ability. The energy meter is capable of providing energy readings [39] as
numerical values through Ethernet, using a standard protocol such as Modbus [40].
In our system, AMR functions [41] are not needed. The device is equipped with local
data storage that includes a software component using libraries like secp256k1 [42] to
implement cryptographic functionalities, such as the Elliptic Curve Digital Signature
Algorithm (ECDSA) [42]. Additionally, this device accesses the blockchain either
through online API services like Infura (https://www.infura.io, accessed on 25 July
2023) or Alchemy (https://www.alchemy.com, accessed on 25 July 2023) or by means
of locally installed wallet software such as go-ethereum (https://geth.ethereum.org,
accessed on 25 July 2023). Alternatively, it can run a blockchain node. Depending on
the latter choice, its computational capabilities may differ.

https://www.infura.io
https://www.alchemy.com
https://geth.ethereum.org
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From the perspective of the Aggregator, which needs to store data from multiple
energy meters, there are two alternatives. The Operator could provide it with a smart meter
for each DER. Alternatively, the Operator could supply it with an energy meter for each
DER and a single server, that would run the same previously outlined software, and store
data from all the DERs in the same way as the standalone smart meter.

To detect the end of an epoch, every energy player runs a listener that constantly
monitors the blockchain and keeps track of the increment in the number of newly added
blocks. Once the required number of blocks that constitutes an epoch is reached, the current
epoch concludes and the listener resets its counter for the start of the next epoch.

4.2. Phase 2: Energy Flows from DERs to the Aggregator

The DER and the Aggregator are equipped by the Operator with a smart meter that
measures the energy produced by the DER at each end of the transmission power line.
During the normal functioning of the system, after a DER has been requested to transmit
energy, as the smart meters are positioned downstream of both the DER and the Aggregator,
the energy flow data are periodically measured on both sides. Such data are signed by
the DER’s smart meter, to prove its own identity, and saved locally. The blockstamp of
the latest block in the blockchain is included in local data records to indicate the time of
recording. Moreover, the Aggregator, on the other side of the transmission power line,
measures the energy received by each DER, signs the data, and saves them locally in the
same way. The Aggregator will use the said measures when having to reward DERs (see
Section 4.3), whereas DERs use saved measures when asking for a revision of the reward
amount (see Section 4.4). The data stored by the smart meters is used to generate proof that
a specific amount of energy has been produced (in the case of the DER) or received (in the
case of the Aggregator) within a given time frame. We dubbed this proof: “Proof of Flow.”
Table 1 shows the data of the Proof of Flow (PoF).

Table 1. Proof of Flow data types for a specific epoch.

Name Type Purpose

EpochNonce uint16 i time-frame to which the Proof of Flow refers
Blockstamp uint256 ii time of recording

kWs uint16 kilowatts of energy flow
ID uint256 unique ID of the smart meter

Address address iii address of the wallet of the DER or the Aggregator
i uint16 represents a sequence of two bytes of data. ii uint256 represents a sequence of 32 bytes of data. iii address
represents a 20-byte Ethereum address.

Considering the significant volume of data and the potential cost when keeping them
in a blockchain storage, it is not feasible to store the whole data recorded by smart meters
on-chain or in online databases like IPFS. Instead, by separating data storage from the
blockchain, a more scalable and cost-effective solution is achieved. Nevertheless, proofs of
energy flow are needed when potential disagreements arise. In such cases, these proofs
can be automatically used to resolve them and impose penalties to the malicious actor
(see Section 4.4 for details). This mechanism is a countermeasure for potential malicious
behavior; it provides a further protection and strengthen trust among parties.

The smart meter may take energy readings at regular intervals, even multiple times
per second. However, it is advisable to record the average of measurements for the time
span that corresponds to the creation of a block. i.e., a new record is recorded every time
the value of the Blockstamp is updated. Given that the data recorded to generate Proofs of
Flow (PoFs) consist of EpochNonce (uint16), Blockstamp (uint256), and kWs (uint16), and that
the other fields are added only when generating the PoF, the total space for a single record
takes exactly 36 bytes. If a record is saved every 12 s (Ethereum’s blocktime), 36 bytes
would be written every 12 s, for a total of 180 bytes each minute. That is 10,800 bytes in an
hour and 259,200 bytes in 24 h. If an epoch lasted 24 h, the minimum storage size required
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to archive a year of recordings would be about 90.5 MB. Since longer epochs summarize
more data, the amount of storage space required decreases as the epoch duration increases.
The Aggregator will store the same amount of data as DERs multiplied by the number of
active DERs.

4.3. Phase 3: Rewarding DERs and the Aggregator

To reward DERs and the Aggregator, ARIA must have a balance that is fed by the
Operator. Rewards can be provided in the form of fungible tokens that adhere to the ERC20
standard (https://ethereum.org/it/developers/docs/standards/tokens/erc-20, accessed
on 25 July 2023) or in the native coin of the blockchain, such as ETH (Ether), in the case of
Ethereum. In both cases we refer to rewards as “credits”.

At the conclusion of every epoch, the Aggregator triggers the SweepEpoch() function
of ARIA, providing for every active DER the number of kilowatts (kW) produced, as
recorded by its smart meters. The function allocates credits to each DER according to
their energy production and emits “Receipts” events which allow them to verify their
compensation (see Section 4.7 for further details).

If a DER receives rewards lower than expected and the gap with the actual earnings
exceeds the reward threshold set by the error tolerance of t, it has the option to raise a
dispute within a specific number of epochs, denoted as D (see details in Section 4.4).

At the end of this phase, ARIA assigns DERs a rank to assess their performance and
dependability. When a registered DER is first accepted as an energy provider, as it is still in
the practice stage, it is given an initial rank value, which is initialized to a threshold constant.
As discussed later, this threshold is a reference to distinguish DERs with ranks lower than
the initial value. As DERs actively fulfill their responsibilities, their rank may increase over
time, reflecting their performance and reliability within the system. If a DER is aware that
at a certain time it will not be able to fulfill the contract by producing the claimed quantity
of power, it can proactively notify the Aggregator by invoking the NotifyPowerShortage()
function of ARIA. This allows the Aggregator to schedule a request for power modulation
to other DERs to compensate for the anticipated future power shortfall. If DERs fail to
provide the declared amount of energy or interrupt their energy supply, without notifying
the Aggregator, in addition to being potentially fined, their rank will be reduced.

The ranking can be a valuable tool during the contractual renewal process or for en-
gaging DERs in energy modulation when required by the Aggregator. To assess the impact
of ranks, different criteria could be implemented into the CalculateRanking() function of
ARIA. One possible selective criterion could be to remove DERs from the pool (and not
re-admit them) as soon as their rank goes below the specified threshold. A more moderate
criterion could be to allow DERs with ranks below the threshold to continue operating,
albeit with a lower probability (compared to DERs with higher ranks) of being selected
in situations where there is competition for power production. A democratic approach
could be to ignore ranks and renew contracts in a deterministic random manner until the
required aggregate power is achieved, thus preventing any DER from gaining a monopoly.
We have implemented a first-come-first-served strategy. However, as mentioned before,
the code of the CalculateRanking() function can be modified to adopt the most suitable
criterion for the specific context.

4.4. Resolving Potential Disputes between DERs and Aggregator

When there are no discrepancies between the energy flows measured and recorded by
the Aggregator’s and DERs’ smart meters, ARIA rewards DERs according to the amount of
energy received by the Aggregator. This flow should align with the capacity declared by
DERs in the Join() function with a tolerance error of t (set in ARIA by the Operator and to
which DERs and Aggregators must adhere). However, in case of disputes or for verification
purposes, the Operator may request Proofs of Flow from both the DERs and the Aggregator
for a specific epoch. The Operator performs such requests by emitting events ProvidePoF
or ProvidePoFs (see Section 4.5).

https://ethereum.org/it/developers/docs/standards/tokens/erc-20
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Proofs of Flow data must be signed by smart meters and passed to the ProveTheFlow()
or the ProveTheFlows() functions that record the requested relevant data in a blockchain
event. Data in the Proof of Flow can have one among several time resolutions. At block-
time level, they present a detailed and granular view of the energy flow. Alternatively, they
provide an overview delivering a summary over a longer time period. In this latter case,
the involved data are shown in Table 2.

Table 2. Proof of Flow data types for a range of epochs.

Name Type Purpose

EpochStart uint16 beginning of the time-frame to which the Proof of Flow refers
EpochEnd uint16 end of the time-frame to which the Proof of Flow refers

BlockstampBegin uint256 time at the beginning of the epoch
BlockstampEnd uint256 time at the end of the epoch

kWs uint16 total kilowatts of energy flow
ID uint256 unique ID of the smart meter

Address address address of the wallet of the DER or the Aggregator

Disputes can be initiated by DERs which received a reward lower than expected. To
trigger a dispute, the DER needs to execute the RaiseDisputeEvent() function of ARIA,
that emits a Dispute event. The function’s input requires the Proof of Flow data (see
Tables 1 and 2) for the corresponding epoch, its nonce, and the blockstamps for the period
that resulted in a smaller reward. Once the Operator, which is responsible for the smart
meters of both the Aggregator and the DER, detects a Dispute event on the blockchain,
it can start the dispute resolution process that involves the emission of a ProvidePoF, or
ProvidePoFs, event addressed to the Aggregator, which, in turn, is requested to provide the
Proof of Flow from its smart meter for the same period in question. If the Aggregator fails
to respond, within a specific number of epochs, denoted as D, the Operator will impose
a fine to penalize the Aggregator’s behavior and to compensate the financially impacted
DER.

When, otherwise, the Operator receives the Aggregator’s Proof of Flow in time, it can
analyze and compare the data to investigate the reasons for the discrepancy between the
flows detected by the smart meters. This solution entails DERs and the Aggregator entrust-
ing the smart meters provided by the Operator; however, the open-source nature of the
smart meter’s software ensures transparency and accountability. Furthermore, DERs and
the Aggregator do not own the private keys used by the smart meters to cryptographically
sign data, which prevents them from tampering with the recorded information. The smart
meter is an external actor to the blockchain; nevertheless, it provides an equivalent degree
of security by using the same cryptographic technology, i.e. encryption to prove its identity
and cryptographically sign stored data. This is a key advantage since energy flow data can
be published only when necessary, rather than storing them on the blockchain indefinitely,
even when they are no longer needed.

However, there are scenarios that require the Operator’s involvement in addressing
disputes. Disputes could arise for the following reasons.

1. The Aggregator could provide to the SweepEpoch() function values for the energy
flows lower than the ones detected by its smart meter.

2. A DER or the Aggregator could alter the smart meter’s software, resulting in it
detecting and recording a different energy flow than the actual one.

3. A DER or the Aggregator could tamper with the physical system which detects the
energy flow without affecting the smart meter’s software.

4. A malfunction could result in inaccurate recorded data.

Case 1 is a straightforward scenario since the Proof of Flow data provided by the
Aggregator’s smart meter would prove the real energy flow. This would result in penalties
for the Aggregator. In cases 2, 3, and 4, the Proofs of Flow data allow the Operator to detect
a discrepancy, however both Proofs of Flow data are legitimate from the point of view
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of cryptographic signature. To determine the source of discrepancies, the Operator can
examine the software of the DER’s and the Aggregator’s smart meters. If the software is
compliant, a physical inspection, examining smart meters and transmission lines of both
DER and Aggregator, can establish the cause of the discrepancy.

Considering that disputes can be initiated only by the DERs, as a temporary resolution
from a software perspective, the Operator can pause the DER’s participation in energy
production, using the StopDER() function, without unlocking its deposit until the dispute is
resolved. If the issue was caused by a malfunction, the Operator, using the ReAdmitDER()
function, will re-admit and compensate the DER for the incurred economic losses. However,
if the problem was caused by DER tampering, its deposit will be retained to discourage
such behavior. On the contrary, if the discrepancy was due the Aggregator tampering, the
Operator will re-admit the DER and compensate it for the incurred economic losses using
the Aggregator’s deposit. The Operator has also the authority to lock the contract, using
the emergency stop pattern (see Section 4.8), while searching for a new reliable Aggregator.
Once the Operator has resolved the dispute, it will emit the Resolution event, which will be
published on the blockchain using the ResolveDispute() function.

There could be another scenario in which the provided Proofs of Flow data do not
allow the Operator to identify a misbehavior. It occurs when the Aggregator and a DER
collude against the Operator, manipulating either the software or the physical system, but
resulting in compatible Proofs of Flow data. To keep this scenario from happening, it is the
Operator’s responsibility to monitor the total energy received from the Aggregator and
check if there is a discrepancy with the aggregated amount detected, then the Operator can
initiate the actions described above.
Consequences

Utilizing blockchain technology to synchronize DERs, the Aggregator and the Oper-
ator, provides a verifiable account of all their activities. All the actors involved can rest
assured that no entity can take advantage of others, as their interactions are governed by the
immutable and verifiable code of the smart contracts. The system of deposits, rewards and
penalties incentivizes all participant to fulfill their obligations and discourage malicious
behavior. Proofs of Flow represent the history of energy flows, and since they are crypto-
graphically signed by smart meters and stored on the blockchain when requested, they
provide reliable evidence to address discrepancies in energy supply and disagreements
in payments. By avoiding unnecessary data storage on the blockchain, the Proof of Flow
pattern not only mitigates potential privacy concerns, but also reduces the number of
transactions, allowing to leverage a public blockchain such as Ethereum without being
affected by fee fluctuations while avoiding expenses for on-chain storage.

4.5. Communication Details

Communication between DERs, the Aggregator, and the Operator takes place thanks
to blockchain events emitted by ARIA EmitCommEvent() function. Each entity runs a
listener that monitors events and when it identifies itself as the intended recipient of a
request or a command, it activates the corresponding component to address the event
prompt, taking necessary actions. Failure to respond within the specified timeframe of R
epochs may result in penalties, except for the Operator. Table 3 lists the signals and their
corresponding events, based on their sender.

Moreover, the Operator employs ARIA to publish other events that broadcast infor-
mation, such as the alteration of the epoch duration E (EpochModified), the modification of
the tolerance t (ToleranceModified), and the adjustment of penalties (PenaltyModified).

4.6. Checking Authorisations

All the above smart contracts (ARIA, Vault, Registry) retain the address of the owner
(Operator) and the address of the authorized entity (Aggregator). This choice is a conse-
quence of using the design patterns described in Section 4.8. e.g. due to the Authorization
pattern, ARIA stores only one address for Aggregator in its _authorized variable, and it
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stores only one owner in its _owner variable. The value of _authorized can be set by the
owner only (which is the Operator).

Table 3. Signals categorization.

Sender Signal/Event Function Effect

Aggregator Activated EmitCommEvent() Notifies that a prospective DER has been moved to the active pool and
must start providing energy

Aggregator Deactivated EmitCommEvent() Notifies that an active DER has been removed from the active pool
Aggregator Adjust EmitCommEvent() Asks DERs to adjust energy production levels i

Aggregator Receipt EmitCommEvent() Writes payment receipts to wallets ii

Aggregator Warning EmitCommEvent() Warns DERs about abnormal energy production
Aggregator ProveTheFlow ProveTheFlow() Publishes a Proof of Flow for a blockstamp
Aggregator ProveTheFlows ProveTheFlow() Publishes a Proofs of Flow for a period iii

Operator Alert EmitCommEvent() Publishes alerts about system status or changes
Operator ProvidePoF EmitCommEvent() Requests a Proof of Flow to DERs or the Aggregator for a blockstamp
Operator ProvidePoFs EmitCommEvent() Requests a Proofs of Flow to DERs or the Aggregator for a period
Operator Receipt EmitCommEvent() Writes payment receipts to wallets iv

Operator Resolution ResolveDispute() Publishes the dispute resolution outcome
DER Dispute RaiseDisputeEvent() Initiates a dispute addressed to the Operator

DER Unavailability PowerShortage() Inform the Aggregator in advance about the inability to provide the
requested energy

DER ProveTheFlow ProveTheFlow() Publishes a Proof of Flow for a blockstamp
DER ProveTheFlows ProveTheFlow() Publishes a Proof of Flow for a period

i In case of deviations or when power modulation is needed. ii Belonging to DERs that have been rewarded. iii Or
a range of blockstamps iv Belonging to the Aggregator or DERs that have been rewarded.

When a function of ARIA has been called, to check whether the caller’s address
matches the value stored in the _owner or the _authorized variables, the Solidity’s modi-
fiers, custom-defined fragments of code attached to functions, come handy. If the condi-
tion specified in the modifier is not satisfied at the time the function has been invoked,
the transaction requesting the execution of the code will be automatically reverted. i.e.,
msg.sender == _authorized requires that the address of the account that started the current
function call, represented by the global variable msg.sender, matches the address stored in
the authorized local variable. This enables restricting the invocation of a function to entities
holding specific roles. e.g., SweepEpoch() can be executed by both the Aggregator and the
Operator, while excluding other addresses; the function that triggers an emergency stop of
the smart contract can be called by the Operator only; the Join() function can be invoked by
DERs, namely any address distinct from the Aggregator or the Operator.

4.7. The SweepEpoch() Function in Detail

The Aggregator calls the SweepEpoch() function of ARIA at the beginning of each
new epoch. This function carries out the following tasks.

1. Epoch conclusion and settlement: verify whether the energy quantities, as provided
by the Aggregator, during the latest epoch, align with the amounts declared by active
DERs. If the reported values match within the error tolerance t, then proceed to step 2,
otherwise proceed to step 3.

2. Accredit: calculate the reward for each DER and proceed to step 4.
3. Penalty and deposit withholding: DERs are subject to a penalty when they have

produced an average amount of energy below the requested amount without having
notified the Aggregator. In this case a percentage of their deposit or credit is withheld
as a penalty.

4. Reliability ranking: assess the reliability of each DER in the active pool and update
their ranks accordingly.
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5. DERs removal: remove from the active pool the DERs whose balance has been
depleted due to fines and, according to the CalculateRanking() function, those whose
rank falls below a specified threshold.

6. Contract expiration: move DERs whose contracts have expired from the active pool to
the prospective-DERs list (i.e., they have provided energy for the specified number of
epochs, d given in the contract).

7. Transaction fee allocation and payment: keep track of the gas consumed during its
execution and distribute the cost between Aggregator and DERs, deducting it from
their credits. This ensures that all parties contribute to covering the execution cost.
Then, trigger the Vault to transfer the reward to the DERs’ and Aggregator’s wallets
and emit Receipts events reporting the epoch nonce.

8. Activation: analyze the list of prospective-DERs to identify DERs that meet the criteria
for providing energy. The commitment of eligible DERs is formalized by moving
their wallet addresses from the prospective-DERs list to the active DERs’ pool and
publishing the Activated event that alerts DERs, specifying the number of epochs they
are required to participate in supplying energy.

4.8. Lower-Level Design Patterns

The proposed pattern makes use of the following lower-level patterns.

• Owner Pattern [21,37]: this pattern involves storing the address of the contract de-
ployer as the contract owner. It allows restricting to the owner some operations,
ensuring privileged access, by checking whether the address of a user invoking a
contract method matches the stored owner’s address. In our solution, the Operator’s
address is the owner of all the smart contracts involved. As owner, the Operator can
perform various activities, such as triggering an emergency stop of ARIA, setting the
value for some variables (e.g., the address of ARIA stored in the Registry), or resolving
disputes.

• Authorization pattern [21,43,44]: it can be considered as an evolution of the Owner
pattern, allowing for more flexibility and granular control over smart contract actions.
It involves storing a collection of addresses belonging to “super users” within an
address mapping, (Solidity’s hash table or dictionary). This allows different users
to have different privilege levels and perform critical changes or operations that
other users cannot. In our solution, this pattern enables both the Operator and the
Aggregator to trigger functions in ARIA which then request Vault to transfer credits
from one account to another.

• Migration Pattern [21,44]: this pattern employs a proxy contract that keeps a reference
to the address of the actual contract. This strategy allows the contract owner to provide
a new version of the contract by updating such a reference. Client code interacts with
the proxy contract which either redirects execution to the new version of the actual
contract or returns its address. This pattern addresses blockchain immutability, which
prevents the direct modification of a contract’s code, ensuring a smooth transition for
users while enabling contract updates and improvements. This pattern is employed
to enable the Operator to update new versions of ARIA to resolve bugs, add features,
and improve functionality.

• Emergency Stop [21,37]: it enables the owner to trigger an emergency stop of the
smart contract, locking its functions. This feature provides a mechanism to halt the
contract’s operations in case of emergencies. The Operator employs this pattern for
emergency situations like system failures, security breaches, or any other critical event
that requires an immediate halt to the operations or functionality of the system.

• Push-Based Outbound Oracle [21,45]: this pattern enables information exchange be-
tween the blockchain and the off-chain world. An off-chain Event Listener constantly
monitors relevant changes on the blockchain and forwards event data to a Controller,
which transfers the data to an off-chain component via a Transmitter. The Operator,
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Aggregator, and DERs employ this pattern to detect requests issued by means of
blockchain events and monitor block progression to identify the end of an epoch.

• Treasury Manager [21]: as described in Section 3.3, it is the adopted solution that
consists in separating the logic from the balance, to avoid the transfer of the latter
from the old version of a smart contract to a newer version.

Table 4 summarizes the above design patterns.

Table 4. Design patterns used by Proof of Flow design pattern.

Name Main Characteristics

Owner [37] Set the address of the sender of the deployment transaction as the owner
of the contract

Authorization [44] Perform an operation after authorization check
Migration [44] Hide the real service

Emergency Stop [37] Perform an operation after authorization check
Push-Based Outbound

Oracle [45] Perform the update of a state

Treasure manager [21] Manage a financial reserve regardless of the main service

5. Discussion

The proposed system aims at facilitating seamless integration between Aggregators,
Operators, and DERs that interact in a localized scale environment. This objective can be
achieved by leveraging the blockchain’s immutability, reliability, and consistency features.
However, although blockchain technology ensures transparency, accountability, and in-
tegrity, it may also present limitations that are not always addressed by researchers who
propose solutions that rely on this technology as a framework. e.g., one is the costs associ-
ated with transaction processing and on-chain storage. Our solution focuses on reducing
the frequency of blockchain interactions to minimize the overhead and costs.

Regarding blockchain transactions and data stored on-chain, the immutability feature
of blockchain technology assures that stored data cannot be altered or tampered with by
anyone. However, outside economic transactions, handled by the consensus algorithm,
there is no way to guarantee the veracity of data stored on-chain. Resolution of potential
disagreements among parties about data stored in the blockchain is thus left to the appli-
cation level. We have proposed a general solution, applied in the context of energy data,
to address such kind of disagreements. Another crucial aspect to consider when using
blockchain technology is the possibility of malicious actors who may attempt attacks. Our
solution prevents malicious behavior and effectively coordinates the parties.

Below, we provide a list of limitations and illustrate how we have addressed them.

5.1. Blockchain Access

The first limitation consists in the requirement to query the blockchain to track events,
detect the conclusion of an epoch, and acquire a blockstamp. Despite ARIA provides
functions to generate a blockstamp, in the context of the Ethereum protocol, only the
latest 256 blocks can be accessed through a smart contract [46]. If calls to these functions
fail, it may become impossible to retrieve this information later. Such a limitation can be
overcome by utilizing services like Etherscan (https://etherscan.io, accessed on 25 July
2023) just for reading data, or services Infura or Alchemy which allow the use of web3.js
(https://web3js.org, accessed on 25 July 2023) functionalities. Web3.js is a JavaScript
library that provides a collection of functions and utilities for interacting with the Ethereum
blockchain. However, these services may not always be available without charge. As
a result, it would be advisable to run a dedicated blockchain node to provide reliable
and cost-effective access to blockchain data. The same principle applies when the system
operates on a private or consortium blockchain like Energy Web.

https://etherscan.io
https://web3js.org
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5.2. Blockstamp Generation

A potential limitation we may come across in our use case is related to the blockstamp
generation. As previously mentioned, blockstamps are similar to timestamps and are
identifiers for specific moments, not in terms of time, but rather in the growth of the
blockchain. To ensure reliability it is advisable to assign the blockstamp for the latest
block to its kth ancestor, as this block is deep enough to reduce the possibility of it being
an orphan block or part of an accidental fork that could be eliminated by the protocol.
According to Gervais et al. [47], setting k to 37 is safe when using Ethereum. Their
research, while focusing on the previous Proof of Work (PoW) consensus algorithm, is
nevertheless applicable to the Proof of Stake (PoS) algorithm that Ethereum adopted after
“the merge” [33,34].

5.3. Synchronization

The third potential issue may arise, on public blockchains such as Ethereum, when
heavy network traffic or too low gas price set for execution cause delays in transactions
processing. This could eventually lead to wrong epoch synchronization and communication
delays affecting the overall pace of the system.

We distinguish two major cases. The first one occurs when a DER fails to execute
one or more transactions within the specified timeframe. These transactions could be
in response to prompts from the Operator or the Aggregator, or they could involve the
initiation of a dispute. Regardless of the mentioned scenario, the failure to complete the
transactions within the designated time period results in a penalty for the DER, as it could
be fined or experience a loss of credits if the dispute is not initiated correctly. The second
major case occurs when the Aggregator’s transaction, responsible for managing the current
epoch and initiating the next one, is not executed within the specified timeframe. The
SweepEpoch() function of ARIA must be executed at the end of each epoch before the
subsequent epoch can take place. The nonce ensures the sequential consistency of epochs
by requiring that epoch i cannot start until epoch i-1 has been successfully processed.
Therefore, if an epoch is not processed, the rewards for DERs will not be issued until the
pending epoch is successfully processed. When this event occurs, the Operator may impose
a penalty on the Aggregator to incentivize it to complete transactions on time and also to
compensate DERs.

These two cases may prompt DERs and the Aggregator to increase the gas price
to ensure the processing of their transactions, which can result in increased costs for
transaction processing. However, not only our solution minimizes the interaction with the
blockchain, but it also splits among the Aggregator and the active DERs the transaction
fees when running the SweepEpoch() function, to lower the overall costs, as reported in the
next section.

5.4. Gas Consumption

To evaluate the efficiency and operational costs of the designed smart contracts, we
performed a series of simulations, under various conditions, with the aim of quantifying
the gas consumption in different scenarios. Table 5 shows the gas consumption of the smart
contracts’ deployment in the first three rows, then the gas consumption for executing the
main functions. Of course, unless ARIA’s logic must be updated, deployment is performed
just once for each smart contract, hence the related gas consumption is one-shot. The Join()
function has a fixed cost due to the allocation of space for storing the data that characterize
DERs, which must be saved.

We have analyzed the costs of SweepEpoch() considering three different cases and
a varying total number of DERs. This quantity affects the cycles that access the lists of
prospective and active DERs, while the scenarios “supply start”, “ongoing supply”, and
“supply end”, give different results due to some operations that are only carried out under
specific circumstances. e.g., under normal conditions (i.e., a DER is compliant with the
rules and the energy production is performed continuously), a DER is moved from one
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list to another only at the beginning or at the end of its supply period. The selection of
new DERs depends on the adopted criteria. In our experiments, DERs were selected in a
first-come-first-served basis until the required aggregate power was reached.

Table 5. Measures of gas consumption when deploying smart contracts and when executing signifi-
cant smart contract’s functions.

Function Scenario Number of DERs Gas Units

Deployment Registry - 231,024
Deployment ARIA - 3,620,829
Deployment Vault - 493,662

Join() - - 239,713
SweepEpoch() supply start 1 212,391
SweepEpoch() ongoing supply 1 164,662
SweepEpoch() supply end 1 164,848
SweepEpoch() supply start 5 444,786
SweepEpoch() ongoing supply 5 551,031
SweepEpoch() supply end 5 619,309
SweepEpoch() supply start 10 735,426
SweepEpoch() ongoing supply 10 1,076,641
SweepEpoch() supply end 10 1,197,481

During each execution, the SweepEpoch() keeps track of the gas used and calculates
the total cost by multiplying it with the tx.gasprice. The latter is set by the user when
requesting a transaction and represents the price in wei per unit of gas (1 wei = 10−18 ETH,
the smallest unit of Ether). The function then splits the cost equally among the active DERs
and the Aggregator, and deducts it from their respective rewards. This approach ensures
fairness in the allocation of costs.

In our analysis, the best-case scenario occurs with ten DERs in the “supply start” stage,
consuming 73,543 gas units for each DER. The worst-case arises when a single DER is in
the “supply start” phase, consuming 212,391 gas units.

According to Etherscan (https://etherscan.io/chart/gasprice, accessed on 1 Septem-
ber 2023) from August 2022 to August 2023, the minimum gas cost was just less than two
Gwei, while the maximum was around 97,456 Gwei (1 Gwei == 109 wei). It should be noted
that this maximum value was much higher than other observed max values during the
said period, and much higher than the average. If SweepEpoch() had been invoked with
the gas price set to 20 Gwei per gas unit, the cost would have been 14,708,520 Gwei (ETH
0.01470852). Taking into account the average price (according to https://www.coingecko.
com, accessed on 1 September 2023) between the relative minimum and maximum values
of ETH during the cited time range—USD 1606.89 (EUR 1506.32)—the final fees would
amount to USD 23.63 (EUR 22.16) to be split among DERs and Aggregator, resulting in
USD 2.15 (EUR 2.01) for each.

The significant gas price fluctuation demands monitoring it daily and setting an
appropriate maximum gas price for the transaction that invokes the SweepEpoch(). This
activity can be integrated into the Aggregator’s listener that monitors the blockchain to
generate blockstamps and detect the end of an epoch.

5.5. Block Time, Epoch Duration and Contract Expiration

As already mentioned, the block time, that in the case of Ethereum is twelve s, deter-
mines the pace of the blockchain, e.g., the speed at which a blockchain can add data or
change its state. This characteristic affects the actors relying on the blockchain to exchange
or store data, as well as perform transactions. In our case, while block time represents the
minimum amount of time that actors have to wait to detect a change in the blockchain,
the epoch E, (proportional to the block time), can vary. As noted earlier, an appropriate
duration E for the epoch has to be chosen. Too short epochs may lead to higher costs as
they involve more transactions, while long epochs can delay the updates to DERs’ financial

https://etherscan.io/chart/gasprice
https://www.coingecko.com
https://www.coingecko.com
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balances for their produced energy. Conversely, when an entity needs to communicate
with another, using the blockchain events, as when the Aggregator requires production
modulation or notifies a DER that it has been chosen for energy production, its request can
be submitted independently of the SweepEpoch() function; i.e., the request need not be
synchronized with the function that governs epochs.

The value of E depends on the type of blockchain being used. In a private blockchain,
which could be employed to aggregate DERs within a tightly knit area such as a neigh-
borhood, islanded microgrids, or nanogrids, and where transaction costs are minimal, the
value of E can be low, potentially as low as 1. Otherwise, when using a public blockchain
like Ethereum, it may be impossible to keep up with the block time since transaction costs
for the smart contract execution may be high as already said above. In this scenario, by
setting the epoch to 72,000 blocks (running the SweepEpoch() function every ten days) the
frequency of transactions is low. Then, during periods of network congestion, the value of
E can be increased to mitigate the impact of high gas prices. This strategy, coupled with the
division of fees among Aggregator and involved DERs, strikes a balance between regular
updates and computational operations to minimize transactions costs.

In relation to the expiration of the contract, we propose a flexible contract duration,
denoted by d epochs, during which a DER must provide energy. Once a DER’s contract
expires, the SweepEpoch() moves it back to the list of the prospective DERs, from where
it can be selected again for the renewal of a new contract. This approach optimizes DER
contributions by considering their capabilities, their ranking (when applicable), and the
energy needs.

5.6. Wallet Generation and Ranking Criteria

Creating a wallet is a straightforward process that allows for the generation of a
virtually unlimited number of wallets on the blockchain. This might result in a challenge
related to an entity’s identification when they are recognized by means of their wallet
address. This issue could have an impact in our use case and arise under selective ranking
criteria. A DER with a low rank, in an attempt to reset its status, might generate a fresh
wallet address to subscribe again as a new participant. However, this action would lead to
a financial loss, as the DER should provide a new deposit. In addition, since smart meters
are provided by the Operator, their IDs cannot change nor can they be modified, and ARIA
is designed to reject subscriptions from seemingly new DERs that provide a smart meter’s
ID that has already been used by a different wallet address.

5.7. Transactions Must Always Originate from the User (Or Software Wallet)

DERs or the Aggregator could cease their activity abruptly at the expense of the system;
however, this behaviour would put them at a loss. For both, the abnormal cease of activity
leads to financial losses, as they forfeit their deposits. Moreover, though the Aggregator
triggers payments, by calling the SweepEpoch() function, it cannot keep the user funds,
as it cannot have direct access to the balance held in Vault. Therefore, it could not benefit
from such a malicious behavior. Nevertheless, in the unlikely event of this scenario, the
Operator, in virtue of the Authorization pattern, has the authority to reward compliant
DERs and unlock their balances to ensure that they can recover their funds.

Considering that the adopted deposit system could result in losses, it is crucial to
carefully determine the security deposit amount. Opting for a lower deposit could improve
accessibility and increase the participation opportunities for DERs. To ensure a balance
between accessibility and risk mitigation, one potential approach could be to lock the
earned credits in the Vault, instead of making them immediately redeemable, and gradually
release them. This strategy raises the stakes and encourages proper behavior from all
participants in the system. However, network malfunction or power outages could lead
to such complications described in this scenario, thus, it is essential to allow for a certain
degree of flexibility before considering a DER or the Aggregator as non-compliant with the
system’s rules.
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5.8. Future Research

In future work, we plan to extend the Treasury Manager to be able to create payment
channels [48], thus enhancing the functionality of the Proof of Flow pattern and enabling
more granular and lower-fee payments to DERs. Another line of research is to modulate
the epoch duration depending on the analysis of the fluctuating gas price and fees patterns,
with the goal of minimizing the costs as much as possible.

6. Conclusions

In our research we aimed at finding a solution to govern Distributed Energy Resources
(DERs) in localized settings, like microgrids or small energy communities, by means of an
Aggregator that can provide maximum transparency on its activities and decisions, such
as: choosing participating DERs, giving financial rewards or penalties, to DERs; while also
minimising the costs associated to the use of resources for executing automatic procedures
and storing data.

The proposed solution consists of a design pattern named Proof of Flow that leverages
blockchain technology to build trust among potentially distrustful energy players, i.e., DERs
and Aggregator, hence avoiding to rely on a centralized authority. A smart contract, named
ARIA, is responsible for assessing whether DERs can be accepted as energy providers, and
for giving them rewards (for their production) or penalties (when the agreements have not
been satisfied). DERs, producing energy, measure the provided energy and locally store the
amount of data and the time of recording, the Aggregator (being physically connected with
each DER) measures the energy that has been transmitted by each DER. ARIA emits events
to notify energy players when they can start transmitting energy, when they have been
payed, or when they need to provide evidence of their energy production. Thanks to the use
of blockchain technology, such a smart contract emits events that are permanently stored,
visible to interested players, and that cannot be contested. To mitigate the known problem
of the cost typically associated with Ethereum blockchain, due to the use of computation
and storage resources, we have resorted to an external local storage for the big amounts of
data holding the measured energy produced and minimized accesses to smart contracts.
We have also proposed to use hashes of the blocks in the blockchain as timestamps to
easily align with the pace of block generation and then order recorded data that have been
stored in DERs’ external hosts, hence overcoming possible tampering with local clocks or
their desynchronization. Potential disagreements between a DER and an Aggregator on
measured energy production and financial balance due have been characterised and dealt
with by an automatic procedure.

As the proposed solution enhances trust among energy players due to transparency
of activities, recorded events, and verifiable execution and data storage, it has tackled
high-level issues that were not solved. This could effectively assist in the adoption of a
fair energy production system. Moreover, by keeping the biggest parts of data needed
to the governed system outside the blockchain itself, our solution minimizes blockchain
access, storage, and associated costs, without compromising the trust reinforcement made
available by blockchain mechanisms, while enhancing the privacy of the data related to
energy production. Therefore, we have mitigated the inherent limitations of blockchain
technology that hinder its adoption.
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