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Abstract: The Internet of Medical Things (IoMT) has risen significantly in recent years and has
provided better quality of life by enabling IoMT-based health monitoring systems. Despite that
fact, innovative security mechanisms are required to meet the security concerns of such systems
effectively and efficiently. Additionally, the industry and the research community have anticipated
that blockchain technology will be a disruptive technology that will be able to be integrated into
innovative security solutions for IoMT networks since it has the potential to play a big role in:
(a) enabling secure data transmission, (b) ensuring IoMT device security, and (c) enabling tamper-
proof data storage. Therefore, the purpose of this research work is to design a novel lightweight
blockchain-based security architecture for IoMT-based health monitoring systems leveraging the
features of the Hyperledger Fabric (HF) Platform, its utilities. and its lightweight blockchain nature
in order to: (i) ensure entity authentication, (ii) ensure data confidentiality, and (iii) enable a more
energy-efficient blockchain-based security architecture for IoMT-based health monitoring systems
while considering the limited resources of IoMT gateways. While security mechanisms for IoT
utilizing HF do exist, to the best of our knowledge there is no specific HF-based architecture for
IoMT-based health monitoring systems.

Keywords: Internet of Medical Things; blockchain; hyperledger fabric; healthcare

1. Introduction

In recent years, the Internet of Things (IoT) technology has emerged and grown rapidly,
bringing significant benefits to the healthcare sector by transforming the healthcare in-
dustry and introducing the Internet of Medical Things (IoMT), where medical devices are
interconnected so that anyone, anywhere, and at any time may have access to them [1].
The evolution and growth of IoMT networks can play a significant role in enhancing
the quality of life of individuals by enabling IoMT-based health monitoring systems that
deliver personalized and user-centric healthcare services despite time and location restric-
tions [2–4]. However, the high resource requirements of existing security solutions cannot
be afforded by (i) the resource-constrained IoMT devices (e.g., bio-sensors), which are key
components of IoMT-based health monitoring systems but characterized by limited pro-
cessing power, storage capacity, and battery life, and/or (ii) the constrained environment
in which the IoMT devices are deployed and interconnected using lightweight commu-
nication protocols [3,5–8]. Furthermore, the centralization approach commonly adopted
by the state-of-the-art existing security frameworks is not easily applicable to IoMT-based
health monitoring systems due to single point of failure issues that may render them
vulnerable to different attacks, such as Denial of Service (DoS) attacks [7,9]. In addition, it
is worth mentioning that conventional defense mechanisms cannot ensure tamper-proof
data storage [10]. Therefore, it is clear that novel security mechanisms are urgently needed
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so that the pressing security challenges of IoMT-based health monitoring systems, relying
on IoMT networks, can be addressed in an effective and efficient manner. This must be
performed while taking into consideration the inherent limitations of the IoMT networks
and devices, due to their resource-constrained characteristics and the centralized nature of
IoMT-based health monitoring systems, before these systems gain the trust of all involved
stakeholders and reach their full potential in the healthcare market [6,8,11].

To this end, blockchain technology has been foreseen by the industry and research
community as a disruptive technology that can be integrated into novel security solutions
for IoMT-based health monitoring systems in order to: (a) enable IoMT devices to transmit
data to each other in a secure manner (e.g., tamper-proof transmission of medical data, no
risk of DoS attacks) [3], given its decentralized, autonomous, and cryptographically secure
nature, (b) ensure IoMT device security, and (c) enable tamper-proof data storage [12–14].

However, despite the significant benefits that the integration of blockchain technology
can bring to the current, centralized IoMT-based health monitoring systems by addressing
security challenges related to single point of failure issues and data storage, the resource-
constrained IoMT devices of these systems are still unable to afford complex and high
energy-consuming blockchain operations (e.g., the mining process in Proof of Work (PoW))
because of their limited processing power, storage capacity, and battery life [15–18]. Conse-
quently, it is essential for lightweight blockchain-based security mechanisms to be applied
so that they can be efficiently supported by the resource-constrained IoMT devices within
IoMT-based health monitoring systems. However, so far, and to the best of our knowl-
edge [19], there are only few works on blockchain-based authentication and authorization
mechanisms as well as on blockchain-based Intrusion Detection Systems that can be con-
sidered for protecting IoMT-based health monitoring systems, demonstrating the lack of
proper works on lightweight blockchain-based security for IoMT-based health monitoring
systems.

Towards this end, as a major initial step, the design and implementation of an
energy-efficient blockchain-based security architecture for supporting the development
of lightweight blockchain-based security mechanisms for IoMT-based health monitoring
systems is of utmost importance. Our motivation lies in the lack of proper works on
lightweight blockchain-based security for IoMT networks and particularly for IoMT-based
health monitoring systems. Specifically, the present research work provides the following
contributions:

1. The design and implementation of an energy-efficient blockchain-based security
architecture that will rely on the Hyperledger Fabric (HF) platform, as it does not
only ensure entity authentication (i.e., device authentication) and data confidentiality
(i.e., confidentiality of the exchanged data) but also can enable a more energy-efficient
blockchain-based security architecture for IoMT-based health monitoring systems
compared to other popular blockchain platforms, such as Ethereum, which applies
the consensus protocol of Proof of Work (PoW), which cannot be afforded by resource-
constrained IoMT devices.

2. The performance evaluation of the proposed HF-based security architecture for IoMT-
based health monitoring systems with a focus on the results in terms of latency (i.e.,
min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput
(i.e., transactions per second), and memory usage (MB)). However, there are no similar
architectures to the one proposed in the literature, and thus we cannot compare the
evaluation results of this research work directly to evaluation results from other
research works. Nevertheless, we compare our performance evaluation results to
results from works on IoT networks for real-time healthcare applications and from a
work on the performance evaluation of HF for use in IoT as presented in Section 6.

Following this introduction, the paper is organized as follows. In Section 2, we present
a literature review of HF-based security mechanisms and HF security schemes for IoT.
In Section 3, we give a brief overview of HF, its components, and its functionalities. In
Section 4, the proposed HF-based security architecture (i.e., HF-based network) for IoMT-
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based health monitoring systems, along with its main system components, is presented. In
Section 5, we present the performance evaluation of the proposed HF-based architecture
(i.e., HF-based network). Finally, Section 6 concludes the paper.

2. Related Work

In this section, we present a literature review of HF-based security mechanisms and
schemes for IoT.

It is worth mentioning that, although HF-based mechanisms for IoT exist, there is a
lack of HF-based security architectures for IoMT-based health monitoring systems, and
for this reason, in this section, we will review HF-based mechanisms (authentication,
authorization, access control, and data integrity) and HF-based security schemes for IoT
that exist in the literature [19].

2.1. HF-Based Authentication and Authorization

D. Li et al. [20] proposed a blockchain-based authentication mechanism for IoT in
order to eliminate the single point of failure. In their proposed research, they refer to the
necessity of device authentication without the use of a central authority, which is used in the
traditional Public Key Infrastructure mechanisms (PKI). Blockchain technology is suitable
in this architecture and provides the decentralized network structure. The implementation
of the blockchain-based authentication mechanism has been conducted with the use of
Raspberry Pi devices and the HF platform.

Babu Erukala Suresh et al. in [21], proposed a distributed identity-based authentica-
tion scheme for IoT devices using permissioned blockchain. The proposed system uses
blockchain as a distributed Private Key Generator (PKG), which eliminates the single
point of failure and key escrow problem. The proposed authentication scheme has been
implemented in HF.

Shohei Kakei et al. in [22], suggest a distributed authentication infrastructure that
distributes trust points among multiple service providers and connects them through
cross-certification. The proposed method creates a unified framework for regulating cross-
certification in a unique way. The paper proposes a new decentralized trust model called
Meta-PKI that aims to overcome the overconcentration of trust in Certification Authorities
(CAs).

Siris V. et al. in [23], propose a model for decentralized authorization in constrained
IoT environments that uses multiple authorization servers (ASs) and two blockchains, one
for authorization and the other for payments. The proposed models aim to reduce trans-
action costs and delays compared to a single (public) blockchain. The paper investigates
interledger mechanisms for securely linking transactions on two blockchains: a private or
permissioned chain and a public chain. The evaluation of the proposed models has been
carried out on two public Ethereum testnets: Rinkeby and Ropsten and HF. The evaluation
considers the execution cost (gas), delay, and reduction in the amount of data that needs to
be sent to IoT devices.

Houshyar Pajooh et al. in [24], propose and implement an integrated IoT system
that uses HF to secure edge computing devices while providing traceability for the data
generated by IoT devices. The proposed model addresses scalability challenges, pro-
cessing power, and storage issues of IoT edge devices in the blockchain network. The
paper also presents a lightweight mutual authentication and authorization model and
an HF blockchain middleware module embedded in IoT gateways, ensuring secure data
transactions for the IoT-distributed applications.

2.2. HF-Based Access Control

The authors of [25] present the development of an attribute-based access control
(ABAC) mechanism using Hyperledger Fabric components for IoT devices in a blockchain
network. The article uses Raspberry Pi 4 Model B based on ARM64 architecture as the IoT
device and evaluates the HF blockchain implementation and access control mechanism on
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the ARM64 architecture. The article demonstrates a real-world IoT-blockchain integration
scenario, and through effective chaincode execution and testing, the authors successfully
assess the ABAC mechanism using HF components.

Han Liu et al. [26] present the design and implementation of Fabric-IoT, a blockchain-
based access control system for IoT that aims to solve the access control problem in IoT
by providing dynamic access control management and record tracing using distributed
architecture. The system is based on the HF platform and the Attribute-Based Access
Control (ABAC) model.

D. H. Shih et al. in [27], propose an access control system for the Industrial Internet of
Things (IIoT) based on blockchain technology and attribute-based access control (ABAC).
The proposed access control system aims to provide decentralized, fine-grained, and
dynamic access control management for IIoT to address security issues and ensure secure
transactions between manufacturers.

The authors of [28] propose an Attribute-Based Access Control Model for Internet of
Things using Hyperledger Fabric Blockchain (ABAC-HLFBC). By using smart contracts,
they have implemented fine-grained and expressive access control. The ABAC model
extracts the attributes of the subject, object, permission, and environment and transforms
permission management into attribute management. The proposed model can provide a
distributed and lightweight secure access control solution for IoT that overcomes traditional
centralized access control issues.

J. Maeng et al. in [29], propose and implement a lightweight group management
(H-LGM) model for IoT devices based on HF. The contribution of the proposed research
work includes the proposal of lightweight rekeying to reduce the update overhead of group
key (GK) and H-LGM, the use of GK to organize and manage groups, the use of an agent
for lightweight rekeying, and the demonstration of H-LGM’s effectiveness.

2.3. HF-Based Data Integrity

The authors of [30] propose a scheme to protect the identity privacy of IoT users by
preventing identity leakage in transactions. The study uses the ring signature method to
obscure the real identity of the user who proposes the transaction, and the aggregated
signature method to shorten the time and space required for k signature verification to 1/k,
improving the efficiency of the system. The correctness and efficiency of the scheme are
also proved through theoretical analysis and experiments.

Ning Lu et al. in [31], present a proposed decentralized data integrity auditing scheme,
called HF-Audit, that uses HF to establish two separate communication channels for User-
TPA(third-party auditor)-CSP(cloud service provider). HF is chosen as the communication
platform in HF-Audit because of its attributes such as tamper-proofing, access permission,
anonymity, efficient processing, and private channel features.

The authors of [32] propose a secure data transfer scheme based on Hyperledger
Fabric blockchain for enterprise data sharing in the Industrial Internet of Things (IIoT). The
raw data collected by enterprises is encrypted and stored in the InterPlanetary File System
(IPFS) network, while the keyword-index table is designed in HF blockchain to enable
data sharing among enterprises. The framework comprises three layers: Hyperledger
Network Layer, Client Layer, and Storage Layer. The proposed scheme constitutes a
significant contribution to secure data sharing, privacy protection, and scalability in IIoT’s
applications.

The aforementioned related work is summarized in Table 1.
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Table 1. HF-based mechanisms and schemes for IoT.

Reference Type of Security Key Characteristics

[20] Authentication mechanism Decentralization, simplicity, general application

[25] Attribute-based access control (ABAC) mechanism
for IoT devices

Development of ABAC mechanism, access control system
design and policies, rules for network and channel settings,
signature and Implicit Meta policies, resource access control

lists (ACLs)

[24] Authentication and Authorization model Securing edge computing devices, traceability of IoT data,
scalability, smart-contract queries

[29] Lightweight group management (H-LGM) model Group management for IoT devices, lightweight rekeying,
group key (GK) utilization, agent-based rekeying

[26] Blockchain-based access control system for IoT

Dynamic access control management, record tracing,
Attribute-Based Access Control (ABAC) model, secure sharing

of data resources, simplified sharing mode and storage
structure, device access control policy based on ABAC

[27] Access control system for Industrial Internet of
Things (IIoT)

Decentralized, fine-grained, and dynamic access control
management, attribute-based access control (ABAC), three

smart contracts for policy management, resource URL storage,
and access control

[21] Distributed identity-based authentication scheme
Distributed PKG, elimination of single point of failure and key
escrow problem, security protocol for IoT device authentication

using IBE

[22] Distributed authentication infrastructure Distribution of trust points, cross-certification, decentralized
trust model (Meta-PKI)

[30] Privacy protection scheme with ring signature and
aggregated signature

Identity privacy protection, prevention of identity leakage, ring
signature method, aggregated signature method, accountability

mechanism, three-role scheme architecture

[23] Decentralized authorization model with multiple
ASs and two blockchains

Multiple authorization servers (ASs), two blockchains for
authorization and payments, interledger mechanisms, OAuth

2.0 delegated authorization framework, CBOR Web Token
(CWT) format

[28] Attribute-Based Access Control Model for IoT Fine-grained and expressive access control, attribute-based
permission management

[31] Decentralized data integrity auditing scheme Utilization of separate communication channels for
User-TPA-CSP, mitigating risks of privacy breaches

[32] Secure data transfer scheme
Utilization of IPFS for encrypted storage, design of

Keyword-index, use of Chaincode and ECDSA for data
integrity and mutual authentication

3. Hyperledger Fabric

In this section we present Hyperledger Fabric (HF) basic components and functionali-
ties, as well as the reasons it constitutes a suitable platform for deploying our proposed
architecture.

Hyperledger Fabric has been proposed by Androulaki et al. [33] and developed by
Linux Foundation [34], and it is a distributed ledger platform for developing applications
with modular architecture [35]. This platform provides pluggable consensus protocols
(mainly PBFT-based) and a private-permissioned blockchain model. It is suitable for deploy-
ing IoT applications for stakeholders that partially trust each other. This implementation
platform has low scalability due to the nature of PBFT algorithms and 33.33% (1/3) ad-
versary tolerance. However, it provides high privacy and throughput and supports the
development of smart contracts.

Support for pluggable consensus protocols is one of the platforms most distinguished
features. This support makes it possible to tailor the platform more effectively to specific
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use cases and trust models. For instance, fully byzantine fault-tolerant consensus may be
deemed redundant and an undue drag on performance and throughput when it is deployed
within a single business or when it is controlled by a trusted authority. In circumstances
such as these, a consensus protocol that is crash fault-tolerant (CFT) may be more than
sufficient; however, in a multi-party, decentralized use case, a consensus protocol that
is byzantine fault-tolerant (BFT) may be necessary [36]. For all these reasons, HF can
be a viable blockchain platform to develop upon lightweight blockchain-based security
solutions for IoMT networks [15,37].

In HF, the workflow from the initiation of a transaction to the update of the ledger
involves several stages, as shown in Figure 1. As a first step, a transaction is initiated by a
client. Secondly, the transaction is sent along with other transactions into the endorsing
peers. Then it is endorsed by the set of designated endorsing peers according to the
specified endorsement policy. These peers simulate the execution of the transaction and
generate a proposal response that includes the outcome and read/write sets. Following
this, the transactions along with the collected endorsed proposal responses are sent to
the ordering service. The ordering service establishes a consensus on the order of the
transactions and assembles them into a block. Then the block is appended to the chain and
transferred to the peers that update their local copy of the ledger and endorse the updates.
The ledger is then updated across all peers, ensuring the consistency of the data among
the network participants. This workflow guarantees a secure, transparent, and auditable
process for updating the ledger in HF.
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The main components of HF are the following:
Blockchain Network: This can be understood as a collection of nodes that form a Peer-to-

Peer (P2P) network in which every node shares a common distributed ledger and complies
to the state of the ledger through a consensus protocol. In the case of HF, the blockchain
network can provide, besides the distributive ledger, the feature of chaincode, a form of
smart contract, that can be utilized to generate transactions that are then transmitted to
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each peer node in the network and immutably recorded on their copy of the distributed
ledger.

Peer: This is the main component of the blockchain network. Peers are the parts of the
network where the blockchain ledger and the chaincode are hosted. Peers can also host
SDK and APIs, through which network users can interact with applications and services.
Peers are separated into two categories: (a) anchor peers and (b) endorsement peers. The
former are responsible for distributing the blocks to the latter, while endorsement peers are
responsible for endorsing the chaincode that is invoked by clients. Endorsement policies are
pre-specified by the chaincode and define the number of peers that are needed to execute
and endorse the specific chaincode.

Ordering Service: Different from the permissionless blockchains (e.g., Bitcoin, Ethereum)
that come to consensus with a probabilistic process, HF uses the orderer node that, as
the name indicates, orders the transactions. The group of ordering nodes compose the
ordering service. After the ordering of the transaction, the deterministic consensus of
the Hyperledger Fabric follows. Ordering is taking place in the specific nodes, and it is
separated from the endorsing of transactions that takes place in peers. HLF provides three
implementations of ordering service: Solo, Kafka, and Raft [38].

Certificate authority (CA): This is a tool that, as the name indicates, generates certificates
for admins, users, peers, orderers, or applications in the form of an X.509 certificate [39]
to identify the aforementioned blockchain network entities. Besides the identity for the
entities that is issued by CA, CA also defines the privileges of the entities over the network.

Chaincode: This is the piece of code that acts as an application and provides functional-
ities to the established blockchain network, and it is carried in a Docker container. For this
implementation we are going to used node.js language for chaincode implementation, but
in other cases chaincode can be written in programming languages such as Go or Java.

Channels: These provide the communication between the nodes of the network. They
comprise organizations, peers for each member, and the distributed ledger, as well as
the chaincode. Channels are the places where transactions are proposed and handled.
In Hyperledger fabric a node can participate in more than one channel and transmit
information and data privately.

Endorsement policies: Endorsement policies specify the number of peers on a channel
that are necessary to execute the chaincode of a transaction and endorse the results of this
execution for the transaction to be credited as valid. As part of the transaction validation
process performed by the peers, each validating peer verifies that the transaction has the
correct number of endorsements.

Membership Service Provider (MSP): MSP is a component of HF that abstracts member-
ship activities. An MSP detaches all cryptographic processes and protocols underlying
certificate issuance, certificate validation, and user authentication and allows peers to
validate incoming transaction requests from clients and sign transaction outcomes. An
MSP can establish its own concept of identity, as well as the rules by which identities are
managed and authenticated.

As described, HF’s unique qualities make it a highly scalable system for permissioned
blockchains that supports changeable trust assumptions, enabling the platform to accom-
modate a vast array of industrial use cases (e.g., banking, supply chain and more) from
which one of them is on the scope of this research work: healthcare. The lightweight nature
of HF, as well as the features that were presented in this section, is what makes this platform
a suitable choice for our HF-based security architecture for IoMT-based health monitoring
systems, keeping into consideration both the design needs as well as the resource constraint
nature of IoMT nodes.

The support for private transactions is one of the key reasons why HF is ideal for
IoT networks. HF enables private transactions between specific parties, preserving the
confidentiality of sensitive data while offering modular architecture, which allows it to
be tailored to the exact requirements of an IoT network. Scalability is another significant
property of HF that makes it suited for IoT networks. The volume of data created by an
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IoT network grows in direct proportion to the number of devices in the network. HF is
built to manage massive amounts of data and can be horizontally scaled to accommodate
more devices and transactions. Finally, the consensus method of HF is well-suited for IoMT
networks as it ensures that all network participants agree on the state of the ledger, which
is critical in an IoMT network because numerous devices may perform transactions at the
same time.

In conclusion, Hyperledger Fabric’s support for private transactions, modular archi-
tecture, scalability, and consensus mechanisms make it an appropriate blockchain platform
for IoT networks [12,19,33].

4. Proposed HF-Based Security Architecture

This section gives an overview of the architecture of a typical IoMT-based health
monitoring system where the proposed blockchain-based security architecture will be
considered to be deployed for supporting the development of lightweight blockchain-
based security mechanisms in IoMT-based health monitoring systems. Then, an overview
of the proposed blockchain-based security architecture, relying on the HF platform, along
with a description of its main components, are given.

4.1. Overview of an IoMT-Based Health Monitoring Systems

In this Section, we present the architecture of an IoMT-based health monitoring system.
Typically, the architecture of an IoT-based health monitoring system is divided into three
domains: (1) perception domain; (2) network domain; and (3) cloud domain, as shown in
Figure 2.
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(a) Perception Domain: It is possible to understand this as the device layer in the ITU-T
standard model [40] and as the IoMT edge network of the IoMT-based health monitoring
system. The perception domain interacts with objects (e.g., physical things) via the IoMT
devices (e.g., sensors, actuators, etc.) that are located on the IoMT edge network. The
primary function of the perception domain is to connect things to the IoMT edge network. It
is also responsible for measuring, gathering, and managing the information that is provided
by these devices via IoT devices transmitting the information that has been gathered to
higher domains through domain interfaces. Finally, the perception domain is home to
the biosensors that are in charge of gathering the user/patient’s vital signs as well as
the context-ware sensors that are in charge of gathering context information from the
user/patient’s surrounding environment (e.g., air pressure, humidity, sound, etc.).

(b) Network Domain: This is the transmission domain, and in the IoMT-based health
monitoring system architecture described above, it is implemented as the middle domain.
The function of the network domain is to collect the data that has been obtained by the
perception domain and to establish the routes that will be taken in order to send the data
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that has been received to the Cloud domain via integrated networks. This particular sphere
incorporates a wide range of tools and methods of communication, including Wi-Fi, 4G/5G,
and the Internet, amongst others. In addition, it is the responsibility of the network domain
to supply the relevant data services, such as data aggregation and fog computing.

(c) Cloud Domain: This then makes use of the data it has received from the network
domain in order to give relevant cloud-based services or operations to the user/patient, to
healthcare professionals, or to other authorized individuals (e.g., authorized relatives of the
user/patient). For instance, the provided cloud-based services may include services such
as the monitoring and assessment service of the user/patient’s health status on the side
of the healthcare professionals, the storage service where the received data are stored to
databases in the cloud domain, and the analysis service to evaluate received data in order
to provide predictions about the future state of sensing devices at the perception domain.

4.2. Overview of the Proposed HF-Based Security Architecture

The proposed HF-based security architecture for IoMT-based health monitoring sys-
tems is presented in Figure 3, and aims to: (i) achieve entity authentication (i.e., device
authentication) as the HF platform allows the deployment of permissioned blockchain
networks, (ii) enable IoMT devices to transmit data to each other in a secure manner (i.e.,
confidentiality of the exchanged data) due to the functionality of the HF platform to permit
secure communication, via channels, between specific participants, (iii) eliminate single
point of failure issues (e.g., no risk of DoS attacks), and (iv) achieve more secure (i.e.,
tamper-proof) data storage given its decentralized, autonomous, and cryptographically
secure nature. The HF platform can enable a more energy-efficient blockchain-based secu-
rity architecture for IoMT-based health monitoring systems, compared to other popular
blockchain platforms such as Ethereum, as HF does not apply the consensus protocol of
Proof of Work (PoW) that cannot be afforded by IoMT devices (e.g., medical sensors) due
to their limited processing power, storage capacity, and battery life.

The proposed architecture can include multiple HF organizations (i.e., N HF orga-
nizations) that are interconnected through peers or orderers running on devices, such as
gateways and servers, and operating under the HF platform on an HF-based network. In
the context of HF, each organization is a member (e.g., healthcare provider, patient) that
is eligible or invited to join the HF blockchain network. In addition, each organization
can include multiple peers or orderers of different perception or cloud domains (e.g., K
Perception domains in Organization 1 and M Cloud domains in Organization N). Owing
to the functionalities of HF, an organization can contain Certificate Authorities (CAs),
responsible for the entity authentication, orderers, or peers, and each of these entities can
be interconnected with others through private channels inside the HF network.

Each organization in the proposed HF-based security architecture consists of the
following key HF components as also shown in Figure 3:

Peer is the main component of the HF network that permits the hosting of (i) the
blockchain ledger, (ii) the chaincode, and (iii) the endorsement policies, while permitting
the communication of the user with the HF network through the SDK. A peer can be hosted
on a gateway of a Perception Domain or on a server of a Cloud Domain of the proposed
HF-based security architecture.

Orderer is a component responsible for managing and ordering the transactions that
are added to the blockchain. An orderer is responsible to ensure the timely and accurate
ordering of patient data and other transactions on the blockchain. The orderer could be
responsible for receiving transactions, such as patient data and other healthcare-related
information, from the gateways in the network and then validating the transactions to
ensure that they meet the network’s consensus rules. The validated transactions would
then be added to the blockchain to maintain the integrity and consistency of the ledger.
Similar to a peer, an orderer can be hosted on a gateway of a Perception Domain or on a
server of a Cloud Domain of the proposed HF-based security architecture.
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Certificate Authority (CA) generates certificates for the entities of the network, such as
admins, users, peers, orderers, or applications, that can be used to authenticate them. Thus,
the generated certificates are used to ensure the legitimacy of the entities of the network so
that they can communicate with each other and transmit data in a secure manner.

5. Simulation Set-Up of the Proposed HF-Based Security Architecture

In this section, we present the simulation set-up of the proposed architecture. In this
simulation, we deployed an instance of the proposed HF architecture presented in Section 4
on a Linux virtual environment on a Virtual Machine (VM) where the HF platform and the
necessary perquisite software (e.g., Docker, golang) were installed. The parameters of the
VM are shown below in Table 2:

Table 2. Virtual Environment Parameters.

Feature Specifications

Operating System Ubuntu 22.04.2 AMD 64
RAM 4096 MB

Hyperledger Fabric 2.2
Docker 20.10.21
Node.js v.12.22.9

The deployed HF network that represents the instance of the proposed architecture
consists of the following components, as shown in Figure 4:
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• Organization 1, peer0.org1, representing the gateway of the patient in its respective
perception domain;

• Organization 2, peer0.org2, representing the gateway of a healthcare provider that is
part of the network;

• Organization 3, orederer.org3, representing the ordering service;
• A CA is included in each Organization (e.g., ca_org1, ca_org2, ca_orderer).
• We have also deployed the following necessary components:
• a cli that allows us to interact with the peer in order to connect it to a channel and

initiate transactions;
• a CouchDB, which is the state database used in HF to store the current world state of

the blockchain network; and
• the containers that include the chaincodes (i.e., create_asset, read_asset) that will run

during the simulation base on which the evaluation results in terms of latency (i.e.,
min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput
(i.e., transactions per second), and memory usage (MB) are collected.

The process for the simulation-set of the proposed network includes the following
steps:

Step 1. As a first step, we create the Fabric CA servers by initiating the corresponding
Docker containers, with the use of the HF binaries, in order to generate all the
necessary certificates for the orderers and peers, as shown in Figure 5.

Step 2. After setting up the Fabric CA servers, we proceed to generate the cryptographic
material for the network (i.e., TLS, MSP certificates). According to the HF docu-
mentation [41], we initially enroll the CA server by generating an admin certificate
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which subsequently will be used to issue certificates and enroll the peers and the
orderer in each organization, as well as to create a channel configuration that will
define the initial state of the network. In Figures 6 and 7, we present an example
of the enrolment of the CA admin and the org1 admin, respectively.

Step 3. After generating the certificates, as a next step we define the initial configuration
of the network. This step contains the configuration of the orderer and the peers
that is achieved through the creation of the docker-compose.yaml file that contains
the necessary configuration parameters.

Step 4. Once the initial network configuration is defined, we proceed with the creation
of a genesis block that contains information about the network, including the
cryptographic materials, the policies, and other configuration settings defined
and created in previous steps. The genesis block is created with the use of the
configtxgen binary provided by the HF platform. Additionally, in this step we
create also the CouchDB containers used as ledger state databases. Figure 8.
presents the creation of the genesis block.

Step 5. This step involves the definition of the channel configuration, including the
participating organizations and their respective peers as well as the orderer. In
addition, in this step, the channel is created as shown in Figure 9. Once the
channel is created, each peer can join the channel to establish communication
within the HF network.

Step 6. In this step, we access the peer cli using the prompt command docker exec -it cli.
Through the peer cli, we initiate the connection of the peer to the channel, as
shown in Figure 10.

Step 7. This step involves the installation of the chaincode. At this point, we pack the
chaincode into a Docker container, install it on the peers, and instantiate it on
the channel. Then the initial state of the ledger is created and stored in the
CouchDB. Figure 11 depicts the initiation of the installation of the chaincode in
the channel, while Figure 12 depicts the final step of the process which is the
successful approval of the chaincode to the channel and the commitment of the
chaincode by both peers.

Step 8. Finally, as the chaincode is installed in the peers, the user can interact with the
state of the ledger and initiate transactions through the peer cli by querying the
chaincode.
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It is worth mentioning that the aforementioned HF architecture can be secure and
effective against eavesdropping, spoofing, and masquerading attacks due to the deployed
Certificate Authority that provides TLS and MSP certificates to the nodes (i.e., peers,
orderers) connected to the network. These certificates are necessary in order for a node to
be able to securely communicate, transmit, or receive information in the network. Therefore,
a non-certified, by the deployed CA, node is unable to participate in the network.

6. Performance Evaluation

To evaluate the deployed HF-network, as described in Section 5, we have used the
Hyperledger Caliper blockchain benchmark tool [42]. Caliper is an open-source benchmark
tool, hosted by the Linux Foundation, that enables users to evaluate the performance of
different blockchain platforms and consensus algorithms in a standardized environment. It
provides a set of predefined use cases and performance metrics while allowing users to
define custom scenarios and execute them in order to evaluate them and collect data such
as transaction throughput, response time and resource consumption. Caliper functions as a
benchmark tool of various blockchain platforms, such as Hyperledger Fabric, Sawtooth, and
Ethereum. Caliper can also function under various workloads and configurations [43,44].
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In the context of this performance evaluation, we have assumed the test scenario where
two peers are interconnected via a shared channel, as described in Section 5. These peers,
which were developed in Section 5, are designed to correspond to the characteristics of two
gateways within our proposed HF-based architecture. For the purpose of our performance
evaluation, we have evaluated the network by collecting results in terms of latency (i.e.,
min (s), max (s), average (s)), send rate (i.e., transactions per second), throughput (i.e.,
transactions per second), and memory usage (MB). Regarding parameters, we measured
network performance based on (i) “assets” (i.e., stored values) stored in the blockchain,
and (ii) “workers” performing processes in parallel during the benchmark. The “workers”
parameter in Caliper specifies the number of processes that will take place during the
benchmark. Each “worker” process runs on a separate thread or CPU core, allowing the
benchmark to use multi-core CPUs and distribute the workload across multiple threads.
The use of multiple “workers” improves the benchmark’s performance and scalability by
allowing it to process transactions in parallel. However, it is worth noting that increasing
the number of “workers” also increases memory usage. In general, the optimal number of
“workers” for a given Caliper benchmark will depend on the specific blockchain network
and workload being tested, as well as the available system resources.

The selection of “assets” parameter for evaluating network performance allows us to
test the network’s efficiency as the number of stored objects increases. On the other hand,
the quantity of “workers” directly relates to the scalability potential of the architecture,
showcasing the network’s ability to handle elevated transaction volumes simultaneously.
As a result, as stored objects and parallel transactions significantly impact the performance
of a HF network, the results of the performance evaluation are directly relevant to real-
world scenarios involving HF-based architectures. The conclusions drawn from these
results are highly applicable to real-world implementation.

In our case, we have experimented with different values of the “workers” parameter
on the network in order to evaluate the network and identify its optimal settings. We have
experimented in instances of 1, 2, 5, 10, 15, and 20 “workers”, while we have kept the
number of the assets at 5. The “asset” parameter defines the number of assets (i.e., stored
values) that are included in the ledger. We have experimented in instances of 5, 10, 25, 50,
75, 100, and 150 assets in each performance evaluation iteration, and we have maintained
the number of “workers” at 4.

We have tested the following two chaincode functions in the present evaluation:
(i) create_asset and (ii) read_asset. The create_asset function creates an asset and appends it to
the ledger according to a corresponding asset template. On the other hand, the read_asset
function reads the assets stored in the ledger.

As we plan, as future work, to integrate a Collaborative Intrusion Detection System
(CIDS) in the proposed HF network architecture, the template of the created assets in the
create_asset function is based on possible outputs that an CIDS may produce in order to be
stored in the ledger. An example of the asset template for CIDS values stored in the ledger
is shown in Figure 14 below:

In order to ensure the accuracy and reliability of the evaluation results derived from
the utilization of the Caliper benchmarking tool, a comprehensive validation approach was
undertaken. The process included the configuration of our HF-based network within a sim-
ulated environment, designed to emulate real-world settings. Moreover, the configuration
details of the simulation, such as hardware specifications, network topology, and software
versions, have been documented with the aim to facilitate the replication and validation of
the experiment by fellow researchers.

Subsequent to the configuration phase, a series of multiple test runs were executed.
This approach was adopted to determine any anomalies or performance variations in iso-
lated test instances. Employing multiple test runs supported the accuracy of the conclusions
drawn from the results, enhancing the reliability of the outcomes. Nevertheless, due to the
fact that our experiments were conducted in a virtual environment, potential variations in
the performance of the proposed HF-based architecture in a real-world context may occur.
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In the following section, we present the evaluation results in terms of latency (i.e.,
min (s), max (s), average (s)), send rate (i.e., transactions per second), throughput (i.e.,
transactions per second), and memory usage (MB). The evaluation results were generated
using the MATLAB R2018b software based on the values collected by Caliper.

6.1. Latency

Latency is the time delay between the initiation of the transaction and its commitment
to the blockchain.

In the case of the “assets” parameter, we have experimented in instances of 5, 10, 25,
50, 75, 100, and 150 assets in each performance evaluation iteration. We observe that, as
we increase the number of assets, the latency in each evaluation iteration remains constant.
Notably, in the case of create_asset function (Figure 15a), the average latency remains below
25 s. Similarly, for the of read_asset function (Figure 16a), the average latency remains stable,
below 0.05 s, while we observe the higher value of the maximum latency of 0.3 s. This
stable latency performance, while asset numbers are increasing, underscores the network’s
resilience and its capacity to efficiently handle a growing asset load.
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In the case of the “workers” parameter, we have experimented in instances of 1, 2, 5,
10, 15, and 20 “workers” in each performance evaluation iteration. The results demonstrate
a steady increase in the maximum latency that is proportional to the increase in the value
of the “workers” parameter in the case of read_asset (Figure 16b). However, the maximum
latency does not surpass the 0.6 s and the average latency remains constantly below 0.1 s.
On the other hand, as there will be more parallel processes available to process transactions
and respond to requests, latency is kept at a constant value and less than 25 s in the case of
the create_asset (Figure 15b). It is worthwhile to note that the average latency in the case of
create_asset (Figure 15b) sees an increase up to the number of 5 “workers” and then remains
stable below 20 s for the rest of the iterations. This observation reaffirms the adaptability
and stability of the network under varied worker loads.

Due to the fact that there are no similar architectures to the proposed one in the litera-
ture, we cannot compare the evaluation results of this research work directly to evaluation
results from other research works. However, we compared our performance evaluation
results to results from works on IoT networks for real-time healthcare applications [45,46]
and from a work on the performance evaluation of HF for use in IoT [38]. We observed
similar values (i.e., minimum latency of 0.1 s [45] and 4 s [38]) and, thus, our performance
evaluation of the proposed architecture has demonstrated satisfactory results in terms
of latency in the cases of create_asset and read_asset functions. The values of latency are
considered adequately low and within an acceptable range, indicating that the proposed
HF architecture responds to requests in a timely manner.

6.2. Send Rate and Throughput

Send rate refers to the rate at which transactions can be submitted to the network for
processing and it is measured in transactions per second (TPS). In contrast, throughput refers
to the rate at which transactions can be successfully processed by a blockchain network
within a given time period, typically measured in transactions per second (TPS).

In the case of the number of “assets”, we can observe a decrease in the send rate
as well as in the throughput proportional to the increase in the number of “assets” in
both functions (i.e., create_asset, read_asset) (Figures 17a and 18a). However, even in the
maximum value of 150 assets (Figure 18a), the simulation performs with a send rate of
91 TPS and a throughput of 89 TPS which can be considered an acceptable value.
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In the case of the “workers” parameter, we observe that the value of the send rate
and throughput is increased up to 110 TPS and then reached the value of 105 TPS, in the
maximum number of the “workers” parameter (i.e., 20), in the case of read_asset function
(Figure 18b). On the other hand, we observe a decrease in throughput while increasing the
number of “workers” in the create_asset function (Figure 17b). We can conclude that, while
reading the assets on the ledger, by increasing the number of the “workers” parameter, we
can increase the throughput, while distributing the workload more evenly and increasing
the total number of transactions that can be processed in a given time period.

Overall, the performance evaluation has demonstrated satisfactory results in terms
of send rate and throughput, compared to a work on the performance evaluation of HF
for use in IoT [38], in both cases (i.e., create_asset, read_asset) and we can conclude that the
proposed HF architecture is capable of handling a significant amount of traffic without
any distinguishable performance degradation and, thus, being suitable for the case of
IoMT-based health monitoring systems.
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6.3. Peer Memory Usage

Peer memory usage refers to the amount of memory consumed by a peer node in the
blockchain network to store and manage ledger data, execute smart contracts, and maintain
ledger state.

By increasing the “workers” parameter as well as the number of “assets”, we observe
an increase in the peer memory usage (Figure 19a,b). We can observe a maximum value of
memory usage of 205 MB, which is approximately 4.99% of the total available memory of
the gateway (i.e., 4096 MB). This is a feasible value for a peer node to function properly on
a lightweight gateway (e.g., Raspberry Pi 4 [47] with up to 8 GB RAM).

Future Internet 2023, 15, x FOR PEER REVIEW 19 of 22 
 

 

for use in IoT [38], in both cases (i.e., create_asset, read_asset) and we can conclude that the 

proposed HF architecture is capable of handling a significant amount of traffic without 

any distinguishable performance degradation and, thus, being suitable for the case of 

IoMT-based health monitoring systems. 

6.3. Peer Memory Usage 

Peer memory usage refers to the amount of memory consumed by a peer node in the 

blockchain network to store and manage ledger data, execute smart contracts, and main-

tain ledger state. 

By increasing the “workers” parameter as well as the number of “assets”, we observe 

an increase in the peer memory usage (Figure 19a,b). We can observe a maximum value 

of memory usage of 205 MB, which is approximately 4.99% of the total available memory 

of the gateway (i.e., 4096 MB). This is a feasible value for a peer node to function properly 

on a lightweight gateway (e.g., Raspberry Pi 4 [47] with up to 8 GB RAM). 

  

(a) (b) 
 

Figure 19. Peer memory usage (MB), (a) per “asset” (b) per “worker”. 

7. Conclusions and Future Work 

In this paper, an HF-based security architecture for IoMT-based health monitoring 

systems has been proposed and deployed. With the proposal of this novel architecture, 

we have tried to address the security issues in the field of IoMT-based health monitoring 

systems and have tried to fill the gap caused by the lack of lightweight blockchain-based 

security architectures for IoMT-based health monitoring systems. The detailed description 

of its main components (i.e., perception domain, HF blockchain network), along with the 

interactions among them, have also been provided. In addition, a deployment of the sim-

ulation set-up of the proposed HF-based security architecture (i.e., HF-based network) for 

IoMT-based health monitoring systems has been described and evaluated in terms of la-

tency (i.e., min (s), max (s), and average (s)), send rate (i.e., transactions per second), 

throughput (i.e., transactions per second), and memory usage (MB). However, due to the 

fact that there are no similar architectures to the proposed one in the literature, we cannot 

compare our evaluation results directly to evaluation results from other works. Neverthe-

less, we compared our results to results from works on IoT networks for real-time 

healthcare applications [45,46] and from a work on the performance evaluation of HF for 

use in IoT [38]. In this regard, our results demonstrate a good performance of the proposed 

architecture, allowing its use in resource-constrained environments, such as the IoMT, and 

enabling more advanced functionalities to be implemented on top of this architecture. It 

is worth noting that our experiments were conducted in a virtual environment, and 

Figure 19. Peer memory usage (MB), (a) per “asset” (b) per “worker”.

7. Conclusions and Future Work

In this paper, an HF-based security architecture for IoMT-based health monitoring
systems has been proposed and deployed. With the proposal of this novel architecture,
we have tried to address the security issues in the field of IoMT-based health monitoring
systems and have tried to fill the gap caused by the lack of lightweight blockchain-based
security architectures for IoMT-based health monitoring systems. The detailed description
of its main components (i.e., perception domain, HF blockchain network), along with
the interactions among them, have also been provided. In addition, a deployment of the
simulation set-up of the proposed HF-based security architecture (i.e., HF-based network)
for IoMT-based health monitoring systems has been described and evaluated in terms of
latency (i.e., min (s), max (s), and average (s)), send rate (i.e., transactions per second),
throughput (i.e., transactions per second), and memory usage (MB). However, due to
the fact that there are no similar architectures to the proposed one in the literature, we
cannot compare our evaluation results directly to evaluation results from other works.
Nevertheless, we compared our results to results from works on IoT networks for real-time
healthcare applications [45,46] and from a work on the performance evaluation of HF for
use in IoT [38]. In this regard, our results demonstrate a good performance of the proposed
architecture, allowing its use in resource-constrained environments, such as the IoMT, and
enabling more advanced functionalities to be implemented on top of this architecture. It is
worth noting that our experiments were conducted in a virtual environment, and potential
variations in the performance of the proposed HF-based architecture in a real-world context
may occur. Furthermore, the proposed architecture can be secure and effective against
security attacks due to the functionalities provided by HF (i.e., TLS, MSP). As future
work, we plan to develop and evaluate a Collaborative Intrusion Detection System (CIDS)
for IoMT-based health monitoring systems, based on the developed HF-based security
architecture, that will be responsible for collecting behavioral information (i.e., log files)
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from the IoMT devices, information from the IoMT network traffic, and for detecting
malicious incidents in such systems.
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