
Citation: Pelekoudas-Oikonomou, F.;

Ribeiro, J.C.; Mantas, G.; Sakellari, G.;

Gonzalez, J. Prototyping a

Hyperledger Fabric-Based Security

Architecture for IoMT-Based Health

Monitoring Systems. Future Internet

2023, 15, 308. https://doi.org/

10.3390/fi15090308

Academic Editor: Matthew Pediaditis

Received: 3 August 2023

Revised: 24 August 2023

Accepted: 5 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Prototyping a Hyperledger Fabric-Based Security Architecture
for IoMT-Based Health Monitoring Systems
Filippos Pelekoudas-Oikonomou 1,2,*, José C. Ribeiro 1, Georgios Mantas 2, Georgia Sakellari 2

and Jonathan Gonzalez 1

1 Evotel Informática S.A., 27400 Monforte de Lemos, Lugo, Spain; jose@evotel-info.com (J.C.R.);
jgonzalez@evotel-info.com (J.G.)

2 Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK;
g.mantas@greenwich.ac.uk (G.M.); g.sakellari@greenwich.ac.uk (G.S.)

* Correspondence: filippos@evotel-info.com

Abstract: The Internet of Medical Things (IoMT) has risen significantly in recent years and has
provided better quality of life by enabling IoMT-based health monitoring systems. Despite that
fact, innovative security mechanisms are required to meet the security concerns of such systems
effectively and efficiently. Additionally, the industry and the research community have anticipated
that blockchain technology will be a disruptive technology that will be able to be integrated into
innovative security solutions for IoMT networks since it has the potential to play a big role in:
(a) enabling secure data transmission, (b) ensuring IoMT device security, and (c) enabling tamper-
proof data storage. Therefore, the purpose of this research work is to design a novel lightweight
blockchain-based security architecture for IoMT-based health monitoring systems leveraging the
features of the Hyperledger Fabric (HF) Platform, its utilities. and its lightweight blockchain nature
in order to: (i) ensure entity authentication, (ii) ensure data confidentiality, and (iii) enable a more
energy-efficient blockchain-based security architecture for IoMT-based health monitoring systems
while considering the limited resources of IoMT gateways. While security mechanisms for IoT
utilizing HF do exist, to the best of our knowledge there is no specific HF-based architecture for
IoMT-based health monitoring systems.

Keywords: Internet of Medical Things; blockchain; hyperledger fabric; healthcare

1. Introduction

In recent years, the Internet of Things (IoT) technology has emerged and grown rapidly,
bringing significant benefits to the healthcare sector by transforming the healthcare in-
dustry and introducing the Internet of Medical Things (IoMT), where medical devices are
interconnected so that anyone, anywhere, and at any time may have access to them [1].
The evolution and growth of IoMT networks can play a significant role in enhancing
the quality of life of individuals by enabling IoMT-based health monitoring systems that
deliver personalized and user-centric healthcare services despite time and location restric-
tions [2–4]. However, the high resource requirements of existing security solutions cannot
be afforded by (i) the resource-constrained IoMT devices (e.g., bio-sensors), which are key
components of IoMT-based health monitoring systems but characterized by limited pro-
cessing power, storage capacity, and battery life, and/or (ii) the constrained environment
in which the IoMT devices are deployed and interconnected using lightweight commu-
nication protocols [3,5–8]. Furthermore, the centralization approach commonly adopted
by the state-of-the-art existing security frameworks is not easily applicable to IoMT-based
health monitoring systems due to single point of failure issues that may render them
vulnerable to different attacks, such as Denial of Service (DoS) attacks [7,9]. In addition, it
is worth mentioning that conventional defense mechanisms cannot ensure tamper-proof
data storage [10]. Therefore, it is clear that novel security mechanisms are urgently needed

Future Internet 2023, 15, 308. https://doi.org/10.3390/fi15090308 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15090308
https://doi.org/10.3390/fi15090308
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi15090308
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15090308?type=check_update&version=1

Future Internet 2023, 15, 308 2 of 22

so that the pressing security challenges of IoMT-based health monitoring systems, relying
on IoMT networks, can be addressed in an effective and efficient manner. This must be
performed while taking into consideration the inherent limitations of the IoMT networks
and devices, due to their resource-constrained characteristics and the centralized nature of
IoMT-based health monitoring systems, before these systems gain the trust of all involved
stakeholders and reach their full potential in the healthcare market [6,8,11].

To this end, blockchain technology has been foreseen by the industry and research
community as a disruptive technology that can be integrated into novel security solutions
for IoMT-based health monitoring systems in order to: (a) enable IoMT devices to transmit
data to each other in a secure manner (e.g., tamper-proof transmission of medical data, no
risk of DoS attacks) [3], given its decentralized, autonomous, and cryptographically secure
nature, (b) ensure IoMT device security, and (c) enable tamper-proof data storage [12–14].

However, despite the significant benefits that the integration of blockchain technology
can bring to the current, centralized IoMT-based health monitoring systems by addressing
security challenges related to single point of failure issues and data storage, the resource-
constrained IoMT devices of these systems are still unable to afford complex and high
energy-consuming blockchain operations (e.g., the mining process in Proof of Work (PoW))
because of their limited processing power, storage capacity, and battery life [15–18]. Conse-
quently, it is essential for lightweight blockchain-based security mechanisms to be applied
so that they can be efficiently supported by the resource-constrained IoMT devices within
IoMT-based health monitoring systems. However, so far, and to the best of our knowl-
edge [19], there are only few works on blockchain-based authentication and authorization
mechanisms as well as on blockchain-based Intrusion Detection Systems that can be con-
sidered for protecting IoMT-based health monitoring systems, demonstrating the lack of
proper works on lightweight blockchain-based security for IoMT-based health monitoring
systems.

Towards this end, as a major initial step, the design and implementation of an
energy-efficient blockchain-based security architecture for supporting the development
of lightweight blockchain-based security mechanisms for IoMT-based health monitoring
systems is of utmost importance. Our motivation lies in the lack of proper works on
lightweight blockchain-based security for IoMT networks and particularly for IoMT-based
health monitoring systems. Specifically, the present research work provides the following
contributions:

1. The design and implementation of an energy-efficient blockchain-based security
architecture that will rely on the Hyperledger Fabric (HF) platform, as it does not
only ensure entity authentication (i.e., device authentication) and data confidentiality
(i.e., confidentiality of the exchanged data) but also can enable a more energy-efficient
blockchain-based security architecture for IoMT-based health monitoring systems
compared to other popular blockchain platforms, such as Ethereum, which applies
the consensus protocol of Proof of Work (PoW), which cannot be afforded by resource-
constrained IoMT devices.

2. The performance evaluation of the proposed HF-based security architecture for IoMT-
based health monitoring systems with a focus on the results in terms of latency (i.e.,
min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput
(i.e., transactions per second), and memory usage (MB)). However, there are no similar
architectures to the one proposed in the literature, and thus we cannot compare the
evaluation results of this research work directly to evaluation results from other
research works. Nevertheless, we compare our performance evaluation results to
results from works on IoT networks for real-time healthcare applications and from a
work on the performance evaluation of HF for use in IoT as presented in Section 6.

Following this introduction, the paper is organized as follows. In Section 2, we present
a literature review of HF-based security mechanisms and HF security schemes for IoT.
In Section 3, we give a brief overview of HF, its components, and its functionalities. In
Section 4, the proposed HF-based security architecture (i.e., HF-based network) for IoMT-

Future Internet 2023, 15, 308 3 of 22

based health monitoring systems, along with its main system components, is presented. In
Section 5, we present the performance evaluation of the proposed HF-based architecture
(i.e., HF-based network). Finally, Section 6 concludes the paper.

2. Related Work

In this section, we present a literature review of HF-based security mechanisms and
schemes for IoT.

It is worth mentioning that, although HF-based mechanisms for IoT exist, there is a
lack of HF-based security architectures for IoMT-based health monitoring systems, and
for this reason, in this section, we will review HF-based mechanisms (authentication,
authorization, access control, and data integrity) and HF-based security schemes for IoT
that exist in the literature [19].

2.1. HF-Based Authentication and Authorization

D. Li et al. [20] proposed a blockchain-based authentication mechanism for IoT in
order to eliminate the single point of failure. In their proposed research, they refer to the
necessity of device authentication without the use of a central authority, which is used in the
traditional Public Key Infrastructure mechanisms (PKI). Blockchain technology is suitable
in this architecture and provides the decentralized network structure. The implementation
of the blockchain-based authentication mechanism has been conducted with the use of
Raspberry Pi devices and the HF platform.

Babu Erukala Suresh et al. in [21], proposed a distributed identity-based authentica-
tion scheme for IoT devices using permissioned blockchain. The proposed system uses
blockchain as a distributed Private Key Generator (PKG), which eliminates the single
point of failure and key escrow problem. The proposed authentication scheme has been
implemented in HF.

Shohei Kakei et al. in [22], suggest a distributed authentication infrastructure that
distributes trust points among multiple service providers and connects them through
cross-certification. The proposed method creates a unified framework for regulating cross-
certification in a unique way. The paper proposes a new decentralized trust model called
Meta-PKI that aims to overcome the overconcentration of trust in Certification Authorities
(CAs).

Siris V. et al. in [23], propose a model for decentralized authorization in constrained
IoT environments that uses multiple authorization servers (ASs) and two blockchains, one
for authorization and the other for payments. The proposed models aim to reduce trans-
action costs and delays compared to a single (public) blockchain. The paper investigates
interledger mechanisms for securely linking transactions on two blockchains: a private or
permissioned chain and a public chain. The evaluation of the proposed models has been
carried out on two public Ethereum testnets: Rinkeby and Ropsten and HF. The evaluation
considers the execution cost (gas), delay, and reduction in the amount of data that needs to
be sent to IoT devices.

Houshyar Pajooh et al. in [24], propose and implement an integrated IoT system
that uses HF to secure edge computing devices while providing traceability for the data
generated by IoT devices. The proposed model addresses scalability challenges, pro-
cessing power, and storage issues of IoT edge devices in the blockchain network. The
paper also presents a lightweight mutual authentication and authorization model and
an HF blockchain middleware module embedded in IoT gateways, ensuring secure data
transactions for the IoT-distributed applications.

2.2. HF-Based Access Control

The authors of [25] present the development of an attribute-based access control
(ABAC) mechanism using Hyperledger Fabric components for IoT devices in a blockchain
network. The article uses Raspberry Pi 4 Model B based on ARM64 architecture as the IoT
device and evaluates the HF blockchain implementation and access control mechanism on

Future Internet 2023, 15, 308 4 of 22

the ARM64 architecture. The article demonstrates a real-world IoT-blockchain integration
scenario, and through effective chaincode execution and testing, the authors successfully
assess the ABAC mechanism using HF components.

Han Liu et al. [26] present the design and implementation of Fabric-IoT, a blockchain-
based access control system for IoT that aims to solve the access control problem in IoT
by providing dynamic access control management and record tracing using distributed
architecture. The system is based on the HF platform and the Attribute-Based Access
Control (ABAC) model.

D. H. Shih et al. in [27], propose an access control system for the Industrial Internet of
Things (IIoT) based on blockchain technology and attribute-based access control (ABAC).
The proposed access control system aims to provide decentralized, fine-grained, and
dynamic access control management for IIoT to address security issues and ensure secure
transactions between manufacturers.

The authors of [28] propose an Attribute-Based Access Control Model for Internet of
Things using Hyperledger Fabric Blockchain (ABAC-HLFBC). By using smart contracts,
they have implemented fine-grained and expressive access control. The ABAC model
extracts the attributes of the subject, object, permission, and environment and transforms
permission management into attribute management. The proposed model can provide a
distributed and lightweight secure access control solution for IoT that overcomes traditional
centralized access control issues.

J. Maeng et al. in [29], propose and implement a lightweight group management
(H-LGM) model for IoT devices based on HF. The contribution of the proposed research
work includes the proposal of lightweight rekeying to reduce the update overhead of group
key (GK) and H-LGM, the use of GK to organize and manage groups, the use of an agent
for lightweight rekeying, and the demonstration of H-LGM’s effectiveness.

2.3. HF-Based Data Integrity

The authors of [30] propose a scheme to protect the identity privacy of IoT users by
preventing identity leakage in transactions. The study uses the ring signature method to
obscure the real identity of the user who proposes the transaction, and the aggregated
signature method to shorten the time and space required for k signature verification to 1/k,
improving the efficiency of the system. The correctness and efficiency of the scheme are
also proved through theoretical analysis and experiments.

Ning Lu et al. in [31], present a proposed decentralized data integrity auditing scheme,
called HF-Audit, that uses HF to establish two separate communication channels for User-
TPA(third-party auditor)-CSP(cloud service provider). HF is chosen as the communication
platform in HF-Audit because of its attributes such as tamper-proofing, access permission,
anonymity, efficient processing, and private channel features.

The authors of [32] propose a secure data transfer scheme based on Hyperledger
Fabric blockchain for enterprise data sharing in the Industrial Internet of Things (IIoT). The
raw data collected by enterprises is encrypted and stored in the InterPlanetary File System
(IPFS) network, while the keyword-index table is designed in HF blockchain to enable
data sharing among enterprises. The framework comprises three layers: Hyperledger
Network Layer, Client Layer, and Storage Layer. The proposed scheme constitutes a
significant contribution to secure data sharing, privacy protection, and scalability in IIoT’s
applications.

The aforementioned related work is summarized in Table 1.

Future Internet 2023, 15, 308 5 of 22

Table 1. HF-based mechanisms and schemes for IoT.

Reference Type of Security Key Characteristics

[20] Authentication mechanism Decentralization, simplicity, general application

[25] Attribute-based access control (ABAC) mechanism
for IoT devices

Development of ABAC mechanism, access control system
design and policies, rules for network and channel settings,
signature and Implicit Meta policies, resource access control

lists (ACLs)

[24] Authentication and Authorization model Securing edge computing devices, traceability of IoT data,
scalability, smart-contract queries

[29] Lightweight group management (H-LGM) model Group management for IoT devices, lightweight rekeying,
group key (GK) utilization, agent-based rekeying

[26] Blockchain-based access control system for IoT

Dynamic access control management, record tracing,
Attribute-Based Access Control (ABAC) model, secure sharing

of data resources, simplified sharing mode and storage
structure, device access control policy based on ABAC

[27] Access control system for Industrial Internet of
Things (IIoT)

Decentralized, fine-grained, and dynamic access control
management, attribute-based access control (ABAC), three

smart contracts for policy management, resource URL storage,
and access control

[21] Distributed identity-based authentication scheme
Distributed PKG, elimination of single point of failure and key
escrow problem, security protocol for IoT device authentication

using IBE

[22] Distributed authentication infrastructure Distribution of trust points, cross-certification, decentralized
trust model (Meta-PKI)

[30] Privacy protection scheme with ring signature and
aggregated signature

Identity privacy protection, prevention of identity leakage, ring
signature method, aggregated signature method, accountability

mechanism, three-role scheme architecture

[23] Decentralized authorization model with multiple
ASs and two blockchains

Multiple authorization servers (ASs), two blockchains for
authorization and payments, interledger mechanisms, OAuth

2.0 delegated authorization framework, CBOR Web Token
(CWT) format

[28] Attribute-Based Access Control Model for IoT Fine-grained and expressive access control, attribute-based
permission management

[31] Decentralized data integrity auditing scheme Utilization of separate communication channels for
User-TPA-CSP, mitigating risks of privacy breaches

[32] Secure data transfer scheme
Utilization of IPFS for encrypted storage, design of

Keyword-index, use of Chaincode and ECDSA for data
integrity and mutual authentication

3. Hyperledger Fabric

In this section we present Hyperledger Fabric (HF) basic components and functionali-
ties, as well as the reasons it constitutes a suitable platform for deploying our proposed
architecture.

Hyperledger Fabric has been proposed by Androulaki et al. [33] and developed by
Linux Foundation [34], and it is a distributed ledger platform for developing applications
with modular architecture [35]. This platform provides pluggable consensus protocols
(mainly PBFT-based) and a private-permissioned blockchain model. It is suitable for deploy-
ing IoT applications for stakeholders that partially trust each other. This implementation
platform has low scalability due to the nature of PBFT algorithms and 33.33% (1/3) ad-
versary tolerance. However, it provides high privacy and throughput and supports the
development of smart contracts.

Support for pluggable consensus protocols is one of the platforms most distinguished
features. This support makes it possible to tailor the platform more effectively to specific

Future Internet 2023, 15, 308 6 of 22

use cases and trust models. For instance, fully byzantine fault-tolerant consensus may be
deemed redundant and an undue drag on performance and throughput when it is deployed
within a single business or when it is controlled by a trusted authority. In circumstances
such as these, a consensus protocol that is crash fault-tolerant (CFT) may be more than
sufficient; however, in a multi-party, decentralized use case, a consensus protocol that
is byzantine fault-tolerant (BFT) may be necessary [36]. For all these reasons, HF can
be a viable blockchain platform to develop upon lightweight blockchain-based security
solutions for IoMT networks [15,37].

In HF, the workflow from the initiation of a transaction to the update of the ledger
involves several stages, as shown in Figure 1. As a first step, a transaction is initiated by a
client. Secondly, the transaction is sent along with other transactions into the endorsing
peers. Then it is endorsed by the set of designated endorsing peers according to the
specified endorsement policy. These peers simulate the execution of the transaction and
generate a proposal response that includes the outcome and read/write sets. Following
this, the transactions along with the collected endorsed proposal responses are sent to
the ordering service. The ordering service establishes a consensus on the order of the
transactions and assembles them into a block. Then the block is appended to the chain and
transferred to the peers that update their local copy of the ledger and endorse the updates.
The ledger is then updated across all peers, ensuring the consistency of the data among
the network participants. This workflow guarantees a secure, transparent, and auditable
process for updating the ledger in HF.

Future Internet 2023, 15, x FOR PEER REVIEW 6 of 22

Support for pluggable consensus protocols is one of the platforms most distinguished

features. This support makes it possible to tailor the platform more effectively to specific

use cases and trust models. For instance, fully byzantine fault-tolerant consensus may be

deemed redundant and an undue drag on performance and throughput when it is de-

ployed within a single business or when it is controlled by a trusted authority. In circum-

stances such as these, a consensus protocol that is crash fault-tolerant (CFT) may be more

than sufficient; however, in a multi-party, decentralized use case, a consensus protocol

that is byzantine fault-tolerant (BFT) may be necessary [36]. For all these reasons, HF can

be a viable blockchain platform to develop upon lightweight blockchain-based security

solutions for IoMT networks [15,37].

In HF, the workflow from the initiation of a transaction to the update of the ledger

involves several stages, as shown in Figure 1. As a first step, a transaction is initiated by a

client. Secondly, the transaction is sent along with other transactions into the endorsing

peers. Then it is endorsed by the set of designated endorsing peers according to the spec-

ified endorsement policy. These peers simulate the execution of the transaction and gen-

erate a proposal response that includes the outcome and read/write sets. Following this,

the transactions along with the collected endorsed proposal responses are sent to the or-

dering service. The ordering service establishes a consensus on the order of the transac-

tions and assembles them into a block. Then the block is appended to the chain and trans-

ferred to the peers that update their local copy of the ledger and endorse the updates. The

ledger is then updated across all peers, ensuring the consistency of the data among the

network participants. This workflow guarantees a secure, transparent, and auditable pro-

cess for updating the ledger in HF.

Figure 1. Transaction Workflow in HF.

The main components of HF are the following:

Blockchain Network: This can be understood as a collection of nodes that form a Peer-

to-Peer (P2P) network in which every node shares a common distributed ledger and

complies to the state of the ledger through a consensus protocol. In the case of HF, the

Figure 1. Transaction Workflow in HF.

The main components of HF are the following:
Blockchain Network: This can be understood as a collection of nodes that form a Peer-to-

Peer (P2P) network in which every node shares a common distributed ledger and complies
to the state of the ledger through a consensus protocol. In the case of HF, the blockchain
network can provide, besides the distributive ledger, the feature of chaincode, a form of
smart contract, that can be utilized to generate transactions that are then transmitted to

Future Internet 2023, 15, 308 7 of 22

each peer node in the network and immutably recorded on their copy of the distributed
ledger.

Peer: This is the main component of the blockchain network. Peers are the parts of the
network where the blockchain ledger and the chaincode are hosted. Peers can also host
SDK and APIs, through which network users can interact with applications and services.
Peers are separated into two categories: (a) anchor peers and (b) endorsement peers. The
former are responsible for distributing the blocks to the latter, while endorsement peers are
responsible for endorsing the chaincode that is invoked by clients. Endorsement policies are
pre-specified by the chaincode and define the number of peers that are needed to execute
and endorse the specific chaincode.

Ordering Service: Different from the permissionless blockchains (e.g., Bitcoin, Ethereum)
that come to consensus with a probabilistic process, HF uses the orderer node that, as
the name indicates, orders the transactions. The group of ordering nodes compose the
ordering service. After the ordering of the transaction, the deterministic consensus of
the Hyperledger Fabric follows. Ordering is taking place in the specific nodes, and it is
separated from the endorsing of transactions that takes place in peers. HLF provides three
implementations of ordering service: Solo, Kafka, and Raft [38].

Certificate authority (CA): This is a tool that, as the name indicates, generates certificates
for admins, users, peers, orderers, or applications in the form of an X.509 certificate [39]
to identify the aforementioned blockchain network entities. Besides the identity for the
entities that is issued by CA, CA also defines the privileges of the entities over the network.

Chaincode: This is the piece of code that acts as an application and provides functional-
ities to the established blockchain network, and it is carried in a Docker container. For this
implementation we are going to used node.js language for chaincode implementation, but
in other cases chaincode can be written in programming languages such as Go or Java.

Channels: These provide the communication between the nodes of the network. They
comprise organizations, peers for each member, and the distributed ledger, as well as
the chaincode. Channels are the places where transactions are proposed and handled.
In Hyperledger fabric a node can participate in more than one channel and transmit
information and data privately.

Endorsement policies: Endorsement policies specify the number of peers on a channel
that are necessary to execute the chaincode of a transaction and endorse the results of this
execution for the transaction to be credited as valid. As part of the transaction validation
process performed by the peers, each validating peer verifies that the transaction has the
correct number of endorsements.

Membership Service Provider (MSP): MSP is a component of HF that abstracts member-
ship activities. An MSP detaches all cryptographic processes and protocols underlying
certificate issuance, certificate validation, and user authentication and allows peers to
validate incoming transaction requests from clients and sign transaction outcomes. An
MSP can establish its own concept of identity, as well as the rules by which identities are
managed and authenticated.

As described, HF’s unique qualities make it a highly scalable system for permissioned
blockchains that supports changeable trust assumptions, enabling the platform to accom-
modate a vast array of industrial use cases (e.g., banking, supply chain and more) from
which one of them is on the scope of this research work: healthcare. The lightweight nature
of HF, as well as the features that were presented in this section, is what makes this platform
a suitable choice for our HF-based security architecture for IoMT-based health monitoring
systems, keeping into consideration both the design needs as well as the resource constraint
nature of IoMT nodes.

The support for private transactions is one of the key reasons why HF is ideal for
IoT networks. HF enables private transactions between specific parties, preserving the
confidentiality of sensitive data while offering modular architecture, which allows it to
be tailored to the exact requirements of an IoT network. Scalability is another significant
property of HF that makes it suited for IoT networks. The volume of data created by an

Future Internet 2023, 15, 308 8 of 22

IoT network grows in direct proportion to the number of devices in the network. HF is
built to manage massive amounts of data and can be horizontally scaled to accommodate
more devices and transactions. Finally, the consensus method of HF is well-suited for IoMT
networks as it ensures that all network participants agree on the state of the ledger, which
is critical in an IoMT network because numerous devices may perform transactions at the
same time.

In conclusion, Hyperledger Fabric’s support for private transactions, modular archi-
tecture, scalability, and consensus mechanisms make it an appropriate blockchain platform
for IoT networks [12,19,33].

4. Proposed HF-Based Security Architecture

This section gives an overview of the architecture of a typical IoMT-based health
monitoring system where the proposed blockchain-based security architecture will be
considered to be deployed for supporting the development of lightweight blockchain-
based security mechanisms in IoMT-based health monitoring systems. Then, an overview
of the proposed blockchain-based security architecture, relying on the HF platform, along
with a description of its main components, are given.

4.1. Overview of an IoMT-Based Health Monitoring Systems

In this Section, we present the architecture of an IoMT-based health monitoring system.
Typically, the architecture of an IoT-based health monitoring system is divided into three
domains: (1) perception domain; (2) network domain; and (3) cloud domain, as shown in
Figure 2.

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 22

The support for private transactions is one of the key reasons why HF is ideal for IoT

networks. HF enables private transactions between specific parties, preserving the

confidentiality of sensitive data while offering modular architecture, which allows it to be

tailored to the exact requirements of an IoT network. Scalability is another significant

property of HF that makes it suited for IoT networks. The volume of data created by an

IoT network grows in direct proportion to the number of devices in the network. HF is

built to manage massive amounts of data and can be horizontally scaled to accommodate

more devices and transactions. Finally, the consensus method of HF is well-suited for

IoMT networks as it ensures that all network participants agree on the state of the ledger,

which is critical in an IoMT network because numerous devices may perform transactions

at the same time.

In conclusion, Hyperledger Fabric’s support for private transactions, modular

architecture, scalability, and consensus mechanisms make it an appropriate blockchain

platform for IoT networks [12,19,33].

4. Proposed HF-Based Security Architecture

This section gives an overview of the architecture of a typical IoMT-based health

monitoring system where the proposed blockchain-based security architecture will be

considered to be deployed for supporting the development of lightweight blockchain-

based security mechanisms in IoMT-based health monitoring systems. Then, an overview

of the proposed blockchain-based security architecture, relying on the HF platform, along

with a description of its main components, are given.

4.1. Overview of an IoMT-Based Health Monitoring Systems

In this Section, we present the architecture of an IoMT-based health monitoring sys-

tem. Typically, the architecture of an IoT-based health monitoring system is divided into

three domains: (1) perception domain; (2) network domain; and (3) cloud domain, as

shown in Figure 2.

Figure 2. IoMT-based health monitoring system.

(a) Perception Domain: It is possible to understand this as the device layer in the ITU-

T standard model [40] and as the IoMT edge network of the IoMT-based health monitor-

ing system. The perception domain interacts with objects (e.g., physical things) via the

IoMT devices (e.g., sensors, actuators, etc.) that are located on the IoMT edge network.

The primary function of the perception domain is to connect things to the IoMT edge net-

work. It is also responsible for measuring, gathering, and managing the information that

Figure 2. IoMT-based health monitoring system.

(a) Perception Domain: It is possible to understand this as the device layer in the ITU-T
standard model [40] and as the IoMT edge network of the IoMT-based health monitoring
system. The perception domain interacts with objects (e.g., physical things) via the IoMT
devices (e.g., sensors, actuators, etc.) that are located on the IoMT edge network. The
primary function of the perception domain is to connect things to the IoMT edge network. It
is also responsible for measuring, gathering, and managing the information that is provided
by these devices via IoT devices transmitting the information that has been gathered to
higher domains through domain interfaces. Finally, the perception domain is home to
the biosensors that are in charge of gathering the user/patient’s vital signs as well as
the context-ware sensors that are in charge of gathering context information from the
user/patient’s surrounding environment (e.g., air pressure, humidity, sound, etc.).

(b) Network Domain: This is the transmission domain, and in the IoMT-based health
monitoring system architecture described above, it is implemented as the middle domain.
The function of the network domain is to collect the data that has been obtained by the
perception domain and to establish the routes that will be taken in order to send the data

Future Internet 2023, 15, 308 9 of 22

that has been received to the Cloud domain via integrated networks. This particular sphere
incorporates a wide range of tools and methods of communication, including Wi-Fi, 4G/5G,
and the Internet, amongst others. In addition, it is the responsibility of the network domain
to supply the relevant data services, such as data aggregation and fog computing.

(c) Cloud Domain: This then makes use of the data it has received from the network
domain in order to give relevant cloud-based services or operations to the user/patient, to
healthcare professionals, or to other authorized individuals (e.g., authorized relatives of the
user/patient). For instance, the provided cloud-based services may include services such
as the monitoring and assessment service of the user/patient’s health status on the side
of the healthcare professionals, the storage service where the received data are stored to
databases in the cloud domain, and the analysis service to evaluate received data in order
to provide predictions about the future state of sensing devices at the perception domain.

4.2. Overview of the Proposed HF-Based Security Architecture

The proposed HF-based security architecture for IoMT-based health monitoring sys-
tems is presented in Figure 3, and aims to: (i) achieve entity authentication (i.e., device
authentication) as the HF platform allows the deployment of permissioned blockchain
networks, (ii) enable IoMT devices to transmit data to each other in a secure manner (i.e.,
confidentiality of the exchanged data) due to the functionality of the HF platform to permit
secure communication, via channels, between specific participants, (iii) eliminate single
point of failure issues (e.g., no risk of DoS attacks), and (iv) achieve more secure (i.e.,
tamper-proof) data storage given its decentralized, autonomous, and cryptographically
secure nature. The HF platform can enable a more energy-efficient blockchain-based secu-
rity architecture for IoMT-based health monitoring systems, compared to other popular
blockchain platforms such as Ethereum, as HF does not apply the consensus protocol of
Proof of Work (PoW) that cannot be afforded by IoMT devices (e.g., medical sensors) due
to their limited processing power, storage capacity, and battery life.

The proposed architecture can include multiple HF organizations (i.e., N HF orga-
nizations) that are interconnected through peers or orderers running on devices, such as
gateways and servers, and operating under the HF platform on an HF-based network. In
the context of HF, each organization is a member (e.g., healthcare provider, patient) that
is eligible or invited to join the HF blockchain network. In addition, each organization
can include multiple peers or orderers of different perception or cloud domains (e.g., K
Perception domains in Organization 1 and M Cloud domains in Organization N). Owing
to the functionalities of HF, an organization can contain Certificate Authorities (CAs),
responsible for the entity authentication, orderers, or peers, and each of these entities can
be interconnected with others through private channels inside the HF network.

Each organization in the proposed HF-based security architecture consists of the
following key HF components as also shown in Figure 3:

Peer is the main component of the HF network that permits the hosting of (i) the
blockchain ledger, (ii) the chaincode, and (iii) the endorsement policies, while permitting
the communication of the user with the HF network through the SDK. A peer can be hosted
on a gateway of a Perception Domain or on a server of a Cloud Domain of the proposed
HF-based security architecture.

Orderer is a component responsible for managing and ordering the transactions that
are added to the blockchain. An orderer is responsible to ensure the timely and accurate
ordering of patient data and other transactions on the blockchain. The orderer could be
responsible for receiving transactions, such as patient data and other healthcare-related
information, from the gateways in the network and then validating the transactions to
ensure that they meet the network’s consensus rules. The validated transactions would
then be added to the blockchain to maintain the integrity and consistency of the ledger.
Similar to a peer, an orderer can be hosted on a gateway of a Perception Domain or on a
server of a Cloud Domain of the proposed HF-based security architecture.

Future Internet 2023, 15, 308 10 of 22Future Internet 2023, 15, x FOR PEER REVIEW 10 of 22

Figure 3. Overview of the HF-based security architecture for IoMT-based health monitoring sys-

tems.

Each organization in the proposed HF-based security architecture consists of the fol-

lowing key HF components as also shown in Figure 3:

Peer is the main component of the HF network that permits the hosting of (i) the

blockchain ledger, (ii) the chaincode, and (iii) the endorsement policies, while permitting

the communication of the user with the HF network through the SDK. A peer can be

hosted on a gateway of a Perception Domain or on a server of a Cloud Domain of the

proposed HF-based security architecture.

Orderer is a component responsible for managing and ordering the transactions that

are added to the blockchain. An orderer is responsible to ensure the timely and accurate

ordering of patient data and other transactions on the blockchain. The orderer could be

responsible for receiving transactions, such as patient data and other healthcare-related

information, from the gateways in the network and then validating the transactions to

ensure that they meet the network’s consensus rules. The validated transactions would

then be added to the blockchain to maintain the integrity and consistency of the ledger.

Similar to a peer, an orderer can be hosted on a gateway of a Perception Domain or on a

server of a Cloud Domain of the proposed HF-based security architecture.

Certificate Authority (CA) generates certificates for the entities of the network, such as

admins, users, peers, orderers, or applications, that can be used to authenticate them.

Thus, the generated certificates are used to ensure the legitimacy of the entities of the net-

work so that they can communicate with each other and transmit data in a secure manner.

Figure 3. Overview of the HF-based security architecture for IoMT-based health monitoring systems.

Certificate Authority (CA) generates certificates for the entities of the network, such as
admins, users, peers, orderers, or applications, that can be used to authenticate them. Thus,
the generated certificates are used to ensure the legitimacy of the entities of the network so
that they can communicate with each other and transmit data in a secure manner.

5. Simulation Set-Up of the Proposed HF-Based Security Architecture

In this section, we present the simulation set-up of the proposed architecture. In this
simulation, we deployed an instance of the proposed HF architecture presented in Section 4
on a Linux virtual environment on a Virtual Machine (VM) where the HF platform and the
necessary perquisite software (e.g., Docker, golang) were installed. The parameters of the
VM are shown below in Table 2:

Table 2. Virtual Environment Parameters.

Feature Specifications

Operating System Ubuntu 22.04.2 AMD 64
RAM 4096 MB

Hyperledger Fabric 2.2
Docker 20.10.21
Node.js v.12.22.9

The deployed HF network that represents the instance of the proposed architecture
consists of the following components, as shown in Figure 4:

Future Internet 2023, 15, 308 11 of 22

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 22

5. Simulation Set-Up of the Proposed HF-Based Security Architecture

In this section, we present the simulation set-up of the proposed architecture. In this

simulation, we deployed an instance of the proposed HF architecture presented in Section

4 on a Linux virtual environment on a Virtual Machine (VM) where the HF platform and

the necessary perquisite software (e.g., Docker, golang) were installed. The parameters of

the VM are shown below in Table 2:

Table 2. Virtual Environment Parameters.

Feature Specifications

Operating System Ubuntu 22.04.2 AMD 64

RAM 4096 MB

Hyperledger Fabric 2.2

Docker 20.10.21

Node.js v.12.22.9

The deployed HF network that represents the instance of the proposed architecture

consists of the following components, as shown in Figure 4:

Figure 4. The deployed HF network.

• Organization 1, peer0.org1, representing the gateway of the patient in its respective

perception domain;

• Organization 2, peer0.org2, representing the gateway of a healthcare provider that is

part of the network;

• Organization 3, orederer.org3, representing the ordering service;

• A CA is included in each Organization (e.g., ca_org1, ca_org2, ca_orderer).

We have also deployed the following necessary components:

• a cli that allows us to interact with the peer in order to connect it to a channel and

initiate transactions;

Figure 4. The deployed HF network.

• Organization 1, peer0.org1, representing the gateway of the patient in its respective
perception domain;

• Organization 2, peer0.org2, representing the gateway of a healthcare provider that is
part of the network;

• Organization 3, orederer.org3, representing the ordering service;
• A CA is included in each Organization (e.g., ca_org1, ca_org2, ca_orderer).
• We have also deployed the following necessary components:
• a cli that allows us to interact with the peer in order to connect it to a channel and

initiate transactions;
• a CouchDB, which is the state database used in HF to store the current world state of

the blockchain network; and
• the containers that include the chaincodes (i.e., create_asset, read_asset) that will run

during the simulation base on which the evaluation results in terms of latency (i.e.,
min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput
(i.e., transactions per second), and memory usage (MB) are collected.

The process for the simulation-set of the proposed network includes the following
steps:

Step 1. As a first step, we create the Fabric CA servers by initiating the corresponding
Docker containers, with the use of the HF binaries, in order to generate all the
necessary certificates for the orderers and peers, as shown in Figure 5.

Step 2. After setting up the Fabric CA servers, we proceed to generate the cryptographic
material for the network (i.e., TLS, MSP certificates). According to the HF docu-
mentation [41], we initially enroll the CA server by generating an admin certificate

Future Internet 2023, 15, 308 12 of 22

which subsequently will be used to issue certificates and enroll the peers and the
orderer in each organization, as well as to create a channel configuration that will
define the initial state of the network. In Figures 6 and 7, we present an example
of the enrolment of the CA admin and the org1 admin, respectively.

Step 3. After generating the certificates, as a next step we define the initial configuration
of the network. This step contains the configuration of the orderer and the peers
that is achieved through the creation of the docker-compose.yaml file that contains
the necessary configuration parameters.

Step 4. Once the initial network configuration is defined, we proceed with the creation
of a genesis block that contains information about the network, including the
cryptographic materials, the policies, and other configuration settings defined
and created in previous steps. The genesis block is created with the use of the
configtxgen binary provided by the HF platform. Additionally, in this step we
create also the CouchDB containers used as ledger state databases. Figure 8.
presents the creation of the genesis block.

Step 5. This step involves the definition of the channel configuration, including the
participating organizations and their respective peers as well as the orderer. In
addition, in this step, the channel is created as shown in Figure 9. Once the
channel is created, each peer can join the channel to establish communication
within the HF network.

Step 6. In this step, we access the peer cli using the prompt command docker exec -it cli.
Through the peer cli, we initiate the connection of the peer to the channel, as
shown in Figure 10.

Step 7. This step involves the installation of the chaincode. At this point, we pack the
chaincode into a Docker container, install it on the peers, and instantiate it on
the channel. Then the initial state of the ledger is created and stored in the
CouchDB. Figure 11 depicts the initiation of the installation of the chaincode in
the channel, while Figure 12 depicts the final step of the process which is the
successful approval of the chaincode to the channel and the commitment of the
chaincode by both peers.

Step 8. Finally, as the chaincode is installed in the peers, the user can interact with the
state of the ledger and initiate transactions through the peer cli by querying the
chaincode.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 22

• a CouchDB, which is the state database used in HF to store the current world state of

the blockchain network; and

• the containers that include the chaincodes (i.e., create_asset, read_asset) that will run

during the simulation base on which the evaluation results in terms of latency (i.e.,

min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput

(i.e., transactions per second), and memory usage (MB) are collected.

The process for the simulation-set of the proposed network includes the following

steps:

Step 1. As a first step, we create the Fabric CA servers by initiating the corresponding Docker

containers, with the use of the HF binaries, in order to generate all the necessary cer-

tificates for the orderers and peers, as shown in Figure 5.

Figure 5. Creating CAs (step 1).

Step 2. After setting up the Fabric CA servers, we proceed to generate the cryptographic ma-

terial for the network (i.e., TLS, MSP certificates). According to the HF documentation

[41], we initially enroll the CA server by generating an admin certificate which subse-

quently will be used to issue certificates and enroll the peers and the orderer in each

organization, as well as to create a channel configuration that will define the initial

state of the network. In Figures 6 and 7, we present an example of the enrolment of

the CA admin and the org1 admin, respectively.

Figure 6. Enrolling the CA admin (step 2).

Figure 7. Enrolling the org1 admin (step 2).

Step 3. After generating the certificates, as a next step we define the initial configuration of

the network. This step contains the configuration of the orderer and the peers that is

achieved through the creation of the docker-compose.yaml file that contains the neces-

sary configuration parameters.

Step 4. Once the initial network configuration is defined, we proceed with the creation of a

genesis block that contains information about the network, including the crypto-

graphic materials, the policies, and other configuration settings defined and created

in previous steps. The genesis block is created with the use of the configtxgen binary

Figure 5. Creating CAs (step 1).

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 22

• a CouchDB, which is the state database used in HF to store the current world state of

the blockchain network; and

• the containers that include the chaincodes (i.e., create_asset, read_asset) that will run

during the simulation base on which the evaluation results in terms of latency (i.e.,

min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput

(i.e., transactions per second), and memory usage (MB) are collected.

The process for the simulation-set of the proposed network includes the following

steps:

Step 1. As a first step, we create the Fabric CA servers by initiating the corresponding Docker

containers, with the use of the HF binaries, in order to generate all the necessary cer-

tificates for the orderers and peers, as shown in Figure 5.

Figure 5. Creating CAs (step 1).

Step 2. After setting up the Fabric CA servers, we proceed to generate the cryptographic ma-

terial for the network (i.e., TLS, MSP certificates). According to the HF documentation

[41], we initially enroll the CA server by generating an admin certificate which subse-

quently will be used to issue certificates and enroll the peers and the orderer in each

organization, as well as to create a channel configuration that will define the initial

state of the network. In Figures 6 and 7, we present an example of the enrolment of

the CA admin and the org1 admin, respectively.

Figure 6. Enrolling the CA admin (step 2).

Figure 7. Enrolling the org1 admin (step 2).

Step 3. After generating the certificates, as a next step we define the initial configuration of

the network. This step contains the configuration of the orderer and the peers that is

achieved through the creation of the docker-compose.yaml file that contains the neces-

sary configuration parameters.

Step 4. Once the initial network configuration is defined, we proceed with the creation of a

genesis block that contains information about the network, including the crypto-

graphic materials, the policies, and other configuration settings defined and created

in previous steps. The genesis block is created with the use of the configtxgen binary

Figure 6. Enrolling the CA admin (step 2).

Future Internet 2023, 15, 308 13 of 22

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 22

• a CouchDB, which is the state database used in HF to store the current world state of

the blockchain network; and

• the containers that include the chaincodes (i.e., create_asset, read_asset) that will run

during the simulation base on which the evaluation results in terms of latency (i.e.,

min (s), max (s), and average (s)), send rate (i.e., transactions per second), throughput

(i.e., transactions per second), and memory usage (MB) are collected.

The process for the simulation-set of the proposed network includes the following

steps:

Step 1. As a first step, we create the Fabric CA servers by initiating the corresponding Docker

containers, with the use of the HF binaries, in order to generate all the necessary cer-

tificates for the orderers and peers, as shown in Figure 5.

Figure 5. Creating CAs (step 1).

Step 2. After setting up the Fabric CA servers, we proceed to generate the cryptographic ma-

terial for the network (i.e., TLS, MSP certificates). According to the HF documentation

[41], we initially enroll the CA server by generating an admin certificate which subse-

quently will be used to issue certificates and enroll the peers and the orderer in each

organization, as well as to create a channel configuration that will define the initial

state of the network. In Figures 6 and 7, we present an example of the enrolment of

the CA admin and the org1 admin, respectively.

Figure 6. Enrolling the CA admin (step 2).

Figure 7. Enrolling the org1 admin (step 2).

Step 3. After generating the certificates, as a next step we define the initial configuration of

the network. This step contains the configuration of the orderer and the peers that is

achieved through the creation of the docker-compose.yaml file that contains the neces-

sary configuration parameters.

Step 4. Once the initial network configuration is defined, we proceed with the creation of a

genesis block that contains information about the network, including the crypto-

graphic materials, the policies, and other configuration settings defined and created

in previous steps. The genesis block is created with the use of the configtxgen binary

Figure 7. Enrolling the org1 admin (step 2).

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 22

provided by the HF platform. Additionally, in this step we create also the CouchDB

containers used as ledger state databases. Figure 8. presents the creation of the genesis

block.

Figure 8. Creating the genesis block (step 4).

Step 5. This step involves the definition of the channel configuration, including the partici-

pating organizations and their respective peers as well as the orderer. In addition, in

this step, the channel is created as shown in Figure 9. Once the channel is created, each

peer can join the channel to establish communication within the HF network.

Figure 9. Channel creation (step 5).

Step 6. In this step, we access the peer cli using the prompt command docker exec -it cli.

Through the peer cli, we initiate the connection of the peer to the channel, as shown

in Figure 10.

Figure 10. Joining peer0.org1 into the channel (step 6).

Step 7. This step involves the installation of the chaincode. At this point, we pack the

chaincode into a Docker container, install it on the peers, and instantiate it on the

channel. Then the initial state of the ledger is created and stored in the CouchDB. Fig-

ure 11 depicts the initiation of the installation of the chaincode in the channel, while

Figure 12 depicts the final step of the process which is the successful approval of the

chaincode to the channel and the commitment of the chaincode by both peers.

Figure 8. Creating the genesis block (step 4).

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 22

provided by the HF platform. Additionally, in this step we create also the CouchDB

containers used as ledger state databases. Figure 8. presents the creation of the genesis

block.

Figure 8. Creating the genesis block (step 4).

Step 5. This step involves the definition of the channel configuration, including the partici-

pating organizations and their respective peers as well as the orderer. In addition, in

this step, the channel is created as shown in Figure 9. Once the channel is created, each

peer can join the channel to establish communication within the HF network.

Figure 9. Channel creation (step 5).

Step 6. In this step, we access the peer cli using the prompt command docker exec -it cli.

Through the peer cli, we initiate the connection of the peer to the channel, as shown

in Figure 10.

Figure 10. Joining peer0.org1 into the channel (step 6).

Step 7. This step involves the installation of the chaincode. At this point, we pack the

chaincode into a Docker container, install it on the peers, and instantiate it on the

channel. Then the initial state of the ledger is created and stored in the CouchDB. Fig-

ure 11 depicts the initiation of the installation of the chaincode in the channel, while

Figure 12 depicts the final step of the process which is the successful approval of the

chaincode to the channel and the commitment of the chaincode by both peers.

Figure 9. Channel creation (step 5).

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 22

provided by the HF platform. Additionally, in this step we create also the CouchDB

containers used as ledger state databases. Figure 8. presents the creation of the genesis

block.

Figure 8. Creating the genesis block (step 4).

Step 5. This step involves the definition of the channel configuration, including the partici-

pating organizations and their respective peers as well as the orderer. In addition, in

this step, the channel is created as shown in Figure 9. Once the channel is created, each

peer can join the channel to establish communication within the HF network.

Figure 9. Channel creation (step 5).

Step 6. In this step, we access the peer cli using the prompt command docker exec -it cli.

Through the peer cli, we initiate the connection of the peer to the channel, as shown

in Figure 10.

Figure 10. Joining peer0.org1 into the channel (step 6).

Step 7. This step involves the installation of the chaincode. At this point, we pack the

chaincode into a Docker container, install it on the peers, and instantiate it on the

channel. Then the initial state of the ledger is created and stored in the CouchDB. Fig-

ure 11 depicts the initiation of the installation of the chaincode in the channel, while

Figure 12 depicts the final step of the process which is the successful approval of the

chaincode to the channel and the commitment of the chaincode by both peers.

Figure 10. Joining peer0.org1 into the channel (step 6).

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 22

Figure 11. Chaincode installation process (step 7).

Figure 12. Chaincode approved and committed on channel (step 7).

Step 8. Finally, as the chaincode is installed in the peers, the user can interact with the state

of the ledger and initiate transactions through the peer cli by querying the chaincode.

In Figure 13 we present the containers deployed for the purpose of the HF network

simulation:

Figure 13. Docker containers for the performance evaluation.

It is worth mentioning that the aforementioned HF architecture can be secure and

effective against eavesdropping, spoofing, and masquerading attacks due to the deployed

Certificate Authority that provides TLS and MSP certificates to the nodes (i.e., peers, or-

derers) connected to the network. These certificates are necessary in order for a node to be

able to securely communicate, transmit, or receive information in the network. Therefore,

a non-certified, by the deployed CA, node is unable to participate in the network.

Figure 11. Chaincode installation process (step 7).

Future Internet 2023, 15, 308 14 of 22

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 22

Figure 11. Chaincode installation process (step 7).

Figure 12. Chaincode approved and committed on channel (step 7).

Step 8. Finally, as the chaincode is installed in the peers, the user can interact with the state

of the ledger and initiate transactions through the peer cli by querying the chaincode.

In Figure 13 we present the containers deployed for the purpose of the HF network

simulation:

Figure 13. Docker containers for the performance evaluation.

It is worth mentioning that the aforementioned HF architecture can be secure and

effective against eavesdropping, spoofing, and masquerading attacks due to the deployed

Certificate Authority that provides TLS and MSP certificates to the nodes (i.e., peers, or-

derers) connected to the network. These certificates are necessary in order for a node to be

able to securely communicate, transmit, or receive information in the network. Therefore,

a non-certified, by the deployed CA, node is unable to participate in the network.

Figure 12. Chaincode approved and committed on channel (step 7).

In Figure 13 we present the containers deployed for the purpose of the HF network
simulation:

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 22

Figure 11. Chaincode installation process (step 7).

Figure 12. Chaincode approved and committed on channel (step 7).

Step 8. Finally, as the chaincode is installed in the peers, the user can interact with the state

of the ledger and initiate transactions through the peer cli by querying the chaincode.

In Figure 13 we present the containers deployed for the purpose of the HF network

simulation:

Figure 13. Docker containers for the performance evaluation.

It is worth mentioning that the aforementioned HF architecture can be secure and

effective against eavesdropping, spoofing, and masquerading attacks due to the deployed

Certificate Authority that provides TLS and MSP certificates to the nodes (i.e., peers, or-

derers) connected to the network. These certificates are necessary in order for a node to be

able to securely communicate, transmit, or receive information in the network. Therefore,

a non-certified, by the deployed CA, node is unable to participate in the network.

Figure 13. Docker containers for the performance evaluation.

It is worth mentioning that the aforementioned HF architecture can be secure and
effective against eavesdropping, spoofing, and masquerading attacks due to the deployed
Certificate Authority that provides TLS and MSP certificates to the nodes (i.e., peers,
orderers) connected to the network. These certificates are necessary in order for a node to
be able to securely communicate, transmit, or receive information in the network. Therefore,
a non-certified, by the deployed CA, node is unable to participate in the network.

6. Performance Evaluation

To evaluate the deployed HF-network, as described in Section 5, we have used the
Hyperledger Caliper blockchain benchmark tool [42]. Caliper is an open-source benchmark
tool, hosted by the Linux Foundation, that enables users to evaluate the performance of
different blockchain platforms and consensus algorithms in a standardized environment. It
provides a set of predefined use cases and performance metrics while allowing users to
define custom scenarios and execute them in order to evaluate them and collect data such
as transaction throughput, response time and resource consumption. Caliper functions as a
benchmark tool of various blockchain platforms, such as Hyperledger Fabric, Sawtooth, and
Ethereum. Caliper can also function under various workloads and configurations [43,44].

Future Internet 2023, 15, 308 15 of 22

In the context of this performance evaluation, we have assumed the test scenario where
two peers are interconnected via a shared channel, as described in Section 5. These peers,
which were developed in Section 5, are designed to correspond to the characteristics of two
gateways within our proposed HF-based architecture. For the purpose of our performance
evaluation, we have evaluated the network by collecting results in terms of latency (i.e.,
min (s), max (s), average (s)), send rate (i.e., transactions per second), throughput (i.e.,
transactions per second), and memory usage (MB). Regarding parameters, we measured
network performance based on (i) “assets” (i.e., stored values) stored in the blockchain,
and (ii) “workers” performing processes in parallel during the benchmark. The “workers”
parameter in Caliper specifies the number of processes that will take place during the
benchmark. Each “worker” process runs on a separate thread or CPU core, allowing the
benchmark to use multi-core CPUs and distribute the workload across multiple threads.
The use of multiple “workers” improves the benchmark’s performance and scalability by
allowing it to process transactions in parallel. However, it is worth noting that increasing
the number of “workers” also increases memory usage. In general, the optimal number of
“workers” for a given Caliper benchmark will depend on the specific blockchain network
and workload being tested, as well as the available system resources.

The selection of “assets” parameter for evaluating network performance allows us to
test the network’s efficiency as the number of stored objects increases. On the other hand,
the quantity of “workers” directly relates to the scalability potential of the architecture,
showcasing the network’s ability to handle elevated transaction volumes simultaneously.
As a result, as stored objects and parallel transactions significantly impact the performance
of a HF network, the results of the performance evaluation are directly relevant to real-
world scenarios involving HF-based architectures. The conclusions drawn from these
results are highly applicable to real-world implementation.

In our case, we have experimented with different values of the “workers” parameter
on the network in order to evaluate the network and identify its optimal settings. We have
experimented in instances of 1, 2, 5, 10, 15, and 20 “workers”, while we have kept the
number of the assets at 5. The “asset” parameter defines the number of assets (i.e., stored
values) that are included in the ledger. We have experimented in instances of 5, 10, 25, 50,
75, 100, and 150 assets in each performance evaluation iteration, and we have maintained
the number of “workers” at 4.

We have tested the following two chaincode functions in the present evaluation:
(i) create_asset and (ii) read_asset. The create_asset function creates an asset and appends it to
the ledger according to a corresponding asset template. On the other hand, the read_asset
function reads the assets stored in the ledger.

As we plan, as future work, to integrate a Collaborative Intrusion Detection System
(CIDS) in the proposed HF network architecture, the template of the created assets in the
create_asset function is based on possible outputs that an CIDS may produce in order to be
stored in the ledger. An example of the asset template for CIDS values stored in the ledger
is shown in Figure 14 below:

In order to ensure the accuracy and reliability of the evaluation results derived from
the utilization of the Caliper benchmarking tool, a comprehensive validation approach was
undertaken. The process included the configuration of our HF-based network within a sim-
ulated environment, designed to emulate real-world settings. Moreover, the configuration
details of the simulation, such as hardware specifications, network topology, and software
versions, have been documented with the aim to facilitate the replication and validation of
the experiment by fellow researchers.

Subsequent to the configuration phase, a series of multiple test runs were executed.
This approach was adopted to determine any anomalies or performance variations in iso-
lated test instances. Employing multiple test runs supported the accuracy of the conclusions
drawn from the results, enhancing the reliability of the outcomes. Nevertheless, due to the
fact that our experiments were conducted in a virtual environment, potential variations in
the performance of the proposed HF-based architecture in a real-world context may occur.

Future Internet 2023, 15, 308 16 of 22Future Internet 2023, 15, x FOR PEER REVIEW 16 of 22

Figure 14. Asset template on the create_asset function.

In order to ensure the accuracy and reliability of the evaluation results derived from

the utilization of the Caliper benchmarking tool, a comprehensive validation approach

was undertaken. The process included the configuration of our HF-based network within

a simulated environment, designed to emulate real-world settings. Moreover, the config-

uration details of the simulation, such as hardware specifications, network topology, and

software versions, have been documented with the aim to facilitate the replication and

validation of the experiment by fellow researchers.

Subsequent to the configuration phase, a series of multiple test runs were executed.

This approach was adopted to determine any anomalies or performance variations in iso-

lated test instances. Employing multiple test runs supported the accuracy of the conclu-

sions drawn from the results, enhancing the reliability of the outcomes. Nevertheless, due

to the fact that our experiments were conducted in a virtual environment, potential vari-

ations in the performance of the proposed HF-based architecture in a real-world context

may occur.

In the following section, we present the evaluation results in terms of latency (i.e.,

min (s), max (s), average (s)), send rate (i.e., transactions per second), throughput (i.e.,

transactions per second), and memory usage (MB). The evaluation results were generated

using the MATLAB R2018b software based on the values collected by Caliper.

6.1. Latency

Latency is the time delay between the initiation of the transaction and its commitment

to the blockchain.

In the case of the “assets” parameter, we have experimented in instances of 5, 10, 25,

50, 75, 100, and 150 assets in each performance evaluation iteration. We observe that, as

we increase the number of assets, the latency in each evaluation iteration remains constant.

Notably, in the case of create_asset function (Figure 15a), the average latency remains be-

low 25 s. Similarly, for the of read_asset function (Figure 16a), the average latency remains

stable, below 0.05 s, while we observe the higher value of the maximum latency of 0.3s.

This stable latency performance, while asset numbers are increasing, underscores the net-

work’s resilience and its capacity to efficiently handle a growing asset load.

In the case of the “workers” parameter, we have experimented in instances of 1, 2, 5,

10, 15, and 20 “workers” in each performance evaluation iteration. The results demon-

strate a steady increase in the maximum latency that is proportional to the increase in the

value of the “workers” parameter in the case of read_asset (Figure 16b). However, the max-

imum latency does not surpass the 0.6s and the average latency remains constantly below

0.1s. On the other hand, as there will be more parallel processes available to process trans-

actions and respond to requests, latency is kept at a constant value and less than 25s in the

case of the create_asset (Figure 15b). It is worthwhile to note that the average latency in the

case of create_asset (Figure 15b) sees an increase up to the number of 5 “workers” and then

Figure 14. Asset template on the create_asset function.

In the following section, we present the evaluation results in terms of latency (i.e.,
min (s), max (s), average (s)), send rate (i.e., transactions per second), throughput (i.e.,
transactions per second), and memory usage (MB). The evaluation results were generated
using the MATLAB R2018b software based on the values collected by Caliper.

6.1. Latency

Latency is the time delay between the initiation of the transaction and its commitment
to the blockchain.

In the case of the “assets” parameter, we have experimented in instances of 5, 10, 25,
50, 75, 100, and 150 assets in each performance evaluation iteration. We observe that, as
we increase the number of assets, the latency in each evaluation iteration remains constant.
Notably, in the case of create_asset function (Figure 15a), the average latency remains below
25 s. Similarly, for the of read_asset function (Figure 16a), the average latency remains stable,
below 0.05 s, while we observe the higher value of the maximum latency of 0.3 s. This
stable latency performance, while asset numbers are increasing, underscores the network’s
resilience and its capacity to efficiently handle a growing asset load.

Future Internet 2023, 15, x FOR PEER REVIEW 17 of 22

remains stable below 20s for the rest of the iterations. This observation reaffirms the adapt-

ability and stability of the network under varied worker loads.

(a) (b)

Figure 15. Network Latency (s), (a) per “asset” (b) per “worker”, for create_asset.

(a) (b)

Figure 16. Network Latency (s), (a) per “asset” (b) per “worker”, for read_asset.

Due to the fact that there are no similar architectures to the proposed one in the liter-

ature, we cannot compare the evaluation results of this research work directly to evalua-

tion results from other research works. However, we compared our performance evalua-

tion results to results from works on IoT networks for real-time healthcare applications

[45,46] and from a work on the performance evaluation of HF for use in IoT [38]. We ob-

served similar values (i.e., minimum latency of 0.1s [45] and 4s [38]) and, thus, our perfor-

mance evaluation of the proposed architecture has demonstrated satisfactory results in

terms of latency in the cases of create_asset and read_asset functions. The values of latency

are considered adequately low and within an acceptable range, indicating that the pro-

posed HF architecture responds to requests in a timely manner.

6.2. Send Rate and Throughput

Send rate refers to the rate at which transactions can be submitted to the network for

processing and it is measured in transactions per second (TPS). In contrast, throughput

Figure 15. Network Latency (s), (a) per “asset” (b) per “worker”, for create_asset.

Future Internet 2023, 15, 308 17 of 22

Future Internet 2023, 15, x FOR PEER REVIEW 17 of 22

remains stable below 20s for the rest of the iterations. This observation reaffirms the adapt-

ability and stability of the network under varied worker loads.

(a) (b)

Figure 15. Network Latency (s), (a) per “asset” (b) per “worker”, for create_asset.

(a) (b)

Figure 16. Network Latency (s), (a) per “asset” (b) per “worker”, for read_asset.

Due to the fact that there are no similar architectures to the proposed one in the liter-

ature, we cannot compare the evaluation results of this research work directly to evalua-

tion results from other research works. However, we compared our performance evalua-

tion results to results from works on IoT networks for real-time healthcare applications

[45,46] and from a work on the performance evaluation of HF for use in IoT [38]. We ob-

served similar values (i.e., minimum latency of 0.1s [45] and 4s [38]) and, thus, our perfor-

mance evaluation of the proposed architecture has demonstrated satisfactory results in

terms of latency in the cases of create_asset and read_asset functions. The values of latency

are considered adequately low and within an acceptable range, indicating that the pro-

posed HF architecture responds to requests in a timely manner.

6.2. Send Rate and Throughput

Send rate refers to the rate at which transactions can be submitted to the network for

processing and it is measured in transactions per second (TPS). In contrast, throughput

Figure 16. Network Latency (s), (a) per “asset” (b) per “worker”, for read_asset.

In the case of the “workers” parameter, we have experimented in instances of 1, 2, 5,
10, 15, and 20 “workers” in each performance evaluation iteration. The results demonstrate
a steady increase in the maximum latency that is proportional to the increase in the value
of the “workers” parameter in the case of read_asset (Figure 16b). However, the maximum
latency does not surpass the 0.6 s and the average latency remains constantly below 0.1 s.
On the other hand, as there will be more parallel processes available to process transactions
and respond to requests, latency is kept at a constant value and less than 25 s in the case of
the create_asset (Figure 15b). It is worthwhile to note that the average latency in the case of
create_asset (Figure 15b) sees an increase up to the number of 5 “workers” and then remains
stable below 20 s for the rest of the iterations. This observation reaffirms the adaptability
and stability of the network under varied worker loads.

Due to the fact that there are no similar architectures to the proposed one in the litera-
ture, we cannot compare the evaluation results of this research work directly to evaluation
results from other research works. However, we compared our performance evaluation
results to results from works on IoT networks for real-time healthcare applications [45,46]
and from a work on the performance evaluation of HF for use in IoT [38]. We observed
similar values (i.e., minimum latency of 0.1 s [45] and 4 s [38]) and, thus, our performance
evaluation of the proposed architecture has demonstrated satisfactory results in terms
of latency in the cases of create_asset and read_asset functions. The values of latency are
considered adequately low and within an acceptable range, indicating that the proposed
HF architecture responds to requests in a timely manner.

6.2. Send Rate and Throughput

Send rate refers to the rate at which transactions can be submitted to the network for
processing and it is measured in transactions per second (TPS). In contrast, throughput refers
to the rate at which transactions can be successfully processed by a blockchain network
within a given time period, typically measured in transactions per second (TPS).

In the case of the number of “assets”, we can observe a decrease in the send rate
as well as in the throughput proportional to the increase in the number of “assets” in
both functions (i.e., create_asset, read_asset) (Figures 17a and 18a). However, even in the
maximum value of 150 assets (Figure 18a), the simulation performs with a send rate of
91 TPS and a throughput of 89 TPS which can be considered an acceptable value.

Future Internet 2023, 15, 308 18 of 22

Future Internet 2023, 15, x FOR PEER REVIEW 18 of 22

refers to the rate at which transactions can be successfully processed by a blockchain net-

work within a given time period, typically measured in transactions per second (TPS).

In the case of the number of “assets”, we can observe a decrease in the send rate as

well as in the throughput proportional to the increase in the number of “assets” in both

functions (i.e., create_asset, read_asset) (Figures 17a and 18a). However, even in the maxi-

mum value of 150 assets (Figure 18a), the simulation performs with a send rate of 91 TPS

and a throughput of 89 TPS which can be considered an acceptable value.

In the case of the “workers” parameter, we observe that the value of the send rate

and throughput is increased up to 110 TPS and then reached the value of 105 TPS, in the

maximum number of the “workers” parameter (i.e., 20), in the case of read_asset function

(Figure 18b). On the other hand, we observe a decrease in throughput while increasing

the number of “workers” in the create_asset function (Figure 17b). We can conclude that,

while reading the assets on the ledger, by increasing the number of the “workers” param-

eter, we can increase the throughput, while distributing the workload more evenly and

increasing the total number of transactions that can be processed in a given time period.

(a) (b)

Figure 17. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for create_asset.

(a) (b)

Figure 18. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for read_asset.

Overall, the performance evaluation has demonstrated satisfactory results in terms

of send rate and throughput, compared to a work on the performance evaluation of HF

Figure 17. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for create_asset.

Future Internet 2023, 15, x FOR PEER REVIEW 18 of 22

refers to the rate at which transactions can be successfully processed by a blockchain net-

work within a given time period, typically measured in transactions per second (TPS).

In the case of the number of “assets”, we can observe a decrease in the send rate as

well as in the throughput proportional to the increase in the number of “assets” in both

functions (i.e., create_asset, read_asset) (Figures 17a and 18a). However, even in the maxi-

mum value of 150 assets (Figure 18a), the simulation performs with a send rate of 91 TPS

and a throughput of 89 TPS which can be considered an acceptable value.

In the case of the “workers” parameter, we observe that the value of the send rate

and throughput is increased up to 110 TPS and then reached the value of 105 TPS, in the

maximum number of the “workers” parameter (i.e., 20), in the case of read_asset function

(Figure 18b). On the other hand, we observe a decrease in throughput while increasing

the number of “workers” in the create_asset function (Figure 17b). We can conclude that,

while reading the assets on the ledger, by increasing the number of the “workers” param-

eter, we can increase the throughput, while distributing the workload more evenly and

increasing the total number of transactions that can be processed in a given time period.

(a) (b)

Figure 17. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for create_asset.

(a) (b)

Figure 18. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for read_asset.

Overall, the performance evaluation has demonstrated satisfactory results in terms

of send rate and throughput, compared to a work on the performance evaluation of HF

Figure 18. Send rate (TPS) and throughput (TPS), (a) per “asset” (b) per “worker”, for read_asset.

In the case of the “workers” parameter, we observe that the value of the send rate
and throughput is increased up to 110 TPS and then reached the value of 105 TPS, in the
maximum number of the “workers” parameter (i.e., 20), in the case of read_asset function
(Figure 18b). On the other hand, we observe a decrease in throughput while increasing the
number of “workers” in the create_asset function (Figure 17b). We can conclude that, while
reading the assets on the ledger, by increasing the number of the “workers” parameter, we
can increase the throughput, while distributing the workload more evenly and increasing
the total number of transactions that can be processed in a given time period.

Overall, the performance evaluation has demonstrated satisfactory results in terms
of send rate and throughput, compared to a work on the performance evaluation of HF
for use in IoT [38], in both cases (i.e., create_asset, read_asset) and we can conclude that the
proposed HF architecture is capable of handling a significant amount of traffic without
any distinguishable performance degradation and, thus, being suitable for the case of
IoMT-based health monitoring systems.

Future Internet 2023, 15, 308 19 of 22

6.3. Peer Memory Usage

Peer memory usage refers to the amount of memory consumed by a peer node in the
blockchain network to store and manage ledger data, execute smart contracts, and maintain
ledger state.

By increasing the “workers” parameter as well as the number of “assets”, we observe
an increase in the peer memory usage (Figure 19a,b). We can observe a maximum value of
memory usage of 205 MB, which is approximately 4.99% of the total available memory of
the gateway (i.e., 4096 MB). This is a feasible value for a peer node to function properly on
a lightweight gateway (e.g., Raspberry Pi 4 [47] with up to 8 GB RAM).

Future Internet 2023, 15, x FOR PEER REVIEW 19 of 22

for use in IoT [38], in both cases (i.e., create_asset, read_asset) and we can conclude that the

proposed HF architecture is capable of handling a significant amount of traffic without

any distinguishable performance degradation and, thus, being suitable for the case of

IoMT-based health monitoring systems.

6.3. Peer Memory Usage

Peer memory usage refers to the amount of memory consumed by a peer node in the

blockchain network to store and manage ledger data, execute smart contracts, and main-

tain ledger state.

By increasing the “workers” parameter as well as the number of “assets”, we observe

an increase in the peer memory usage (Figure 19a,b). We can observe a maximum value

of memory usage of 205 MB, which is approximately 4.99% of the total available memory

of the gateway (i.e., 4096 MB). This is a feasible value for a peer node to function properly

on a lightweight gateway (e.g., Raspberry Pi 4 [47] with up to 8 GB RAM).

(a) (b)

Figure 19. Peer memory usage (MB), (a) per “asset” (b) per “worker”.

7. Conclusions and Future Work

In this paper, an HF-based security architecture for IoMT-based health monitoring

systems has been proposed and deployed. With the proposal of this novel architecture,

we have tried to address the security issues in the field of IoMT-based health monitoring

systems and have tried to fill the gap caused by the lack of lightweight blockchain-based

security architectures for IoMT-based health monitoring systems. The detailed description

of its main components (i.e., perception domain, HF blockchain network), along with the

interactions among them, have also been provided. In addition, a deployment of the sim-

ulation set-up of the proposed HF-based security architecture (i.e., HF-based network) for

IoMT-based health monitoring systems has been described and evaluated in terms of la-

tency (i.e., min (s), max (s), and average (s)), send rate (i.e., transactions per second),

throughput (i.e., transactions per second), and memory usage (MB). However, due to the

fact that there are no similar architectures to the proposed one in the literature, we cannot

compare our evaluation results directly to evaluation results from other works. Neverthe-

less, we compared our results to results from works on IoT networks for real-time

healthcare applications [45,46] and from a work on the performance evaluation of HF for

use in IoT [38]. In this regard, our results demonstrate a good performance of the proposed

architecture, allowing its use in resource-constrained environments, such as the IoMT, and

enabling more advanced functionalities to be implemented on top of this architecture. It

is worth noting that our experiments were conducted in a virtual environment, and

Figure 19. Peer memory usage (MB), (a) per “asset” (b) per “worker”.

7. Conclusions and Future Work

In this paper, an HF-based security architecture for IoMT-based health monitoring
systems has been proposed and deployed. With the proposal of this novel architecture,
we have tried to address the security issues in the field of IoMT-based health monitoring
systems and have tried to fill the gap caused by the lack of lightweight blockchain-based
security architectures for IoMT-based health monitoring systems. The detailed description
of its main components (i.e., perception domain, HF blockchain network), along with
the interactions among them, have also been provided. In addition, a deployment of the
simulation set-up of the proposed HF-based security architecture (i.e., HF-based network)
for IoMT-based health monitoring systems has been described and evaluated in terms of
latency (i.e., min (s), max (s), and average (s)), send rate (i.e., transactions per second),
throughput (i.e., transactions per second), and memory usage (MB). However, due to
the fact that there are no similar architectures to the proposed one in the literature, we
cannot compare our evaluation results directly to evaluation results from other works.
Nevertheless, we compared our results to results from works on IoT networks for real-time
healthcare applications [45,46] and from a work on the performance evaluation of HF for
use in IoT [38]. In this regard, our results demonstrate a good performance of the proposed
architecture, allowing its use in resource-constrained environments, such as the IoMT, and
enabling more advanced functionalities to be implemented on top of this architecture. It is
worth noting that our experiments were conducted in a virtual environment, and potential
variations in the performance of the proposed HF-based architecture in a real-world context
may occur. Furthermore, the proposed architecture can be secure and effective against
security attacks due to the functionalities provided by HF (i.e., TLS, MSP). As future
work, we plan to develop and evaluate a Collaborative Intrusion Detection System (CIDS)
for IoMT-based health monitoring systems, based on the developed HF-based security
architecture, that will be responsible for collecting behavioral information (i.e., log files)

Future Internet 2023, 15, 308 20 of 22

from the IoMT devices, information from the IoMT network traffic, and for detecting
malicious incidents in such systems.

Author Contributions: Conceptualization, F.P.-O., J.C.R., G.M., G.S. and J.G.; methodology, F.P.-O.,
J.C.R., G.M., G.S. and J.G.; investigation, F.P.-O., J.C.R., G.M., G.S. and J.G.; resources, F.P.-O., J.C.R.,
G.M., G.S. and J.G.; writing—original draft preparation, F.P.-O., J.C.R., G.M. and G.S.; writing—review
and editing, F.P.-O., J.C.R., G.M., G.S. and J.G.; visualization, F.P.-O., J.C.R. and G.M.; supervision,
G.M., G.S. and J.G.; funding acquisition, J.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work has received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 876487. The JU receives support from the European Union’s Horizon 2020
research and innovation program and Finland, Spain, Italy, Germany, Czech Republic, Belgium, and
the Netherlands.

Data Availability Statement: Not applicable.

Acknowledgments: Author José Ribeiro would like to acknowledge the REACT project, which has
received funding from European Union’s Horizon Europe research and innovation program under
the Marie Sklodowska-Curie grant agreement No 101069053 (REACT).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zachos, G.; Essop, I.; Mantas, G.; Porfyrakis, K.; Ribeiro, J.C. An Anomaly-Based Intrusion Detection System for Internet of

Medical Things Networks. Electronics 2021, 10, 2562. [CrossRef]
2. Karavatselou, E.; Fengou, M.A.; Mantas, G.; Lymberopoulos, D. Profile management system in ubiquitous healthcare cloud

computing environment. In Broadband Communications, Networks, and Systems, Proceedings of 9th International EAI Conference,
Broadnets 2018, Faro, Portugal, 19–20 September 2018; Springer: Berlin/Heidelberg, Germany, 2019; Volume 263, pp. 105–114.
[CrossRef]

3. Papaioannou, M.; Karageorgou, M.; Mantas, G.; Sucasas, V.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. A Survey on Security
Threats and Countermeasures in Internet of Medical Things (IoMT). Trans. Emerg. Telecommun. Technol. 2020, 33, e4049. [CrossRef]

4. Del-Valle-Soto, C.; Valdivia, L.J.; López-Pimentel, J.C.; Visconti, P. Comparison of Collaborative and Cooperative Schemes in
Sensor Networks for Non-Invasive Monitoring of People at Home. Int. J. Environ. Res. Public Health 2023, 20, 5268. [CrossRef]
[PubMed]

5. Essop, I.; Ribeiro, J.C.; Papaioannou, M.; Rodriguez, J.; Zachos, G.; Mantas, G. Generating datasets for anomaly-based intrusion
detection systems in iot and industrial iot networks. Sensors 2021, 21, 1528. [CrossRef] [PubMed]

6. Gope, P.; Hwang, T. BSN-Care: A Secure IoT-Based Modern Healthcare System Using Body Sensor Network. IEEE Sensors J. 2016,
16, 1368–1376. [CrossRef]

7. Seliem, M.; Elgazzar, K. BIoMT: Blockchain for the internet of medical things. In Proceedings of the 2019 IEEE International Black
Sea Conference on Communications and Networking, BlackSeaCom 2019, Sochi, Russia, 3–6 June 2019.

8. Alsubaei, F.; Abuhussein, A.; Shiva, S. Security and Privacy in the Internet of Medical Things: Taxonomy and Risk Assessment. In
Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, Singapore, 9–12 October 2017;
pp. 112–120. [CrossRef]

9. Sicari, S.; Rizzardi, A.; Grieco, L.A.; Coen-Porisini, A. Security, privacy and trust in Internet of things: The road ahead. Comput.
Netw. 2015, 76, 146–164. [CrossRef]

10. Khezr, S.; Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain technology in healthcare: A comprehensive review and
directions for future research. Appl. Sci. 2019, 9, 1736. [CrossRef]

11. Zhang, M.; Raghunathan, A.; Jha, N.K. Trustworthiness of medical devices and body area networks. Proc. IEEE 2014, 102,
1174–1188. [CrossRef]

12. Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018, 82,
395–411. [CrossRef]

13. Wang, X.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Niu, X.; Zheng, K. Survey on blockchain for Internet of Things. Comput. Commun.
2019, 136, 10–29. [CrossRef]

14. Cui, Z.; Xue, F.; Zhang, S.; Cai, X.; Cao, Y.; Zhang, W.; Chen, J. A Hybrid BlockChain-Based Identity Authentication Scheme for
Multi-WSN. IEEE Trans. Serv. Comput. 2020, 13, 241–251. [CrossRef]

15. Pelekoudas Oikonomou, F.; Ribeiro, J.; Mantas, G.; Bastos, J.; Rodriguez, J. A Hyperledger Fabric-based Blockchain Architecture
to Secure IoT-based Health Monitoring Systems. In Proceedings of the 2021 IEEE International Mediterranean Conference on
Communications and Networking (MeditCom), Athens, Greece, 5–8 September 2021.

16. Dorri, A.; Kanhere, S.S.; Jurdak, R. Blockchain in Internet of Things: Challenges and Solutions. arXiv 2016, arXiv:1608.05187.

https://doi.org/10.3390/electronics10212562
https://doi.org/10.1007/978-3-030-05195-2_11
https://doi.org/10.1002/ett.4049
https://doi.org/10.3390/ijerph20075268
https://www.ncbi.nlm.nih.gov/pubmed/37047884
https://doi.org/10.3390/s21041528
https://www.ncbi.nlm.nih.gov/pubmed/33672108
https://doi.org/10.1109/JSEN.2015.2502401
https://doi.org/10.1109/LCN.Workshops.2017.72
https://doi.org/10.1016/j.comnet.2014.11.008
https://doi.org/10.3390/app9091736
https://doi.org/10.1109/JPROC.2014.2322103
https://doi.org/10.1016/j.future.2017.11.022
https://doi.org/10.1016/j.comcom.2019.01.006
https://doi.org/10.1109/TSC.2020.2964537

Future Internet 2023, 15, 308 21 of 22

17. Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A survey of IoT applications in blockchain systems: Architecture, consensus, and
traffic modeling. ACM Comput. Surv. 2020, 53, 1–32. [CrossRef]

18. Liyanage, M.; Braeken, A.; Kumar, P.; Ylianttila, M. IoT Security: Advances in Authentication; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 2019; ISBN 1119527929.

19. Pelekoudas-oikonomou, F.; Zachos, G.; Papaioannou, M.; De Ree, M.; Ribeiro, J.C.; Mantas, G.; Rodriguez, J. Blockchain-Based
Security Mechanisms for IoMT Edge Networks in IoMT-Based Healthcare Monitoring Systems. Sensors 2022, 22, 2449. [CrossRef]

20. Li, D.; Peng, W.; Deng, W.; Gai, F. A blockchain-based authentication and security mechanism for IoT. In Proceedings of the The 27th
International Conference on Computer Communication and Networks (ICCCN 2018), Hangzhou, China, 30 July–2 August 2018.
[CrossRef]

21. Babu, E.S.; Dadi, A.K.; Singh, K.K.; Nayak, S.R.; Bhoi, A.K.; Singh, A. A distributed identity-based authentication scheme for
internet of things devices using permissioned blockchain system. Expert Syst. 2022, 39, e12941. [CrossRef]

22. Kakei, S.; Shiraishi, Y.; Mohri, M.; Nakamura, T.; Hashimoto, M.; Saito, S. Cross-Certification towards Distributed Authentication
Infrastructure: A Case of Hyperledger Fabric. IEEE Access 2020, 8, 135742–135757. [CrossRef]

23. Siris, V.A.; Dimopoulos, D.; Fotiou, N.; Voulgaris, S.; Polyzos, G.C. Decentralized authorization in constrained IoT environments
exploiting interledger mechanisms. Comput. Commun. 2020, 152, 243–251. [CrossRef]

24. Pajooh, H.H.; Rashid, M.; Alam, F.; Demidenko, S. Hyperledger fabric blockchain for securing the edge internet of things. Sensors
2021, 21, 359. [CrossRef]

25. Iftekhar, A.; Cui, X.; Tao, Q.; Zheng, C. Hyperledger fabric access control system for internet of things layer in blockchain-based
applications. Entropy 2021, 23, 1054. [CrossRef]

26. Liu, H.; Han, D.; Li, D. Fabric-iot: A Blockchain-Based Access Control System in IoT. IEEE Access 2020, 8, 18207–18218. [CrossRef]
27. Shih, D.H.; Wu, T.W.; Shih, M.H.; Chen, G.W.; Yen, D.C. Hyperledger Fabric Access Control for Industrial Internet of Things.

Appl. Sci. 2022, 12, 3125. [CrossRef]
28. Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. An Attribute-Based Access Control Model for Internet of Things Using Hyper-

ledger Fabric Blockchain. Wirel. Commun. Mob. Comput. 2022, 2022, 6926408. [CrossRef]
29. Maeng, J.; Heo, Y.; Joe, I. Hyperledger Fabric-Based Lightweight Group Management (H-LGM) for IoT Devices. IEEE Access 2022,

10, 56401–56409. [CrossRef]
30. Yanhui, L.; Jianbiao, Z.; Salman Pathan, M.; Yijian, Y.; Puzhe, Z.; Maroc, S.; Nag, A. Research on identity authentication system of

Internet of Things based on blockchain technology. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 10365–10377. [CrossRef]
31. Lu, N.; Zhang, Y.; Shi, W.; Kumari, S.; Choo, K.K.R. A secure and scalable data integrity auditing scheme based on hyperledger

fabric. Comput. Secur. 2020, 92, 101741. [CrossRef]
32. Chen, C.; Yang, J.; Tsaur, W.J.; Weng, W.; Wu, C.; Wei, X. Enterprise Data Sharing with Privacy-Preserved Based on Hyperledger

Fabric Blockchain in IIOT’s Application. Sensors 2022, 22, 1146. [CrossRef]
33. Androulaki, E.; Barger, A.; Bortnikov, V.; Muralidharan, S.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Murthy, C.; Ferris,

C.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018. [CrossRef]

34. Projects—Linux Foundation. Available online: https://www.linuxfoundation.org/projects/ (accessed on 8 June 2022).
35. Hyperledger Fabric—Hyperledger Foundation. Available online: https://www.hyperledger.org/use/fabric (accessed on

24 January 2022).
36. Introduction—Hyperledger-Fabricdocs Main Documentation. Available online: https://hyperledger-fabric.readthedocs.io/en/

latest/whatis.html (accessed on 8 June 2022).
37. Oikonomou, F.P.; Mantas, G.; Cox, P.; Bashashi, F.; Gil-Castineira, F.; Gonzalez, J. A Blockchain-based Architecture for Secure IoT-

based Health Monitoring Systems. In Proceedings of the 2021 IEEE 26th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Porto, Portugal, 25–27 October 2021; pp. 1–6. [CrossRef]

38. Shalaby, S.; Abdellatif, A.A.; Al-Ali, A.; Mohamed, A.; Erbad, A.; Guizani, M. Performance Evaluation of Hyperledger Fabric.
In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar,
2–5 February 2020; pp. 608–613. [CrossRef]

39. X.509: Information Technology—Open Systems Interconnection—The Directory: Public-Key and Attribute Certificate Frame-
works. Available online: https://www.itu.int/rec/T-REC-X.509-201910-I/en (accessed on 8 June 2022).

40. ITU-T Y.2060; ITU ITU-T Recommendation Database. Telecommunication Standardization Sector: Geneva, Switzerland, 2012.
41. Membership Service Providers (MSP)—Hyperledger-Fabricdocs Main Documentation. Available online: https://hyperledger-

fabric.readthedocs.io/en/release-2.2/msp.html (accessed on 22 June 2022).
42. GitHub-Hyperledger/Caliper: A Blockchain Benchmark Framework to Measure Performance of Multiple Blockchain Solutions.

Available online: https://github.com/hyperledger/caliper (accessed on 2 April 2023).
43. Hyperledger Caliper|Caliper Is a Blockchain Performance Benchmark Framework, Which Allows Users to Test Different

Blockchain Solutions with Predefined Use Cases, and Get a Set of Performance Test Results. Available online: https://
hyperledger.github.io/caliper/ (accessed on 14 July 2022).

44. Choi, W.; Hong, J.W.K. Performance Evaluation of Ethereum Private and Testnet Networks Using Hyperledger Caliper. In Pro-
ceedings of the 22nd Asia-Pacific Network Operations and Management Symposium, APNOMS, Tainan, Taiwan, 8–10 September
2021; pp. 325–329. [CrossRef]

https://doi.org/10.1145/3372136
https://doi.org/10.3390/s22072449
https://doi.org/10.1109/ICCCN.2018.8487449
https://doi.org/10.1111/exsy.12941
https://doi.org/10.1109/ACCESS.2020.3011137
https://doi.org/10.1016/j.comcom.2020.01.030
https://doi.org/10.3390/s21020359
https://doi.org/10.3390/e23081054
https://doi.org/10.1109/ACCESS.2020.2968492
https://doi.org/10.3390/app12063125
https://doi.org/10.1155/2022/6926408
https://doi.org/10.1109/ACCESS.2022.3177270
https://doi.org/10.1016/j.jksuci.2022.10.027
https://doi.org/10.1016/j.cose.2020.101741
https://doi.org/10.3390/s22031146
https://doi.org/10.1145/3190508.3190538
https://www.linuxfoundation.org/projects/
https://www.hyperledger.org/use/fabric
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://doi.org/10.1109/CAMAD52502.2021.9617803
https://doi.org/10.1109/ICIoT48696.2020.9089614
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://hyperledger-fabric.readthedocs.io/en/release-2.2/msp.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/msp.html
https://github.com/hyperledger/caliper
https://hyperledger.github.io/caliper/
https://hyperledger.github.io/caliper/
https://doi.org/10.23919/APNOMS52696.2021.9562684

Future Internet 2023, 15, 308 22 of 22

45. Mondragón-Ruiz, G.; Tenorio-Trigoso, A.; Castillo-Cara, M.; Caminero, B.; Carrión, C. An experimental study of fog and cloud
computing in CEP-based Real-Time IoT applications. J. Cloud Comput. 2021, 10, 32. [CrossRef]

46. Haghi Kashani, M.; Madanipour, M.; Nikravan, M.; Asghari, P.; Mahdipour, E. A systematic review of IoT in healthcare:
Applications, techniques, and trends. J. Netw. Comput. Appl. 2021, 192, 103164. [CrossRef]

47. Raspberry Pi 4 Model B Specifications—Raspberry Pi. Available online: https://www.raspberrypi.com/products/raspberry-pi-
4-model-b/specifications/ (accessed on 28 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s13677-021-00245-7
https://doi.org/10.1016/j.jnca.2021.103164
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

	Introduction
	Related Work
	HF-Based Authentication and Authorization
	HF-Based Access Control
	HF-Based Data Integrity

	Hyperledger Fabric
	Proposed HF-Based Security Architecture
	Overview of an IoMT-Based Health Monitoring Systems
	Overview of the Proposed HF-Based Security Architecture

	Simulation Set-Up of the Proposed HF-Based Security Architecture
	Performance Evaluation
	Latency
	Send Rate and Throughput
	Peer Memory Usage

	Conclusions and Future Work
	References

