
Citation: Aggarwal, S.; Nasipuri, A.

FL-LoRaMAC: A Novel Framework

for Enabling On-Device Learning for

LoRa-Based IoT Applications. Future

Internet 2023, 15, 307. https://

doi.org/10.3390/fi15090307

Academic Editors: Panagiotis

Papageorgas, Dimitrios Piromalis

and Dionisis Kandris

Received: 28 July 2023

Revised: 28 August 2023

Accepted: 5 September 2023

Published: 10 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

FL-LoRaMAC: A Novel Framework for Enabling On-Device
Learning for LoRa-Based IoT Applications
Shobhit Aggarwal *,† and Asis Nasipuri †

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte,
9201 University City Blvd., Charlotte, NC 28223, USA; anasipur@charlotte.edu
* Correspondence: saggarw4@charlotte.edu
† These authors contributed equally to this work.

Abstract: The Internet of Things (IoT) enables us to gain access to a wide range of data from the
physical world that can be analyzed for deriving critical state information. In this regard, machine
learning (ML) is a valuable tool that can be used to develop models based on observed physical data,
leading to efficient analytical decisions, including anomaly detection. In this work, we address some
key challenges for applying ML in IoT applications that include maintaining privacy considerations
of user data that are needed for developing ML models and minimizing the communication cost
for transmitting the data over the IoT network. We consider a representative application of the
anomaly detection of ECG signals that are obtained from a set of low-cost wearable sensors and
transmitted to a central server using LoRaWAN, which is a popular and emerging low-power wide-
area network (LPWAN) technology. We present a novel framework utilizing federated learning (FL)
to preserve data privacy and appropriate features for uplink and downlink communications between
the end devices and the gateway to optimize the communication cost. Performance results obtained
from computer simulations demonstrate that the proposed framework leads to a 98% reduction
in the volume of data that is required to achieve the same level of performance as in traditional
centralized ML.

Keywords: Internet of Things; artificial intelligence; machine learning; federated learning; LoRa;
LoRaWAN

1. Introduction

The explosive growth of Internet of Things (IoT) networks has led to an unprece-
dented increase in the amount of data being generated from a diverse set of networked
sensors. With estimates predicting over 55 billion connected devices generating a stagger-
ing 80 zettabytes of data by 2025 [1], the potential for artificial intelligence (AI) to unlock
insights and improve the management and quality of life is enormous. Machine learning
(ML) is the AI tool that provides this ability by developing efficient processes for identifying
hidden patterns in the data generated by IoT devices for improved decision making and
rapid automated responses. Machine learning tools can immensely help to detect anomalies
or project future trends in IoT applications.

In recent years, IoT and ML principles have been used in conjunction in multiple
domains, such as agriculture, manufacturing, healthcare, smart cities, etc. [2,3]. Examples
include precision agriculture, smart traffic, energy usage monitoring and control, smart
home, public safety, weather prediction, process automation, and many others. In health-
care scenarios, the effectiveness and cost benefits of using small low-cost remote health
monitoring systems have been encouraging to users [4,5]. With advancements in sensor
technology, the sensors used for obtaining data such as the electrocardiogram (ECG), blood
sugar, blood pressure, heart rate, SPO2, etc., have become cheaper and smaller to the extent
that they can be embedded into wearable devices such as watches, pendants, vests, etc.

Future Internet 2023, 15, 307. https://doi.org/10.3390/fi15090307 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15090307
https://doi.org/10.3390/fi15090307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-0911-0631
https://doi.org/10.3390/fi15090307
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15090307?type=check_update&version=1

Future Internet 2023, 15, 307 2 of 28

Consequently, there is increasing interest in developing ML tools for healthcare applica-
tions. A large number of organizations, such as Microsoft [6], Tempus [7], Beta Bionics [8],
Insitro [9], etc., are also involved in these efforts.

While multiple solutions are available that can serve as the backhaul technology for
IoT devices, low-power wide-area networks (LPWANs) gained significant interest due
to their wide wireless coverage, large capacity, low cost, and simple infrastructure. In
this work, we focus on LoRa, which is a prominent LPWAN standard, as the backhaul
network for IoT connectivity [10–12]. LoRa uses a proprietary chirp spread spectrum
technology with the provision to use multiple spreading factors and power levels that
provide robustness to interference as well as long-range connectivity with adaptive data
rate (ADR) control. The network protocol suite LoRaWAN has been developed to use
LoRa technology for implementing an LPWAN. Multiple orthogonal spreading factors
(SFs) and adaptive power rates enable end devices in a LoRaWAN network (see Figure 1)
to effectively transmit data to the gateways. However, the key concerns with developing
ML applications using IoT devices in an LoRaWAN include privacy considerations that
must be met for sending data with sensitive personal information to a central server and
meeting performance requirements for transmitting large volumes of data over the wireless
network.

Network Server Application
ServerGatewaysEnd Devices

LoRa RF
Links

TCP/IP
Links

Figure 1. LoRaWAN architecture.

To overcome these challenges, in this paper, we propose to apply a federated learning
(FL) framework, which is an effective technique in AI to address privacy concerns. As
opposed to traditional ML, where all data are transmitted to a central location for model
development and testing, in FL, the model is trained locally, with rounds of updates with
a central server. While this avoids any transmission of raw data with potential privacy
limitations from the end nodes, using an FL framework in an LPWAN also poses its own
challenges. These involve the development of an efficient mechanism for two-way data
communication between the end-devices and the server and meeting the communication
and computation requirements of FL. To this end, we developed FL-LoRaMAC, which
incorporates an asynchronous medium access control (MAC) for downlink communication
for LoRaWAN. We introduce a novel SF allocation scheme that was presented in our
preliminary work in [13], which, in association with traditional optimization tools such as
principal component analysis (PCA) and pruning of the AI model, significantly reduces
the communication requirements in the network. The communication requirements of
FL using the proposed framework for its implementation in a representative healthcare
application using LoRa-based networks are examined numerically.

We present the design considerations and performance evaluations of FL-LoRaMAC by
considering the problem of the anomaly detection of ECG signals as a candidate IoT-based

Future Internet 2023, 15, 307 3 of 28

AI application. This is motivated by the fact that, currently, ECG signals may be obtained
from low-cost portable devices such as smartwatches that utilize photoplethysmography
(PPG) technology [14]. The easy availability of ECG data from FDA-approved sensors
integrated into smartwatches by manufacturers such as Apple, Google Pixel, Fitbit, and
Samsung has paved the way for AI applications. A trained model with ECG datasets can
have the ability to detect or predict heart conditions. However, the model must be able to
differentiate between healthy (normal) and unhealthy (abnormal) ECG signals to detect
health conditions effectively. It must be noted that the proposed approaches would be
useful for a large number of other applications of AI in IoT networks as well.

To summarize, the major contributions presented in this paper are:

• An evaluation and comparison of the performance of ML and FL using a representative
healthcare application.

• The development of a novel framework used to implement FL for LoRa-based IoT plat-
forms. The framework includes an MAC protocol that enables two-way half-duplex
communication between the central server and the end devices while optimizing
power consumption.

• The introduction of a novel SF allocation scheme that assigns SFs for uplink data
transmissions to provide differential priorities of the parameters being transmitted.

• An evaluation of the performance of the proposed AI scheme, including accuracy,
precision, and recall under channel packet loss rate, PCA sparsification, and number
of devices.

The organization of the paper is as follows. In Section 2, we summarize related work.
The problem statement and design considerations are presented in Section 3. The proposed
framework is described in Section 4. The simulation setup for performance evaluations is
described in Section 5 and results are presented in Section 6. Section 7 includes conclusions
and future work.

2. Related Work

In this section, we explore real-world applications of machine learning, along with the
methods and algorithms employed. Furthermore, we delve into the ongoing research and
collaboration between IoT and AI in order to shed light on the existing work in this field.

The utilization of machine learning algorithms for the detection of oil spills in radar
images is described in [15], which presents an in-depth examination of the challenges
intertwined with this application. The study also proposes novel strategies for effectively
tackling these obstacles. To substantiate their claims, the authors conduct comprehensive
experimental analyses that specifically focus on two pivotal aspects of machine learning:
batched and imbalanced training sets. Within this context, the paper introduces two novel
algorithms, namely SHRINK and one-sided selection, that demonstrate remarkable efficacy
in controlling the false alarm rate. Hence, this paper not only sheds light on the practical
implementation of machine learning techniques for oil spill detection but also provides
solutions to overcome the associated challenges.

The application of support vector machines, decision trees, and classification methods
for detecting land cover changes and mapping in rural areas is presented in [16]. Three
objectives were achieved: identifying suitable bands for classification, comparing the
performance of the methods, and detecting changes in land cover. Data preprocessing was
performed using ERDAS IMAGINE 9.1 and ENVI 4.5. The results show that the decision
tree algorithm outperformed the other methods in terms of accuracy and performance.
Failure degradation was also estimated, providing insights into method limitations. The
paper highlights the effectiveness of decision trees for land cover change detection in rural
areas and offers guidance for future improvements.

The use of support vector machines (SVMs) as a regression technique for estimating
soil moisture with remote sensing data was explored in [17]. Ten sites in the western
United States were studied. SVMs outperformed multiple linear regression (MLR) and

Future Internet 2023, 15, 307 4 of 28

artificial neural networks (ANNs) in accuracy and performance. The findings contribute to
improved soil moisture estimation and management in the studied regions.

Human health benefits much from the advent of IoT and AI tools. In [18], the authors
proposed a highly reliable method for measuring blood pressure without the need of
putting cuffs. The proposed model uses a combination of information from the ECG signal
and PPG to measure blood pressure. The study first establishes a relationship between
blood pressure and the ECG. This enables the user with the ECG sensor to potentially
measure blood pressure without requiring any additional device.

The authors of [19] proposed a novel solution for predicting heart diseases using the
cascaded deep learning model in the fog computing environment. Their solution makes
use of data from multiple sensors that provide data about daily activity that are fed to
an ensemble classifier. The classifier is hosted in the fog environment and computations
are performed in a decentralized manner. The proposed approach achieved a prediction
accuracy of 95%.

A transfer learning methodology used to decrease the computational resources needed
to train a deep neural network for a reinforcement learning (RL) problem was presented
in [16]. The deep neural network is trained on a varied set of meta-environments to
acquire broad domain knowledge, which can then be transferred to test environments, and
only the last few fully connected layers are trained. The performance of the algorithm is
evaluated in terms of mean safe flight, and it was observed that the network’s performance
is comparable to that of training the network end-to-end, while significantly decreasing the
latency and energy consumption by 1.8 and 3.7 times, respectively.

The authors of [20] proposed an ECG classification system that makes use of LoRa
and fog computing. The system collects data using the ECG sensors and transmits the
collected data to the fog layer using LoRa communication. The fog layer uses deep learning
to perform the classification and sends the information over a 4G cellular network to be
analyzed by the doctor. Although the article claims that the data rate of LoRa could be
acceptable for the transmission of signals such as an ECG, they did not use real-time data
transmission in their system. They used an existing dataset [21] for training and testing
purposes. At the fog layer, the system uses two models: one to perform the analysis in
the time domain and another in the frequency domain. The outputs from both models
were merged to obtain more concrete decisions. Their preliminary results show that the
proposed system is capable of identifying abnormal heart rhythms.

The majority of studies in the field have focused on improving AI models and prepar-
ing data for analysis. However, these studies typically assume that the data are stored on
a central server and the model is trained there. After training, the model is sent to other
devices for making predictions. However, these studies have overlooked important issues
related to network challenges during data collection and privacy concerns with centralized
training. The network challenges encompass a wide array of issues, ranging from data
transmission efficiency and latency to bandwidth limitations and reliability. Overlooking
these challenges can negatively affect the overall performance and scalability of AI systems,
hindering their real-world applicability. Additionally, the transfer and storage of substantial
amounts of potentially sensitive data in a single location create vulnerabilities and increase
the risk of privacy breaches.

3. Problem Statement and Design Considerations

In this section, we present the basic principles of machine learning and the challenges
associated with its applications in IoT networks. The proposed approach to overcoming
these challenges and the associated design considerations are also explained.

In a typical machine learning scenario, as shown in Figure 2, the data from all the
sources (sensors) are sent to the central server via a gateway, where the model resides. The
model is trained on the collected data from various sources. Once the model is trained,
the test data are sent to the central server where decisions or predictions are made. It can
be inferred that, in both the training and testing phases, the data must be collected at the

Future Internet 2023, 15, 307 5 of 28

central server. In the IoT ecosystem, doing so poses some challenges that are discussed in
the following subsection.

Gateway

Central
server

Analytics Dashboard

Sensors

Figure 2. Illustration of a typical machine learning model where all data are transmitted from IoT
sensors to a central server for model development and testing.

3.1. Challenges Faced by ML

The key challenges faced by the IoT ecosystem for the implementation of typical
machine learning techniques with respect to sending data to the central server include:

• High data volume: A sensor node may capture data once every few minutes but the
gateway is connected to multiple such sensor nodes. All the data are collected by
the gateway and sent to the central server. This can lead to a significant amount of
traffic in the network that can result in transmission losses and high latency issues in a
real-time environment.

• Data privacy: Typically, the machine learning algorithms run on third-party cloud
servers. During both the training phase as well as the testing phase, the data need
to be sent to the server where the model resides. These data can be private to the
individuals. These data can be exploited by third-party service providers; hence,
regulatory organizations like California Consumer Privacy Act (CCPA) in the US
impose many restrictions in terms of the privacy of sensitive customer data. These
may lead to regulatory problems in many applications, such as healthcare.

In IoT applications that involve private user data, the need to send data to a central
server for machine learning purposes can be a challenge. This challenge can be addressed
by using federated learning, which is an artificial intelligence technique that allows learning
to be performed without sending data to the central server.

3.2. Federated Learning

Contrary to the centralized machine learning approach, FL assumes a distributed ap-
proach that allows for training AI models across decentralized devices without transferring
data to a central server. FL is especially useful in IoT applications that involve private user
data since it does not require the data to be sent to a central server, addressing privacy
and security concerns. This paper aims to explore the possibility of leveraging federated
learning to decrease the amount of data that need to be transmitted while maintaining a
comparable performance. The overall architecture of FL is shown in Figure 3.

Future Internet 2023, 15, 307 6 of 28

Data

Data

Data

Data

1

2

3

1

2

3

1

2

3

1

2

2

Federated
averaging

Gradient update1
Untrained global
model download

Updated global
model download3

3

Figure 3. Illustration of a federated learning model, where the initial model is sent to end devices
for training using their respective local data. The locally trained models are transmitted to the FL
server for aggregation and the process is repeated over multiple rounds of local training and model
aggregation.

In federated learning, instead of the end devices transmitting all their data to the cen-
tral server, the central server sends the global model (initially untrained) to the participating
end devices. The end device trains the received model based on its locally collected data.
This training is carried out for a certain number of epochs similar to the training in the case
of machine learning, but it is performed on the edge and based only on the data collected by
the end device itself. Once the local training is complete, the model weights, also known as
model parameters, are sent to the central server. These local model weights are numerical
vectors that do not provide any information about the type or kind of data that was used
for training. At no point do the local data leave the end device. Once the central server
receives the model parameters from all participating end devices, it performs a federated
averaging on all the received model parameters and outputs an improved global model.
This entire cycle of sending the global model, local training, sending local updates, and
obtaining an updated global model by federated averaging is termed as a communication
round. Federated learning is performed for a certain number of communication rounds
until the desired performance is achieved. Once the training is complete, the global model
is sent to all end devices that are fed with test samples, and its performance is evaluated
based on the predictions that it makes. In federated learning, under no circumstances do
the local data leave the edge device; hence, the data privacy is preserved at all times.

3.3. Problem Statement

To support the federated learning process, the network infrastructure should enable
independent two-way communication capability between the end devices and the central
server, providing uplink capabilities for sending locally trained weights from the end
devices to the central server, also known as the gradient update phase, and the downlink
capabilities for transmitting the updated global model from the central server to the end
devices. The objective of this work is to develop a framework for meeting both uplink and
downlink communication requirements for the FL model.

Figure 4 illustrates the three classes of operation defined under LoRaWAN specifica-
tions [22]. These classes provide independent uplink communication from the end devices
to the central server but pose some challenges to downlink communication design consid-

Future Internet 2023, 15, 307 7 of 28

erations. The class-A mode of operation prioritizes uplink communications and only opens
two short receive windows for downlink after the uplink transmission. If the device does
not receive any data during these receive windows, the device goes to sleep and will not
open a receive window until after it sends another uplink. The class-B mode of operation
opens additional time synchronized receive windows but requires additional resources like
a GPS, and real-time clocks (RTCs) for the synchronization. This adds to the complexity
of the system. Class-C is capable of fulfilling all the communication requirements for
federated learning. However, it is the most power-hungry mode of operation and hence is
not advised for battery-powered devices.

Transmit RX1 RX2Class-A
RX

Delay1
RX

Delay2

Transmit RX1 RX2
RX

Delay1
RX

Delay2

Class-B

Beacon Period

Class-C Transmit RX1 RX2

RX
Delay1

RX
Delay2

RXC
R
X
C

RXC

Extends till
next uplink

Beacon Ping Beacon

Figure 4. LoRaWAN classes of operation.

Firstly, we observe that none of the above classes of operation fully meet the require-
ments for FL for energy-constrained IoT devices. The downlink communication modes are
either inadequate (Class-A and Class-B) or too energy-hungry (Class-C) for FL operations
using low-cost IoT devices. Hence, one of the first objectives of this work is to develop
an MAC that would be useful for efficient downlink transmissions of the global models
from the gateway to the end devices. We accomplish this by developing an asynchronous
transmission scheme using long preambles as described in the next section. Secondly,
even the uplink communication faces performance challenges when the volume of traffic
exceeds a limit. Since LoRaWAN uses a simple ALOHA-based MAC, performance studies
have revealed that, when the number of active devices increases beyond a few hundred on
the same channel and the same SF, the packet delivery rate degrades significantly [23–25].
Moreover, the model parameters for FL typically have non-uniform significance in terms of
their performance for anomaly detection. This indicates the need for QoS considerations
for transmission, which is not included in the legacy LoRaWAN design. However, LoRa
provides the flexibility to use alternative MAC implementation as long as their proprietary
physical layer protocol is used. The following section presents the proposed framework,
referred to as FL-LoRaMAC, which includes an MAC protocol that tries to address the
above communication requirements without requiring additional resources or complexity.

4. Proposed Framework: FL-LoRaMAC

This section describes the proposed framework FL-LoRaMAC that satisfies the com-
munication design considerations for the implementation of various steps of federated
learning. It includes guidelines for the global model downloads, local gradient updates,
and downloading the updated global model. Additionally, it also describes how these

Future Internet 2023, 15, 307 8 of 28

gradients are processed on the end devices as well as on the centralized server and some
mechanisms to optimize communication bandwidth.

The working of FL-LoRaMAC is divided into three parts:

1. Network joining;
2. Proposed MAC for gradient updates;
3. Gradient processing.

4.1. Network Joining

In FL-LoRaMAC, all devices taking part in the training need to join the LoRa network
first. The joining procedure is similar to that of the legacy LoRaWAN protocol as mentioned
in [22] with some additional steps and information in join messages.

Whenever a device is powered ON, it sends a join request ’J_Req’ to the network
server via an LoRa transceiver. Once the J_Req is sent, the device waits for the join response
’J_Res’. If the end device receives the J_Res, it configures itself according to the J_Res.

On the network server side, a timer termed as the join request timer starts periodi-
cally. If the J_Req from the end device is received before this timer is expired, the network
server prepares a J_Res. The network server has access to the information regarding the
AI model architecture; we termed this information as ’MODEL_INFO’. It also contains
information regarding the downlink channels and spreading factor on which the global
model parameters will be broadcasted (DL_INFO), the information about the data frag-
ments that will be sent (FRAG_INFO), the information about how frequently the device
should perform the listening, and for the duration (LISEN_INFO). The network server
will also send MODEL_INFO, DL_INFO, FRAG_INFO, and LISTEN_INFO along with the
legacy LoRaWAN J_Res. All this information will be used by the end devices to configure
themselves to communicate gradient updates as described in Section 4.2. Once the timer is
expired, no J_Res for the end devices will be sent.

4.2. Proposed MAC Layer for Gradient Updates

In the federation construction phase, a patented model (untrained) is present at the
central server. This model needs to be transmitted to the end devices for training. In order
for end devices to receive this model, they must have their transceivers in listening mode
while the server is transmitting. However, this is hard to achieve since the end devices are
not synchronized to the network clock and their transceivers must be put to sleep mode in
order to conserve power.

In order to achieve the goal mentioned above, we propose an elongated preamble
approach. Under this approach, each end device joins the network according to the network
joining procedure discussed in Section 4.1. Once the joining procedure is complete, the
end device will configure itself according to the information received in the J_Res. It
will also generate the local model according to the MODEL_INFO. Once the end device
is configured, it will periodically open receive windows for receiving the global model
parameters according to the DL_INFO, LISTEN_INFO, and FRAG_INFO as shown in
Figure 5. If the end device does not hear any LoRa preamble, it will close the receive
window and the transceiver will go to sleep until the next period to conserve power. If the
end device finds a preamble, it will continue to listen to the packet.

Future Internet 2023, 15, 307 9 of 28

Jo
in

in
g

GW

ED

Rx window on
preselected channel

Long
preamble

Model

Model Transmission

Figure 5. Illustration of the elongated preamble approach for downlink communication.

The gateway will periodically transmit the global model according to the channel
and spreading factor in DL_INFO. The transmission will consist of an elongated preamble
according to the FRAG_INFO. The length of the preamble is kept slightly longer than
the periodicity of the end device at which it is opening the receive windows as shown in
Figure 5. This elongated preamble enables the end devices to receive the transmission with-
out being synchronized with the gateway. Once the end device receives all the fragments
of the global model, the fragments will be serialized according to the frame numbers. If the
end device encounters missing frames while serializing, the retransmission of those frames
will be requested; otherwise, it will send an acknowledgment to the gateway indicating
that the device received all the global model parameters. After this, the end device will
stop opening the receive windows.

For the duration until the model is not received, the end device will keep collecting
the data locally, and once the model is received, it will be trained on the data collected by
the end device.

The end device trains the model that it received from the network server. Once the
local training cycle is complete for a certain number of epochs, the local weights must
be sent to the server for averaging. The model parameters must be packed into various
data fragments to achieve this. Once the fragments are created, the end device transmits
these fragments one by one using the uplink transmissions. The process of the creation of
fragments is explained in Section 4.3. After fragment transmission is complete, the end
device will follow the elongated preamble approach to receive the updated global model.

4.3. Decentralized Training and Model Aggregation

Section 4.2 provides details about the communication of the model parameters. This
section explains how the packets containing model parameters are generated and processed
when they arrive at the end device or at the network server. The entire process of FL-
LoRaMAC taking place at the end device and the network server is illustrated using
flowcharts in Figures 6 and 7.

Future Internet 2023, 15, 307 10 of 28

Send Join_Request

Received
Join_Accept?

Perform elongated
preamble according

to the LPL_INFO

Make local model
according to received

information and
collect data

Preamble
detected?

Receive and save the
fragment in a buffer

REMAINING=1?

Serialize and check
for errors or lost

fragments

Lost/Errors?Ask NS to retransmit
the missing fragments

Stop LPL and provide
the constructed

Parameter_Matrix to
the local model

Perform local training
on collected data

Create fragments for
the Parameter_Matrix

Transmit all
fragments one by one

Model
received?

Yes

NoNo

Yes

Yes

No

Yes

No

No

Yes

Figure 6. Operations of FL-LoRaMAC at the end device.

Future Internet 2023, 15, 307 11 of 28

Create parameter
matrix based on
MODEL_INFO

Select DL
transmission channel,

SF, Number of
preamble symbols

Create data
fragments based on

DL_INFO

DL_INFO

FRAG_INFO

Based on
FRAG_INFO,

calculate frequency of
LPL

LPL_INFO

Start JOIN_TIMER

JOIN_TIMER
Expired?

JOIN_REQUEST
Received?

No

Prepare and transmit Join_Accept
along with MODEL_INFO,
DL_INFO, FRAG_INFO,

LPL_INFO

Yes No

Yes

Transmit fragments
according to the

DL_INFO and wait for
acknowledgements

ACK?Retransmit the
missed fragment

No

Wait for EDs to
transmit local
parameters

Received
parameters?

Open as many buffers
as the total number of

EDs

Serialize
and decapsulate

fragments. Get the
parameter matrix for

each the device

Perform FED_AVG on
received weights and

calculate updated Global
model

Yes

No

Figure 7. Operations of FL-LoRaMAC at the network server.

Future Internet 2023, 15, 307 12 of 28

First, we will look at the decentralized training that happens at the end device as shown
in Figure 6. The end devices participating in the federated learning process will receive the
MODEL_INFO. This contains detailed information about the model. For instance, in the
case of a neural network, it contains information about the number of neural layers and the
number of neurons in each layer that are present in the model. The end device compiles a
local model based on this information. As soon as the end device receives all the global
model parameters, they are saved into its local model parameters. The global model is not
received as a single frame but as a number of data fragments. These fragments are saved in
a buffer, serialized, and checked for any missed packets. If there are missing fragments,
then the re-transmission of missing fragments is requested.

Otherwise, once the device has enough data to train the model, the model training
starts on these local data. Once the training for a certain number of epochs has elapsed, the
updated local model parameters are sent to the central server for averaging using LoRa
uplink transmissions. As discussed earlier, these model parameters are sent in fragments.
These uplink data frames are constructed by flattening the parameter matrix and packing
the pre-determined number of parameters in the frame. Also, each frame includes a frame
number for identification and serializing purposes.

When the network server starts receiving uplinks from any of the end devices, it
reserves a buffer for the end device’s local model parameters. Once all the fragments are
received from the end device, the fragments are serialized based on the frame numbers.
Some of the fragments from the end devices may be lost in the RF environment due to
collisions with other devices’ communication. Using the frame numbers, the network
server can detect the loss of fragments. During serialization, all the information except the
model parameters is removed and, if any of the frames are missing, the lost parameters are
set to zero. After this serialization, the same flattened matrix (with losses) will be formed
from which the uplink frames were created by end devices. From this matrix, the parameter
matrix is constructed.

Once the local updates from all the participating end devices have been received, the
server performs federated averaging on the constructed parameter matrices. The output
of the averaging provides an updated and intuitively better global model. Following the
same procedure of flattening and creating fragments for transmitting, this global model is
again sent to the end devices for subsequent training rounds using the elongated preamble
approach via LoRa downlink transmissions.

4.4. Optimizing Communication Bandwidth

The artificial intelligence models are quite large in terms of the number of parameters
in the weight matrix. However, LoRa is a low-bandwidth and low-data-rate communication
technology. Hence, the transmission of these model parameters to the server will require a
large amount of time and may consume all the network bandwidth. Therefore, the total
transmission time and communication bandwidth used need to be optimized without
significantly affecting the model’s performance. To achieve this, we propose the framework
depicted in Figure 8 that uses principal component analysis (PCA) and model pruning
in conjunction with a spreading factor allocation scheme that is explained in subsequent
sections. PCA is a popular dimensionality reduction method that is widely used in ML to
reduce large datasets [26].

Future Internet 2023, 15, 307 13 of 28

Communication Optimization

67

Training Pruning

QoS based SF
allocation

|Wi| > 80% of |Wmax| è HP
Else è LP

PCA

Figure 8. Illustration of the procedure for optimization of communication cost in FL-LoRaMAC.

4.4.1. Model Pruning

In a neural network, not all parameters are equally significant [27]. In other words,
not all the connections between neurons of fully connected layers contribute equally to the
model’s prediction. The pruning technique can be used to reduce the complexity and time
of execution by removing the insignificant connections between neurons. This is carried
out by modifying the parameter values related to those connections to zero. The output of
pruning is a sparsified weight matrix.

Typically, pruning is accompanied by quantization or compression or both to obtain a
smaller parameter matrix in terms of bytes, but this also increases the computation cost. In
this particular scenario, training is performed on resource-constrained devices. Applying
these methods to those devices will result in significant overhead. Instead, we can choose
not to communicate these pruned parameters or send them with lower priority.

4.4.2. Qos-Based Assignment of SF for Differential Priorities

The significance of model parameters can be established based on their magnitudes.
The pruning algorithm sparsifies the parameter matrix by pruning the parameters closer to
zero. Hence, it can be assumed that a higher magnitude means more significance.

If all the parameters are sent using the same priority level, there is an equal chance of
data being lost for all. If the high-significance parameters are lost, then either retransmis-
sions or more communication rounds will be required by the system to reach convergence.
In order to reduce the loss of significant parameters due to interference, we propose a mech-
anism that employs a differential SF allocation scheme that changes the collision domain
for the packets carrying parameters of high significance. This QoS-based SF distribution is
described in detail in our earlier work [13]. For ease of understanding, here, we explain the
concept using two levels of priorities for the packets carrying model parameters here as
follows.

• High priority: High priority is given to the packets carrying any number of significant
parameters in the weight matrix. These parameters must be delivered to the receiver
with the highest probability of success (say >90%).

• Low priority: Low priority is given to the packets carrying the non-significant and less
significant parameters in the weight matrix. These parameters can be delivered with
the highest possible probability of success that the network can provide.

The proposed QoS-based SF allocation scheme is based on the principle of distribution
of transmissions on appropriate SFs to meet their performance expectations. In LoRa,
SFs determine the lengths of the chirp symbol and are theoretically orthogonal to each
other. Hence, transmissions on different SFs, which range from 7 to 10, are characterized
by different times on-air, data rates, and, consequently, different sensitivities. The LoRa
SFs available in the United States and their corresponding characteristics are listed in
Table 1. Due to varying sensitivities, LoRaWAN traditionally uses lower SFs for devices
closer to the gateway and increasing SFs for increasing distances from the gateway. In
our earlier work [13,28], we demonstrated that, within a shorter transmission range where

Future Internet 2023, 15, 307 14 of 28

multiple SFs can be used, (a) optimum distribution of transmissions over multiple SFs can
increase network capacity, and (b) controlled allocation of devices in specific SFs within
the range can essentially provide guaranteed QoS in terms of the expected packet delivery
rate (PDR). For instance, if there are a total of p high-priority devices and p < d10, where
di is the maximum number of devices that can be sustained with a given PDR (as defined
by the corresponding QoS) in SF-i, i = 7, 8, 9, 10, then all p high-priority devices can be
allocated to SF-10 and other low-priority devices can be allocated to other SFs, without any
guarantees for their PDR. The theoretical limit di can be calculated using MAC capacity
analysis for ALOHA [13]. Moreover, there exists an optimum distribution of SFs that
can maximize the total capacity within any transmission range from the gateway where
multiple SFs can be assigned simultaneously (although, traditionally, SFs are allocated in
increasing order with increasing distances from the gateway as indicated in Table 1). For
instance, in the region where it is possible to use both SFs 9 and 10, the distribution of end
devices over SF-9 and SF-10 in the ratio 64:36 maximizes the capacity [28].

Table 1. LoRa spreading factors.

Spreading Factor
(UL for 125 KHz)

Physical bit Rate
(bits/sec)

Transmission Range
(Depends on Terrain)

SF7 5470 2 km

SF8 3125 4 km

SF9 1760 6 km

SF10 980 8 km

Based on this principle, we propose a QoS-based SF allocation scheme that is described
as follows (similar to scheme SFA-1 in [13]):

1. If 36% of p < d10, then p devices will be distributed according to a 64:36 ratio between
SF9 and SF10, respectively, and all remaining devices will be distributed according to
a 64:36 ratio between SF7 and SF8, respectively.

2. If 36% of p > d10, then d10 number of devices will be configured on SF-10 and the
remaining p − d10 devices will be configured on SF-9, given that p − d10 < d9. All
other devices will be distributed between SF-7 and SF-8 according to the 64:36 ratio.

3. If p > d9 + d10 but p < d8 + d9 + d10, then all the low-priority devices will be
configured on SF7 and high-priority devices will be configured on SF-8, SF-9, and
SF-10.

4. If p > d8 + d9 + d10, the required PDR x will decrease for HP devices and the values
of d8, d9, and d10 for this new x will be found.

5. All p devices will be configured on SF-8, SF-9, and SF-10 in optimum fraction. The
thresholds d8, d9 and d10 must be maintained at all times.

There can be other ambient devices in the network running some other applications,
transmitting packets with higher priorities selected based on some criteria. Using the
network configuration, the maximum number of devices that can be supported by each
spreading factor can be found and the spreading factors can be allocated to different packets
according to the top-down approach [13].

5. Simulation Details and Parameter Selection

To evaluate the performance of the proposed framework and the efficiency of federated
learning to make accurate predictions, the proposed approaches were applied to an ECG
anomaly detection application. Poisson analysis for the ALOHA-based network was used
to evaluate the performance of the networking layers. Federated learning was implemented
in Python, which ran on top of the networking layer.

All the codes for evaluation were executed on a machine configured with Intel(R)
Core(TM) i5-8250U CPU clocked at 1.60GHz, no GPU, and a single 8 GB DDR4 RAM. The

Future Internet 2023, 15, 307 15 of 28

ECG-5000 dataset was used for training and testing purposes [29]. The original ECG-5000
dataset is a 20 h long ECG downloaded from Physionet. The dataset was then pre-processed
to extract each heartbeat and make them equal in length. The dataset contains 5000 labeled
samples of ECG data. Each sample consists of 140 data points and a label. The value of the
label is either 0 or 1, representing abnormal or normal heartbeats, respectively. A dense
neural-network-based autoencoder was trained on the dataset and was used to make the
predictions.

5.1. Network Setup and System Model

We assume a network where a large number of end devices are considered to be placed
uniformly in a circular LoRa cell with the gateway placed at the center. It is assumed that,
at any moment, the gateway has enough resources available to demodulate any number of
valid receptions. The network server is connected to the application server. The application
server is assumed to contain the untrained global model and it is also responsible for
performing the federated averaging on parameters received from the nodes.

Out of all end devices, we assume that five devices are running the ECG anomaly
detection application, with other devices potentially used for other applications. All five of
those devices will be taking part in the federated learning process. All end devices share
the same communication channel and gateway, and hence can interfere with each other’s
transmissions.

The training dataset consists of 80% of the whole dataset, and the remaining 20% was
used for testing purposes. To simulate the real-world scenario, the data samples from the
training subset were equally and randomly distributed among the end nodes participating
in learning as shown in Figure 9. In a real world scenario, these data will be collected by
the devices from local sensing.

5000 ECGs,
each with ‘n’
components

Training
dataset
(80%)

Testing
dataset
(20%)

Normal
dataset
(n_train)

Shuffle and
distribute
equally

N ECGs in each device

Figure 9. Illustration of dataset division.

5.2. Selection of Hyper-Parameters

The selection of model parameters is a critical issue that must be based on the trained
model performance, cost of communicating data and/or parameters of the model, and
computation complexity. Wherever pertinent, the model training measures, namely re-
call, precision, and accuracy, were used for evaluating the model’s performance to make
predictions.

Future Internet 2023, 15, 307 16 of 28

Recall is defined as the ratio between the number of samples correctly predicted as
positive to the total number of positive samples. In the case of ECG anomaly detection,
recall can be formulated as

Recall =
Number o f samples correctly predicted as abnormal

Total abnormal samples
(1)

Precision is defined as the ratio of positive samples to the total number of positive
predictions that the model made. In the case of ECG anomaly detection, precision can be
formulated as

Precision =
Total number o f abnormal samples

Number o f samples predicted to be abnormal
(2)

Finally, accuracy is defined as the ratio of the total number of correct predictions to
the total number of predictions. In the case of ECG anomaly detection, accuracy can be
formulated as

Accuracy =
Number o f samples correctly predicted (abnormal or normal)

Total number o f predictions
(3)

The autoencoder applied to the ML model consisted of three fully connected layers
with 140 neurons in the input layer, 32 neurons in the hidden layer, and 140 neurons in
the output layer. These parameters were chosen experimentally to achieve an acceptable
performance. The mean absolute error (MAE) function was used to compute the training
losses and ADAM was used as the optimizer to update network weights during training.

For FL, we used the same autoencoder model as described above. The model had a
total of 9132 parameters. The dataset was divided equally among five devices. To achieve
comparable performance to machine learning, the FL model required three communication
rounds with 100 epochs in each communication round. Hence, these parameters were used
for all FL simulations.

When the PCA dimensionality reduction algorithm is applied in FL, it essentially
reduces the 140 data points in the dataset to a smaller number of PCA components. This
reduces the number of neurons in the input and output layers, resulting in the reduction in
the number of model parameters. This in turn reduces the communication cost; however,
it may reduce the model performance. Hence, we next focus on the selection of the
appropriate number of PCA components, which are obtained from simulations. The
volume of data required for FL with PCA and the corresponding model performance in
terms of recall, precision, and accuracy with different communication rounds and different
numbers of PCA components, as determined from simulations, are tabulated in Table 2. It
is observed that the trained model performance measures (recall, precision, and accuracy)
are consistently above 95% with 100 epochs and 20 PCA components with a sufficient
reduction in the volume of data; hence, we select these parameters (indicated in boldface in
Table 2.).

Future Internet 2023, 15, 307 17 of 28

Table 2. Traffic volume in kB for federated learning with PCA considered for various numbers of
epochs and PCA components with 3 communication rounds.

Epochs PCA Components Volume of Data Recall Precision Accuracy

60

10 49.1 0.934 0.953 0.954

20 95.9 0.963 0.918 0.950

30 142.7 0.830 0.932 0.905

80

10 49.1 0.866 0.922 0.915

20 95.9 0.871 0.942 0.925

30 142.7 0.805 0.954 0.904

100

10 49.1 0.803 0.914 0.888

20 95.9 0.990 0.958 0.978

30 142.7 0.903 0.959 0.944

In summary, the model parameters used for FL with the PCA dimensionality reduction
algorithms are listed in Table 3. Unless otherwise specified, these values are used for all
performance evaluations of FL-LoRaMAC.

Table 3. Autoencoder model details.

Parameter Value

Number of layers 3

Layers type Dense

Neurons in input layer 20

Neurons in hidden layer and activation 15; ReLU

Neurons in output layer and activation 20; Sigmoid

Optimizer Adam

Loss function MAE

6. Results and Discussions

We now present the results obtained from the simulation experiments. These are
presented in two parts. First, we present results indicating the comparative performance
of the proposed FL model with respect to a centralized ML model in terms of traffic
volume, trained model performance, and computation cost. These results demonstrate that
the FL model largely reduces the communication cost and computations for achieving a
comparable model performance to the centralized ML model. Next, we present an extensive
study of the proposed FL-LoRaMAC framework, including the impact of packet loss on the
model performance, model training time, and energy consumption, and the quantitative
benefits of pruning and the proposed QoS-based SF distribution scheme.

6.1. Performance Comparison between Federated Learning and Machine Learning

This section presents the performance analysis of the AI model trained using federated
learning in comparison to machine learning principles in the absence of channel loss. The
effects of channel loss are reported in the next section.

6.1.1. Volume of Traffic

We first evaluate and compare the volume of traffic for machine learning, federated
learning, and federated learning with PCA.

• Machine Learning: With ML, all the data points need to be sent to the central server.
Each data sample consists of 140 data points (each of 8 bytes) and a label (each of

Future Internet 2023, 15, 307 18 of 28

4 bytes) resulting in a data sample that is 140 × 8 + 4 = 1124 bytes long. There is a
total of 5000 such data samples. Hence, for machine learning, 5000 × 1124 = 4,496,000
bytes or 4.5 MB of data needs to be communicated.

• Federated Learning: When using FL, each of five devices will send 9132 × 4 = 36,528
bytes in one communication round. This results in 182,640 bytes of data transmitted
for five devices in one communication round. Hence, the total data sent by five devices
in three communication rounds equals 547,920 bytes. The server will also send the
updated global model after performing federated averaging in each communication
round. The total data sent by the server to end devices equals 109,584 bytes. Hence,
the total volume of data that needs to be communicated for federated learning is
657,504 bytes or 657.5 KB.

• Federated learning with PCA: When PCA is employed with federated learning, each data
sample is reduced from 140 data points to 20 data points. Consequently, the number
of neurons in the input and output layer also get reduced from 140 to only 20, with
32 neurons in the hidden layer. The resultant model comprises 1332 model parameters.
Following the similar calculations performed earlier for federated learning without
PCA, the total volume of data traffic communicated among five devices and the
server in three communication rounds for federated learning along with PCA equals
95,904 bytes or 95.9 KB.

Figure 10 depicts the relative communication costs of the three methods for a similar
level of model performance, which indicates that the volume of data traffic in federated
learning is significantly lower in comparison to the typical machine learning approach.
The traffic volume is further reduced when the PCA dimensionality reduction algorithm is
used. Specifically, with FL using PCA as specified above, the volume of traffic is reduced
by 98% relative to an ML model for the same level of model performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ML FL FL with PCA

V
ol

um
e

of
 d

at
a

(M
B

)

Figure 10. Traffic volume for machine learning (100 epochs), federated learning (3 communication
rounds and 100 epochs), and federated learning with PCA (20 components, 3 communication rounds,
and 100 epochs) approaches.

6.1.2. Trained Model Performance

The autoencoder was trained individually using typical machine learning as well as
using federated learning principles. In the case of machine learning, the model was trained
for 100 epochs. In federated learning, the model was trained for three communication
rounds and each communication round consisted of 100 epochs. The model was also trained
with federated learning with 20 PCA components. The trained model performance was
evaluated by testing the model on the testing dataset. The performance of models trained
with different methods is tabulated in Table 4, where the numbers of true positives (TPs),
true negatives (TNs), false positives (FPs), and false negatives (FNs) are listed. For clarity,
the implications of these terms in an ECG anomaly detection scenario are stated below:

Future Internet 2023, 15, 307 19 of 28

TP:
The number of samples that are actually normal and are predicted as
normal;

TN:
The number of samples that are actually abnormal, and are predicted as
abnormal;

FP:
The number of samples that are actually abnormal but are wrongly
predicted as normal;

FN:
The number of samples that are actually normal but are wrongly predicted
as abnormal.

Table 4. Performance of models trained with different methods.

Method TN FP FN TP

Machine learning 404 7 10 579

Federated learning 407 4 16 573

Federated learning with PCA 407 4 20 569

It is intuitive that, for ECG anomaly detection, it is desirable that the TN and TP are
high and the FP is low. The FN is not of much importance in this scenario as a false alarm
is better than a missed anomaly; however, it should also be kept low.

From Table 4, it can be observed that, for the representative application, the model
trained with federated learning outperforms the model trained by machine learning. When
the PCA algorithm is used along with federated learning, the performance of the model is
very similar to that of the model trained without the PCA algorithm, with a slight increase
in false alarms.

6.1.3. Computation Time

The computation time for the different approaches was assessed for model training
times only. They do not include the data pre-processing time or communication time. All
experiments were performed on a CPU-based machine with 8 GB of RAM.

• Machine Learning: For machine learning, the training took 100 epochs to converge. The
entire training phase took 62 s to be completed.

• Federated Learning: For federated learning, all devices performed the training of model
parameters in parallel. During the training phase, one communication round took 5 s
on average. The federated averaging algorithm running on the server took 0.016 s.
Hence, one communication round took a total of 5.016 s for computation. Hence, three
communication rounds took 15.048 s for computation.

The results, plotted in Figure 11, indicate that federated learning takes less computa-
tional time in comparison to machine learning as it trains models in a decentralized way.
Federated learning also provides the benefit of requiring a substantially lower amount of
data to be communicated while practically providing the same quality of performance.

Future Internet 2023, 15, 307 20 of 28

0

10

20

30

40

50

60

70

ML FL

C
om

pu
ta

tio
n

 T
im

e
(S

e
co

nd
s)

Figure 11. Computation time for machine learning (100 epochs) and federated learning (3 communi-
cation rounds and 100 epochs) approach.

6.2. Performance Study of FL-LoRaMAC

In the following, we present results from simulations on the performance of FL-
LoRaMAC to capture its general performance characteristics.

6.2.1. Model Performance of FL-LoRaMAC in the Presence of Channel Loss

We now present the effect of packet loss on the performance of the proposed FL-
LoRaMAC framework. We assume that the ambient traffic in the entire network leads to
packet losses on uplink transmissions, which depend on the traffic volume. It is assumed
that packet loss does not affect network joining and all end devices are successfully con-
figured according to the specifications mentioned in Section 4.2. Also, the end nodes are
supplied with the training data (representing locally sensed data in a real scenario). The
application server transmits the untrained global model as downlink messages to the end
devices taking part in the training. This transmission of the global model is acknowledged
by the end devices. Hence, all fragments of the global model are received by all the end
devices without loss.

The end nodes train the model based on the local data and the corresponding gradient
updates are transmitted to the application server as fragments. Each end device is assumed
to transmit one fragment every 60 s. We assume that these fragments are 28 bytes long.
Assuming that all devices use SF-7, this leads to the time on air for each packet being
62 millis. During this transmission, fragments may suffer collisions with either data
fragments from other participating devices or data from non-participating devices. We use
a Poisson analysis for evaluating the probability of successful transmissions under these
conditions. The system treats lost fragments from collisions according to the specifications
in Section 4.3. Due to this loss, the model performance deteriorates in terms of making
predictions on the testing dataset. Evaluation metrics calculated for varying loss rates
from the implementation, each averaged from 100 simulation experiments, are depicted in
Figure 12.

Future Internet 2023, 15, 307 21 of 28

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
e

ca
ll

Loss (1-PDR)

(a) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Loss (1-PDR)

(b) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
cc

ur
a

cy

Loss (1-PDR)

(c) Accuracy
Figure 12. Average performance and corresponding standard deviations with packet loss: (a) recall,
(b) precision, and (c) accuracy with the varying loss in network.

In the absence of packet loss, the performance of the model was highest with a mean
recall of 95.16%, a mean precision of 95.07%, and a mean accuracy of 95.99%. As expected,
the performance of the model degrades with an increasing packet loss. However, this
degradation is very slow until the loss rate exceeds 40%, below which the system was able
to maintain a mean recall greater than 90.26%, mean precision above 93.9%, and mean
accuracy above 93.64%. The federated averaging mechanism was responsible for keeping

Future Internet 2023, 15, 307 22 of 28

the performance stable and hence the performance degrades gracefully. Even if one of
the transmissions of a certain model parameter is received by the server, the averaging
algorithm preserves the notion of that parameter in the updated global model. Hence, the
end devices receive the averaged value instead of obtaining a ’zero’ for such cases. This
helps the model to converge faster and reap the benefits of federated learning. Once packet
loss exceeds a threshold, i.e., not even a single transmission for some parameters is able to
reach the server, the model may need more communication rounds to converge or may not
converge at all.

6.2.2. Model Training Time with FL-LoRaMAC

The time duration for computing gradient updates during the training phase was
measured experimentally and the communication time was calculated mathematically for
the training hyperparameters used. With these, the total training time was calculated as
follows:

TTrain = TDU + N ∗ (TC + TUp + TFAv + TD) (4)

In (4), TDU is the average time taken by the server to transmit all the untrained global
model parameters, N is the number of communication rounds used, TC is the average time
taken to compute local model updates, TUp is the average time taken by end devices to
transmit local updated model parameters, TFAv is the average time taken by the federated
averaging algorithm to compute the updated global model from local updates, and TD is
the average time taken to transmit the updated global model parameters.

All calculations for communication time were made considering a spreading factor of
SF-7. The same can be calculated if other spreading factors were to be used. To calculate
communication time, the total number of model parameters that need to be communicated
was determined. The model has 635 parameters, which equates to 2540 bytes. Each
fragment was considered to be 28 bytes long. Hence, there were 91 fragments that need to
be communicated from each end device in each communication round. Considering that
each end device transmits one packet every 60 s, TUp was calculated to be 5460 s.

The size of the frame was chosen to be 28 bytes based on the fact that LoRa technology
in the U.S. has a dwell time restriction of 400 millis. When SF-10 is used, the duration of a
28 bytes packet is 400 millis. Hence, the size of the fragment was chosen to be 28 bytes for
the simplicity of implementation with other SFs. Note that when lower spreading factors
are used, more data can be sent in one packet. However, a longer packet means a higher
probability of collision when there are multiple devices transmitting, which is the case
during end devices sending local updates.

When the global model is sent by the server, only one gateway will be transmitting.
Hence, the maximum number of bytes that can be packed in a packet can be sent more
frequently, with a negligible probability of packet loss due to collisions. Assuming that the
gateway transmits using SF7, each packet can have 200 bytes with 100 ms of the preamble.
Hence, the gateway can send all 635 parameters with 13 packets, transmitting 1 packet
every 10 s. Considering that no packets are lost during transmission, TDU as well as TD
will be 130 s.

The values of TC and TFAv were measured to be 4.95 s and 0.016 s, respectively. By
putting all the values in Equation (4), the total training time in s was calculated to be
16,914.9 s, or 4.7 h:

TTrain = 130 + (3 ∗ (5460 + 130 + 4.95 + 0.016)) s (5)

Note that the communication of model parameters takes the most time during the
training phase. The training time can be reduced if the number of communication rounds
is reduced; however, doing so will deteriorate the performance of the model as shown in
Table 5. This trade-off can be exploited depending on the nature of the application.

Future Internet 2023, 15, 307 23 of 28

Table 5. Training time and model performance for different numbers of communication rounds.

Comm.
Rounds

Training
Time

(s)

Recall
(%)

Precision
(%)

Accuracy
(%)

2 11,229.9 86.13 93.9 92

3 16,794.85 99.27 95.77 97.9

6.2.3. Energy Consumption of FL-LoRaMAC

As discussed earlier, FL can be implemented using legacy LoRaWAN protocol using
the Class-C mode of operation for end devices. However, doing so will incur enormous
energy costs. This section compares the energy consumption of the proposed FL-LoRaMAC
framework to the Class-C operation of the legacy LoRaWAN protocol.

The uplink transmissions for FL-LoRaMAC are similar to those of the legacy protocol.
Hence, the energy consumption for uplink transmissions will be the same for both cases.
However, for downlink, the end devices according to FL-LoRaMAC will conserve energy
by putting its radios to sleep.

The energy consumed by the LoRa transceiver at the end device for receiving one
downlink packet in FL-LoRaMAC can be calculated as follows:

ET = ES + EUn + ESl (6)

Here, ES is the energy consumed when the device starts listening and actually receives
the downlink packet, EUn is the energy consumed when the device starts listening and
does not receive any data, and ESl is the energy consumed by the transceiver module in
sleep mode.

The energy consumption depends on the operating voltage of the transceiver, the
current drawn, and the duration for which the current is drawn. The SX1276 LoRa module
operates at 3.3V, draws 10.8 mA (IR) during receive mode, and 0.0002 mA (ISl) in sleep
mode [30]. The gateway transmits downlink frames once every 10 s. In FL-LoRaMAC,
the end devices open receive windows every 100 millis, each for 5 millis, and then go to
sleep if they do not detect any LoRa preamble. ES, EUn, and ESl can be found according to
Equations (7)–(9).

ES = V ∗ IR ∗ TR = 3.3V ∗ 10.8mA ∗ 400ms (7)

EUn = V ∗ IR ∗ TR = 3.3V ∗ 10.8mA ∗ 480ms (8)

ESl = V ∗ ISl ∗ TSl (9)

= 3.3V ∗ 0.0002mA ∗ (1000 − 480 − 400)ms

Here, TR and TSl are time durations of reception and sleep, respectively. Using
Equation (6), the energy consumption of the LoRa transceiver for one downlink packet
is 0.0087 mWH. Using SF-7, 13 packets need to be sent in the downlink for transmitting
all model parameters in one communication round. Hence, the energy consumed by the
transceiver to receive all the parameters in one communication round is 0.1131 mAH.

In the case of legacy Class-C operation, the transceiver module always stays in receive
mode. It will use the standard eight-symbol preamble, not the elongated preamble, so
a data packet of SF7 can have 255 bytes. In this scenario, 10 packets will be sufficient
for transmitting all 635 model parameters. The energy consumed by the transceiver to
receive all model parameters will be 10 × (3.3V × 10.8 mA × 10,000 s) = 0.99 mAH. These
calculations indicate that the legacy Class-C devices will consume approximately nine
times more energy than the proposed FL-LoRaMAC for receiving model parameters.

Future Internet 2023, 15, 307 24 of 28

6.2.4. Performance with Pruning

While performing model pruning, a sparsification parameter specifies the percentage
of the model parameters that are pruned. The performance of the model was evaluated for
varying sparsification percentages and plotted in Figure 13. These results were obtained by
training the model 100 times and the plots show the average and standard deviation for
the performance metrics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

R
e

ca
ll

Sparcification (%)

(a) Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

P
re

ci
si

on

Sparcification (%)

(b) Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

A
cc

u
ra

cy

Sparcification (%)

(c) Accuracy

Figure 13. Performance with various levels of sparsification: (a) recall, (b) precision, and (c) accuracy
with the varying sparsification percentages.

Future Internet 2023, 15, 307 25 of 28

It is observed that the model performance degrades as the parameter matrix gets
more and more sparse. Sparsity is a hyper-parameter and it can be observed that, for
the representative application, the model performance is not substantially affected for
up to 50% sparsity. Hence, if 50% of the model parameters are pruned, the model still
performs well. If the framework chooses not to send those pruned parameters, this will
result in at least 50% savings in bandwidth with minimal compromise to the performance
of the system.

6.2.5. Performance with QoS-based SF Distribution

Finally, we study the performance of the proposed QoS-based SF distribution prin-
ciples. As stated earlier, we assume that the packet transmissions in FL-LoRaMAC are
affected by ambient transmissions of packets in the IoT network such as from devices in the
network that are not performing ECG anomaly detection. Some of these ambient packets
may also be interfering with FL-LoRaMAC’s high-priority packets. We assume a require-
ment of a 90% probability of success for high-priority packets. Also, it is assumed that all
end-devices, including those transmitting ambient packets, are transmitting data every 60 s,
similar to the devices running the representative application. However, we assume that at
any time the network has only 10% high-priority packets out of the total traffic.

Using this network configuration, the maximum number of devices that can be sup-
ported on each spreading factor was computed using Poisson analysis, as tabulated in
Table 6. The spreading factors were then allocated to different packets without exceeding
the maximum allowable limit, according to the SFA-1 approach. The packet delivery ratios
for both high-priority and low-priority devices were then evaluated using Poisson’s distri-
bution for a varying number of total devices in the network. These results are plotted in
Figure 14.

0.35

0.45

0.55

0.65

0.75

0.85

0.95

0 100 200 300 400

P
D

R

Total Number of Devices

Low Priority

High Priority

Figure 14. PDR for high- and low-priority devices for varying total number of devices.

Table 6. Maximum number of devices for various spreading factors with 90% or greater probability
of success.

Spreading Factors Max. Number of Devices (D)

SF7 50

SF8 27

SF9 15

SF10 8

To study the effects of the packet losses in the channel, the ECG anomaly detection
application was trained and tested using the PDR values for the varying total number
of devices illustrated in Figure 14. The significance criteria were chosen to be 80% of
the maximum and minimum values. In other words, if the parameter’s value is greater
than 80% of the maximum value or less than 80% of the minimum value, that particular
model parameter is considered significant. The performance of the model trained by

Future Internet 2023, 15, 307 26 of 28

applying the pruning technique along with QoS-based distribution and without applying
QoS distribution is plotted in Figure 15.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

P
re

ci
si

o
n

Total number of devices

QoS

Legacy

(a) Precision

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400

A
cc

ur
ac

y

Total number of devices

QoS

Legacy

(b) Accuracy

Figure 15. Performance comparison of the trained model with QoS and legacy: (a) precision and
(b) accuracy with the varying total number of devices in network.

For comparison, the value of recall was kept fixed at 99.02%, and the mean as well
as the standard deviation for precision and accuracy were determined against this recall
value. This was achieved by varying the threshold for the prediction. It can be observed
that, with an increasing number of devices in the network, the performance of the model
degrades. However, the model trained by considering a differential priority of packets
(i.e., the proposed QoS-based SF distribution scheme) provides a better performance than
the legacy scheme that applies the same priority for all packets. Providing better success
rates to high-priority packets that contain more significant parameters helps the model to
converge faster when compared to the legacy approach.

7. Conclusions

This paper introduces artificial intelligence tools for IoT applications and a novel
framework to enable on-device learning for LoRa-based devices. Machine learning princi-
ples can prove to be very beneficial for IoT applications but, due to the challenges imposed
by IoT and LoRaWAN ecosystems such as data privacy, low bandwidth, etc., traditional ma-
chine learning techniques cannot be efficiently applied. However, a decentralized learning
technique known as federated learning can be used while maintaining data privacy. The
performance of models trained via traditional machine learning and federated learning prin-
ciples was analyzed. This analysis proves that, for the representative application, federated
learning can be viably employed in place of machine learning. However, federated learning
requires independent bidirectional communication. The legacy LoRaWAN protocol fails
to satisfy the communication requirements of federated learning; hence, FL-LoRaMAC

Future Internet 2023, 15, 307 27 of 28

has been proposed to fill this gap. The performance of the framework was evaluated
by implementing the framework on a representative application. The results show that
the framework was able to successfully support all the design requirements of federated
learning, even with communication losses in the system. The proposed framework also
incorporates bandwidth optimization to enable efficient resource utilization.

The proposed framework considers all devices running the application taking part in
the learning process. Typically, a subset of these devices possesses a substantial amount
of information and holds the capacity to effectively train the learning model. To mitigate
potential escalations in computational and communication expenses, a nuanced approach
is necessary, wherein the training process is applied to to only a small subset of devices
without regard for their information contribution. This will further reduce the communica-
tion cost.

This also leads to an intriguing avenue for further investigation. The development
of a selection mechanism can lead to identifying devices based on the richness of their
information and the quality of their channel conditions. This aspect remains underexplored
at present but bears substantial significance, particularly within the context of federated-
learning-driven applications for smart cities. Hence, delving into this aspect could yield
valuable insights and enhancements for federated learning in such contexts.

Author Contributions: Conceptualization, S.A. and A.N.; methodology, S.A. and A.N.; software,
S.A.; validation, S.A. and A.N.; formal analysis, S.A.; writing—original draft preparation, S.A.;
writing—review and editing, A.N.; supervision, A.N.; project administration, A.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Future of Industry Ecosystems: Shared Data and Insights. Available online: https://blogs.idc.com/2021/01/06/future-of-

industry-ecosystems-shared-data-and-insights/#:~:text=IDC%20estimates%20there%20will%20be,the%20importance%20of%
20expanding%20their (accessed on 8 September 2023).

2. Majumdar, N.; Shukla, S.; Bhatnagar, A. Survey On Applications Of Internet Of Things Using Machine Learning. In Proceedings
of the 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India 10–11
January 2019; pp. 562–566. https://doi.org/10.1109/CONFLUENCE.2019.8776951.

3. Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth
International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018;
pp. 1–6. https://doi.org/10.1109/ICCUBEA.2018.8697857.

4. Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data From Healthcare
Communities. IEEE Access 2017, 5, 8869–8879. https://doi.org/10.1109/ACCESS.2017.2694446.

5. Shailaja, K.; Seetharamulu, B.; Jabbar, M.A. Machine Learning in Healthcare: A Review. In Proceedings of the 2018 Second
International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March
2018; pp. 910–914. https://doi.org/10.1109/ICECA.2018.8474918.

6. Microsoft: AI for Health. Available online: https://www.microsoft.com/en-us/ai/ai-for-health (accessed on 8 September 2023).
7. Tempus: Data-Driven Precision Medicine. Available online: https://www.tempus.com/ (accessed on 8 September 2023).
8. Beta Bionics. Available online: https://www.betabionics.com/ (accessed on 8 September 2023).
9. Insitro. Available online: https://insitro.com/ (accessed on 8 September 2023).
10. LoRa and LoRaWAN: Technical Overview. Available online: https://lora-developers.semtech.com/library/tech-papers-and-

guides/lora-and-lorawan/ (accessed on 8 September 2023).
11. Vangelista, L.; Zanella, A.; Zorzi, M. Long-Range IoT Technologies: The Dawn of LoRa™ . In Future Access Enablers for Ubiquitous

and Intelligent Infrastructures; Atanasovski, V., Leon-Garcia, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 51–58.
12. Zourmand, A.; Kun Hing, A.L.; Wai Hung, C.; AbdulRehman, M. Internet of Things (IoT) using LoRa technology. In Proceedings

of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June
2019; pp. 324–330. https://doi.org/10.1109/I2CACIS.2019.8825008.

13. Aggarwal, S.; Nasipuri, A. QoS Based Spreading Factor Assignment for LoRaWAN Networks for IoT Applications. In Proceedings
of the SoutheastCon 2022, Mobile, AL, USA, 26 March–3 April 2022; pp. 46–53.

https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/#:~:text=IDC%20estimates%20there%20will%20be,the%20importan ce%20of%20expanding%20their
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/#:~:text=IDC%20estimates%20there%20will%20be,the%20importan ce%20of%20expanding%20their
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/#:~:text=IDC%20estimates%20there%20will%20be,the%20importan ce%20of%20expanding%20their
https://doi.org/10.1109/CONFLUENCE.2019.8776951
https://doi.org/10.1109/ICCUBEA.2018.8697857
https://doi.org/10.1109/ACCESS.2017.2694446
https://doi.org/10.1109/ICECA.2018.8474918
https://www.microsoft.com/en-us/ai/ai-for-health
https://www.tempus.com/
https://www.betabionics.com/
https://insitro.com/
https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
https://doi.org/10.1109/I2CACIS.2019.8825008

Future Internet 2023, 15, 307 28 of 28

14. Can a Smartwatch with ECG Capability Really Warn You About an Irregular Heartbeat? Available online: https:
//www.houstonmethodist.org/blog/articles/2022/jan/can-a-smartwatch-with-ecg-capability-really-warn-you-about-
an-irregular-heartbeat/#:~:text=The%20ECG%20technology%20in%20a,sense%20of%20your%20heart’s%20rhythm (accessed
on 8 September 2023).

15. Kubat, M.; Holte, R.C.; Matwin, S. Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Mach. Learn. 1998,
30, 195–215. https://doi.org/10.1023/A:1007452223027.

16. Otukei, J.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood
classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002.

17. Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water
Resour. 2010, 33, 69–80. https://doi.org/10.1016/j.advwatres.2009.10.008.

18. Simjanoska M, Gjoreski M, Gams M, Madevska Bogdanova A. Non-Invasive Blood Pressure Estimation from ECG Using Machine
Learning Techniques. Sensors 2018, 18, 1160. https://doi.org/10.3390/s18041160 .

19. Raju, K.B.; Dara, S.; Vidyarthi, A.; Gupta, V.M.; Khan, B. Smart Heart Disease Prediction System with IoT and Fog Computing
Sectors Enabled by Cascaded Deep Learning Model. Comput. Intell. Neurosci. 2022, 2022, 1070697. https://doi.org/10.1155/2022
/1070697 .

20. Rincon, J.A.; Guerra-Ojeda, S.; Carrascosa, C.; Julian, V. An IoT and Fog Computing-Based Monitoring System for Cardiovascular
Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors 2020, 20, 7353. https://doi.org/10.3390/s202
47353.

21. Clifford GD, Liu C, Moody B, Li-wei HL, Silva I, Li Q, Johnson AE, Mark RG. AF classification from a short single lead ECG
recording: The PhysioNet/computing in cardiology challenge 2017. In Proceedings of the 2017 Computing in Cardiology (CinC),
Rennes, France, 24 September 2017; pp. 1–4. https://doi.org/10.22489/CinC.2017.065-469.

22. LoRaWAN Specification v1.0; LoRa Alliance, Inc.: San Ramon, CA, USA, 2015.
23. Mikhaylov, K.; Petaejaejaervi, J.; Haenninen, T. Analysis of Capacity and Scalability of the LoRa Low Power Wide Area Network

Technology. In Proceedings of the European Wireless 2016, 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016;
pp. 1–6.

24. Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovacs, I.Z.; Mogensen, P.; Sorensen, M. Coverage and Capacity Analysis of Sigfox,
LoRa, GPRS, and NB-IoT. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia,
4–7 June 2017; pp. 1–5. https://doi.org/10.1109/VTCSpring.2017.8108666.

25. Aggarwal, S.; Nasipuri, A. Survey and Performance Study of Emerging LPWAN Technologies for IoT Applications. In
Proceedings of the 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT IoT and AI
(HONET-ICT), Charlotte, NC, USA, 6–9 October 2019; pp. 69–73. https://doi.org/10.1109/HONET.2019.8908117.

26. Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer: Cham, Switzerland, 2019; pp. 1–4.
27. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks. In Proceedings of the

Proceedings of the 28th International Conference on Neural Information Processing Systems–Volume 1, Cambridge, MA, USA,
7–12 December 2015; NIPS’15, p. 1135–1143.

28. Aggarwal, S.; Nasipuri, A. Improving Scalability of LoRaWAN Networks by Spreading Factor Distribution. In Proceedings of the
SoutheastCon 2021, Atlanta, Georgia, USA, 10–13 March 2021; pp. 1–7. https://doi.org/10.1109/SoutheastCon45413.2021.9401855.

29. ECG-5000 Dataset. Available online: http://www.timeseriesclassification.com/description.php?Dataset=ECG5000 (accessed on
11 August 2022).

30. SX1276 Datasheet. Available online: https://www.mouser.com/datasheet/2/761/sx1276-1278113.pdf (accessed on 8
September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.houstonmethodist.org/blog/articles/2022/jan/can-a-smartwatch-with-ecg-capability-really-warn-you-about-an-irregular-heartbeat/#:~:text=The%20ECG%20technology%20in%20a,sense%20of%20your% 20heart's%20rhythm
https://www.houstonmethodist.org/blog/articles/2022/jan/can-a-smartwatch-with-ecg-capability-really-warn-you-about-an-irregular-heartbeat/#:~:text=The%20ECG%20technology%20in%20a,sense%20of%20your% 20heart's%20rhythm
https://www.houstonmethodist.org/blog/articles/2022/jan/can-a-smartwatch-with-ecg-capability-really-warn-you-about-an-irregular-heartbeat/#:~:text=The%20ECG%20technology%20in%20a,sense%20of%20your% 20heart's%20rhythm
https://doi.org/10.1023/A:1007452223027
https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.1016/j.advwatres.2009.10.008
https://doi.org/10.3390/s18041160
https://doi.org/ 10.1155/2022/1070697
https://doi.org/ 10.1155/2022/1070697
https://doi.org/10.3390/s20247353
https://doi.org/10.3390/s20247353
https://doi.org/10.22489/CinC.2017.065-469
https://doi.org/10.1109/VTCSpring.2017.8108666
https://doi.org/10.1109/HONET.2019.8908117
https://doi.org/10.1109/SoutheastCon45413.2021.9401855
http://www.timeseriesclassification.com/description.php?Dataset=ECG5000
https://www.mouser.com/datasheet/2/761/sx1276-1278113.pdf

	Introduction
	Related Work
	Problem Statement and Design Considerations
	Challenges Faced by ML
	Federated Learning
	Problem Statement

	Proposed Framework: FL-LoRaMAC
	Network Joining
	Proposed MAC Layer for Gradient Updates
	Decentralized Training and Model Aggregation
	Optimizing Communication Bandwidth
	Model Pruning
	Qos-Based Assignment of SF for Differential Priorities

	Simulation Details and Parameter Selection
	Network Setup and System Model
	Selection of Hyper-Parameters

	Results and Discussions
	Performance Comparison between Federated Learning and Machine Learning
	Volume of Traffic
	Trained Model Performance
	Computation Time

	Performance Study of FL-LoRaMAC
	Model Performance of FL-LoRaMAC in the Presence of Channel Loss
	Model Training Time with FL-LoRaMAC
	Energy Consumption of FL-LoRaMAC
	Performance with Pruning
	Performance with QoS-based SF Distribution

	Conclusions
	References

