
Citation: Tavakolian, A.; Rezaee, A.;

Hajati, F.; Uddin, S. Hospital

Readmission and Length-of-Stay

Prediction Using an Optimized

Hybrid Deep Model. Future Internet

2023, 15, 304. https://doi.org/

10.3390/fi15090304

Academic Editor: Hamid Mcheick

Received: 2 July 2023

Revised: 6 August 2023

Accepted: 10 August 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Hospital Readmission and Length-of-Stay Prediction Using an
Optimized Hybrid Deep Model
Alireza Tavakolian 1, Alireza Rezaee 1 , Farshid Hajati 2,* and Shahadat Uddin 3

1 Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran,
Tehran 14174, Iran; alireza.tavakol@ut.ac.ir (A.T.); arrezaee@ut.ac.ir (A.R.)

2 Intelligent Technology Innovation Laboratory (ITIL) Group, Institute for Sustainable Industries and Liveable
Cities, Victoria University, Footscray, VIC 3011, Australia

3 School of Project Management, Faculty of Engineering, The University of Sydney,
Sydney, NSW 2006, Australia; shahadat.uddin@sydney.edu.au

* Correspondence: farshid.hajati@vu.edu.au

Abstract: Hospital readmission and length-of-stay predictions provide information on how to man-
age hospital bed capacity and the number of required staff, especially during pandemics. We
present a hybrid deep model called the Genetic Algorithm-Optimized Convolutional Neural Network
(GAOCNN), with a unique preprocessing method to predict hospital readmission and the length of
stay required for patients of various conditions. GAOCNN uses one-dimensional convolutional layers
to predict hospital readmission and the length of stay. The parameters of the layers are optimized
via a genetic algorithm. To show the performance of the proposed model in patients with various
conditions, we evaluate the model under three healthcare datasets: the Diabetes 130-US hospitals
dataset, the COVID-19 dataset, and the MIMIC-III dataset. The diabetes 130-US hospitals dataset
has information on both readmission and the length of stay, while the COVID-19 and MIMIC-III
datasets just include information on the length of stay. Experimental results show that the proposed
model’s accuracy for hospital readmission was 97.2% for diabetic patients. Furthermore, the accuracy
of the length-of-stay prediction was 89%, 99.4%, and 94.1% for the diabetic, COVID-19, and ICU
patients, respectively. These results confirm the superiority of the proposed model compared to
existing methods. Our findings offer a platform for managing the healthcare funds and resources for
patients with various diseases.

Keywords: readmission; length of stay; convolutional neural networks; genetic algorithm;
diabetes; COVID-19

1. Introduction

Hospital readmission and length of stay (LOS) play major roles in hospital expendi-
tures. Recently, healthcare systems’ main focus is on patients being readmitted to hospitals
within a short time frame (mostly on readmissions that occur within 30 days) after dis-
charge [1]. According to the latest report, the United States healthcare system’s burden was
41 billion dollars, due to the hospital readmissions of diabetic patients within 30 days [2].
A study in Spain revealed that, while the total annual cost of diabetic patients was EUR
1803.6 per person, the cost of hospitalization for these patients was EUR 801.6 [3]. Another
study conducted in the United States showed that the direct annual cost of diabetes is about
USD 9595 per person [4]. There are direct and indirect costs of healthcare systems that are
related to inpatient hospitalization. Direct medical costs include the costs associated with
the services provided at the hospital, such as inpatient stays, intensive care unit (ICU) stays,
laboratory tests, and other types of hospital visits. For various diseases, the hospitalization
share of the total cost is different. For diabetic patients, 35% of the total cost is considered for
hospitalization [5]. The share for swine flu is 40%. The hospitalization cost for COVID-19
patients varies based on age [6].
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On average, 92.6% of the total cost for COVID-19 patients is for hospitalization [7].
These facts indicate that readmission time and LOS are responsible for more than 50% of the
total cost to patients. Besides the cost to the patients and healthcare systems, long LOS and
repeated readmissions also lead to other problems. An increase in LOS downgrades the
quality of healthcare services due to an increase in the patients-to-nurses ratio. During the
COVID-19 pandemic, it was reported that for every extra patient per nurse, a 7% increase
was incurred in the odds of patient failure-to-rescue rates, as well as a 7% increase in the
likelihood of dying within 30 days [8]. Recently, with the emergence of COVID-19, the need
for hospital beds has increased. The LOS for COVID-19 patients varies based on the level
of severity and age group; the LOS of COVID-19 patients increases with age for patients
older than 60. However, the LOS for COVID-19 patients in ICUs decreases for people
aged 80 years or older due to a higher mortality rate [9]. The hospital readmission of
diabetic patients within 30 days increases the risk of contracting COVID-19 [10]. Diabetic
patients have a risk factor for hospitalization and a high mortality rate due to COVID-19.
According to recent research in China, the COVID-19 mortality rate in diabetes patients is
about three-fold more elevated than the general patient mortality rate [10]. Thus, a precise
prediction of readmissions and LOS help the healthcare system to manage the availability
of hospital beds and quality of service. Predicting LOS and readmission time frames
has been investigated by other researchers in recent years. The main focus of previously
published research was to use basic machine learning (ML) methods as a simple classifier
for predicting the LOS and readmission time frames. Based on reviewed articles in the
related work section, the main gap in previous research is the lack of evaluating new
hybrid methods and in investigating the possibility of using new feature sets for LOS and
readmission time frame predictions.

In this research, we propose a hybrid model, which is achieved by a combination of
deep learning (DL) and evolutionary algorithms under the name of the Genetic Algorithm-
Optimized Convolutional Neural Network (GAOCNN). The proposed algorithms are
evaluated by three different datasets to predict the readmission time frame for diabetic
patients and the LOS for diabetic, COVID-19, and ICU patients. Experimental results
indicate that the GAOCNN estimates readmissions with a 97.2% accuracy. Furthermore,
the accuracy of the GAOCNN for the LOS prediction is 89%, 99.4%, and 94.1% for diabetic,
COVID-19, and ICU patients, respectively.

The proposed method is organized into eight main sections. Section 1 describes a
summary of the research and its contribution. Subsequently, the second part presents
an overview of the historical background related to LOS and readmission time frame
predictions, as well as the most recent solutions. Next, Section 3 provides an outline of the
dataset’s specifications, along with its associated statistical characteristics. The proposed
method is explained in this section as well. Section 4 describes the evaluation process
employed to assess the proposed method’s effectiveness and the verification of the results.
In Section 5, the presented methodology is summarized, and a comparison is drawn
between the proposed method and similar research. Section 6 specifies the limitations and
future directions of the work. Section 7 delivers a concise conclusion that encompasses the
research method, results, contributions, and future prospects of the study. The final section
of the study defines the abbreviations. The contributions of this research are as follows:

• A novel cost function for the genetic optimization process to leverage the feature
extraction process toward a better performance is presented;

• The proposed approach outperformed both ML and DL methods for short- and long-
term LOS predictions;

• The proposed approach outperformed the surveyed ML methods in related works
with respect to diabetic readmission time predictions;

• The most important features for both the LOS and readmission time frame predictions are
provided.
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2. Related Works

Numerous models have been developed to predict patient conditions in medical
facilities [11]. Recent studies have focused on utilizing ML techniques for readmission
prediction [12].

Forsman and Jonsson used k-nearest neighbour, logistic regression (LR), boosted
decision trees [13], and artificial neural networks [14] for readmission prediction. Their
purpose was to classify patients into two groups: patients who never returned to the
hospital and patients who returned within 30 days. The best result for this research was
an 80.1% accuracy with the LR model. Alloghani et al. [15] applied ML to diabetes data to
recognize patterns and combinations of factors that characterize the readmission of diabetes
patients. They used a range of classifiers, including linear discriminant analysis [16],
random forest (RF), k-nearest neighbour, naive Bayesian, decision tree, and support vector
machine (SVM) [17]. Using the naive Bayesian algorithm, their best result was the area
under the receiver operating characteristic curve (AUROC) and a precision of 64% and 51%,
respectively. Hammoudeh et al. [18] presented a convolutional neural network CNN model
as a binary classifier to predict readmission. They aimed to distinguish between patients
who returned to the hospital and those who did not return. They reported accuracy and
AUROC of 80% and 85%, respectively. Mingle [19] used ML classifiers such as RF, extreme
gradient boosting (XGB), balanced RF, gradient boosted trees, gradient boosted greedy
trees, extreme gradient boosted trees, extreme gradient boosted classifier [20] and Nesterov
kernel SVM [21] with a range of encoding procedures. The best accuracy for classifying
patients as either never having returned to the hospital or having returned within 30 days
was 78%. Arnaud et al. [12]. evaluated various DL models to predict the readmission time
frame of emergency admitted patients. The authors evaluated a combination of MLP and
CNN models to extract information from numerical and contextual features. The authors
reported 0.83 AUROC for the readmission time frame prediction.

Morton et al. [22] tested supervised ML algorithms such as SVM and RF for predicting
short-term stays (less than three days) at hospitals for diabetic patients. They worked
on a three-class classification, and reported a 68% accuracy with 1% tolerance, which
they achieved with SVM+. Yakovlev et al. [23] used a multi-layer perceptron (MLP) to
predict the hospital LOS for coronary syndrome patients. They used 6000 samples, divided
into 5000 training samples and 1000 testing samples. The predicted LOS’s average and
standard deviation were 15 and 9.5 days, respectively. Tsai et al. [24] proposed an ML
algorithm for hospital management by predicting the LOS before patients’ admission.
They developed DL models to predict the LOS for patients with one of three primary
diagnoses: coronary atherosclerosis, heart failure, and acute myocardial infarction in a
cardiovascular unit. They reported a 67% accuracy with a 2-day tolerance. Wang et al. [25]
evaluated various ML models such as SVM, RF, and long short-term memory (LSTM) [26]
for ICU LOS prediction. The authors used features such as age, gender, and admission
type of the patient for predicting LOS. The authors proposed a pipeline for preprocessing,
encoding, and training the final model. The target classes for this prediction were LOS > 4
or LOS > 7 days. The authors reported 84.3% accuracy using LSTM for emergency LOS
prediction. Nallabasannagar et al. [27] presented an MLP model for ICU LOS prediction.
The authors used features such as age, gender, and lab events as the feature set. The authors
used a customized embedding method for converting contextual information to numerical
values. The authors reported 66.2% accuracy for discriminating LOS in two classes of >7
and <7.

COVID-19 can lead to pneumonia and long-term LOS for patients with underlying
diseases [28]. Thus, researchers have focused on predicting long-term LOS to manage the
hospital beds [29]. Manhub et al. [30] used a decision tree to predict the COVID-19 patients’
LOS. They analysed 2017 patients from January to July 2020. Their work results indicate an
R2-score of 49.8% and a median absolute deviation of 2.85 days. For predicting of discharge
time in COVID-19 patients, Nemati et al. [31] used the health records of 1182 patients. They
used only age and gender as input features for the discharge time prediction of COVID-19
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patients. They tested the gradient boost algorithm, Cox regression, and fast SVM for the
discharge time prediction. They reported that the gradient boost algorithm achieved the
best result, with an accuracy of 71.7%. A summary of the reviewed research is shown in
Table 1.

Table 1. Summary of the reviewed research.

Authors Dataset Model Accuracy (%) Strengths/Weakness

Alloghani et al. [15] (2019) Diabetes
naive

Bayesian 65 -/Weak performance, relatively
old method.

Hammoudeh et al. [18] (2018) Diabetes CNN 80
High performance/Only two
classes of readmission were

predicted.

Mingle et al. [19] (2017) Diabetes Gradient boosted trees 78 -/Poor performance

Morton et al. [22] (2014) Diabetes SVM+ 68

-/Poor performance for
discriminating between short and

long term LOS, relatively old
method.

Mahboub et al. [30] (2021) COVID-19 Decision Tree 50 -/Poor performance, relatively old
method.

Mahboub et al. [30] (2021) COVID-19 gradient boost algorithm 72
-/Poor performance, No

hyperparameter tuning was
performed.

Wang et al. [25] (2020) ICU LSTM 84
High performance/No

hyperparameter tuning was
performed.

Nallabasannagari et al. [27] (2020) ICU MLP 66 -/Weak performance, No
augmentation method was used.

None of the above-mentioned methods has taken any action to predict patients’ long-
term hospitalisation LOS. All existing LOS classifications are restricted to three or fewer
classes. Furthermore, the existing models have a low performance for classifying readmitted
patients into more than two categories. Most of the reviewed works have focused on using
standard ML models for LOS prediction and their performance has been reported on a
single disease only. To overcome the limitations of previous works, we propose a method
to predict both the readmission and the LOS in patients with various conditions using a
novel hybrid deep model (GAOCNN).

In the GAOCNN, the CNN predicts the hospital readmission and the LOS, while the
genetic algorithm (GA) optimizes the parameters of the layers to improve the performance.
The proposed model is evaluated using three datasets of diabetic, COVID-19, and ICU
patients. To compare GAOCNN performance with other artificial intelligence techniques,
we used a traditional ML model such as SVM or a traditional DL model such as Visual
Geometry Group (VGG16) [32]. Furthermore, we combine traditional ML with DL models
such as CNN+SVM to ensure the capability of GAOCNN compared to the hybrid model.
The experimental results indicate superior performance to ML, DL, and hybrid models.
Compared to similar research, proposed algorithms can also help predict LOS with a lower
time frame. Lower time frame length leads to a better knowledge of the number of patients
each day, and this knowledge can help the hospital manage nurse scheduling programs
better, especially during a pandemic.

3. Methodology

In this section, we first provided an overview of the dataset, highlighting its charac-
teristics and conducting a statistical analysis. Next, we presented a detailed explanation
of the proposed algorithm, which comprises three distinct phases: feature extraction, op-
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timization, and the final classifier. Within each phase, we delved into the description of
the hyperparameters for the convolutional layers, the genetic optimizer objective function,
and the final discriminator.

3.1. Dataset

To show the performance of the proposed model in patients with various conditions,
we evaluate the proposed model using datasets of diabetic, COVID-19, and ICU patients.
The dataset we have used for diabetic patients has information on readmission and the
LOS, while the other two datasets include information on the LOS. The details of each
dataset are explained in the following sections.

3.1.1. Diabetes

For diabetic patients, we use a dataset of 130 hospitals in the United States from
1999 to 2008 [33]. The dataset consists of 101,766 records with 50 attributes, such as
ethnicity, gender, age, weight, and hospital visits. The data also contains features such as
patient identification number, admission type, hospital LOS, the speciality of the admitting
physician, the number of performed lab tests, glycated haemoglobin (HbA1c) test results,
diagnoses, the number of medications, diabetic medications, the number of inpatients and
outpatients, and the number of emergency visits in the year before the hospitalization.
Weight and age are recorded in and 25-pound and 10-year intervals, respectively. Gender
reported as male, female, or unknown. The percentage of patients with male, female,
and unknown gender is 53.77%, 46.22%, and 0.01%, respectively.

The hospital inpatient and outpatient visits within the year before the hospitalization
have been recorded in the dataset. The speciality of the admitting physician had been
recorded as 84 distinct values such as cardiology, internal medicine, family or general
practice, and surgeon. In the dataset, the range of the glucose serum test result had been
recorded as “normal”, “more than 200”, “more than 300”, or “not measured”. The primary,
secondary, and additional secondary diagnoses have been recorded in the international-
statistical classification of diseases (ICD) codes [34]. The primary, secondary, and additional
secondary diagnosis attributes encoded as the first three digits of the ICD-9 [34], having
848, 923, and 954 distinct values, respectively. More than 44% of the primary diagnoses in
the dataset are related to circulatory and respiratory system diseases.

3.1.2. COVID-19

We have gathered the medical records of 1085 COVID-19 patients from January to
February 2020 from a publicly available COVID-19 dataset [35]. The dataset includes
symptom-onset, hospital visit date, exposure date, recovered date, and death. Personal
information about age, gender, location of hospitalization (country/state), and travel
history from Wuhan are reported. The most significant information is the date of exposure
to the public and the date before the critical condition. The LOS has not been reported in
the dataset directly, but it can be extracted using the difference between the hospital visit
and discharge or death. Most patients lived in China, Southeast Asia, and the United States.

3.1.3. ICU

ICU patients’ information is extracted from the MIMIC-III clinical dataset [36]. This
dataset consists of 58,976 patients, 42,071 of whom were admitted to the hospital with an
emergency condition. The dataset was collected from the Beth Israel Deaconess Medical
Center between 2001 and 2012. The dataset consists of personal characteristics such as sex,
age, ethnicity, and detailed admit information for each patient, including type and location
of admission. Other information, such as the number of lab procedures, the number of
transformations between hospitals, and the LOS, is reported in this dataset. Detailed
information for all of the used datasets is shown in Table 2.
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Table 2. Details information of the Diabetes, MIMIC-III, and COVID-19 datasets.

Dataset Name Number of
Instances Number of Features Gender Collected Years LOS Range

Diabates 101,766 50 (37 descriptive and 13 numerical features) 53.8% male,
46.2% female 1999–2008 (0–14]

COVID-19 1085 23 (17 descriptive and 6 numerical features) 64.7% male,
35.3% female 2020–2021 (0–30]

ICU 58,976 28 (9 descriptive and 19 numerical features) 59.1% male,
41.9% female 2001–2012 (0–294]

3.2. Gaocnn

We present a hybrid deep model called the Genetic Algorithm-Optimized Convo-
lutional Neural Network (GAOCNN). In this model, the convolutional layers are used
for feature extraction and the dense layers for classification, while the GA is applied to
optimise the layers’ parameters. The overall structure of the proposed model is shown in
Figure 1. The GAOCNN has two convolutional layers. After the convolutional layers, there
is a pooling layer that is specified as average pooling functions [37]. Furthermore, we use
two fully connected layers with a dropout, which mitigates the risk of overfitting [38].

Figure 1. Structure of the proposed model.

The convolutional layers employ local connections and weights to extract features from
input data and build dense feature vectors. Since the data is two-dimensional (samples,
attributes), we apply one-dimensional convolutional layers. The main algorithm is a simple
CNN model. The proposed method is trained for numerical, categorical, and descriptive
features such as age, gender, and symptoms. One-dimensional convolutional layers can
extract hidden relations between co-occurring symptoms and comorbidities. Furthermore,
extracting time-dependent information from descriptive (contextual) features is conducted
more efficiently using one-dimensional convolutional layers [39].

The main drawback of deep neural network models is their vast space of hyperparam-
eters, which makes the parameter selection tedious. Most researchers use techniques such
as random search [40] and grid search [41]. When we use these searching techniques, there
is a trade-off between increasing the layers and the run time to reach a proper solution.
To overcome this challenge, we use GA to select parameters scientifically. Furthermore,
the whole process can be completed without human intervention. This automation in
the learning process will help healthcare systems reach the proper performance without
expert supervision.
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The GA has been used widely in artificial intelligence fields, such as medical image
processing, ML, and DL hybrid models [42]. The most essential elements of the GA are
the environment and the fitness function. By defining a proper fitness function, we can
guide the model to improve performance. The GA uses the process of selection, crossover,
and mutation to choose the number of convolution kernels, the number of convolution
filters, and the number of epochs and neurons of the model. The GA’s standard steps
are the initialization of the population, selection between the created population, logical
combination (crossover), randomness (mutation), and decoding.

After making the first random generation of the population’s data, according to the
principle of ’survival of the fittest’, only the fittest generation of the population survives.
In each generation, individuals are selected according to their fitness. The surviving
populations will be the parents of the next generations. In the proposed algorithm, we use a
maximum filter to choose the best hyperparameters according to the highest fitness function
in every step. The flowchart of the applied GA has shown in Figure 2. At the beginning of
the training phase, the number of filters, convolution kernels, and neurons in each layer
are randomly initialized. Then, the fitness function is calculated for the first generation.
The next generations are created by conducting the crossover and possible mutation of the
parents. The fitness values for new children are sorted in descending order, and the best
of them are selected for the next generations. In the proposed algorithm, the model’s loss
decreases gradually, and the accuracy increases continuously. The proposed algorithms
utilize a modified version of GA with two key differences from the original GA structure.
Firstly, the objective function of the proposed method is customized to enhance both
accuracy and loss. Secondly, the process of selecting the objective function is based on the
calculated loss, leading to two different paths and corresponding loss functions for the
optimization process.

The fitness function of the GA is defined as

F = α · a · V1 + β

(
1

l + ε

)
V2 (1)

where a and l are the accuracy and the loss, respectively, measured on the test set. α and β
are two hyperparameters specified based on calculated loss (2). ε is a small value added to
the denominator to avoid dividing by zero. V1 and V2 are defined below to select the best
kernel size, the filter size, and the number of neurons and epochs.

V1 = 0.3 ∗
(

NF
NFT

)
+ 0.3 ∗

(
NK

NKT

)
+ 0.2 ∗

(
NU

NUT

)
+ 0.2 ∗

(
NE
1.5

)
(2)

and

V2 = 0.3 ∗
(

1 − NF
NFT

)
+ 0.3 ∗

(
1 − NK

NKT

)
+ 0.2 ∗

(
1 − NU

NUT

)
+ 0.2 ∗

(
1 − NE

1.5

)
(3)

where NF is the number of convolution filters, NFT is the total number of convolution
filters, NK is the number of convolution kernels. NKT is the total number of convolution
kernels, NU is the number of neurons at the deep layer, NUT is the total number of neurons
at the deep layer, and NE is the total number of epochs. Compared to traditional CNN
models, the proposed methods can use dynamic kernel size to evaluate the quality of the
extracted features for the final LOS and readmitted time frame prediction. Furthermore,
the proposed method uses only two convolutional layers for feature extraction, and the
depth of the proposed method is lower than traditional CNNs like VGG16. The search
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environment for the kernel sizes are 3, 5, 7, and 9. The search environment for filter size is
between 32 and 36 and 62 to 64 for the first and second convolutional layers. The search
environment for the number of neurons is between 256 and 512 and 124 to 256 for the first
and second dense layers. The search environment for the number of epochs is 500 to 1000.
The proposed method can extract various combinations of feature sets screened by the
fitness function values.

Figure 2. The flowchart of the proposed GA.

The fitness function has been defined in a way that increases the accuracy while
decreasing the loss. To make sure the value of the fitness function is smooth, we define the
values of α and β as follows:

• If the loss (l) is greater than or equal to 1, the categorical cross-entropy loss (CCL)
varies between 1 and 10. Thus, we define alpha and beta as 0.1 and 0.9, respectively;

• If the loss (l) is less than 1, the CCL varies between 0.001 and 1. Thus, we define α and
β as 0.99 and 0.01, respectively.

In summary, the proposed approach sets the number of neurons, convolutional kernel
size, and convolutional filter size. Besides choosing the mentioned parameters of the model,
GAOCNN indicates the number of epochs for training the model, too. Thus, GAOCNN
tries to increase the number of epochs as long as the tuned structure increases the accuracy
and decreases the loss. Choosing the number of epochs for training leads to the optimal
time for training.

4. Experimental Results

To evaluate the proposed model for diabetic patients, we use the diabetes 130-US
hospitals dataset [33]. The dataset represents ten years (1999–2008) of clinical care at
130 hospitals and integrated delivery networks in the United States. In total, there
are 101,766 records (encounters) available for analysis. This data source generally has
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50 attributes (13 attributes are integer types, and 37 attributes are object types). In this re-
search, we use attributes with a missing value percentage of less than 20%. We have also
removed constant and quasi-constant attributes for the dataset, as these provide no infor-
mation for the classification task. Constant attributes are the features that contain a single
value for all records in the dataset [43]. Quasi-constant attributes are almost stable features.
Here, we consider features quasi-constant with the same value in more than 99.99% of
the records. Hospital readmission was stratified into three cohorts: patients who were
never readmitted after discharge, those who were readmitted within 30 days of discharge,
and those who are readmitted 30 days after discharge (up to a year) [33]. Figure 3 shows
the population size of each diabetic patient. As can be seen, 54% of the patients are never
readmitted after discharge, resulting in imbalanced data.

Figure 3. Distributions of the readmission in diabetic patients.

The hospital LOS range varies for different diseases. For diabetic patients, the LOS
is between 1 and 14 days. For COVID-19 patients, the LOS is between 1 and 27 days in
the dataset. For ICU patients, it is between 1 and 289 days in the MIMIC-III dataset.
We create different classes for the LOS on each disease to consider these variations.
For diabetic patients, we consider seven classes: 1–2 days, 3–4 days, 5–6 days, 7–8 days,
9–10 days, 11–12 days, and 13–14 days. For COVID-19 patients, we consider these classes:
1–2 days, 3–4 days, 5–6 days, 7–8 days, 9–10 days, 11–12 days, 13–16 days, 17–20 days, and
21–27 days. For the MIMIC-III dataset, we consider the classes the same as the COVID-
19 dataset up to a 20-day LOS. However, for a LOS more extended than 20 days, we
make these classes: 21–30 days, 31–50 days, 51–80 days, 81–110 days, and longer than
110 days. We have considered 3-day intervals for short-term LOSs similar to the existing
research [22,44,45]. For the long-term LOS, we considered larger intervals to avoid having
many classes. The narrow class division will help hospitals and the healthcare system
determine hospital staff and beds for better servicing of patients.

The distribution of the LOS in each dataset is shown in Figure 4. As can be seen,
the density (the number of patients) decreases with the increase in the LOS. One of the
most important features that affect patients’ LOS is age [46]. Figure 5 demonstrates the
relation between LOS and the age of each patient based on the patient’s gender for instances
with the highest LOS distributions. In Figure 5, each graph shows if LOS will increase
or decrease by increasing each patient’s age. Based on Figure 5a diabetic patient age
has a direct correlation to their LOS in the hospital. By increasing the age, especially over
60 years old, the LOS has increased to more than four days. Figure 5b demonstrates various
relations between age and LOS, and there are no clear trends for LOS and age for COVID-19
patients. Figure 5c indicated a high LOS for infants in the emergency room and a direct
relation between LOS and age, especially for patients over 18 years old.
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(a) (b)

(c)

Figure 4. LOS distribution: (a) Diabetes, (b) COVID-19, (c) MIMIC-III.

(a) (b)

Figure 5. Cont.
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(c)

Figure 5. Relation between age and LOS based different genders for instances with the highest LOS
distributions: (a) Diabetes, (b) COVID-19, (c) MIMIC-III.

4.1. Preprocessing

Considering the number of null values for each feature in the datasets, we ignored
features with more than 20% unknown values. We imputed the features that have a
null value of less than 20% with the use of k-nearest neighbour [47]. Furthermore, we
computed the correlation between features and eliminated the features having more than
50% correlation. We also eliminated features with constant values. After cleaning the
datasets, we applied three different encoding procedures. First, we used a label encoder
that converts ’No’ values to ’0’ and ’Yes’ to ’1’. Then, we applied one-hot encoding and
target encoding [48] to the cleaned datasets. One-hot and target encoders have shown
promising results when a CNN is used as a classifier [49].

As mentioned, the used datasets are imbalanced regarding readmission and the
LOS. It can affect the performance of the proposed model. Here, we use an advanced
sampling technique called T-Link [50], followed by an oversampling technique to balance
the datasets. This method increased the total number of instances for the readmission
prediction to 33,104 samples 11,150 never readmitted, 11,150 readmitted within 30 days,
and 10,804 readmitted after 30 days. The distribution of the LOS in the balanced datasets is
shown in Figure 6.

As shown in Figure 6, after using sampling methods, the distance between the distri-
bution of each class is decreased, while the original distribution is saved.

(a)

Figure 6. Cont.
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(b)

(c)

Figure 6. Distributions of the LOS in the original and balanced datasets: (a) Diabetes, (b) COVID-19,
(c) MIMIC-III.

4.2. Performance Analysis

After preprocessing, we divide each dataset into train, validation, and test. For better
evaluation of the proposed model, we use k-fold cross-validation [51]. Here, we consider K
as 10. A single fold acts as a test set, while the remaining nine folds are used as the training
set. Finally, the results are averaged to represent a single estimation. The model was trained
using the Tesla P100 graphics processing unit. The runtime for reaching the desired result
differed based on the dataset and the number of classes for prediction. For MIMIC-III
and diabetes datasets, the runtime to train the model was between 3 and 4 days, whereas
for LOS prediction on the COVID-19 dataset, the runtime was about 6 h. To compare the
proposed model, we used VGG16, ResNet, GoogLeNet [32], LR [17], RF [17], to XGB [20])
and SVM as the benchmarks. Furthermore, we implemented a combination of CNN and
LR, CNN and RF, CNN and XGB, CNN and SVM, and a semi-supervised generative
adversarial network (SGAN) model. We used convolutional layers to combine CNN with
other ML methods as feature extractors and ML models as classifiers [52]. SGAN uses
the CNN model achieved by GAOCNN as a generator and a multi-layer perception with
three hidden layers and 128, 64, and 23 units, respectively, as discriminator [53]. We just
converted the structure of the 2D convolutional layer of the mentioned model into 1D
convolutional to match the structure of healthcare data. Table 3 indicates the performance
of the readmission prediction using the proposed model (GAOCNN) and the benchmark
models for diabetic patients. As can be seen, the GAOCNN outperforms all benchmarks.
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Table 3. Results of readmission prediction for diabetics patients.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Measure
(%)

Precision
(%)

GAOCNN 97.2 96.7 99.3 96.9 97.1
VGG16 38.0 38.2 37.8 45.6 38.2
ResNet 38.0 38.2 38 44.2 38.2

GoogLeNet 39.6 38.4 50.3 38.4 38.4
LR 86.8 86.8 93.4 86.8 86.8
RF 90.0 94.4 96.5 90.0 90.0

XGB 94.4 94.4 97.8 94.4 94.5
SVM 94.9 94.3 98.4 94.9 94.9

CNN + LR 87.5 86.5 94.2 87.5 87.4
CNN + RF 91.7 91.4 96.8 91.7 91.7

CNN + XGB 94.8 94.6 98.9 94.8 94.8
CNN + SVM 95.1 95.1 95.1 95.1 95.1

SGANs 58.9 51.7 52.6 56.9 63.3

The classification results of the LOS for diabetic, COVID-19, and ICU patients are
shown in Tables 4–6, respectively. As can be seen, the performance of the GAOCNN is
higher than all benchmarks for the LOS prediction in all diseases.

Table 4. Results of the LOS prediction using different models for diabetic patients.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Measure
(%)

Precision
(%)

GAOCNN 89.0 89.8 97.8 90.2 90.4
VGG16 18.1 18.1 25.4 18.1 18.1
ResNet 17.7 17.7 20.8 17.7 17.7

GoogLeNet 28.6 2.3 35.6 4.5 67.9
LR 28.9 28.9 32.6 26.4 26.3
RF 79.9 79.9 92.7 79.7 79.6

XGB 78.8 78.8 92.6 78.3 77.9
SVM 36.5 33.5 42.3 32.1 31.9

CNN + LR 32.7 32.7 45.3 31.3 30.9
CNN + RF 80.0 80.0 93.4 79.7 79.6

CNN + XGB 78.8 78.8 94.4 78.3 77.9
CNN + SVM 36.2 36.2 43.3 34.8 34.5

SGANs 43.5 14.9 75.1 23.6 72.9

Table 5. Results of the LOS prediction using different models for COVID-19 patients.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Measure
(%)

Precision
(%)

GAOCNN 99.4 99.4 99.8 99.4 99.4
VGG16 14.1 14.6 20.5 14.6 14.6
ResNet 12.7 12.7 17.8 12.7 12.7

LR 92.1 92.1 98.8 92.1 92.3
RF 89.3 89.3 95.6 89.2 89.1

XGB 91.4 91.4 98.4 91.4 91.3
SVM 84.7 84.7 92.8 84.7 84.8

CNN + LR 70.3 70.3 89.9 70.2 70.6
CNN + RF 87.3 87.3 96.1 87.3 87.4
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Table 5. Cont.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Measure
(%)

Precision
(%)

CNN + XGB 87.7 87.7 96.2 87.8 88.6
CNN + SVM 81.3 81.3 92.5 81.3 81.8

SGANs 93.5 93.3 98.8 93.6 93.9

Table 6. Results of LOS prediction using different models for ICU patients.

Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F1-Measure
(%)

Precision
(%)

GAOCNN 94.1 94.0 98.8 94.2 94.5
VGG16 10.1 10.1 20.6 10.1 10.1
ResNet 8.7 28.7 8.9 17.7 17.7

GoogLeNet 17.7 15.9 42.6 25.2 60.1
LR 43.9 43.9 65.1 38.4 36.2
RF 76.1 76.1 89.6 76.1 76.0

XGB 83.5 83.5 93.7 83.3 83.2
SVM 56.0 59.4 83.3 56.1 56.0

CNN + LR 43.6 43.6 72.7 42.4 41.8
CNN + RF 80.9 80.9 90.6 80.9 81.0

CNN + XGB 83.2 83.2 96.5 83.1 82.9
CNN + SVM 39.8 39.8 59.0 39.3 39.6

SGANs 56.1 45.7 92.6 54.5 67.7

For better observation of the performed prediction tasks using GAOCNN, we compute
the model’s normalized confusion matrix [54]. For readmission prediction in diabetic
patients, the confusion matrix is shown in Figure 7. The result shows that there is just
a 3% chance of incorrect prediction for the patients who are readmitted within 30 days.
Furthermore, for the patients who are readmitted after 30 days, the error rate is 5%. For the
LOS, the normalized confusion matrix of the prediction in diabetic, COVID-19, and ICU
patients is shown in Figures 7–9, respectively.

(a) (b)

Figure 7. The normalized confusion matrix; (a) readmission prediction in diabetic patients, (b) LOS
prediction in diabetic patients.
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Figure 8. The normalized confusion matrix for the LOS prediction in COVID-19 patients.

Figure 9. The normalized confusion matrix for the LOS prediction in ICU patients.

4.3. Comparison to Similar Research

To compare the performance of the GAOCNN to other research, we surveyed the
recently published work on hospital readmission and LOS prediction. We used accuracy
and AUROC reported in the papers in this comparison. The result of this comparison
is shown in Tables 7 and 8. The missing values in the tables mean the papers have not
reported them. This comparison result confirms that the GAOCNN is superior to the
published works in hospital readmission and LOS prediction tasks.
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Table 7. Comparison of the proposed model with the published works for readmission prediction on
the diabetes dataset.

Authors Accuracy (%) AUROC (%)

Tamin and Iswari [55] (2017) 75.9 -
Hammoudeh et al. [18] (2018) 92 95

Popel et al. [50] (2018) 82.27 -
Alturki et al. [56] (2019) 94.8 -

Goudjerkan and Jayabalan [57] (2019) 95 95
Seraphim et al. [58] (2020) 86 66.7

Norbrun [59] (2021) 89.7 96
GAOCNN 97.2 99

Table 8. Comparison of the proposed model and the published works for the LOS prediction on
diabetes, COVID-19, and MIMIC-III datasets.

Authors Number of
Classes

Accuracy
(%)

AUROC
(%) Dataset

Gentimis et al. [60] (2017) 2 79.8 - MIMIC-III
Steele and Thompson [61] (2019) 2 87.7 88 Diabetes

Alturki et al. [56] (2019) 3 85.4 - Diabetes
Nallabasannagari et al. [27] (2020) 2 66.2 88 MIMIC-III

Wang et al. [25] (2020) 2 68.3 73.3 MIMIC-III
Wang et al. [25] (2020) 2 91.2 71 MIMIC-III

Etu et al. [62] (2022) 2 85 93 COVID-19
Alabbad et al. [63] (2022) 9 94.16 - COVID-19

GAOCNN 7 89 96 Diabetes
GAOCNN 13 94.1 99 MIMIC-III
GAOCNN 9 99.4 99 COVID-19

Based on the contrasted results of Table 7, the proposed model outperformed similar
research due to detecting the minority class (readmitting within 30 days). Table 8 indicates
superior results compared to similar research, especially for discriminating between various
conditions for long-term LOS. In both Figures 8 and 9, the performance of the model for
separating between long and short-term LOS is outstanding. This performance indicates the
ability of proposed objective functions to leverage the feature extractor and final classifier to
improve the accuracy in minority and majority classes simultaneously. However, in similar
research, by decreasing the number of LOS time frames only to short-term and long-term
classes, excellent accuracy in short-term LOS prediction covers the poor performance of
long-term LOS prediction. By increasing the number of classes and leveraging GAOCNN
to increase the accuracy in all classes, GAOCNN outperformed previous research.

5. Discussion

The GAOCNN uses a hybrid structure of deep 1D convolutional networks with GA,
and it is adequate for situations where the existing data is imbalanced and gathering
more data is difficult. Notably, applying the proposed model helps develop an expert
system to predict hospital readmission and LOS accurately. The GAOCNN is well-tuned
for the readmission and the LOS prediction tasks. To evaluate the GAOCNN, we used
datasets of diabetic, COVID-19, and ICU patients. The results show that the GAOCNN has
a significant accuracy in predicting hospital readmission and LOS compared to existing
techniques. The main contribution of this research is to help manage hospitals’ resources
more accurately. Furthermore, the proposed model applies to various conditions such as
chronic diseases, pandemics, and intensive care. It is another contribution of this research
proposing one model for different conditions.
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GAOCNN presents a CNN model for accurate LOS prediction. Thus, we used forward
and backward feature selection techniques [64] to specify the most critical features for LOS
and readmission time frame classification. The result of feature selection based on accuracy
is shown in Figure 10.

Figure 10. Best selected features based on accuracy with wrapper feature selection.

As shown in Figure 10, specific features such as first diagnosis, symptoms, age,
and gender are more important than other features for LOS and readmission time frame
classification. Using the proposed approach, there is no need to deal with hyperparameters.
To achieve a balanced dataset, we considered different numbers of classes for LOS. Then,
we combined over and under-sampling methods to decrease the difference between class
densities. Considering the high performance of the GAOCNN model, we can develop
a system that aids healthcare systems to improve their medical services allocation and
apply proper management to staff and patients. To predict the readmission time frame, we
have prioritized accuracy over loss, while for predicting the LOS, we have prioritized loss
over accuracy.

6. Limitations and Future of the Work

The main limitation of the proposed method is the time for optimizing the feature
extraction and classifier. By increasing the number of features and the length of the dataset,
the search space of GAOCNN will increase, and the required time for training the model
will increases exponentially. To decrease the time for training, the same objective function
can be used based on the strategy of other metaheuristic optimizers, such as particle swarm
and grey wolf optimizers [65]. Another area for improvement for the proposed method
is the quality of extracted features from the original feature sets. This research uses a
shallow CNN to extract relevant information from the available feature set. Based on the
number of features, and the relation between recorded features from the patient and the
final target, the structure of the feature extractor and its depth should be changed. In the
future, a dynamic feature extractor based on the type of disease and the recorded features
from the patients will be designed to improve the quality of the extracted features for
final classification. Furthermore, to decrease the simulation time of the proposed method,
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a variety of metaheuristic methods will be evaluated as the optimizer to choose the structure
of the feature extractor.

7. Conclusions

Predicting hospital readmissions and the LOS for diabetic, COVID-19, and ICU pa-
tients is a challenging task essential in disease trend monitoring and cost management.
With the growth in the number of patients and the emergence of COVID-19, we should
equip healthcare systems with expert systems to extract useful information for resource
planning. We presented the GAOCNN as a high-performing ML model to predict hospital
readmissions and the LOS. The GAOCNN is robust to missing and null values, and can
make precise predictions due to imbalanced data and errors in the recorded attributes.
The GAOCNN model is state-of-the-art for both hospital readmission and LOS predic-
tions. For the readmission prediction, we reached a total accuracy of 97.1%, including 97%
accuracy for the patients who were readmitted within 30 days. For the LOS prediction,
the proposed model reached 89.0%, 99.4%, and 94.1% accuracy for diabetic, COVID-19,
and ICU patients, including 99% accuracy for long-term stays of all diseases. Using the
GAOCNN, healthcare systems can develop a framework for predicting both the readmis-
sion and the LOS of diabetic patients. Furthermore, the GAOCNN can help healthcare
providers in pandemic situations by providing a lower mortality risk factor for diabetic
patients and preventing the prevalence of pandemic diseases.
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