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Abstract: Autism spectrum disorder (ASD) has been associated with conditions like depression,
anxiety, epilepsy, etc., due to its impact on an individual’s educational, social, and employment.
Since diagnosis is challenging and there is no cure, the goal is to maximize an individual’s ability
by reducing the symptoms, and early diagnosis plays a role in improving behavior and language
development. In this paper, an autism screening analysis for toddlers and adults has been performed
using fair AI (feature engineering, SMOTE, optimizations, etc.) and deep learning methods. The
analysis considers traditional deep learning methods like Multilayer Perceptron (MLP), Artificial
Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory
(LSTM), and also proposes two hybrid deep learning models, i.e., CNN–LSTM with Particle Swarm
Optimization (PSO), and a CNN model combined with Gated Recurrent Units (GRU–CNN). The
models have been validated using multiple performance metrics, and the analysis confirms that the
proposed models perform better than the traditional models.

Keywords: AI fairness; deep learning; convolutional neural networks (CNN); particle swarm
optimization (PSO); gated recurrent units (GRU)

1. Introduction

Autism spectrum disorder (ASD) has been termed a developmental disorder owing to
the fact that the symptoms appear in the first two years of life. ASD may impact an individ-
ual’s interaction, communication, learning, and behavior. Since there is a wide variation
in severity and types of symptoms, it is referred to as a spectrum disorder. The lifelong
disorder, if treated in a timely manner, can improve symptoms and functioning. Autistic
individuals may make inconsistent eye contact, have difficulties with conversations, have
delayed or mismatched facial expressions with what is said, have trouble understanding
others, and may be unable to adjust to social situations. While the primary cause of ASD
is unknown, clinical studies suggest that the cause may be tied to a person’s genes and
environment [1]. It is also found that the number of brain tissues in the cerebellum is signif-
icantly less for autistic people. Diagnosing ASD in young children is usually a two-stage
process, such that at the first stage, children are screened for developmental delays at regu-
lar intervals. Additional diagnostic evaluation may be conducted if symptoms of ASD are
seen in the initial screening process. This evaluation may include neurological examination,
assessment of cognitive abilities, observing the child’s behavior and language abilities, and
hearing tests. The diagnosis may be slightly challenging in adults, who are assessed for
communication challenges, repetitive behaviors, and sensory issues. Early treatment is
essential for ASD as it can assist the individual in dealing with aggression, hyperactivity,
attention problems, depression, and anxiety. Proper medication and treatment programs
can help these individuals learn communication, social, and language skills and reduce
behaviors that interfere with their daily lives. Studies suggest that autism rates among
children have tripled from 2000 to 2016 in the New York metropolitan area [2]. In 2018, 1
in 44 children was diagnosed with ASD [3]. In the past, several studies have been carried
out to either analyze autism in individuals or to provide a potential solution for combating
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the disorder. Eye-tracking movements can provide visual preference patterns to identify
autism in individuals [4]. Medical and sociodemographic features can also be investigated
for diagnosing patients with autism [5]. Neurological studies on white matter microstruc-
tural disintegrity have also contributed to understanding the disorder [6]. Along the same
lines, several clinical studies and machine-learning techniques have been deployed to
study autism in individuals [7,8]. While previous studies have presented the analysis of
individuals using several methods, the studies lack extensive analysis for toddlers and
adults. This paper presents two deep-learning architectures for identifying potential signs
of autism in toddlers and adults. The first architecture incorporates a combination of
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) integrated
with Particle Swarm Optimization (PSO). The second architecture integrates CNNs with
Gated Recurrent Units (GRU). This study also incorporates visualization based on data for
both toddlers and adults along with other baseline models such as K-Nearest Neighbors
(KNN), Logistic regression (LR), Random forests (RF), Decision Trees (DT), Support Vector
Classifier (SVC), Multilayer Perceptron (MLP), Artificial Neural Networks (ANN), CNN,
LSTM, GRU, and CNN–LSTM. The performance of all these models has been evaluated
across multiple datasets, i.e., for toddlers and adults, using specific metrics like accuracy,
precision, recall, and F-1 scores. To the best of the author’s knowledge, this is the first study
to introduce CNN–LSTM–PSO-based architecture. The bio-inspired algorithm has been
incorporated into the analysis to present the best optimal solution. Due to bias impacting
ethical decision-making, this study deploys multiple Artificial Intelligence (AI) techniques
to ensure the accurate performance of the models. Extensive feature engineering and tech-
niques like SMOTE (Synthetic Minority Oversampling Technique) for handling imbalanced
data are also part of this study. The rest of the paper is organized as follows: Material and
Methods incorporate the related works and methodology. This section also discusses the
architecture of the proposed deep learning methods followed by AI fairness techniques.
The experimental analysis highlights the datasets used and the metrics considered for
evaluation. The results and observations are discussed in the following experiments. This
section also includes a comparative analysis of the proposed work with others. Finally, this
study is concluded.

2. Materials and Methods
2.1. Related Works

Kohli et al. (2022) [9] conducted a study on using machine-learning techniques along
with social visual attention for assessing autism in children. The study incorporates
biomarkers such as eye movements toward social stimuli for facilitating early diagnosis.
Other body movements, neural correlates, electrodermal activities, and genomes may also
be used as biomarkers. Statistical approaches like explanatory and predictive strategies may
be used effectively to analyze autism in individuals. The study asserts that Support Vector
Machines (SVM) and neural networks are excellent machine-learning tools for ASD classi-
fication. However, SVD performs better in terms of performance and cost-effectiveness.
Similarly, Lau et al. (2022) [10] suggested eye-tracking-based diagnosis using machine-
learning models for detecting ASD. The study incorporates scanning the eyes’ path to
extract projection points for analyzing behavior among children. The analysis uses feed-
forward networks (FFN), ANNs, and pre-trained CNNs using GoogleNet and ResNet-18.
The study also introduces a hybrid model combining GoogleNet with SVMs and ResNet-18
with SVMs. The overall accuracy achieved due to these hybrid models is 95.5% and 94.5%,
respectively. Liao et al. (2022) [11] presented yet another interesting study using voice
markers with machine learning to detect autism in individuals. The analysis incorporates
novel cross-linguistic datasets along with a pipeline for minimizing overfitting. Multiple
analyses are conducted on the participants in terms of tasks and languages. Ml models
are observed to be efficient in identifying autism from voices. The study’s main aim is to
assess the generalizability of the different models, and it is observed that the models do not
generalize well to different tasks and new languages. Maenner et al. (2021) [12] performed
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an extensive analysis of ASD using Applied behavior analysis (ABA). The gold standard
treatment has been personalized using 29 participants for the clinical study. The patient
similarity method and collaborative filtering techniques have been applied to the data.
The study observed an average accuracy of 81–84%, followed by a normalized discounted
cumulative gain of 79–81%. The efficiency of the models has been validated using the
percentage of recommended goals, and the treatment recommendation is generalizable to
other methods. Lau et al. (2022) [10] analyzed ASD using a supervised machine-learning
analytic approach. Prosodic differences in ASD are prevalently seen in multiple languages
due to cross-linguistic variability. The analysis considers acoustic features and intonational
aspects of prosody considering English and Cantonese languages. The ML models assert
that efficient ASD diagnosis with respect to rhyme-relative features. However, the rele-
vant intonational features did not show efficient classification for Cantonese. The study
asserts that rhythm is a key prosodic feature, and intonation can lead to variation in other
prosodic properties. Mellema et al. (2022) [13] proposed machine-learning techniques
for identifying autism in children using physiological and behavioral data. Using feature
extraction techniques on electroencephalography (EEG), eye fixation, and facial data, ASD
can be detected in children with improved efficiency and reduced costs. The study uses a
weighed naive Bayes classification technique for multimodal data fusion and achieves an
accuracy of 87.50%. The study also incorporates confusion matrices and graphs to depict
how eye movements, facial expressions, and EEG may have varying discriminative powers
for ASD detection. Minissi et al. (2022) [14] suggested the application of ML algorithms to
neuroimaging features from structural and functional Magnetic resonance imaging (MRI).
This could be advantageous in comprehending brain alterations and characteristics of ASD.
The study investigated twelve machine-learning algorithms separately trained on combi-
nations of different MRI features followed by optimization. The model achieves 80% area
under the precision–recall curve on the IMaging-PsychiAtry Challenge (IMPAC) dataset
and 86% and 79% under the precision–recall curve on other datasets. The models were
also successful in identifying biomarkers for ASD diagnosis. Peketi and Dhok (2023) [15]
studied detecting autism in young children using Magnetoencephalography Signals and
learning machine-learning techniques. The study, which aims to find biomarkers for ASD
detection, performed a clinical study on thirty children watching cartoons. The features
considered for ML modeling are neural oscillations and phase, usually inferred by power
spectral density (PSD) and preferred phase angle (PPA). The classification accuracy was
88% for PPA features and 82% for PSD features. The analysis also combines PSD and
PPA features to acquire 94% (feature level) and 98% (score level) accuracy, respectively.
Rabbi et al. (2023) [16] considered two different datasets based on genetic and personal
characteristics for diagnosing autism. The study was conducted using optimized feature
selection methods for handling high-dimensional data. The classification process has
been enhanced by deploying sixteen models and optimization techniques. The study also
incorporates four bio-inspired ML optimization algorithms: Artificial Bee Colony, Grey
Wolf Optimization, Bat Algorithms, and Flower Pollination Algorithms. The evaluation
metrics considered for the study are precision, accuracy, recall, F-1 score, and the area
under the curve (AUC). The experimental analysis depicts an accuracy of 99.96% using grey
wolf optimizer with SVM. Rybner et al. (2022) [17] suggested learning machine-learning
techniques for early-stage detection of ASD for multiple age levels. The study incorporates
data with respect to toddlers, children, adolescents, and adults, using feature selection
techniques, and evaluates the performance using accuracy, kappa score, and f-1 measure.
It was observed that SVMs performed better than other classifiers, with an accuracy of
97.82% for toddlers, 95.87 for adolescents, and 96.82% for adults, respectively. The Shapley
Additive Explanations (SHAP) method has also been applied to multiple studies for per-
forming feature-based analysis [4,18]. Deng et al. (2022) [19] introduced a spatial-temporal
transformer for identifying ASD using time series Functional magnetic resonance imaging
(fMRI). The study details the use of a linear spatial–temporal multi-headed attention archi-
tecture for obtaining a spatial and temporal representation of data. A Gaussian method has
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been deployed for tackling the imbalance problem. The study validates the robustness of
the model by inspecting two independent datasets; however, the overall accuracy achieved
is much lower than the state-of-the-art methods. Moreover, transformers suffer from high
computational demand, complexity, and high training time. Cao et al. (2023) [20] suggested
using a Vision Transformer for analyzing pediatric ASD. The study uses a large facial
dataset for performing model structure transferability and introduces a Gaussian Process
layer for enhancing the robustness of the learning. The model shows a satisfactory highest
accuracy of 94.50% but suffers from model complexity and high training time.

2.2. Methodology

Convolutional Neural Networks (CNNs) are used to recognize patterns in data. The
CNN architecture incorporates multiple layers like the convolutional layer, the max pool-
ing layer, and the fully connected layer, where each layer performs a specific task. The
convolutional layer includes filters and generates feature maps from input features by
performing the convolutional operation, which is depicted as f = V (x * wf + yf), such that
f represents feature maps, while wf depicts kernel weight vectors. x is used to represent
input features, and yf depicts the bias. While V is used to denote the activation function,
+ denotes the convolutional operation. Long Short-Term Memory (LSTM) was introduced
to solve the problem of vanishing and exploding gradients, commonly seen in recurrent
neural networks. LSTM includes logic gates such as the input, output, and forget gates and
hidden states of the previous and current timestamps. The gates regulate what information
must be added or removed using pointwise multiplication operation and sigmoid function.
The proposed architecture (Figure 1) includes both components CNN and LSTM bound
together with Particle Swarm Optimization to detect if an individual has ASD accurately.
While CNN and LSTM are deployed to capture complex features and patterns from the
provided data, PSO is used for optimizing the results to achieve better model performance.
Dropout during training has been introduced to eliminate the overfitting issue. Once the
CNN and LSTM layers are deployed, dropout is applied to enhance the model’s general-
ization ability. The fully connected layer provides the overall output using the softmax
activation function. The PSO can determine the architecture and parameters of the hybrid
deep learning network architecture. It can simultaneously optimize the number of layers
of CNN and LSTM along with the number of units and epochs. The PSO algorithm wit-
nesses every particle in the swarm incorporating five variables representing the network’s
hyperparameters. The swarm depicts the possible set of solutions, and each variable in the
particle is identified by its position in the search space for each hyperparameter. The search
space is initialized with random numbers to depict network layers, filters, and epochs, and
the search spaces with respect to hyperparameters are determined, taking into account
computational time and efficiency. The fitness function, essentially the Root Mean Square
Error (RMSE), is calculated using specific hyperparameters for the network. The velocity
and positions of particles get updated frequently, and the algorithm determines the optimal
hyperparameter values to minimize the fitness function. Therefore, all three algorithms
work together for the overall network to exhibit efficiency. CNNs are used for capturing
complex and non-linear relationships of data. LSTMs learn the long-term dependencies
among features. Finally, PSO deploys an efficient global search algorithm to find the global
minimum of the fitness function to ensure better model performance (Figure 2).
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Figure 2. Flow chart depicting the operations in CNN–LSTM–PSO.

Table 1 depicts the hyperparameter setting for the CNN–LSTM–PSO network.

Table 1. Hyperparameter settings for the proposed CNN–LSTM–PSO model.

Optimized Components Hyperparameter Range

Convolutional Layer

Number of filters in 1st layer [20, 210]
Filter size in 1st layer [1, 5]

Number of filters in 2nd layer [20, 210]
Filter size in 2nd layer [1, 5]

Pooling Pooling Size [2, 5]
LSTM Number of hidden nodes [10, 500]
Dense Number of nodes [10, 200]

Learning Configurations Learning rate
Dropout rate

[10−4, 10−1]
[0, 0.2]

The proposed GRU–CNN hybrid neural network architecture combines GRU and
CNN networks. Neural networks are prone to issues like short-term memory, vanishing
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gradients, and exploding gradients. During back-propagation, the weights are updated;
however, if the gradient value becomes significantly tiny, it may not encourage learning.
GRU addresses this issue by using gate reset and updating gate operations. The reset gate
typically works as a barrier, while the update gate concerns keeping or discarding data. The
reset gate also decides the amount of information to be retained. The architecture comprises
several blocks, i.e., five Convolutional blocks, one GRU block, and one fully connected
block. Convolutional blocks incorporate two convolutional layers and a flatten operation
such that a max-pooling layer follows the last layer. After the max-pooling operation, the
data is fed to flatten the layer. The number of parameters and filters varies for every block,
and the output from the last layer is fed to GRU. The GRU captures long-term dependency
and can learn from previous data through the memory cell. The output from this layer is
forwarded to the fully connected block, which incorporates convolutional layers with a
softmax function. This is used for performing the classification (Figure 3).
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Table 2 depicts the hyperparameter setting for the GRU–CNN network.

Table 2. Hyperparameter settings for the proposed GRU–CNN model.

Hyperparameter Value

Number of Hidden Layers 4
Dropout 0.2

Activation Function (GRU) TanH
Activation Function (Conv1D) ReLU
Activation Function (Dense) Softmax

Learning Rate 0.0001
Epochs 100

Batch Size 10

2.3. AI Fairness Techniques

Algorithmic bias is a prevalent problem, and biased algorithms may lead to unfair
and discriminatory decision-making. While bias cannot be completely eliminated, some
methods can reduce it significantly. Since people create the models, there is always a
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risk of amplifying biases. Several AI fairness techniques may be applied to monitor the
outliers and apply statistical methods to data to minimize bias. There are three methods
of encouraging fairness in AI systems, i.e., during the preprocessing stage, optimizing the
models during the training process, and post-processing the algorithm results. In this study,
several techniques have been deployed for eliminating bias; some of the fair AI techniques
used in classification are listed as follows:

• Handling outliers: Outliers depict significantly high and low values in the dataset
and can affect the classification problem. The main techniques for handling outliers
are removing, replacing the values, capping, and discretization. Outliers may be
eliminated from a distribution; however, removing a large chunk of outliers may
be the direct consequence of outliers over multiple variables. Often, outliers can be
treated as missing values and imputed using appropriate methods. Maximum and
minimum values can be capped and replaced with random values;

• Transformations: Transformation techniques are applied to skewed data that do
not exhibit a normal distribution. These popular techniques include logarithmic,
Square Root, and Box–Cox transformations. Logarithmic transformation is capable of
squashing large numbers and expanding small numbers;

• Scaling and normalization: Machine-learning algorithms are often sensitive to the scale
of input values. Min–max scaling and Standardization/Variance scaling are popular
normalization methods. Min–max scaling rescales values between 0 and 1, while
standardization/variance scaling ensures that the distribution has a mean of 0 and a
variance of 1. This is particularly useful when variables are on a different scale and,
therefore, treated differently. Normalization and standardization techniques ensure
that the scale is modified to eliminate bias while retaining meaningful information;

• SMOTE: Imbalance dataset can lead to flawed classification. The Synthetic Minority
Oversampling Technique (SMOTE) is a technique of oversampling minority classes
to handle the class imbalance problem. The data points in the minority class are
duplicated while not adding new information to the dataset, thereby synthesizing new
data from existing data. The algorithm takes samples of the feature space for each
target class and its nearest neighbors. The features of the target class are combined
with the features of the neighbors to generate new data. The technique generates
additional data and makes the samples more general by increasing the percentage of
minority samples only;

• Optimization using PSO: This study introduces a primary optimization technique as a
proposed hybrid neural network architecture component. Particle Swarm Optimiza-
tion (PSO) is a stochastic optimization technique miming swarms’ social interaction
and behavior. Each particle in the swarm is denoted by positional coordinates, updat-
ing according to the best solution. Finding the optimal solution in high dimensional
space primarily involves minimizing the cost function to reduce error. The heuristic
model works as follows:

Step 1: Particles adjust their traveling velocity based on past data and other colleagues
in the group.

Step 2: Each particle considers the best result locally and globally.
Step 3: Each particle updates the position with respect to the current position, current

velocity, the distance between the current position and local position, and the distance
between the current position and global position. PSO is used extensively for concurrent
processing and requires very few algorithm parameters. It is an efficient global search
algorithm that is free of derivatives.

• Optimization using Adam: The Adam optimizer improves the Stochastic Gradient
Descent for updating network weights iteratively during the learning process. It is
easy to implement and computationally efficient. It requires little training for the
hyperparameters and does not need a lot of memory to run. Adam incorporates the
Adaptive Gradient Algorithm (AdaGrad) and the Root Mean Square Propagation
(RMSProp). AdaGrad is responsible for maintaining a pre-parameter learning rate to
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reduce error and improve overall performance. In contrast, RMSProp maintains the
learning rates based on an average of recent magnitudes of weights. Adam uses an
average of second moments of the gradient and calculates the exponential moving
average of the gradient and squared gradient. It also takes into account parameters
that are essential for controlling decay rates (beta1 and beta2). Adam has several
parameters:

Alpha: alpha is the step size or learning rate. Larger values lead to faster learning
before rate updation and smaller values lead to slow learning.

Beta1: exponential decay rate (first moment)
Beta2: exponential decay rate (second moment)
Epsilon: epsilon denotes a minimal number for preventing any division by zero
Apart from the techniques mentioned above that have been used in the analysis, some

of the other fair AI techniques have been mentioned as follows:

• Focal Loss: Focal Loss functions and an extension of cross-entropy are used for han-
dling class imbalance problems by applying a modulating term to the class entropy
loss. More weights are assigned to hard or easily misclassified images, which could be
imaged with noisy data, partial images, or background images. As the loss contribu-
tion from easy examples is reduced, misclassified images get corrected. It is a method
of dynamically scaling the cross-entropy loss such that the scaling factor decays to
zero. This leads to an increase in confidence in the correct classes. The scaling factor
hence weights the impact of easy examples while training, ensuring that the model is
focused on hard examples;

• Focal Tversky Loss: Neural networks often deploy Tversky loss for image segmen-
tation problems. It is a loss function that is used to handle an imbalance in images,
specifically when the number of positive pixels is orders of magnitude smaller than the
number of negative pixels. The function is capable of comparing and predicting the
outputs of neural networks with the true output. For image segmentation problems,
the segmented image acts as the predicted output, whereas the ground truth segmen-
tation of the same image is the true output. Unlike other loss functions like binary
cross-entropy loss and dice coefficient, the Tversky loss allows more control over the
relationship between precision and recall. It is possible to penalize false negatives
more heavily than false positives, and vice versa by adjusting the hyperparameters.
Focal Tversky loss is more like a generalized Tversky loss that applies the concept of
focal loss for focusing on hard cases with low probabilities.

3. Experimental Analysis

In this section, the datasets and the evaluation metrics used in this study have been
discussed in detail.

3.1. Datasets

This study aims at detecting ASD in toddlers and adults using deep learning tech-
niques. For the analysis, two individual datasets have been considered, i.e., Autism Screen
Data for toddlers and Autism Screening in adults. Both datasets have been taken from Kag-
gle. The Autism Screen data for toddlers incorporates influential features for determining
autistic traits. Ten behavioral features and other characteristics make up the dimensions
of the dataset. The attributes range from A1 to A10, so possible answers to questions
like ‘Always,’ ‘Usually,’ ‘Sometimes,’ and ‘Never’ are mapped to values 1 and 0. A user
obtaining more than 3 points exhibits ASD traits. The Autism Screen data for toddlers
dataset incorporates 1054 rows and 19 columns, while the Autism Screening data for adults
incorporates 704 rows and 21 columns, and the features include the scores (A1-A10) fol-
lowed by age, gender, ethnicity, jaundice, country of residence, etc. Some common features
of both datasets are age, gender, ethnicity, jaundice, etc. The baseline and the proposed
deep neural networks are applied to both datasets to analyze ASD in toddlers and adults.
Following data preprocessing, the datasets have been split into 80–20 as training and test
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sets. For analyzing the datasets, Python 3.8 has been deployed along with Tensorflow-
GPU (Graphics processing unit). Jupyter Notebook with multiple Python libraries such as
Pandas, NumPy, and Scikit-Learn have been used. The processor used for the analysis is
the AMD (Advanced Micro Devices) Ryzen 7 4800H with Radeon Graphics (2.90 Gigahertz).
The installed RAM (Random Access Memory) has a memory of 64 gigabytes. The models
have been compiled using the Adam optimizer. The learning rate was set to 0.0001, and
binary cross-entropy was used as the loss function. The network has been trained in a batch
size of 10. Figure 4 depicts the features associated with both datasets after the duplicates
were dropped and missing values were removed.

Future Internet 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

0. A user obtaining more than 3 points exhibits ASD traits. The Autism Screen data for 
toddlers dataset incorporates 1054 rows and 19 columns, while the Autism Screening data 
for adults incorporates 704 rows and 21 columns, and the features include the scores (A1-
A10) followed by age, gender, ethnicity, jaundice, country of residence, etc. Some common 
features of both datasets are age, gender, ethnicity, jaundice, etc. The baseline and the 
proposed deep neural networks are applied to both datasets to analyze ASD in toddlers 
and adults. Following data preprocessing, the datasets have been split into 80–20 as 
training and test sets. For analyzing the datasets, Python 3.8 has been deployed along with 
Tensorflow- GPU (Graphics processing unit). Jupyter Notebook with multiple Python 
libraries such as Pandas, NumPy, and Scikit-Learn have been used. The processor used 
for the analysis is the AMD (Advanced Micro Devices) Ryzen 7 4800H with Radeon 
Graphics (2.90 Gigahertz). The installed RAM (Random Access Memory) has a memory 
of 64 gigabytes. The models have been compiled using the Adam optimizer. The learning 
rate was set to 0.0001, and binary cross-entropy was used as the loss function. The network 
has been trained in a batch size of 10. Figure 4 depicts the features associated with both 
datasets after the duplicates were dropped and missing values were removed. 

 
Figure 4. Datasets depicting features for Autism Screening in toddlers and adults. 

3.2. Evaluation Metrics 
The following evaluation metrics were used for this study. 

a. Accuracy: accuracy represents the summation ratio of true positives and true 
negatives divided by all possible prediction outcomes 

Accuracy = (TP + TN)/(TP + TN + FP + FN)  

b. Precision: The precision score determines the ratio of correct positive predictions. The 
positive predictive value measures quality and can determine the success of 
prediction in the case of imbalance classes. 

Precision = TP/(FP + TP)  

c. Recall: Recall identifies correctly predicted positives out of actual positives. It can 
determine how good the model is at identifying actual positives given all positives 
in a dataset. It is also referred to as a true positive rate or sensitivity. 

Recall = TP/(FN + TP)  

Figure 4. Datasets depicting features for Autism Screening in toddlers and adults.

3.2. Evaluation Metrics

The following evaluation metrics were used for this study.

a. Accuracy: accuracy represents the summation ratio of true positives and true negatives
divided by all possible prediction outcomes

Accuracy = (TP + TN)/(TP + TN + FP + FN)

b. Precision: The precision score determines the ratio of correct positive predictions. The
positive predictive value measures quality and can determine the success of prediction
in the case of imbalance classes.

Precision = TP/(FP + TP)

c. Recall: Recall identifies correctly predicted positives out of actual positives. It can
determine how good the model is at identifying actual positives given all positives in
a dataset. It is also referred to as a true positive rate or sensitivity.

Recall = TP/(FN + TP)

d. F-1 Score: F-1 score is a function of precision and recall, as it considers both precision
and recall for measuring the model performance. It is used when model optimization
is the primary concern.

F-1 Score = (2 * Precision * Recall )/(Precision + Recall)

4. Results and Observations

This section incorporates three subsections. The first subsection discusses data visual-
ization with respect to the datasets, while the second subsection discusses the results based
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on the machine-learning models deployed for this study. The third subsection provides a
comparative analysis of the proposed work with some related works conducted in the past.

4.1. Data Visualization

• Data distribution for ethnicity

The data distribution for both toddlers and adults regarding ethnicity has been ana-
lyzed using data visualization (Figure 5). Regarding toddlers, the highest number of cases
were White Europeans, followed by Asians and Middle Easterners, respectively. Minor
cases belonged to Native Indians, Pacifica, and Mixed Races. In the case of adults, the
maximum number of cases were White Europeans, and the minimum number of cases
were Turkish and others.
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• Data distribution showing ethnicity vs. ASD traits.

Regarding the number of cases depicting ASD traits, in toddlers, the count was highest
for White Europeans and Asians (Figure 6). In the case of adults, there is a significant
number of White Europeans, Asians, and Middle Easterners who do not show ASD traits.
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• Data distribution showing ethnicity vs. gender.

It was also observed that in the case of toddlers, several males showed more ASD
traits than females (Figure 7). In most ethnicity distributions, the number of males seems
to be higher. In the case of adults, more females in White Europeans, Black people, and
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South Asians are observed. Other Ethnicities, like Asians and Middle Easterners, have
more males.
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• ASD cases with jaundice

This study also analyzed ASD cases with respect to jaundice and observed that in
toddlers, for the number of individuals suffering from jaundice, there was a higher number
of cases that exhibited ASD traits (Figure 8). Similarly, for people who were not suffering,
there was a significant count of individuals displaying ASD traits. In the case of adults,
individuals who did not test for jaundice have a higher number of cases that do not
show ASD traits. In these cases, people who have tested positive for jaundice have more
individuals who do not display ASD traits.
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• Age distribution

Another important factor considered for this study is age. It was observed that in the
case of toddlers, most cases are above the age of 36 months, i.e., 3 years, while in adults,
most of the cases fall between 20 to 30 years of age (Figure 9). Further, the number of cases
decreases significantly as age increases. Hence, for toddlers, the signs are exhibited around
3 years, while for adults, strategies, therapies, and treatments aid in getting better with age.

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

 

 
Figure 9. ASD cases with jaundice. 

● Gender-based distribution 
Figure 10 depicts the gender-based distribution for ASD cases in toddlers. We 

observe that the number of males showing characteristics of ASD is significantly higher 
than the number of females considered for this study. The distribution shows 735 males 
and 319 females possessing ASD characteristics. 

Figure 9. ASD cases with jaundice.



Future Internet 2023, 15, 292 14 of 19

• Gender-based distribution

Figure 10 depicts the gender-based distribution for ASD cases in toddlers. We observe
that the number of males showing characteristics of ASD is significantly higher than
the number of females considered for this study. The distribution shows 735 males and
319 females possessing ASD characteristics.
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Figure 11 depicts the gender-based distribution for ASD cases in adults. We observe
that the number of males showing characteristics of ASD is slightly higher than the number
of females considered for this study. The distribution shows 367 males and 337 females
possessing ASD characteristics.
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Figure 11. Gender-based distribution for ASD cases in Adults.

4.2. Results

In this section, the results are presented based on the experimental analysis and model
training for both datasets. Table 1 exhibits the model performance for ASD screening in
toddlers, while Table 3 exhibits the model performance for ASD screening in adults.
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Table 3. Performance evaluation of ML models (ASD in toddlers).

ML Models Accuracy Precision Recall F-1 Score Execution
Time (ms)

KNN 78.12 0.67 0.72 0.87 246,464
LR 85.38 0.81 0.88 0.88 127,787
RF 90.88 0.90 0.77 0.82 276,126
DT 91.02 0.88 0.82 0.84 203,664

SVC 87.77 0.84 0.89 0.74 364,248
MLP 91.90 0.88 0.78 0.80 366,024
ANN 92.68 0.89 0.81 0.81 372,866
CNN 97.78 0.94 0.86 0.89 442,886
LSTM 94.49 0.93 0.92 0.90 504,994
GRU 92.78 0.90 0.88 0.87 658,021

CNN–LSTM 95.66 0.91 0.92 0.92 640,482
CNN–LSTM–PSO 99.64 0.96 0.94 0.91 840,599

GRU-CNN 95.02 0.92 0.90 0.88 728,894

Based on the performance evaluations, it was observed that the proposed architecture
CNN–LSTM–PSO performs relatively better compared to other models. The next best
performance is exhibited by CNN, equipped with relu and Adam as the activation function
and optimizer, respectively. CNN–LSTM and GRU–CNN have similar performances.
The models with the least accuracies are KNN, LR, and SVC, respectively. Although the
proposed models achieve significantly high accuracy, the execution time indicates that the
models take more time to train. Figure 12 depicts the comparisons of the models visually.
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Based on the performance evaluations (Table 4), it was observed that the proposed
architecture CNN–LSTM–PSO performs relatively better compared to other models. The
next best performance is exhibited by CNN, equipped with relu and Adam as the activation
function and optimizer, respectively. CNN–LSTM and GRU have similar performances.
The models with the least accuracies are KNN, DT, and SVC, respectively. For the second
dataset, we observe that although the proposed models achieve significantly high accuracy,
the execution time indicates that the models take more time to train. Figure 13 depicts the
comparisons of the models visually.
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Table 4. Performance evaluation of ML models (ASD in adults).

ML Models Accuracy Precision Recall F-1 Score Execution
Time (ms)

KNN 90.08 0.78 0.77 0.82 266,848
LR 93.05 0.90 0.84 0.88 208,664
RF 94.68 0.91 0.88 0.88 382,677
DT 92.62 0.89 0.82 0.84 300,116

SVC 92.36 0.90 0.88 0.90 480,248
MLP 95.04 0.92 0.82 0.86 521,436
ANN 95.83 0.89 0.89 0.88 588,644
CNN 96.81 0.92 0.93 0.91 682,042
LSTM 93.44 0.85 0.81 0.83 654.883
GRU 96.04 0.90 0.92 0.94 778,899

CNN–LSTM 96.66 0.92 0.91 0.94 729,890
CNN–LSTM–PSO 98.89 0.94 0.91 0.93 900,048

GRU–CNN 94.02 0.90 0.90 0.88 814,766
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4.3. Comparative Analysis

In this section, the comparative analysis of the proposed work is presented with some
previous related works. Table 5 summarizes the overall comparison with results.

Table 5. Comparative analysis of the proposed work with previous works.

Author and Year Study/Analysis Methodology/Parameters Results

Ahmed et al., 2022 [1]

Eye-tracking-based
diagnosis using

machine-learning models
for detecting ASD

FFN, ANN, CNN, GoogleNet,
ResNet-18

Accuracy achieved, 95.5% and
94.5%

Kohli et al., 2022 [9] Applied behavior analysis
for detecting ASD

Clinical study data,
collaborative filtering

The average accuracy is 81%
to 84%

Liao et al., 2022 [11]

Identifying autism in
children using

physiological and
behavioral data

Machine-learning algorithms,
feature extraction, naive Bayes Accuracy is 87.50%
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Table 5. Cont.

Author and Year Study/Analysis Methodology/Parameters Results

Bala et al., 2022 [4] Early-stage detection
of ASD

ML algorithms, SVM,
SHAP method Accuracy is 96.82%

Peketi and Dhok, 2023 [15] Detecting P300 signal
in autism SMOTE, SVM Accuracy is 91.12%

Rabbi et al., 2023 [16] ASD detection using
transfer learning

VGG 19, Inception V3, and
DenseNet 201 Accuracy is 85%

Kuttala et al., 2022 [21] ASD detection in children
Dense Attentive GAN

(Generative adversarial
network)

Accuracy is 97.82%

Cao et al., 2023 [20] ASD detection using
facial diagnosis

Vision Transformer, Gaussian
Process Layer Accuracy is 94.50%

Deng et al., 2022 [19] ASD classification using
clinical data

Spatial–temporal Transformer
(ST-Transformer) Accuracies are 71% and 70.6%

Rahman and Subashini, 2022 [22] Identifying autism
in children CNN, Transfer Learning The Area Under Curve Score

is 96.63%

Proposed Work

Detecting ASD in
toddlers and adults using

ML, optimization, and
Fair AI

Proposed CNN-LSTM-PSO,
GRU-CNN

Fairness techniques
Other baseline ML models

Accuracies are 99.64% and
98.89%, respectively

Based on the overall study, several observations can be made. The overall contributions
of the conducted study are as follows:

a. In both the datasets, i.e., toddlers and adults, it is observed that the maximum number
of cases belonged to White European Ethnicity;

b. In the case of toddlers, there are more male cases of ASD than females. In the case of
adults, there are more female cases;

c. Jaundice does not have any significant impact on ASD, as the results from both
datasets are not consistent;

d. Most ASD cases in toddlers are seen around three years, i.e., thirty-six months. Like-
wise, most ASD cases in adults fall between 20 to 30 years;

e. This study proposed two deep neural network architectures, i.e., CNN–LSTM–PSO
and GRU–CNN, for ASD detection in toddlers and adults (multiple datasets). While
both models display satisfactory results, CNN–LSTM–PSO performs relatively better
than other machine-learning algorithms;

f. This study considers thirteen algorithms, including traditional ML algorithms, ensem-
bles, and neural networks, performing extensive analysis on ASD;

g. The study evaluated all the algorithms using multiple evaluation parameters, i.e.,
Accuracy, Precision, Recall, and F-1 Score, respectively;

h. The optimization techniques considered for the study are Particle Swarm Optimization
(combined with CNN–LSTM) and Adam (neural networks). The techniques are useful
in minimizing the cost function, thereby improving model accuracy;

i. The study deploys several AI fairness methods to eliminate bias. The bias elimination
techniques proposed in this study are feature engineering techniques like handling
outliers, transformations, and scaling. Apart from that, the SMOTE technique has
been included to solve the class imbalance problem. Finally, we have deployed
optimization methods for achieving efficient performance. The data obtained from
two independent datasets has been thoroughly analyzed for bias elimination using
feature engineering methods.

• Suspected outliers can be dropped if they are caused by human error or data
processing errors;
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• Similarly, properly formatted and validated data leads to improved data quality.
It is also essential for protecting applications from inconsistencies like null values,
duplicates, incorrect indexing, and incompatible formats, thereby eliminating
bias through transformation.

• Moreover, scaling the features normalizes the range of values of the independent
variables. Standardizing data with different scales can eliminate inconsistencies
and bias in measuring the same data characteristics.

• SMOTE has been deployed to handle the data imbalance problem for both the
datasets considered for this study;

• Finally, we see that optimization yields better accuracy and overall performance
of the suggested models.

As the performance of the models improves with the techniques suggested, the ob-
served data points seem much closer to the predicted value, thereby reducing the error
and improving the overall accuracy. Hence, it is correct to assume that the bias elimination
techniques proposed in this study can indeed reduce the deviation. This results in a much
more robust and efficient learning of the deep neural networks proposed.

5. Conclusions

In this paper, machine-learning methods have been deployed to detect ASD in toddlers
and adults. The analysis comprises performing data visualization to identify patterns in
data, followed by an extensive study using ML models. Thirteen machine-learning models
have been analyzed over two datasets, and the model performance has been evaluated
using multiple statistical parameters. This study introduces two novel deep learning
architectures, i.e., the CNN–LSTM–PSO model and the GRU–CNN model. It is observed
that optimization techniques indeed lead to improvement in model accuracy. Moreover,
several AI fairness techniques have been introduced to eliminate bias from the overall
system. Some of the techniques include handling outliers, transformations, SMOTE, etc.
Based on the experimental analysis and comparative analysis, it is observed that the
proposed study advances the existing studies. Some limitations of the conducted research
pertain to data availability, model complexity, and training time. Most of the datasets
available for ASD research incorporate clinical data for adults and toddlers only. While we
find enough data points to perform the analysis, it might not represent the actual number
of people diagnosed with the disorder. Hence, the study can be improvised in the future by
collecting more data. The models proposed for ASD identification in toddlers and adults are
based on deep learning architectures incorporating multiple algorithms, layers, techniques,
etc. Regularization techniques may likely overfit the model; hence, eliminating some layers
may reduce the model’s size and further improve its performance. Due to the involvement
of hybrid architectures, multiple layers, and optimization techniques, the training time
is comparatively high for deep learning networks. This may be evaded by deploying
transfer learning models or other hybrid deep learning models in the future. Moreover, this
study may introduce more hybrid deep neural networks and other optimization techniques
like the Artificial Bee Colony, Grey Wolf Optimizer, Bat algorithm, etc. Studies show that
autism is not confined to humans and may also be seen in animals like dogs and monkeys.
Identifying the disorder using ML techniques may lead to a breakthrough in multiple fields.
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