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Abstract: Wireless sensor network (WSN) environment monitoring and smart city applications
present challenges for maintaining network connectivity when, for example, dynamic events occur.
Such applications can benefit from recent technologies such as software-defined networks (SDNs)
and network virtualization to support network flexibility and offer validation for a physical network.
This paper aims to present a testbed-based, software-defined wireless sensor network (SDWSN) for
IoT applications with a focus on promoting the approach of virtual network testing and analysis
prior to physical network implementation to monitor and repair any network failures. Herein,
physical network implementation employing hardware boards such as Texas Instruments CC2538
(TI CC2538) and TI CC1352R sensor nodes is presented and designed based on virtual WSN- based
clustering for stationary and dynamic networks use cases. The key performance indicators such as
evaluating node (such as a gateway node to the Internet) connection capability based on packet drop
and energy consumption virtually and physically are discussed. According to the test findings, the
proposed software-defined physical network benefited from “prior-to-implementation” analysis via
virtualization, as the performance of both virtual and physical networks is comparable.

Keywords: wireless sensor networks; software-defined wireless sensor network; Internet of Things;
testbed; Texas Instruments

1. Introduction

The advancement of the Internet of Things (IoT) has paved the way for new require-
ments for smart cities. This can be represented by a flexible/adaptable operation and an
efficient data monitoring system for various real-world applications that may differ in
the degree of mobility and performance quality, such as environmental monitoring and
intelligent transportation in a smart city [1,2]. IoT-based wireless sensor network (WSN)
events may, to some extent, lack flexible network operations, such as dynamic network
events that are transient and require a real-time adaptive process. The flexible orchestration
and reorchestration of such demanding dynamic networks plays an important role in
monitoring the operation of the dynamic physical environment. Newer data gathering
methods, processing, and communication frameworks can be arranged to accomplish effec-
tive and intelligent process management based on distinct physical process requirements.
In this sense, a cloud-based architecture is a potential solution, as it includes a plethora
of software-based computational capabilities, such as virtualization, data and knowledge
repositories, and more involved operational and analytical tools [3,4]. Virtualization and
softwarization are significant components of cloud architecture in this context, as they
contribute to network flexibility of certain applications such as vehicular networks (VNs)
and can address issues associated with reactions to any operational events [5]. As a means
to achieve this, an intelligent, self-organizing network structure, such as VNs and WSN
ground networks seen in forests, can be used to enable rapid response, with the topol-
ogy reorchestrated by software definition. This can be aligned with advances made in
software-defined networking (SDN) when operating various operational network phases,
such as self-healing mechanisms. This, in turn, encourages the conceptual development
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of software-defined wireless sensor networks (SDWSN), in which WSN functions are soft-
warized and integrated into the network. The three core functionalities are represented by
the terms “leaf sensor node”, “router node”, and “IoT gateway node”, which can be mod-
elled and tested on a virtual platform before physical deployment [6]. Herein, cloud-based
virtualization is used to develop and provide specified functional configuration parameters
to physical nodes. As a result, the cloud can assist with performance analysis via the virtual
unit, where possible reorchestration of network behavior can be deployed and tested prior
to real-world implementation, paving the way for the cyber–physical system [7–9].

This paper intends to focus on generic and adaptive testbed scenarios that can be used
in a variety of advanced IoT applications. Herein, we shed more light on the subtleties of
general design features of the IoT architecture, where a software-based virtual model can
support physical network configuration prior to hardware implementation. The virtual
platform represented by the Contiki Cooja network simulator also supports the softwariza-
tion concept utilized in this paper by offering the software specifications of the WSN nodes.
Furthermore, it offers a network testing environment prior to actual network implementa-
tion using Texas Instruments CC2538 (TI CC2538) hardware. Herein, the Contiki firmware
is used with both the Cooja tool and the TI CC2538. Mainly, in this paper, we aim to
highlight and cover the components involved in the physical network (i.e., testbed) for any
form of application. Furthermore, the paper explores use cases for dynamic and stationary
networks, as well as how the suggested testbed could support various applications. The
physical network implementation is evaluated in this paper as based on the suggested use
cases wherein a virtual model is built and tested prior to hardware implementation. To
examine the validity of having a virtual model testing in advance, virtual and physical
network metrics such as network capacity and performance measures such as packet loss
are employed. The proposed system looks into the design from the perspective of virtual
and physical network parameters to offer an attempt towards interoperability.

The main contributions of this work are summarized as follows:

• Applying the concepts of “SDWSN” and “virtualization” to dynamic and stationary
networks for various IoT applications such as vehicular networks and environmental
monitoring systems. Such networks can be designed and tested on a virtual platform
with a variety of functional capabilities to offer network flexibility. A network with
nodes that can act as leaf and/or gateway functions, for example, can support the
network in rapidly responding to any event through the multiple functions embedded
in the nodes.

• Proposing a physical testbed with hardware components that use the same virtual
network codes. The technique is a cost-effective solution since it takes advantage of
virtual testing to test, evaluate, and recover from networks failures.

• The key components for the leaf node and the coordinator node (i.e., router or cluster
head) such as the communication rate are discussed, mirroring the core aspects em-
ployed in the virtual platform. This interactive collaboration between virtualization
and physical implementation can support the efficient operation of networks such as
dynamic networks. This paper delves into the aspects of physical network implemen-
tation design, including the number of nodes, sensing variables, and mobility. The
RSSI sensing variable is utilized for the test, as it can represent the relative mobility
of the nodes with the cluster depending on the communication quality. Also, the
collected RSSI values based on node mobility can be utilized for detecting the possible
failure/departure of a node from its related cluster based on its distance. This can be
used by the virtual network to provide the best network reorchestration service when
needed. The testing scenarios are designed to evaluate the capacity of the coordinator
node based on scalability and sampling rate in terms of packet loss.

The remainder of this paper is structured as follows: Section 2 discusses the state-of-
the-art and related work. Section 3 presents the system model. Section 4 evaluates the
testbed based on the proposed use cases. Finally, in Section 5, the conclusion of this work
is discussed.
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2. Related Work

The system architecture and design criteria for real-world applications such as health
and environmental monitoring were evaluated in relation to the WSN testbed. Several
researchers have highlighted key testbed elements that can be customized to design specifi-
cations, such as hardware deployment capabilities [10–14]. Some researchers have empha-
sized the use of different hardware components such as Raspberry Pi and Arduino [15], as
well as use cases such as sensor node distribution for environmental applications.

Considering a use case of data collection from scattered traps on the ground in New
Zealand, the forest vegetation region is separated into four parts based on [16] (Claverley,
North Taupo, Leader Valley, Purakaunui). At these four sites, the density of effective traps
ranges from two to four traps per hectare. The spacing between traps varies based on the
species targeted, according to the New Zealand Department of Conservation [17], and it
determines the distance between traps in a trap line for rats, stoats, and possums. According
to [17], the initial spacing between possum traps is 20 to 40 m, but can be expanded to
100 m if possum population is low. The work in [18] used 108 brushtail possum monitoring
sites to estimate possum occupancy rates in wildlife, and the transect of traps is recognized
at a distance of 200 m apart. Therefore, the distance between possum traps needs to be
specified. At the node level, trap sensors capture field-level data before sending them to
the central gateway via entry points such as unmanned aerial vehicles (UAVs).

According to Faiçal et al. [19], the embedded hardware collects and processes data
from each sensor using the Raspberry Pi single-board computer as a gateway. The work
in [20] employed ultralow-power TelosB nodes as ground sensor nodes distributed in the
field to improve accuracy when spraying pesticides while lowering the risk of human
exposure to these products. To reduce energy consumption, a precise and scalable data
gathering scheme was designed to enable long-distance communication at low bitrates.
In [21,22], the authors employed an Arduino-based data collection implementation for both
WSN and UAV, as well as a Raspberry Pi at the base station to collect environmental data.

Owing to the high cost and risk of damage associated with hardware testing without
prior operational and functional network design, virtualization has long been a widely
accepted solution for performing software-based simulation testing and obtaining adap-
tations for use in physical networks. Efficient use of underlying physical functions is
mainly achieved by abstracting them into logical or virtual functions [23]. Software-driven
virtualization offers a testing ground for conducting and analyzing soft trials of network
scenarios, such as dynamic behavior. Such parallel co-simulation running in the cloud
backend can significantly aid in leaning out the network configuration process by means of
obviating the hardware requirement (during the testing process). For example, the network
simulator Contiki Cooja was adopted as a virtualization platform for certain target hard-
ware (Motes such as TI CC2538 Evaluation Module) [24]. Acharyya et al. [24] emphasized
the importance of virtualization in driving towards a flexible IoT-based WSN organization.
Herein, by accessing real physical data for the purpose of modelling and simulating virtual
networks, the organization herein benefited from improved flexibility and reduced latency
by deriving appropriate feedback generated by the virtualization unit. Cloud-based virtu-
alization has been adopted to plan and test various WSN reorchestration scenarios when a
dynamic event occurs prior to actual implementation. Network performance (i.e., packet
loss, network downtime, etc.) can be analyzed so that the most appropriate reorchestration
structure can be applied to the physical network [3,25]. This can support flexible network
operation and lessen the impact of unexpected network behavior [7].

Concepts such as SDN and network virtualization necessitate the use of tools that
can model and test the capability of a network to be tested on a virtual platform before
the actual implementation to avoid any major adjustments that need to be conducted in
a physical network structure. Furthermore, dealing with the virtualization platform can
facilitate dynamic planning for possible network reorchestration as demanded. The Contiki
Cooja virtualization (network simulator) tool [26] was utilized in the works of [24,25,27,28]
to reflect some of the mentioned ideologies. Furthermore, with Cooja acting as a vir-
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tualization platform, virtual nodes are created by compiling and configuring the same
Contiki operating system firmware that is used to configure the actual targeted hardware
platform of the Texas Instruments CC2538 sensor nodes. From utilizing the tool for a
given application point of view, Karegar et al. [29] proposed a point-by-point air-to-ground
communication system that considers the clustering structure for partitioning the ground
network into small clusters of sensor nodes distributed over large spaces, through which
efficient communication between sensor nodes and a UAV is supported. Herein, the UAV
path flight was relaxed by using the possible dynamics in WSN orchestrations, as suggested
in the approach. The Contiki Cooja simulator was utilized to establish a communication
dialogue between the UAV and the ground WSN, the communication planning method
being based on the distance between the sensor nodes and the UAV highlighted by the
RSSI measurements.

From the compatibility of the suggested system’s point of view, the proposed system
model offers interoperable compatibility between the virtual and physical system models.
The method’s characteristic in [30] is based on defining a range called compatibility rate that
can decide the level of strictness and abstractness of the design, embracing SOA (service-
oriented architecture) as the base of concept. This can help a service designer to decide on
the level of strictness and abstractness of the design by adjusting the compatibility rate.
Therefore, this method reduces the effort and time required for designing an IoT service.
Our method is also based on designing dynamic and interoperable architecture once
and applying that to multiple use cases due to offering flexibility of network orchestration
adaptation based on the use case requirements. The proposed network adaptation capability
offers full compatibility for the proposed system model.

Also, authors in [31] used an interpretable architecture to offer communication among
the SensorThings API and web processing service, enabling interconnection among envi-
ronmental sensors, data, and applications. Although this integration may offer real-time
access to sensor observations simulation results, it lacks the virtualization capabilities that
enables a network testing environment prior to physical network implementation.

In summary, limited information is available pertaining to the generic design of a
general-purpose testbed to support various applications ranging from low performance to
high performance. Furthermore, the various states of network mobility and connectivity can
influence the continual data flow relevant to the different applications. Although significant
efforts have been made to develop WSN testbed schemes, the real-time configurability
of modules that affect system performance, such as ground communication cost and
packet delivery rate, as well as network parameters such as node capacity, has received
less attention.

3. System Model

IoT-based WSN system architecture can be looked at based on the sensor node layer,
the gateway layer, and the cloud layer. Each tier/layer of the system can offer solutions to
the overall challenges of a given application while also making the system more robust and
scalable. For instance, cloud interaction with the physical WSN can be utilized to explore
future operational improvements with various software scenarios using virtualization,
historical data, and learning methods. Considering a vehicular network (VN)-related
application as an example, Figure 1 shows the cloud-based architecture for a vehicular
network, where the physical network of vehicles updates the cloud with data for real-time
monitoring and reorchestration purposes. The acquired data from the physical VN is stored
in the cloud database offered by the data storage unit, where access to historical real vehicle
data is available. These data can be monitored and analyzed based on the knowledge
repository to identify any changes in the data pattern and thus the possibility of dynamic
change within the network. Therefore, the virtual platform and software resources are em-
ployed to respond to an event that necessitates network reorchestration. The virtual model
implemented using the Contiki Cooja simulator tool offers the corresponding orchestration
and reorchestration via the softwarization of the nodes involved in the network. The figure
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also reflects the possibility of a node departure and the cloud’s response to that event via
the flow of control data to the physical network.
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From the WSN’s point of view, the nodes in our approach can generally be configured
with one or more functions. This functional configuration is basically a software compo-
nent/module. This module is used to configure a specific physical sensor node by enabling
the associated hardware libraries. The activities of these functions are presented in Figure 2.
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From the communication dialogue that is based on the role/function of the node’s
point of view, the exchanged data between the nodes can result in the formulation of a star
or tree structure depending on the use case. In one of our previous works [7], we presented
the communication messages for a self-healing vehicular network. In this paper, we present
a general communication dialogue to serve the virtual model as well as the physical
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network implementation. The roles and communication messages of the participating
functional nodes are displayed in a sequence diagram, as illustrated in Figure 3. These are
provided in detail as the following:

• To avoid the broadcasting storm in the network, the nodes with routers (coordinator
and/or gateway functions) within the LOS (line of sight) can be communicated with
to formulate the star or layer(s) of tree structure in some use cases. These nodes are a
beacon for message (1), MHello_msg, which is a data message that contains the node ID,
node type/function, RSSI, etc. Based on these parameters and the number of received
“Hello_msg” prompts, the network levels/hops can be allocated.

• Upon allocation of roles to the nodes, the gateway node disseminates message (2),
MG-R, to the router/coordinator node(s) within the LOS. This is an announcement
message that indicates the allocation of the gateway node based on the number of
received messages.

• The other routers within the LOS disseminate message (3), MR-G (acknowledgment),
to the gateway node.

• Then, the gateway node disseminates a network formation to the other nodes that
are connected it. The network structure could be a star or tree depending on the
type of function of the nodes within the transmission range. The message is (4),
MG-Formulating-Network.

• After establishing the hierarchy of the network, the leaf node(s) can select its connec-
tion based on parameters of RSSI and number of connections that the router/gateway
can have/already have. For this step, load balancing is required.

• The gateway node disseminates connectivity message (5), MG-L(n): Connectivity, for the
unconnected leaf nodes within the LOS. Herein, based on the criteria, the eligible leaf
nodes for connectivity send the acknowledgment message (6), ML(n)-G: Acknowledgment.

• The same procedure can be applied for the router/coordinator nodes in connecting to the
other leaf nodes, which can discover better connectivity with those nodes. The messages
MR-L(n): Connectivity, ML(n)-R: Acknowledgment are the related messages (7) and (8), respectively.

• As the gateway node is the group head, the other router nodes need to reference or
update the gateway with its new connections. Message (9), MR(n)-G: Update, is for the
connectivity update.
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The physical WSN testbed is designed to showcase various use cases that can validate
the virtual testing available in our earlier works. The testbed for scenarios such as dynamic
events and network capacity (size) is highlighted with the use of TI CC2538 due to its
alignment with the virtual network, while scenarios such as node distribution with a focus
on dual protocols have been seen to be aligned with components such as the TI CC1352R.
The use cases as well as the general components of the testbed are further explained in
this section.

3.1. The Key Hardware Components for Physical Testbed

The hardware, which represents the physical nodes within the physical network, plays
an important role in supporting a given ideology and offering a testing environment for
the network. The components that are generally used in testbed design to reflect various
use cases and network scenarios are described in the next subsections.

3.1.1. Texas Instruments CC2538 Sensor Nodes

Texas Instruments CC2538 (TI CC2538) wireless transceiver chips consist of on-chip
temperature and received signal strength indicator (RSSI) sensors to collect and transmit
real-world data. It is an advanced chip with IP configurability. The CC2538 EM is used in
conjunction with the SmartRF 06 evaluation board, as shown in Figure 4, for programming
purposes, consisting of two on-board sensors for the accelerometer and ambient light
sensor. These sensing features, together with the flexibility to configure the TI boards
with the same code used for the Cooja simulation motes (i.e., the virtual platform), offer
advantages to a variety of use cases wherein network performance can be tested prior to
testbed implementation.
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These sensor nodes can be configured with either sensing, routing, or/and gateway
functionalities through the Contiki IDE. The C code for hardware configuration “include”
the related libraries that enable these chips to be configured, such as “#include ‘cpu.h’”,
“#include ‘dev/uart.h’”, “#include ‘dev/adc-sensor.h’”, and “#include ‘dev/sys-ctrl.h’”.
Each physical node needs to be assigned a unique ID by accessing the “contiki-conf.h”
header file within the Contiki; for example, a coordinator node can have an ID of “0xDA”.
A channel can also be assigned to the nodes for the purpose of regulating traffic within the
shared communication medium by reading the same header file and assigning one of the
available and desired channels to the nodes. As an example, channel 25 can be assigned as
“#define CC2538_RF_CONF_CHANNEL 25”.
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From the perspective of mobility, a scenario where one of the nodes is converted into
a mobile node by plugging a micro-USB charger into the chip to provide the mobility for
conducting outdoor experiments can be used to investigate the influence of RSSI on the
physical network. The TI CC2538 evaluation module (EM) with micro-USB is shown in
Figure 5.
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3.1.2. Texas Instruments CC1352R Sensor Nodes

The LaunchPad SensorTag kit CC1352R, also known as “LPSTK-CC1352R”, is a pow-
erful Cortex-M4F MCU with integrated environmental and motion sensors, multiband
wireless connectivity, and simple software for prototyping connected applications. Environ-
mental sensors such as humidity and temperature sensors, ambient light and inertia sensors,
a Hall effect switch, and a three-axis accelerometer are among the LaunchPad modules that
can be used in use cases like trap monitoring in a forest. Mobility is provided by two AAA
batteries or a CR2032 coin cell installed on the module. These batteries can provide power
for the transmission of their readings in a variety of settings. The LaunchPad modules
include a dual-band low-power radio kit that allows for sub-1 GHz (868 MHz/915 MHz)
and 2.4 GHz to run concurrently with Bluetooth Low Energy (BLE) in a single-chip solu-
tion. The 15.4 Stack protocol offers star topology networks for applications operating at
sub-1 GHz or 2.4 GHz. The sub-1 GHz version has several major advantages, including
longer range and improved protection against in-band interference, as well as the ability
to deliver Bluetooth Low Energy (BLE) beacon packets while running in dual-band mode
on a sub-1 GHz 15.4 Stack network. In this case, the dual-band functionality provides
the ability to adjust the functionality of a specific SensorTag via over-the-air debugging
and BLE configuration. Alternatively, an external programmer–debugger known as the
“CC1352R LaunchPad development board” can be used to reconfigure the SensorTag. The
LaunchPad SensorTag CC1352R and LaunchPad development board CC1352R are depicted
in Figure 6 and Figure 7, respectively.
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Code Composer Studio (CCS) software is used as an integrated development environ-
ment (IDE) that supports TI’s microcontrollers to enable debugging of the targeted module.
The CCS provides a package of tools for running, debugging, and altering the functionality
of the LPSTK modules, including a C/C++ compiler, source code editor, project build
environment, debugger, and profiler. Each LaunchPad SensorTag requires a LaunchPad
development kit to be debugged using an ARM 10-pin JTAG cable and a two-wire pair
for UART. When the SensorTag is connected to the development board, it allows for full
debugging, programming, and UART communication via CCS. The connection between
the LaunchPad SensorTag and the LaunchPad development kit to enable debugging of the
LaunchPad SensorTag is shown in Figure 8.
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3.1.3. Raspberry Pi

The widely used Raspberry Pi (RPi) is a small single-board computer that is adaptable,
affordable, fully customizable, and programmable with contemporary high-definition
multimedia capabilities, as shown in Figure 9, and is equipped with Internet connectivity.
It can be seamlessly integrated within the domain of WSN applications for research and
prototyping purposes. The RAM memory, CPU (central processing unit), power supply
connector, USB ports (where a Wi-Fi USB dongle or adaptor can be attached), ethernet
ports, GPU (graphics processing unit), and lower-level peripherals of general purpose
input–output (GPIO) pins that can be used for I2C, UART, SPI-based serial communication
buses or interfaces, among other components, are all found on a RPi board. It has a slot for
an SD card, allowing it to be utilized for datalogging or large-scale data storage (in cases
of Internet outage). Operating systems like Raspbian, NOOBS, and others can be used
to run RPi. The board can be used as an IoT gateway-capable node to collect, store, and
process the data received from sensor nodes in a local database within RPi called SQLite
or to communicate the received data from the sensor nodes to a remote database such as
MySQL depending on the application. Herein, the stored real data in a remote database can
be retrieved and fed into the virtual platform, i.e., the Contiki configuration unit, within the
cloud using the appropriate database interface. Contiki can use the real-time data stored in
the database from the most recent test of the physical network to compile and configure a
given virtual Cooja mote (i.e., the simulation). This can be placed in the simulation window
within the simulation platform for virtual testing purposes, thus virtualizing an established
physical network. This approach can offer better virtual network testing wherein real data
from a physical network is used. The RPi board can also be used as a mobile node by
being connected to a portable battery HAT that can be placed on top of the RPI to provide
a 5v regulated power supply to the RPi, allowing the board’s mobility to meet a specific
requirement, mainly for VN scenarios.
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3.2. Physical Network Setup for WSN-Based Clustering

The TI CC2538 wireless module is one of the hardware targets for developing a
physical network structure. The main parameters of sensor data size, sampling rate,
network topology, node function, and node mobility all have an impact on physical network
performance and possible cloud interaction. This is mainly critical for dynamic networks
due to its critical events.

At the Auckland University of Technology (AUT) WZ building, a testbed representing
the physical network was deployed to reflect the main functionality of a given topology,
e.g., star or tree network scenarios. Within the network, 33 TI CC2538 wireless sensor
nodes were configured using the Contiki operating system (OS), with 30 nodes configured
as leaf nodes reporting RSSI sensing values within a defined sampling rate and 3 nodes
configured as coordinator nodes (cluster heads). The physical network setup is depicted in
Figure 10. The physical network setup was designed to log RSSI data for each coordinator
node for 24 h to allow for data analysis. Considering that both the hardware and the Cooja
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motes use the same Contiki firmware, the analysis of the collected data was used to fetch
the minimum and maximum RSSI data for the Cooja virtual model in order to update the
model based on real data.

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 23 
 

 

compile and configure a given virtual Cooja mote (i.e., the simulation). This can be placed 
in the simulation window within the simulation platform for virtual testing purposes, 
thus virtualizing an established physical network. This approach can offer better virtual 
network testing wherein real data from a physical network is used. The RPi board can also 
be used as a mobile node by being connected to a portable battery HAT that can be placed 
on top of the RPI to provide a 5v regulated power supply to the RPi, allowing the board�s 
mobility to meet a specific requirement, mainly for VN scenarios. 

 
Figure 9. Raspberry Pi board. 

3.2. Physical Network Setup for WSN-Based Clustering 
The TI CC2538 wireless module is one of the hardware targets for developing a phys-

ical network structure. The main parameters of sensor data size, sampling rate, network 
topology, node function, and node mobility all have an impact on physical network per-
formance and possible cloud interaction. This is mainly critical for dynamic networks due 
to its critical events. 

At the Auckland University of Technology (AUT) WZ building, a testbed represent-
ing the physical network was deployed to reflect the main functionality of a given topol-
ogy, e.g., star or tree network scenarios. Within the network, 33 TI CC2538 wireless sensor 
nodes were configured using the Contiki operating system (OS), with 30 nodes configured 
as leaf nodes reporting RSSI sensing values within a defined sampling rate and 3 nodes 
configured as coordinator nodes (cluster heads). The physical network setup is depicted 
in Figure 10. The physical network setup was designed to log RSSI data for each coordi-
nator node for 24 h to allow for data analysis. Considering that both the hardware and the 
Cooja motes use the same Contiki firmware, the analysis of the collected data was used to 
fetch the minimum and maximum RSSI data for the Cooja virtual model in order to up-
date the model based on real data. 

  

Figure 10. Indoor physical network setup.

The modified values of the RF transmission power of the sensor nodes based on
designed indoor and outdoor scenarios can reflect the mobility aspect in the network.
Additionally, mobility can be reflected by using a battery attached to one of the nodes to
measure RSSI values based on distance, as shown in Figure 11. In addition, the RSSI data
are collected at different sampling rates with various number of node scenarios to test the
delivery of packets and determine if there is any packet loss. This is mainly to evaluate the
capacity of the coordinator (cluster head) node, tested virtually [8,9].
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3.2.1. Leaf (End Device) and Coordinator Nodes’ Main Components and Data Collection

The same “Contiki OS”-generated codes that are used for compiling and configuring
the physical nodes represented by TI CC2538 are used for compiling and constructing
virtual nodes. As a result, the logical component of the physical environment’s operational
dynamics can be accurately reproduced virtually. This allows for flexibility in accessing
the physical node code prior to implementation via the virtual mote code. The main
components that differ from the virtual mote are the header files, channel allocation, and
node ID. Figures 12 and 13 illustrate the pseudocodes for some of the key configuration
components of the TI CC2538 leaf node as well as the cluster head (coordinator) node.
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According to Figure 12, the RSSI sensing function, communication/sampling rate
that can be set using the same function as for the virtual leaf mote, buffering, and the
channel access method at the MAC layer (using the TDMA method in the leaf node as an
example) are the main components that reflect the configuration of the leaf sensor node in
the established testbed. It is worth noting that the variable “transmit_flag” is not accessible
for transmitting the buffer while using the CSMA method.

The declaration of data received from the nodes connected to the coordinator node
is shown in an array format in Figure 13. Then, each received sensing datum as well as
the node ID of the transmitter node is stored individually. Depending on the number of
connected nodes, a counter can be set to print out the data received from the transmitter
nodes. In addition, packet loss can be added to the coordinator node by setting any
condition that can indicate the loss of a packet.

For RSSI data logging, the data can be sent and received based on the sample codes
shown in Figures 12 and 13. A sample of some of the data collected in Contiki in text
format is shown in Figure 14. The data received by the coordinator node are displayed,
represented by the connected leaf node ID and its RSSI value, along with the amount of
packet loss experienced in each round.
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3.2.2. Mobility Scenario Using Transmission Power

One of the tests involved changing the radio frequency (RF) transmission power
output of the TI CC2538 end devices (leaf nodes) based on an indoor scenario (WZ AUT)
and an outdoor scenario (around AUT in Auckland) to offer different RSSI values and
reflect signal quality. The dynamic alteration of a given node’s transmission power output
via the C code can be used to evaluate the reliability of communication between the nodes.
The hexadecimal value assigned to the selected power mode within the C code can be used
to set the intended radio transmission power for the TI CC2538. The power output values
used for the indoor and outdoor tests are 22 dBm RF output power with the hexadecimal
value 0xFF set in the power function in C code, and 7.5 dBm output power with the
hexadecimal value 0 × 42 set in the power function. Figure 15 depicts the power function
in C code.
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The RSSI values for the indoor and outdoor scenarios were logged for three rounds
based on the selection of the RF transmission power values modified in the TI CC2538,
as shown in Table 1. The signal strength was below −65 dBm in both scenarios (indoor
and outdoor), as transmission power was increased. This reflects the reliability in com-
munication as well as the impact of altering transmission power to assume the distance
between nodes.
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Table 1. Transmission power impact on RSSI indoor and outdoor scenarios.

RF Transmission Power RSSI Values (dBm) for
Indoor Scenario

RSSI Values (dBm) for
Outdoor Scenario

22 dBm
−69 −86
−71 −86
−67 −87

7.5 dBm
−52 −72
−55 −78
−55 −78

3.2.3. Mobility Scenario Using Rechargeable Battery

The RSSI sensing data collected from the physical network are of high importance to
dynamic networks as they indicate a node’s possible departure when it ventures outside
the communication range of the other nodes. The collected RSSI data can be analyzed
to observe any variations in the sensed values. A test scenario based on the TI CC2538
network was performed to collect RSSI data from a mobile coordinator node in relation
to its leaf node. Herein, the coordinator node was powered using a rechargeable battery
to flexibly move away from the leaf node. When the coordinator node moves outside the
testing room, the RSSI values range from −72 to −94 dBm, indicating that the node signal
strength is degraded. It is worth mentioning that the RSSI-sensed values collected from
the physical network can be fed into the virtual network to test any potential network
reorchestration. Table 2 shows the RSSI values of the departing coordinator node, which
are equivalent to the departed node’s distance in meters.

Table 2. RSSI measurements of node movement collected with relation to distance.

RSSI Values of the Departed Node (dBm) Distance of the Node Moving Away (m)

−72 8
−80 9
−88 11
−92 13
−94 14

3.3. WSN Physical Network Setup for Node Distribution on the Ground

The TI CC1352R can be used for physical network implementation in a variety of
applications to allow for sensor node functionality to be modified over the air via cellphone
configurability to change some module settings such as bitrate, capture rate, packet size,
polling intervals, power, and so on, or to change the entire functionality of a sensor node.
The physical network system is softwarized and implemented using LaunchPad SensorTag
CC1352R and development boards, as well as Raspberry Pi (RPi). The LaunchPad modules
contain a dual-band, low-power radio kit that allows for the coexistence of 15.4 Stack and
Bluetooth Low Energy (BLE) on a single chip. The 15.4 Stack is an IEEE 802.15.4e/g RF
communication stack that supports star topology networks in either sub-1 GHz (868 MHz
/915 MHz) or 2.4 GHz applications. The sub-1 GHz 15.4 Stack is used for ground network
connectivity in this paper. The motivation behind this is that the sub-1 GHz version
offers numerous advantages, including longer range and improved in-band interference
prevention, as well as the ability to broadcast BLE beacon packets while running on a sub-1
GHz 15.4 Stack network in dual-band mode.

The proposed physical ground network topology with the intended dual-band com-
munication functionality is depicted in Figure 16.
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The LaunchPad SensorTag CC1352Rs are configured with leaf node firmware, which
enables the modules to sense and transmit sensing data to the upper-level coordinators
(CC1352R development boards). The gateway nodes are Raspberry Pis with CC1352R
development boards connected. The development boards are configured with “Collector
firmware” to collect the sensing data from the leaf nodes, while the Raspberry Pi is used
for data storage and buffering and is connected to the development board using a USB
cable. This physical network topology design has the advantage of enabling dual-band
connectivity, allowing the client to reconfigure each physical node using over-the-air
debugging (OAD) functionality, which aligns with the softwarization concept. As a result,
this network design not only allows for reconfigurability of ground network entities, but
it also allows for regular data collection from the ground network within the central
RPi station.

3.3.1. Energy Consumption Model for Communication Network

The energy consumption model for enabling communication among the ground
network components is calculated based on the proposed model. Hence, the amount of
each network components’ power consumption for this purpose is as in Equation (1):

PT = PTx + PRx + PLPM + PIdle (1)

This means the average power consumption of each node is the summation of the
average power consumption of a node in four modes: idle mode, low power mode (LPM),
and receiving and transmitting modes. The idle mode (PIdle) is activated whenever the
node is listening (the time interval during which the CPU is inactive prior to the radio
transmitter or receiver becoming active). LPM mode (PLPM) is activated when the sensor
node goes to low power mode. Rx mode (PRx) is activated in radio receive mode and finally
Tx mode (PTx) is activated in transmission mode.

Sensor nodes operate in either active mode or sleep mode. The ratio of the time spent
in active mode to a total data period is defined as the duty cycle. In general, sensors mainly
consume energy during data receiving and transmitting, and idle listening when they are
in active mode. The proposed energy model uses the Contiki power tracker to measure the
time intervals that each node spends in these four modes [32]. Hence, the overall energy
consumption per node can be calculated considering the equivalent consumed energy for
these intervals as in Equation (2):

Cost = ∑4
i=1 Pi × Ti (2)

where Pi represents the value of consumed power within each power mode, Ti is the time
spent during a specific mode i.
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Power calculation analysis was conducted based on the information explored from
the CC2538 datasheet for values of current usages, once the module is in active receiving,
transmitting, idle, and low power modes, as shown in Table 3.

Table 3. Power parameters for Cooja mote based on [33].

Active mode TX current consumption 24 mA
Active mode RX current consumption 20 mA
Idle mode 13 mA
Low power mode current consumption 0.6 mA
Supply voltage range 2–3.6 v

3.3.2. Small-Scale Physical Network

This network implementation focuses on non-RPi and RPi network design. The design
focuses on the LaunchPad modules, which transfer sensing data such as temperature, RSSI,
humidity, accelerometer, and so on to a development board as part of a data collection
effort and modifies the functionality of network entities in real time as part of the soft-
warization process for the network of SensorTags and development boards only. As leaf
nodes, Figure 17 displays two sets of modules that include two development boards and
two SensorTags. One development board is also assigned the role of coordinator. The
SensorTag CC1352R modules are programmed using OAD functionality via Bluetooth Low
Energy (BLE) using a smartphone. The leaf nodes provided multiprotocol and dual-band
communication over the TI 15.4 Stack and BLE protocols simultaneously. The TI 15.4 Stack
is used for communication between leaf nodes and the coordinator, while BLE is used for
communication between each module and the smartphone.
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Figure 17. The network configuration for two development boards as sensor nodes and two Sen-
sorTags as sensors.

The SimpleLink Starter app for iOS and Android offers significant support for the
CC1352R LaunchPad modules, which are used for configurability in this paper. Hence,
this app facilitates the OAD to modify the functionality of LaunchPad modules. This app
connects the LaunchPad modules to a smartphone through Bluetooth Low Energy (BLE)
and supports reading LaunchPad button states, controlling LEDs, and receiving real-time
sensing data such as RSSI, temperature, humidity, and accelerometer. It also allows for
MQTT cloud communication to the IBM Quickstart server or any other cloud service. This
enables a cloud view in which the LaunchPad module can be controlled from any web
browser. Figure 18 displays the environment of the Starter application.
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Figure 18. Over-the-air debugging (OAD) and sensing reading on the Starter app.

To program the LPSTK development board as a coordinator, debugging in CCS using
the “Collector” program is required. “Tera Term” is used to display the real-time received
values after receiving sensing values from various leaf nodes in a coordinator’s terminal
window using TI 15.4 Stack. The received data from multiple leaf nodes in the coordina-
tor’s console is shown in Figure 19. The RSSI and temperature readings regarding this
experiment are displayed in the coordinator’s console.
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Figure 20 depicts the physical network design with RPi using two SensorTags pro-
grammed as leaf nodes and one development board as a coordinator/router node. The
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development board is connected via USB cable to the RPi. A smartphone is also available
to either reconfigure the SensorTags via OAD functionality or to monitor the real-time
data of each SensorTag. BLE and TI 15.4 Stack communication protocols are utilized for
smartphone–SensorTags and SensorTags–development board interaction, respectively.
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To gain access to the USB port of the RPi and display the real-time outcome on a
terminal screen such as “Putty”, building a Python script following the Putty installation
on “Raspbian” is required, as shown in Figure 21.
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The results of running the code in the terminal window, which include the received
sensing data from SensorTags on the development board and then on the RPi, are shown in
Figure 22.
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3.3.3. Large-Scale Physical Ground Network

The data gathering method using the softwarization concept for a ground network [34]
is used in the physical network implementation. Herein, the orchestration data gathering
phase is validated using a real-world implementation that can be manipulated to be used
in applications such as trap monitoring applications. The factor that reflects the dispersing
aspect of elected gateway nodes within the ground network after each reconfiguration
election process is called sparsity, obtained as in Equation (3):

σ =

√
∑N

i=1
(
qi

0 − µ
)2

N
(3)

wherein σ is the sparsity factor after the election process of i, qi
0 are the coordinates of

the elected gateway nodes, µ is the average coordinate of the elected gateway nodes, N
is the number of gateway nodes. The simulated post-orchestration data gathering phase
is structured to observe the impact of varying the density spread factor parameter on
the network’s performance. In this section, the same network parameters are used to
analyze the physical ground network’s performance. Hence, out of 20 nodes distributed
on the ground, 17 SensorTags are programmed as leaf nodes, while 3 development boards
are programmed as coordinator nodes. Each development board is connected via a USB
cable to the RPi node as a gateway. The network organization is based on star network
structure. Also, the TI 15.4 Stack communication protocol is used for interaction between
the SensorTags and the development board. To validate the softwarization concept in a real-
world scenario, 3 coordinator nodes along with 17 leaf nodes were distributed in scenarios
with varying densities of gateway nodes, as shown in Figure 23 (σ = 1) and Figure 24 (σ = 2).
The data gathering time for each density scenario was set to 60 s. The message rate was also
increased from 1 to 20 msg/s. The packet delivery and power consumption were utilized
to evaluate the communication performance of the proposed physical network model.
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4. Model Testing and Evaluation
4.1. Network-Based Clustering Use Case: Router/Coordinator Node Capacity

From a network performance point of view, the network scalability/sparsity scenarios
were explored with the increase in sampling rate to reflect the packet loss measurements.
Mainly, the testing relates to the network connectivity (router or gateway) capacity tested
in the virtual platform using the Contiki Cooja simulator. Herein, the physical network
test scenario objective is aligned with our road traffic analysis capacity and virtualization
capacity testing scenarios [8,9]. The physical network test was performed, and data were
collected when a set of (10 and 20) TI CC2538s connected to a coordinator node reported
RSSI values based on a set of sampling rates (1, 2, 3, 4, and 5 samples/s). Figure 25 depicts
the total number of packets lost when 10 TI CC2538 nodes are connected to a coordinator
node: seven packets at five samples/second. However, the total number of packets lost
increases to 12 packets at the same sampling rate when the number of nodes connected to a
coordinator node is set to 20 nodes. Although the physical network experienced slightly
more packet loss due to real-world factors impacting the quality of the RSSI signal, such
as the network deployment environment, obstacles, etc., the physical test indicated the
importance of having the virtualization for network soft trials. Variations in sampling rates,
the number of nodes, and the type of function of a node in the virtual platform can provide
the best scenario for a certain use case that can be realized in the physical network.

4.2. Distributed Nodes for Ground WSN Use Case: Energy Consumption and Packets Received

The physical ground network communication performances including the overall
network’s energy consumption and the percentage of received packets in coordinator nodes
based on a range of gateway sparsity σ and communication message rates are calculated
and shown in Figures 26 and 27.

As shown in these two figures, as network density increases, the ground network
packet delivery and energy cost for message transmission from leaf nodes (SensorTags) to
coordinator nodes (development boards) degrade due to increased interference from other
cluster members. Furthermore, as the message rate increases, the percentage of packet
delivery in the coordinators’ buffers decreases, and the energy consumption of the ground
network increases. The reason for this is that as the message rate increases, higher packet
intervals of each network component cause the real network components to consume more
energy while delivering fewer packets to the coordinator nodes.
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5. Conclusions

This paper demonstrated physical network implementation using commercial sensor
node TI CC2538 with a focus on node capabilities and ability to interact with network
operation requirements. Physical network implementation scenarios with a focus on RSSI
data were designed to reflect the mobility of the network with the use of rechargeable
batteries. This reflected the RSSI values when the node departed from the network and thus
the distances were obtained. Also, the change in transmission power indicated the change
in RSSI values for indoor and outdoor scenarios. The router/gateway node capacity was
tested based on packet loss, indicating slightly more packet loss compared to the virtual
network due to real-world factors such as obstacles. This promotes the importance of
pretesting on the virtual platform and of enabling interaction between virtual and physical
networks. In addition, another use case related to the nodes’ distribution on the ground was
structured for physical implementation with a focus on stationary scenarios. The proposed
physical network topology enables node reconfigurability via virtualization wherein the
source code within the virtual platform can be modified, allowing the node to perform
various functions depending on the designed scenario. This can be achieved by using the
over-the-air debugging (OAD) functionality associated with the proposed TI LaunchPad
modules used in this paper. A small-scale network testbed was examined, followed by
a large-scale network testbed, using the SensorTag CC1352R LaunchPad, development
boards, and Raspberry Pi in order to evaluate network performance variables such as packet
delivery rate and consumed energy. The results of physical testing were then compared to
the results of simulation testing to validate the proposed concept. This work’s limitation
is the deployment of the physical network as based on the designed use case. Herein, for
future work, the physical network can be implemented on a road to reflect a vehicular
network use case as well as in a forest to reflect trap monitoring.
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