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Abstract: Unmanned Aerial Vehicles (UAVs) equipped with communication technologies have
gained significant attention as a promising solution for providing wireless connectivity in remote,
disaster-stricken areas lacking communication infrastructure. However, enabling UAVs to provide
communications (e.g., UAVs acting as flying base stations) in real scenarios requires the integration
of various technologies and algorithms. In particular 3D path planning algorithms are crucial in
determining the optimal path free of obstacles so that UAVs in isolation or forming networks can
provide wireless coverage in a specific region. Considering that most of the existing proposals in the
literature only address path planning in a 2D environment, this paper systematically studies existing
path-planning solutions in UAVs in a 3D environment in which optimization models (optimal and
heuristics) have been applied. This paper analyzes 37 articles selected from 631 documents from a
search in the Scopus database. This paper also presents an overview of UAV-enabled communications
systems, the research questions, and the methodology for the systematic mapping study. In the end,
this paper provides information about the objectives to be minimized or maximized, the optimization
variables used, and the algorithmic strategies employed to solve the 3D path planning problem.

Keywords: unmanned aerial vehicles; 3D path planning; heuristic algorithms; systematic mapping

1. Introduction

Unmanned aerial vehicles (UAVs) are autonomous aerial devices that do not need
to be manned by humans [1]; this condition has made them very popular and helpful for
various applications in different areas, such as agriculture, photometry, rescue, the army,
communications systems, etc. Deploying individual or group UAVs (i.e., forming networks)
allows exploration in very complex, dangerous, and difficult-to-reach places, enabling
significant savings in time and cost and decreasing the loss of human lives [2]. Furthermore,
UAVs can be stand-alone structures or complement communication systems such as cellular
networks [3]. Communication systems using UAVs (UAV-CS) have become very prominent
due to their low cost and rapid network deployment, which are used in post-disaster
scenarios and help save human and material lives [2]. UAVs, part of a communications
system, can be used in various areas, such as base stations (AUV-BS), access points (UAV-
AP), routers, and gateways.

UAVs can be controlled by human assistance, but they can also be autonomous, which
is a significant challenge in 3D path planning. Path planning aims to enable UAVs to move
(fly) in a path free of obstacles to avoid collisions considering route integrity (coverage
of the entire desired route) and optimality (e.g., the shortest path or a path that produces
less energy consumption). Table 1 summarizes the studies related to 3D path planning,
demonstrating the uniqueness of our research.
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Table 1. Summary of path planning surveys.

Ref Year Description Challenges
Information 3D Objective to Be

Optimized
Multiple
UAVs Obstacles Environment Opt. Variable Heuristic

Sol. A.I. Sol.

[4] 2023
Review of vision-based
navigation techniques for
Unmanned aerial Vehicles

X X X X X X X X X

[5] 2019
Survey on coverage path
planning with unmanned
aerial vehicles

X X X X X X X X X

[6] 2023
Review on viewpoints and
path-planning for UAV-based
3D reconstruction

X X X X X X X X X

[7] 2021

Model-based analysis of
multi-UAV path planning for
surveying postdisaster
building damage

X X X X X X X X X

[8] 2023
Surveys on bio-Inspired
Optimization-Based Path
planning Algorithms in UAVs

X X X X X X X X X

[9] 2019
Survey of Three Dimensional
Flight Path Planning for
Unmanned Aerial Vehicle

X X X X X X X X X

[10] 2018
Survey on computational
intelligence-based UAV
path planning

X X X X X X X X X

[11] 2022
Survey on UAV path
planning using an
optimization approach

X X X X X X X X X

Our
Work 2023

Studies 3D path planning
algorithms in UAV-enable
Communications Systems

X X X X X X X X X
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Prior research has investigated UAV planning in 2D. For instance, in [12], the authors
discuss the path-planning problem involving continuous interaction with the environment
and provide an overview of motion planning algorithms. In [13] the authors examine state-
of-the-art path planning in automation, robotics, UAVs, and video games, considering as a
secondary feature 3D path planning. In [14] the authors present a preliminary taxonomy of
most UAV 3D path-planning algorithms, but no exhaustive description is provided. On the
other hand, ref. [10] analyzes intelligent computational algorithms considering 2D and
3D scenarios. In contrast, our study concentrates on traditional optimization algorithms.
The authors in [9] present a general description of 3D path planning algorithms based on the
type of solution. Likewise, ref. [1] present basic concepts, algorithms, and parameters used
in the path planning problem without performing a systematic study. In contrast, the study
in this paper analyzes contributions in the last four years considering parameters used in
the objective function, encompassing optimization objectives, environment characteristics,
obstacles, number of UAVs, and optimization variables.

In this regard, this paper presents a systematic review of the 3D path-planning tech-
niques during the last four years, and it offers valuable insights and comprehensive analysis
of existing path-planning solutions in UAVs operating in a 3D environment helping re-
searchers, academics, and professionals involved in UAV technology, wireless communica-
tions, and path-planning algorithms. This paper first provides an overview of UAV-enabled
communications systems, including the path planning algorithms. Then, a detailed de-
scription of the methodology used to perform the systematic mapping studio is presented.
In the end, this paper presents the objective functions, the optimization variables, and the
proposed solutions related to the optimization models, including optimal or exact methods
and suboptimal or heuristic strategies.

The rest of the paper is organized as follows. Section 2 provides a background for
a better understanding of this study. Section 3 presents the research method, including
the research questions and classification scheme. Section 4 provides the mapping study
results, responding to the research questions formulated. Section 5 involves analyzing the
identified trends and noting any observed gaps that require further investigation. Finally,
Section 7 presents the conclusions.

2. Background

This section summarizes the fundamental concepts for understanding this study,
including the general features of UAV-enabled communication systems, 3D path planning
algorithms, and the proposed strategies.

2.1. Unmanned Aerial Vehicles (UAVs)

UAVs are flying devices (aircraft) that do not require a human pilot on board and are
equipped with radio communication modules. These devices can be controlled manually
by a human at a base station on the ground or autonomously through flight programs.
The advance in miniaturization technology and the development of integrated systems
have achieved a considerable reduction in the physical size of the UAV, and likewise
lowering its cost [15].

Using UAVs as Aerial Base Stations (ASBs) is an alternative technology that can
provide efficient wireless connectivity to users on the ground. Due to its mobility and
flexibility, an ASB can help with increased coverage capacity on demand. Service providers
can use this solution for dynamic network densification, rapid network deployment in
an emergency, or temporary coverage of an area [3]. Other applications of UAVs are in
the military area, as well as in the civil area, whether in surveillance, location, 3D aerial
mapping for earthmoving projects, disaster scenarios, and ad hoc FANET (ad hoc FANET
networks are a kind of self-organized decentralized wireless network carried by a group of
UAVs (nodes), so that they can communicate with each other independently of the fixed
infrastructure [16]) for search and rescue missions among other application scenarios [16].
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2.2. Classification of UAVs

Each UAV has its own characteristics, which will depend greatly on the application in
which it will be used and achieve the desired results. UAVs are classified based on several
factors, either by their altitude, size, or shape [1]. For example, multi-rotor drones are the
most used, such as quadrotors which are the cheapest, fastest, most efficient, and with
better maneuverability. However, hexacopters and octocopters have better flight stability,
fault tolerance, and more payload capacity [2]. Figure 1 presents a general classification of
UAVs by altitude, size, and shape.

Figure 1. Classification of UAVs [1].

2.3. Communications Systems Enabled by UAVs

UAV-assisted wireless communication systems can be classified into two groups.
The first group is represented by high-altitude, powerful aerial platforms symbolized
by satellites in orbits. They can remain for a long time in space thanks to the advan-
tages of orbital resources and solar energy. The second group represents the low-altitude
aerial platforms which are symbolized by tethered aerostats/UAVs and relay commu-
nication UAVs and are widely used in fourth-generation (4G) and fifth-generation (5G)
communications [15].

Many base stations are required to achieve dense communication coverage in 5G com-
munications, so this would be quite expensive if terrestrial base stations were implemented.
Using UAVs, low-altitude air base stations can be implemented, with significant advantages
such as reduced costs, increased efficiency, effective coverage improvement, and flexible
deployment [3]. Figure 2 shows the different UAV-enabled communication systems.

However, the challenge to develop communications assisted by low-altitude UAVs
has difficulties such as power consumption, interference avoidance, information security,
etc. The energy consumption problem is given because batteries of finite capacity power
the payload of a UAV and the flight mechanisms. Despite this, the air communication
of the base station is expected to be sustainable and allow comprehensive coverage with
battery replacement efforts or entire UAVs [17]. As a solution to this problem, trajectory op-
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timization (i.e., the path planning) uses less power and achieves higher mission profitability,
usually when power usage cannot be avoided.

Figure 2. 3D communication network (high-altitude long-range communication and low-altitude
high-density communication) [3].

With the evolution of technology and an exponential increase in users in the field of
communication, UAVs are being widely used to meet this extraordinary demand required
in the area of wireless communications, either for data collection from nodes Internet of
Things (IoT) or to increase the range of communication and provide wireless connectivity
to users. UAVs operate as base stations in disaster areas where communication systems
are damaged [18]. UAVs are also used as a base station in locations and times when traffic
flow increases. In the same way, they are widely used as links from UAVs to base stations
to record and transmit the readings of an instrument as audio and video (known as radio
communication). Another widespread use is the satellite-to-UAV link to carry weather and
GPS information (satellite communication). Lastly, the UAV-to-UAV link, where data are
shared with other UAVs through wireless communication [15].

2.4. 3D Path Planning

From the beginning, UAV path planning investigations were carried out only consid-
ering the position in two dimensions, without considering the height that the UAV must
have. Over time, the researchers estimated the optimal position in the 3D dimension, taking
factors such as a canal model for the rural, urban, and dense urban environments. This
factor increases the complexity of the problem and is closer to the reality that UAVs must
face in a communications system [1,3]. Three-dimensional path planning is a very complex
topic. It has been investigated in recent years since it has the difficult task of finding the
best collision-free route, defined as the path planning of the UAV from an initial position to
an objective position (destination). The path is planned to minimize the completion time
for a particular mission [15].
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UAV path planning can be classified into two groups. The first group refers to path
planning from start to finish, where the UAV must move between two fixed points while
avoiding threats and obstacles. Meanwhile, the second group is coverage path planning,
where the UAV will plan a path that covers the entire area as it stays away from obstacles [1].
This approach has changed, and there has been a greater interest in 3D perception for path
planning, where perception constraints are considered in the planning problem. The
methods developed in this field consider the quality of perception to reduce uncertainty
in state estimation. That can be achieved by ensuring that particular objects and features
remain within the limited detection field of view of the UAV [2].

In addition to traditional path planning methods, alternative approaches utilize con-
straint methods in 3D path planning. Constraint methods aim to achieve an optimal
global path while maintaining a safe distance from obstacles in free space. However,
these methods often exhibit conservative dynamic constraints, resulting in slower flight
speeds. Another approach employs smooth constraints that leverage gradient information
to maneuver obstacles away from the path. While this approach mitigates the risk of local
minima, ensuring kinematic feasibility becomes a challenge [19].

Conversely, in the optimization of UAV paths, it is imperative to minimize factors
such as cost, energy, and time. Path planning must strike a balance in minimizing these
three elements. Efficiently optimizing the mission time of the UAV entails reducing battery
consumption for completing the task, thereby decreasing path planning costs. Likewise,
power optimization necessitates accomplishing the mission within the shortest feasible
timeframe, leading to reduced path planning expenses [1]. Analyzing and considering
these factors are essential for optimizing UAV path planning. Based on these considerations,
the following points are taken into account:

• Cost: UAV path planning is considered profitable when the total cost of path planning
decreases, such as the cost of batteries, hardware and software fees, additional charges
such as cameras used to capture the images, sensors for detecting the environment,
GPS to locate the position, initial cost of manufacturing and maintenance, etc. [1].

• Efficiency in Time: UAV path planning is considered efficient when the path is
completed in the shortest possible time. This is achieved by optimizing a path and
making it collision free from source to destination. An example of optimizing the
communication time for fixed-wing UAVs is achieved by strategically planning the
paths of the UAVs to minimize information transmission duration [15].

• Energy Efficiency: Energy efficient path planning is considered when UAVs use the
minimum energy to complete their mission. The UAVs’ energy is optimized to achieve
the mission and return to the destination [1].
Energy consumption comprises three primary components: flying energy, which
represents the energy expended by the UAV during its journey from the starting point
to the destination; floating energy, which denotes the energy necessary for the UAV to
stay airborne and fulfill its assigned task; and transmission energy, which refers to the
energy utilized by the UAV for data transmission back to the source.

For UAV path planning to be implemented successfully, some aspects must be consid-
ered, such as the environment of the place where it will fly. The size of the area, the obstacles
encountered during the flight, the quantity of UAVs involved in the mission, and the ap-
proach taken by the UAV in route planning are all crucial factors in path planning. These
aspects will be further elaborated below [18].

• Number of UAVs: A mission can be carried out by one or several UAVs. The number
of UAVs used will depend a lot on the type of application that will be developed, such
as in a drone-controlled light show where several UAVs will require a well-defined
path planning to avoid collisions and achieve the desired effect [20].

• Obstacles: Any object that interrupts the flight of the UAV is considered as an obstacle,
it is for this reason that the path planning must be focused on detecting obstacles,
avoiding these obstacles and guaranteeing its way to the destination. Obstacles can
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be classified as technical, which are the restrictions developed to successfully and
economically complete a task. On the other hand, non-technical obstacles can be
static limitations, such as buildings, mountains, trees, or dynamic limitations that
become unexpected threats, such as a bird. To avoid both dynamic and static obstacles,
the UAV may be equipping the UAV with sensors that allow it to detect obstacles at all
times. Likewise, another way to avoid collisions is to define restricted flight areas [1].

• Environment: The environment can be uncertain as it frequently changes from static
to dynamic. For this reason, the environment in which the UAV must fly must be
known, and the path planning in uncertain environments. Several studies have been
carried out in different habitats implementing different algorithms that can solve the
complexity of an uncertain environment [1].

• Altitude: Three-dimensional path planning is somewhat complex because the altitude
constantly changes, which causes the UAV to have to change its speed and direction
frequently [1].

• Distance: This aspect is focused on the distance of the path planning. Online path
planning is performed in real-time, and the environmental conditions must be con-
sidered while the UAV is heading to its destination. Offline path planning instead is
developed before the UAV begins its flight. In this case, there is information about the
terrain and obstacles where the UAV will develop its flight [1].

Figure 3 shows the environment of a city where a UAV must plan the best possible
route to complete its mission. For this purpose, the UAV must know the area’s dimensions,
obstacles that may arise during the flight, and the city’s environmental conditions. All
these aspects are vital when planning an optimal path.

Figure 3. Path planning of a network of UAVs for communications [1].

2.5. 3D Path Planning Algorithms

The performance of UAVs in finding the optimal route is determined by the algo-
rithms used for three-dimensional path planning. These algorithms can be classified into
four categories: sampling-based algorithms, node-based algorithms, bio-inspired algo-
rithms, and multiple algorithms [15,19,21,22]. Figure 4 illustrates the classifications of
these algorithms.
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Cell Decomposition :This technique divides the free space 
into cells or regions to easily calculate safe routes between 
points within the same cell or adjacent cells. After route 
calculation within the cells, the cells are organized 
sequentially.

Description

Rapidly Exploring Random Tree (RRT)

Node-​based algorithms 
represent their workspace as a 
graph or grid, where the UAV's 
path starts at a specific node 
and traverses multiple nodes to 
reach the destination. Each grid 
contains smaller cells 
considering threats and 
relevant information from the 
3D environment.N
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These methods simulate UAV 
path planning based on natural 
phenomena. They may sacrifice 
some precision. Considering 
environmental information, the 
path planning problem is treated 
as an optimization task.
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There are two classes of 
multiple algorithms for UAV 
path planning. The first class 
integrates multiple path-​
planning algorithms to find the 
optimal route. The second class 
employs several routing 
algorithms, where each must 
complete its process before the 
next algorithm continues
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Sampling-​based algorithms 
require predefined information 
about the 3D workspace 
configuration. They divide the 
environment into various nodes 
and then map these nodes to 
different optimal path-​planning 
algorithms within the 
workspace.

Probabilistic Roadmaps (PRM)

Exact Cell decomposition on 
Probabilistic RoadMap (ECD-​PRM)

Roadmaps (Two phases): The construction phase, where 
the connectivity of the free space is determined, defining 
the network curves in the 3D environment, and the 
consultation phase, which follows the construction of the 
roadmaps.

The consultation phase, initial and final configurations of 
points are resolved, and routing queries for UAVs in a static 
environment are solved.

Rapidly Exploring Random Tree (RRT*)

The star A Algorithm (A)

Algorithm

Discretizing the workspace is necessary for node-​based 
algorithms, leading to a trade-​off between path-​planning 
precision and computational complexity.

Larger grid sizes demand more computational resources 
but result in reduced accuracy. However, discretization 
makes achieving a genuinely optimal path unattainable,as it 
would require an infinitely large graph or grid.

Fuzzy Virtual Forces (FVF)

The star A  modified Algorithm (A*)

The meta-​heuristics are famous for UAV path planning due 
to their appealing and valuable characteristics.

Genetic Algorithms (GA)

Vibrational genetic Algorithm (VGA)

Particle Swarm Optimization (PSO)

Artificial Neural network (ANN)

Ant Colony optimization (ACO)

These classes follow a meta-​heuristic hybrid algorithm 
scheme, incorporating the ACO and differential evolution 
algorithms (DE). In the literature, a hybrid algorithm has 
been proposed that combines the robustness and 
efficiency of the A* algorithm with the simplicity of a VF 
algorithm.

Dijkstra Algortihm

Evolutionary Algortihms (DE)

A* and VF Algortihms 

Figure 4. Classification of 3D UAVs path planning algorithms.

3. Methodology: Mapping Study

This section presents the methodology to study optimal and suboptimal algorithms for
3D path planning systematically. This research is carried out by searching for information
in a complete database of bibliographic references such as “Scopus”. Once the bibliographic
reference (journal and conference articles) is obtained, the documentation is organized and
classified with the web tool called “CADIMA” [23]. In this application, the information of
interest is filtered according to inclusion and exclusion criteria to carry out the systematic
review of the classified literature. The entire methodology process followed is described in
3 stages: planning, realization, and presentation, as shown in Figure 5.

3.1. Planning
3.1.1. Scope of the Study

This section presents the research questions that allow the classification of infor-
mation related to 3D path-planning optimization solutions. Table 2 summarizes these
research questions.
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Figure 5. Process flow and tasks of the systematic mapping study, based on [24].

Table 2. Research questions related to the systematic study of literature.

No. Research Questions (RQs) Basis

RQ1 Is there UAV path planning in 3D?
To know about path planning for UAVs in
complex 3D environments that are collision-free
from the start position to the target position.

RQ2 Are there optimal methods for
path planning in 3D UAVs?

Know if the optimal methods used by
researchers provide exact results for path
planning in UAVs in 3D, with a high
computational cost.

RQ3 Are there approximate methods
for path planning in 3D UAVs?

To know if there are approximate methods with
reduced complexity that are executed with less
computational cost and running time.

3.1.2. Paper Selection Strategy

The search for existing documents related to this topic was conducted through the
Scopus database that indexes important digital libraries such as IEEE, Xplore, Springer
Link, Science Direct, or ACM. This database is complete and contains much information
from the existing literature in a domain [24]. In this case, it corresponds to 3D path planning
methods for UAVs. The search is based on the research questions and the keywords that
generally cover the entire field of study. Figure 6 shows the first search string performed in
Scopus for this study.
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Figure 6. Search string with keywords in Scopus.

From this first search string, a total of 1233 documents were obtained. As the number
of articles is quite large, a second search is carried out with the inclusion and exclusion
procedure indicated below.

3.1.3. Inclusion and Exclusion Procedure

The inclusion and exclusion process are filters used to exclude studies that are irrele-
vant to answer the research questions (RQs). To select the 1233 documents found in the
first search string, a filter must be carried out with the inclusion and exclusion criteria in an
automated and manual way that allows adequate information collection.

• Automated inclusion–exclusion: The inclusion–exclusion criteria can be automated
and must have the following parameters: document type, language, years of publica-
tion, and subject area.

1. Document type: The selected documents are journal articles, conference articles,
and literature reviews.

2. Language: Only English was selected because it is a universal language, and most
relevant works are published in this language.

3. Years of publication: To select the most up-to-date documentation, the docu-
mentation of the last four years is chosen (i.e., from 2019 to 2022).

4. Thematic area: The area of our interest is Engineering and Computer Science.

Once the filtering with the automatic inclusion–exclusion criteria is carried out, a new
search string is generated, which is as follows:
“3D path planning" OR “3-D path planning" OR “3 D path planning" AND “UAV" OR
“DRONE" OR “Unmanned aerial vehicle" AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-
TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019))
AND (LIMIT-TO (DOCTYPE, “ar") OR LIMIT-TO (DOCTYPE, “cp") OR LIMIT-TO
(DOCTYPE, “re")) AND (LIMIT-TO (SUBJAREA, “ENGI") OR LIMIT-TO (SUBJAREA,
“COMP")) AND (LIMIT-TO (LANGUAGE, “English"))
Once this new search string was applied, the result of selected documents was 631,
as seen in Figure 7.

Figure 7. Search string with automatic inclusion–exclusion criteria.
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• Manual inclusion–exclusion: For the manual inclusion–exclusion criteria stage, the fil-
ters executed are the study researchers’ decisions. A decision tree makes it possible to
be clear about the types of criteria applied at this stage, as shown in Figure 8.

Figure 8. Decision tree for manual selection of papers, based on [24].

The decision tree describes the processes that must be considered for the manual
classification of the documents to be analyzed in this study. Of the 631 articles selected
in the automated filtering stage, it is required to determine if these documents are
primary (Primary Contribution: These are sources where the information provided
has been published for the first time, resulting from intellectual work on a research
topic or secondary (Secondary or Tertiary Contribution: Secondary sources are those
that have primary, synthesized, and reorganized information. They allow knowing
facts from data collected by others, whereas tertiary sources contain and summarize
various primary and secondary sources to provide an overview of a given research
topic [25]) contributions, belong to the domain of the research topic, and are related to
3D UAV path planning techniques.
Suppose there are doubts about the classification of a document. The document is
undoubtedly included for further coding if the contribution meets the three main
characteristics specified in the decision tree. Contrary to this, if the paper only meets
one or two of the three attributes of the decision tree, the document should be excluded.
In that case, it can be marked as “Unclear” and subsequently analyzed to define
whether or not it is included in the group of documents to be coded.
Table 3 shows the list of inclusion–exclusion criteria used to evaluate the documents.
It will be included if the paper meets all the requirements, but if any exclusion criteria
are maintained, then the document is excluded.

Table 3. Manual inclusion and exclusion criteria.

Criteria Description

Inclusion criteria

1. The paper is a primary contribution.
2. The contribution reported in the paper is related to UAV path

planning in 3D.
3. The paper includes at least one contribution that proposes a 3D

UAV path planning technique.

Exclusion criteria

1. The work reports a secondary or tertiary contribution.
2. The contribution does not focus on UAV path planning in 3D.
3. The reported contribution does not use a 3D UAV path

planning technique.

With the list of the 631 documents obtained in the automated inclusion–exclusion
classification of the Scopus database, the free web tool “CADIMA” is used, which
allows the manual inclusion–exclusion of the documentation to be carried out safely.
In this stage of manual filtering, two document selection phases are carried out: the
phase based on titles and abstracts and the phase based on full-text review.
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1. Phase of titles and abstracts: For the selection of the documents, the participa-
tion of one or more researchers (evaluators) is required. The researchers collabo-
rate with the analysis and choice through the manual inclusion–exclusion criteria,
with 20 percent of the information uploaded in CADIMA. The researchers discuss
and resolve the divergences found in the classification of articles in scheduled
meetings. At the end of this stage, there are 104 selected documents.

2. Full-text phase: In this second phase, the evaluators carefully read the text of the
documents selected in the first phase. The title is analyzed first, then the abstract,
then the techniques used (algorithms), and finally, the conclusions. In this second
selection phase, like the first phase, the researchers review 21 contributions
(20 percent) of the 104. The researchers discuss and resolve the divergences
found in the classification of articles in scheduled meetings.

Once the manual inclusion–exclusion process is completed, 37 documents are finally
obtained for the coding process.

3.1.4. Classification Scheme and Data Extraction

A classification scheme organizes critical information extracted from selected papers,
enabling us to answer previously raised RQs. In this work, a part of the scheme is elaborated
from existing classifications in Sections 2.4 and 2.5. Subsequently, this scheme is completed
and refined, including new categories (for example, new path planning techniques) or
dividing types into subcategories (for example, classification and subclassification of path
planning techniques). In addition, for the classification of information, ref. [1] is taken as a
reference to establish well-defined categories. Figure 9 shows the dimensions and attributes
coded at this stage.

Figure 9. Classification scheme.

Figure 9 shows the information to be extracted during the coding stage of the selected
papers. Four main dimensions (yellow boxes) have been created: the RQs posed in the
Planning stage. In turn, each dimension has a certain number of attributes (light blue boxes),
which are those data that need to be extracted from each of the contributions. From the
same paper, one or several attributes can be extracted for a certain dimension. Each of these
dimensions and their attributes is described below.

• Target to be optimized (minimized or maximized): This dimension identifies the
target for optimal path planning of UAVs in a 3D environment, with the following
categories considered:
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1. Cost: Refers to the cost associated with path planning, which may be the cost
of batteries, hardware and software fees, additional charges such as cameras
used to capture the images, sensors to detect the environment, GPS to locate the
position, and cost of initial manufacturing and maintenance.

2. Time: It is generally associated with minimizing the UAV path’s time or the UAV
communication’s information transmission time.

3. Energy: Refers to the minimization of energy consumption to complete its mission.
4. Multiple: This category considers more than one objective (objective function)

to optimize.
5. Others: This field includes additional attributes to those mentioned above.

System Formulation: This dimension defines the specific problem addressed in UAV
path planning in 3D. It is composed of the number of UAVs, obstacles, and environment.

1. Number of UAVs: It means the number of UAVs used in the formulation of the
problem, could be:

(a) Simple: It means that only one UAV was used.
(b) Multiple: It means that more than one UAV was used.

2. Obstacle: Anything that interrupts the flight of the UAV is considered an obstacle.
The types of obstacles considered are technical and non-technical.

(a) Technical: Constraints that are developed to successfully and economi-
cally complete a task.

(b) Non-technical: They can be static or dynamic limitations. Static obstacles
are made up of buildings, mountains, trees, etc. Dynamic obstacles are
unexpected threats, such as a bird.

3. Environment: In UAV path planning, it is essential to know the environment in
which the UAV has to fly. The environment can be static or dynamic.

(a) Static: It means that the environment will not change throughout the
route.

(b) Dynamic: It means that the environment is uncertain; it will constantly
be changing.

Optimization variables: These are the model variables that can be optimized. The vari-
ables considered for optimization are altitude and distance.

1. Altitude: It is the height of the UAVs with respect to the ground.
2. Distance: It is the distance that the UAVs must travel to complete the mission.
3. Multiple: It means that there may be more than one variable to optimize.
4. Others: It means that there may be other variables to optimize.

Solution Strategy: Covers all aspects used to solve the problem. As strategies, exact
and heuristic algorithms have been considered.

1. Exact Algorithms: They guarantee that the solution found is the best possible,
that is, the optimal solution, although they have the disadvantage that they
invest a lot of time in execution [26].

2. Heuristic Algorithms: They are approximate techniques capable of obtaining
reasonable quality solutions in a limited time but without being able to certify
that these solutions are optimal [26].

(a) Based on Sampling: They need a mathematical representation of the
workspace. These methods then sample nodes or cells, usually stochasti-
cally.

(b) Node-Based: Define the workspace as a graph or a grid, where the path
is defined between grid nodes.

(c) Bio-inspired: They present the path planning of UAVs through natural
phenomena, so they are not accurate enough.

(d) Multiple: It means that there can be more than one heuristic algorithm.
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(e) Others: It means that other heuristic algorithms may exist.

3.2. Realization

The realization phase is the process that allows answering the research questions
posed in the phase of the scope of the study. Focused on this task, we explore the doc-
uments in the Scopus database using the search string defined in the previous phase of
automated inclusion–exclusion by filtering the information with the previously proposed
processes and codifying the resulting documents with the implemented classification
scheme. On 29 July 2022, 631 articles were obtained in the automated inclusion–exclusion
phase. Applying the following filter, the manual inclusion–exclusion phase, 37 articles were
finally selected, with which this study was performed. Figure 10 presents a diagram of the
document selection process and the filtering with the inclusion and exclusion criteria.

Figure 10. Scope of the study, based on [24].

Table 4 shows the list of the 37 selected papers. For better identification and under-
standing of the tables, an “A-XX” code was generated for each paper, where the letter A
corresponds to the initial of the paper, followed by a sequential number. These items are in
no particular order. Hereinafter, the papers will be identified with this code.

Table 4. List of analyzed papers.

Item ID Bibliographic Reference

A-01
[27] Du, N., Y. Zhou, W. Deng, y Q. Luo. «Improved Chimp Optimization Algorithm for Three-Dimensional
Path Planning Problem». Multimedia Tools and Applications 81, n.o 19 (2022): 27397-422.
https://doi.org/10.1007/s11042-022-12882-4.

A-02
[22] Aiello, G., K.P. Valavanis, y A. Rizzo. «Fixed-Wing UAV Energy Efficient 3D Path Planning in Cluttered
Environments». Journal of Intelligent and Robotic Systems: Theory and Applications 105, n.o 3 (2022).
https://doi.org/10.1007/s10846-022-01608-1.

A-03

[28] Lv, J.-X., L.-J. Yan, S.-C. Chu, Z.-M. Cai, J.-S. Pan, X.-K. He, y J.-K. Xue. «A New Hybrid Algorithm Based
on Golden Eagle Optimizer and Grey Wolf Optimizer for 3D Path Planning of Multiple UAVs in Power
Inspection». Neural Computing and Applications 34, n.o 14 (2022): 11911-36.
https://doi.org/10.1007/s00521-022-07080-0.

A-04
[29] Farid, G., S. Cocuzza, T. Younas, A.A. Razzaqi, W.A. Wattoo, F. Cannella, y H. Mo. «Modified A-Star (A*)
Approach to Plan the Motion of a Quadrotor UAV in Three-Dimensional Obstacle-Cluttered Environment».
Applied Sciences (Switzerland) 12, n.o 12 (2022). https://doi.org/10.3390/app12125791.

A-05

[30] Zhou, Q., S. Gao, B. Qu, X. Gao, y Y. Zhong. «CROSSOVER RECOMBINATION-BASED GLOBAL-BEST
BRAIN STORM OPTIMIZATION ALGORITHM FOR UAV PATH PLANNING». Proceedings of the
Romanian Academy Series A - Mathematics Physics Technical Sciences Information Science 23, n.o 2 (2022):
207-16.

A-06
[3] Yuan, Z., Y. Yang, D. Wang, y X. Ma. «Energy-Efficient Trajectory Optimization for UAV-Enabled Cellular
Communications Based on Physical-Layer Security». Aerospace 9, n.o 2 (2022).
https://doi.org/10.3390/aerospace9020050.

A-07
[31] Jiang, W., Y. Lyu, Y. Li, Y. Guo, y W. Zhang. «UAV Path Planning and Collision Avoidance in 3D
Environments Based on POMPD and Improved Grey Wolf Optimizer». Aerospace Science and Technology
121 (2022). https://doi.org/10.1016/j.ast.2021.107314.

https://doi.org/10.1007/s11042-022-12882-4
https://doi.org/10.1007/s10846-022-01608-1
https://doi.org/10.1007/s00521-022-07080-0
https://doi.org/10.3390/app12125791
https://doi.org/10.3390/aerospace9020050
https://doi.org/10.1016/j.ast.2021.107314
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Table 4. Cont.

Item ID Bibliographic Reference

A-08
[32] Ahn, H., J. Park, H. Bang, y Y. Kim. «Model Predictive Control-Based Multirotor Three-Dimensional
Motion Planning with Point Cloud Obstacle». Journal of Aerospace Information Systems 19, n.o 3 (2022):
179-93. https://doi.org/10.2514/1.I010956.

A-09
[33] WANG, X., Y. YANG, D. WANG, y Z. ZHANG. «Mission-Oriented Cooperative 3D Path Planning for
Modular Solar-Powered Aircraft with Energy Optimization». Chinese Journal of Aeronautics 35, n.o 1 (2022):
98-109. https://doi.org/10.1016/j.cja.2021.04.015.

A-10
[34] Xia, S., y X. Zhang. «Constrained Path Planning for Unmanned Aerial Vehicle in 3d Terrain Using
Modified Multi-Objective Particle Swarm Optimization». Actuators 10, n.o 10 (2021).
https://doi.org/10.3390/act10100255.

A-11
[35] Jamshidi, V., V. Nekoukar, y M.H. Refan. «Real Time UAV Path Planning by Parallel Grey Wolf
Optimization with Align Coefficient on CAN Bus». Cluster Computing 24, n.o 3 (2021): 2495-2509.
https://doi.org/10.1007/s10586-021-03276-6.

A-12
[36] Huang, J., G. Tian, J. Zhang, y Y. Chen. «On Unmanned Aerial Vehicles Light Show Systems:
Algorithms, Software and Hardware». Applied Sciences (Switzerland) 11, n.o 16 (2021).
https://doi.org/10.3390/app11167687.

A-13
[37] Chen, J., U. Mitra, y D. Gesbert. «3D Urban UAV Relay Placement: Linear Complexity Algorithm and
Analysis». IEEE Transactions on Wireless Communications 20, n.o 8 (2021): 5243-57.
https://doi.org/10.1109/TWC.2021.3066429.

A-14
[38] Chen, Y., W. Li, y R. Qi. «Research and Simulation of UAV Three-Dimensional Path Replanning in
Complex Environment». En Proc. IEEE Asia-Pacific Conf. Image Process., Electron. Comput., IPEC, 746-51.
Institute of Electrical and Electronics Engineers Inc., 2021. https://doi.org/10.1109/IPEC51340.2021.9421155.

A-15
[39] Ahmed, N., C.J. Pawase, y K. Chang. «Distributed 3-D Path Planning for Multi-UAVs with Full Area
Surveillance Based on Particle Swarm Optimization». Applied Sciences (Switzerland) 11, n.o 8 (2021).
https://doi.org/10.3390/app11083417.

A-16
[40] Zhang, S., y R. Zhang. «Radio Map-Based 3D Path Planning for Cellular-Connected UAV». IEEE
Transactions on Wireless Communications 20, n.o 3 (2021): 1975-89.
https://doi.org/10.1109/TWC.2020.3037916.

A-17
[41] Ortiz, A., S. Garcia-Nieto, y R. Simarro. «Comparative Study of Optimal Multivariable Lqr and Mpc
Controllers for Unmanned Combat Air Systems in Trajectory Tracking». Electronics (Switzerland) 10, n.o 3
(2021): 1-31. https://doi.org/10.3390/electronics10030331.

A-18

[42] Xiao, J., H. Sun, X. Chai, B. Qu, P. Wen, Y. Zhou, H. Wang, y D. Wang. «Multi-UAV 3D Path Planning
Based on Improved Particle Swarm Optimizer». En Proc. - Int. Conf. Comput., Internet Things Control Eng.,
CITCE, 144-49. Institute of Electrical and Electronics Engineers Inc., 2021.
https://doi.org/10.1109/CITCE54390.2021.00035.

A-19

[43] Lindqvist, B., A.-A. Agha-Mohammadi, y G. Nikolakopoulos. «Exploration-RRT: A Multi-Objective Path
Planning and Exploration Framework for Unknown and Unstructured Environments». En IEEE Int Conf
Intell Rob Syst, 3429-35. Institute of Electrical and Electronics Engineers Inc., 2021.
https://doi.org/10.1109/IROS51168.2021.9636243.

A-20
[37] Kiani, F., A. Seyyedabbasi, R. Aliyev, M.A. Shah, y M.U. Gulle. «3D Path Planning Method for
Multi-UAVs Inspired by Grey Wolf Algorithms». Journal of Internet Technology 22, n.o 4 (2021): 743-55.
https://doi.org/10.53106/160792642021072204003.

A-21
[44] Guo, J., C. Liang, K. Wang, B. Sang, y Y. Wu. «Three-Dimensional Autonomous Obstacle Avoidance
Algorithm for UAV Based on Circular Arc Trajectory». International Journal of Aerospace Engineering 2021
(2021). https://doi.org/10.1155/2021/8819618.

A-22
[45] Xue, Z., y X. Liu. «Trajectory Planning of Unmanned Aerial Vehicle Based on the Improved
Biogeography-Based Optimization Algorithm». Advances in Mechanical Engineering 13, n.o 3 (2021).
https://doi.org/10.1177/16878140211004295.

A-23
[46] Abhishek, B., S. Ranjit, T. Shankar, G. Eappen, P. Sivasankar, y A. Rajesh. «Hybrid PSO-HSA and
PSO-GA Algorithm for 3D Path Planning in Autonomous UAVs». SN Applied Sciences 2, n.o 11 (2020).
https://doi.org/10.1007/s42452-020-03498-0.

https://doi.org/10.2514/1.I010956
https://doi.org/10.1016/j.cja.2021.04.015
https://doi.org/10.3390/act10100255
https://doi.org/10.1007/s10586-021-03276-6
https://doi.org/10.3390/app11167687
https://doi.org/10.1109/TWC.2021.3066429
https://doi.org/10.1109/IPEC51340.2021.9421155
https://doi.org/10.3390/app11083417
https://doi.org/10.1109/TWC.2020.3037916
https://doi.org/10.3390/electronics10030331
https://doi.org/10.1109/CITCE54390.2021.00035
https://doi.org/10.1109/IROS51168.2021.9636243
https://doi.org/10.53106/160792642021072204003
https://doi.org/10.1155/2021/8819618
https://doi.org/10.1177/16878140211004295
https://doi.org/10.1007/s42452-020-03498-0
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Table 4. Cont.

Item ID Bibliographic Reference

A-24

[47] Wu, C., X. Huang, Y. Luo, S. Leng, y F. Wu. «An Improved Sparse Hierarchical Lazy Theta∗ Algorithm
for UAV Real-Time Path Planning in Unknown Three-Dimensional Environment». En Int. Conf. Commun.
Technol. Proc. ICCT, 2020-October:673-77. Institute of Electrical and Electronics Engineers Inc., 2020.
https://doi.org/10.1109/ICCT50939.2020.9295690.

A-25
[48] Xiong, C., B. Xin, M. Guo, Y. Ding, y H. Zhang. «Multi-UAV 3D Path Planning in Simultaneous Attack».
En IEEE Int. Conf. Control Autom., ICCA, 2020-October:500-505. IEEE Computer Society, 2020.
https://doi.org/10.1109/ICCA51439.2020.9264450.

A-26
[49] Yang, Q., J. Liu, y L. Li. «Path Planning of UAVs under Dynamic Environment Based on a Hierarchical
Recursive Multiagent Genetic Algorithm». En IEEE Congr. Evol. Comput., CEC - Conf. Proc. Institute of
Electrical and Electronics Engineers Inc., 2020. https://doi.org/10.1109/CEC48606.2020.9185513.

A-27
[50] Park, J.-K., y T.-M. Chung. «Boundary-RRT* * Algorithm for Drone Collision Avoidance and Interleaved
Path Re-Planning». Journal of Information Processing Systems 16, n.o 6 (2020): 1324-42.
https://doi.org/10.3745/JIPS.04.0196.

A-28
[51] Wang, X., Y. Yang, D. Wu, Z. Zhang, y X. Ma. «Mission-Oriented 3D Path Planning for High-Altitude
Long-Endurance Solar-Powered UAVs with Optimal Energy Management». IEEE Access, 2020.
https://doi.org/10.1109/ACCESS.2020.3045934.

A-29
[52] Teng, H., I. Ahmad, A. Msm, y K. Chang. «3D Optimal Surveillance trajectory Planning for Multiple
UAVs by Using Particle Swarm Optimization with Surveillance Area Priority». IEEE Access 8 (2020):
86316-27. https://doi.org/10.1109/ACCESS.2020.2992217.

A-30
[53] Samaniego, F., J. Sanchis, S. Garcia-Nieto, y R. Simarro. «Smooth 3d Path Planning by Means of
Multiobjective Optimization for Fixed-Wing UAVs». Electronics (Switzerland) 9, n.o 1 (2020).
https://doi.org/10.3390/electronics9010051.

A-31

[54] Natalizio, E., L. Di Puglia Pugliese, N.R. Zema, y F. Guerriero. «Download and Fly: An Online Solution
for the UAV 3D Trajectory Planning Problem in Smart Cities». En DIVANet - Proc. ACM Symp. Des. Anal.
Intell. Veh. Networks Appl., 49-56. Association for Computing Machinery, 2019.
https://doi.org/10.1145/3345838.3356012.

A-32
[55] Qin, Z., C. Dong, H. Wang, A. Li, H. Dai, W. Sun, y Z. Xu. «Trajectory Planning for Data Collection of
Energy-Constrained Heterogeneous UAVs». Sensors (Switzerland) 19, n.o 22 (2019).
https://doi.org/10.3390/s19224884.

A-33
[56] Dewangan, R.K., A. Shukla, y W.W. Godfrey. «Three Dimensional Path Planning Using Grey Wolf
Optimizer for UAVs». Applied Intelligence 49, n.o 6 (2019): 2201-17.
https://doi.org/10.1007/s10489-018-1384-y.

A-34
[26] Wang, H., Z. Sun, D. Li, y Q. Jin. «An Improved RRT Based 3-D Path Planning Algorithm for UAV». En
Proc. Chin. Control Decis. Conf., CCDC, 5514-19. Institute of Electrical and Electronics Engineers Inc., 2019.
https://doi.org/10.1109/CCDC.2019.8832661.

A-35
[57] D’Amato, E., I. Notaro, L. Blasi, y M. Mattei. «Smooth Path Planning for Fixed-Wing Aircraft in 3D
Environment Using a Layered Essential Visibility Graph». En Int. Conf. Unmanned Aircr. Syst., ICUAS, 9-18.
Institute of Electrical and Electronics Engineers Inc., 2019. https://doi.org/10.1109/ICUAS.2019.8797929.

A-36
[58] Taoudi, A., y C. Luo. «Obstacle Avoidance for a Quadrotor Using A* Path Planning and Lqr-Based
Trajectory Tracking». En AIAA Scitech Forum. American Institute of Aeronautics and Astronautics Inc,
AIAA, 2019. https://doi.org/10.2514/6.2019-1566.

A-37
[59] Bahabry, A., X. Wan, H. Ghazzai, H. Menouar, G. Vesonder, y Y. Massoud. «Low-Altitude Navigation for
Multi-Rotor Drones in Urban Areas». IEEE Access 7 (2019): 87716-31.
https://doi.org/10.1109/ACCESS.2019.2925531.

From the 37 selected documents, all the relevant information is extracted that allows
the classification of the techniques used to solve the problem of collision-free 3D path
planning in the shortest possible time, as well as the assignment of the maturity level of the
research conducted.

After the selected documents’ data extraction has been completed, this information
is stored in the CADIMA platform. To view the information collected, it is necessary to
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download the file in Excel spreadsheet format from the application’s website in the data
extraction section. This file and the others related to the mapping study are available in
this repository: https://github.com/marcomorales01/palth-planing-UAVs-3D (accessed
on 5 March 2023). Figure 11 shows an example of the data extraction process carried out
on a paper in the CADIMA platform.

Figure 11. Scope of the study, based on [24].

3.3. Presentation

In this stage, the answers to the three research questions above are reported: (i) 3D
UAV path planning, (ii) optimal methods for 3D UAV path planning, and (iii) methods
approximate for path planning in UAVs in 3D. All this information is presented in tables
and graphically to be understood clearly and easily, with its respective description of results.
Additionally, a discussion is carried out about the most relevant data obtained after coding
the documents under study. Detailed information is presented in the following sections.

4. Results
4.1. RQ1—Is There UAV Path Planning in 3D?

RQ1 seeks to provide information on the objectives to be optimized, such as the
minimum mission completion time so that the UAV consumes less energy and its total
cost of 3D path planning is minimized. An optimal or feasible 3D UAV route must be
cost-effective and efficient in time and energy; for this, the formulation of the system in path
planning must also be considered, where certain factors must be known for the successful
completion of the mission. The UAV must see the environment where it is going to fly,
the dimensions of the area, and the number of UAVs used to complete the mission and be
prepared for the obstacles that may arise during the flight. These aspects are essential in
the path planning of the UAVs in 3D.

Figure 12 shows a graph of the objectives to be optimized vs. the number of articles
analyzed. If the number of papers for each objective exceeds the value of contributions is
because, in the researched papers, more than one of them has considered several objectives
within the same investigation. Figure 12 also shows that the researchers focus on mini-
mizing cost (33.3%), energy (20.37%), and time (20.37%). Among 18 out of the 37 items,
the priority was to minimize the cost. These included the computational cost, threat cost,
software, and hardware cost, etc.

Table 5 presents the objective functions of the 37 papers analyzed. Table 5 shows that
37.84% (14) of papers present several objective functions, such as shown in contribution
A-18 in which the cost (where the minimum safety distance and maximum communication

https://github.com/marcomorales01/palth-planing-UAVs-3D
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distance between UAVs are considered), environmental model (the topography of the land
is a model), and the flight altitude restrictions are considered. In the same way, in articles
A-29 and A-37, there are three objectives to be optimized. The articles A-03, A-04, A-05,
A-10. A-15, A-20, A-23, A25, A-31, A-32, and A-33 have two objectives to be optimized.
The rest of the items only have one objective function.

Figure 12. Optimization objective functions vs. analyzed papers.

Implementation Aspects of Path Planning

One of the aspects that researchers take into account for path planning is the number of
UAVs. Table 6 shows two groups of UAVs that can be observed, the simple ones, with only
one UAV used (17 papers) and multiple UAVs where more than one UAV is used for
the mission.

Another important aspect is the obstacles that the UAVs must avoid. Table 7 shows
that most of the contributions do not consider obstacles or only focus on known obstacles
such as buildings or trees, so 78.38% (29 articles) of the contributions conducted their
research with static non-technical obstacles, and only 5.41% of the contributions researchers
consider technical obstacles. For instance, paper A-12 developed path-planning techniques
for light shows with UAVs. They required powerful computing units and onboard sensors,
which are extremely expensive for a large-scale group of UAVs, becoming a technical hurdle
for this research.

One of the most critical aspects that few researchers have considered is the environ-
ment, such as wind, snow, or rain, which can affect the flight of the UAVs, causing them
to change their planned route and even causing the mission to fail. In contribution A-14,
the researchers carry out 3D path planning based on radio maps for UAVs connected to
cell phones. Here, the UAVs are connected to the BS to update their flight information and
replan their route through algorithms based on predictive control. Figure 13 shows that the
researchers have considered a hostile and uncertain environment only in 14% (A-02, A-14,
A-15, A-26, and A-29) of the contributions.

Figure 13. Static or dynamic environments that have been considered in path planning.
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Table 5. The objectives to be optimized in each of the contributions investigated.

ID Aptitude Collisions Cost Data Energy Environmental
Model

Turning
Radius Restrictions Flight

Hazards Time Vigilance Multiple

A-01 x

A-02 x

A-03 x x x

A-04 x x x

A-05 x x x

A-06 x

A-07 x

A-08 x

A-09 x

A-10 x x x

A-11 x

A-12 x

A-13 x

A-14 x

A-15 x x x

A-16 x

A-17 x

A-18 x x x x

A-19 x

A-20 x x x

A-21 x

A-22 x

A-23 x x x

A-24 x
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Table 5. Cont.

ID Aptitude Collisions Cost Data Energy Environmental
Model

Turning
Radius Restrictions Flight

Hazards Time Vigilance Multiple

A-25 x x x

A-26 x

A-27 x

A-28 x

A-29 x x x x

A-30 x

A-31 x x x

A-32 x x x

A-33 x x x

A-34 x

A-35 x

A-36 x

A-37 x x x x
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Table 6. Number of UAVs used for the formulation of the problem.

UAVs Total

Multiple 17

Single 20

Table 7. Types of obstacles that researchers consider for path planning.

Obstacles Types Total

Non Technicians
Dynamic 6

Static 29

Technicians Economic 2

4.2. RQ2—Are There Optimal Methods for Path Planning in 3D UAVs?

RQ2 seeks to provide data on the different variables to be optimized for path planning
in 3D. Table 8 shows the variables that researchers have considered optimizing by apply-
ing different path-planning techniques. Among these are the flight altitude of the UAV,
the inclination angle of the UAV to rise, collision avoidance of the UAV, air density where
the UAV is going to fly, the distance between the starting point of the UAV and its target,
evasion of radars in restricted places, exploration and exploitation of the best routes, power
of the UAVs to fulfill the mission, constant angular velocity Q to lengthen the duration of
its energy. Distance and altitude are the variables that the researchers most considered. Due
to the complexity of 3D path planning, the altitude is constantly changing, which causes
the UAV to have to change its speed and direction frequently. In this regard, Table 9 also
shows the optimization variables related to each contribution analyzed. This table shows
that, of the 37 contributions analyzed, 32.43% (12) of the papers have multiple variables
to be optimized. For instance, in paper A-11, the researchers optimize altitude, collisions,
distance, radar evasion, and power. Instead, in paper A-17, the researchers optimize the
altitude and the angle of inclination for the elevation of the UAV. In papers A-02, A-03, A-05,
A-07, A-08, A-16, A-18, A-25, and A-26, there are two variables to optimize, of which the
altitude of UAV flight is the dominant one. The rest of the articles only have one variable
to optimize.

Table 8. Variables that the researchers optimized in their investigations.

Optimized Variables Total

Altitude 21

Tilt angle 1

Collisions 1

Air density 1

Distance 26

Evade Radars 1

Exploration and exploitation 1

power 1

Angular velocity Q 1

Figure 14 shows the papers vs. the variables to be optimized, where the lead-colored
bars indicate the number of articles that have worked with multiple variables.
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Table 9. Optimization variables of each contributions analyzed.

ID Altitude Inclination
Angle Collisions Air Density Distance Evade Radars Exploration/

Exploitation Power Angular
Velocity Q Multiple

A-01 x

A-02 x x x

A-03 x x x

A-04 x

A-05 x x x

A-06 x

A-07 x x x

A-08 x x x

A-09 x

A-10 x x x x

A-11 x x x x x x

A-12 x

A-13 x

A-14 x

A-15 x

A-16 x x x

A-17 x x x x

A-18 x x x

A-19 x

A-20 x

A-21 x

A-22 x

A-23 x
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Table 9. Cont.

ID Altitude Inclination
Angle Collisions Air Density Distance Evade Radars Exploration/

Exploitation Power Angular
Velocity Q Multiple

A-24 x

A-25 x x x

A-26 x x x

A-27 x

A-28 x

A-29 x

A-30 x

A-31 x

A-32 x

A-33 x

A-34 x

A-35 x

A-36 x

A-37 x
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Figure 14. Variables to optimize in the analyzed articles. The optimized multiple variables are
observed in lead color, and the predominant variables in blue and orange.

4.3. RQ3—Are There Approximate Methods for Path Planning in 3D UAVs?

RQ3 seeks to provide information on the approximate methods mainly addressed for
path planning in 3D UAVs. To answer this question, the results obtained in this research
are presented below.

Table 10 presents the classification of the algorithms, in which 29 out of the 37 contri-
butions analyzed, the researchers use the method of bio-inspired algorithms, such as the
PSO. However, the researchers note that using this algorithm for a global optimal solution
can take a long time (A-14).

The 18.9% (A-17, A-19, A-24, A-27, A-30, A-31, and A-34) of the papers analyzed use
methods based on sampling. Multi-target exploration and path planning for unknown and
unstructured environments are performed using the RRT algorithm, specifically designed
for use in 3D exploration missions (A-19).

The node-based method is used by 21.62% of the contributions (A-01, A-04, A-16, A-17,
A-22, A-34, A-35, and A-36). One of the algorithms implemented is the Layered Essential
Visibility Graphic (LEVG) method for smooth path planning for fixed-wing UAVs in 3D
environments through an efficient branching algorithm to reduce the computational time
(A-35).

Table 10. Types of heuristic algorithms used in path planning.

Algorithm Classes Total

Based on Sampling 7

Based on Nodes 8

Bio-inspired 29

Other 10

Table 11 shows the algorithms used in the 37 contributions analyzed. Likewise,
Table 12 summarizes the information extracted from the contributions in this systematic
mapping study. The researchers have employed diverse heuristic algorithms to address
UAV-enabled communications systems’ 3D path planning problem. The algorithms are
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classified into four categories based on their characteristics: Sampling-based, Node-based,
Bioinspired, and Others. Among the algorithms, A* and Dijkstra’s algorithms are com-
monly used in path planning and are categorized as node-based. They are well-known
and widely adopted due to their effectiveness in finding optimal paths. The Heuristic
algorithms section includes various optimization techniques such as Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Gray Wolf
Optimizer (GWO). These bioinspired algorithms have been adapted and utilized in 3D
path planning to optimize objectives like energy consumption, cost, time, and collisions.
Additionally, some algorithms incorporate specific techniques to address challenges in
UAV communications systems. For instance, the Energy Efficiency A* (EEA*) algorithm
focuses on energy optimization, while the Convex Model Predictive Control (MPC) algo-
rithm considers dynamic obstacles. The algorithms demonstrate the efforts of researchers
to adapt and develop innovative solutions for UAV 3D path planning, catering to vari-
ous optimization objectives and environmental conditions. While some algorithms are
based on well-established optimization techniques, others introduce novel adaptations and
combinations to tackle specific challenges.

Table 11. Heuristic algorithms used by researchers in 3D path planning. AC = Algorithm classification,
1 = Based on Sampling, 2 = Based on Node, 3 = Bioinspired and 4 = Others.

Algorithm Name
AC

1 2 3 4

Incremental Gray Wolf Optimizer (I-GWO) x

Algorithm A* x

Lazy theta adaptive algorithm* x

Boundary star fast scan random tree algorithm (boundary-RRT*) x

Rapid Scan Random Trees algorithm (ERRT) x

Model Predictive Control algorithm (MPC) x

Bresenham algorithm x

Modified A* search algorithm x

Artificial Potential Field Algorithm (APF) x

Ant colony algorithm x

Improved ant colony algorithm x

Collision node configuration algorithm x

Speed control algorithm x

Convex Model Predictive Control algorithm (MPC) x

Dijkstra’s algorithm x

Circular Arc Trajectory Geometric Avoidance Algorithm (CTGA) x

Path planning algorithm with an adaptive disturbance operator x

Multiple Limited Energy Heterogeneous UAV Trajectory Planning Algorithm x

Path planning algorithm based on the biogeography algorithm (BBO) x

Improved RRT algorithm x

Cluster head selection algorithm and trajectory planning x

Dynamic training transformation algorithm x

Hierarchical recursive multiagent genetic algorithm HR-MAGA x
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Table 11. Cont.

Algorithm Name
AC

1 2 3 4

Layered Essential Visibility Graphical Algorithm (LEVG) x

Ordered Fleet Iterative Algorithm (OFIA) x

Step Forward Iterative Algorithm (SFIA) x

Linear Quadratic Governor Algorithm (LQR) x

Enhanced Sparse Hierarchical Lazy Theta Algorithm (SHLT*) x

Algorithms based on radio maps x

Fine-grained blocking algorithms x

Alignment coefficient on the CAN bus x

Creation of part flight corridors (PFC) x

Gaussian Distribution and Q-Learning Technique x

Energy Efficiency A* (EEA*) x

The pseudospectral method (GPM) x

grid method x

golden eagle optimizer x

Energy Efficiency Optimizer x

Particle Swarm Optimizer (PSO) x

Particle Swarm Optimizer (PSO) with Harmony Search Algorithm (HSA) PSO-HSA x

Particle Swarm Optimizer (PSO) with PSO-GA Genetic Algorithm (GA) x

Improved particle swarm optimizer called HACLDMS x

Multi-target particle swarm optimize x

ray Wolf Optimizer (GWO) x

Improved Gray Wolf Optimizer (GWO) x

Global Brainstorming Optimizer Based on Cross Recombination (GBSO-CR) x

Expanded Gray Wolf Optimizer (Ex-GWO) x

Multi-Objective Optimization Problem (MOP) x

Partially Observable Markov Decision Process (POMDP) x
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Table 12. Summary of the systematic study carried out with the 37 papers.

ID Max/Min Objective UAVs Obstacles Environment Optimization Variables Algorithm Class Algorithm

A-01 Cost Single Non-technical Static Altitude Heuristic Grid Method

A-02 Energy Multiple Non-technical Dynamic
Altitude

Heuristic Energy Efficiency A∗ (EEA∗)
Air density

A-03
Cost

Multiple Non-technical Static
Distance

Heuristic
golden eagle optimizer

Energy Altitude Gray Wolf Optimizer (GWO)

A-04
Cost

Single Non-technical Static Distance Heuristic Modified A∗ search algorithm
Time

A-05
Cost

Single Non-technical Static
Altitude

Heuristic Global Brainstorming Optimizer Based
on Cross Recombination (GBSO-CR)Time Distance

A-06 Energy Simgle Non-technical Static Distance Heuristic Energy Efficiency Optimizer

A-07 Cost Single Non-technical Static
Altitude

Heuristic
Improved Gray Wolf Optimizer (GWO)

Distance Partially Observable Markov Decision
Process (POMDP)

A-09 Multiple Energy Technical Static Altitude Heuristic Improved ant colony algorithm

A-10

Cost

Single Non-technical Static

Altitude

Heuristic

Multi-target particle swarm optimizer

Restrictions
Distance Gaussian Distribution and

Q-Learning Techniqueexploration and exploitation

A-11 Cost Single Non-technical Static

Altitude

Heuristic

Gray Wolf Optimizer (GWO)

Distance

Alignment coefficient on the CAN bus
Radars avoid

Power

Collisions

A-12 Collisions Multiple Technical Static Distance Heuristic Dynamic Formation Transformation
Algorithm

A-13 Cost Single Non-technical Static Altitude Heuristic Fine-grained blocking algorithm
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Table 12. Cont.

ID Max/Min Objective UAVs Obstacles Environment Optimization Variables Algorithm Class Algorithm

A-14 Time Single Non-technical Dynamic Altitude Heuristic
Convex Model Predictive Control
algorithm (MPC)

Particle Swarm Optimizer (PSO)

A-15
Multiple

Cost Non-technical Dynamic Altitude Heuristic
Particle Swarm Optimizer (PSO)

Fitness Bresenham Algorithm

A-16 Time Single Non-technical Static
Altitude

Heuristic
Algorithms based on radio maps

Distance Dijkstra Algorithm

A-17 Cost Single Non-technical Static

Altitude

Heuristic

Linear Quadratic Ruler Algorithm (LQR)

Inclination angle
Model Predictive Control Algorithm (MPC)

Angular velocity Q

A-18

Cost

Multiple Non-technical Static

Altitude

Heuristic Enhanced Particle Swarm
Optimizer called HACLDMSEnviron mental model

Distance
Restric tion

A-19 Cost Single Non-technical Static Distance Heuristic Random Rapid Scan Trees Algorithm
(ERRT)

A-20

Cost

Multiple Non-technical Static Distance Heuristic

Incremental Gray Wolf Optimizer
(I-GWO)

Time Expanded Gray Wolf Optimizer
(Ex-GWO)

A-21 Collisions Single Non-technical Static Distance Heuristic Circular Arc Path Geometric Avoidance
Algorithm (CTGA)

A-22 Cost Single Non-technical Static Distance Heuristic
Collision node configuration algorithm

Path planning algorithm based on the
biogeography algorithm (BBO)
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Table 12. Cont.

ID Max/Min Objective UAVs Obstacles Environment Optimization Variables Algorithm Class Algorithm

A-23
Time

Single Non-technical Static Distance Heuristic

Particle Swarm Optimizer (PSO) with
Harmony Search Algorithm (HSA)
PSO-HSA

Energy Particle Swarm Optimizer (PSO) with
Genetic Algorithm (GA) PSO-GA

A-24 Cost Single Non-technical Static Distance Heuristic

Enhanced Sparse Hierarchical Lazy
Theta (SHLT*)

Lazy theta* adaptive algorithm

A-25
Multiple

Time Non-technical Static
Altitude

Heuristic Path planning algorithm with an
adaptive disturbance operatorEnergy Distance

A-26 Time Multiple Non-technical Dynamic
Altitude

Heuristic Hierarchical Recursive Multiagent
Genetic Algorithm HR-MAGADistance

A-27 Collisions Multiple Non-technical Static Distance Heuristic Fast Scan Random Tree star boundary
Algorithm (boundary-RRT*)

A-28 Energy Single Non-technical Static Altitude Heuristic
Pseudospectral Method (GPM)

Ant colony algorithm

A-29

Energy

Multiple Non-technical Dynamic Distance Heuristic Particle Swarm Optimizer (PSO)Vigilance

Flight hazards

A-30 Radius of gyration Multiple Non-technical Static Distance Heuristic Multi-Objective Optimization Problem
(MOP)

A-31
Energy

Multiple Non-technical Static Altitude Heuristic Speed Control Algorithm
Data
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Table 12. Cont.

ID Max/Min Objective UAVs Obstacles Environment Optimization Variables Algorithm Class Algorithm

A-32

Energy

Multiple Non-technical Static Altitude Heuristic

Cluster head selection and trajectory
planning algorithm

Data
Multiple energy-constrained
heterogeneous UAV trajectory
planning algorithm

A-33
Cost

Multiple Non-technical Static Distance Heuristic
Gray Wolf Optimizer (GWO)

Time

A-34 Collisions Single Non-technical Static Distance Heuristic
Improved RRT Algorithm

Artificial Potential Field (APF)

A-35 Cost Single Non-Technical Static Distance Heuristic Layered Essential Visibility Graphical
Algorithm (LEVG)

A-36 Cost Single Non-Technical Static Distance Heuristic Algorithm A*

A-37

Time

Multiple Non-Technical Static Altitude Heuristic

Ordered Fleet Iterative Algorithm (OFIA)

Energy
Step Forward Iterative Algorithm (SFIA)

Collisions
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5. Discussion

This section focuses on the trends and research gaps related to 3D path planning in
UAV-enabled communications systems. One notable research gap we identified is the lack
of consideration for multiple UAVs in most analyzed articles. While UAV networks have
the potential to enhance coverage and communication capabilities, most studies focused on
single UAV scenarios. It highlights the need for further research to explore the challenges
and opportunities of path-planning algorithms for multiple UAVs, including coordination
and collision avoidance. By addressing these aspects, the efficiency and effectiveness of
UAV-enabled communications systems can be significantly improved.

Another research gap is the limited attention given to dynamic obstacles. Many
analyzed papers either ignored dynamic obstacles altogether or only considered static
obstacles. However, real-world scenarios often involve dynamic elements like other UAVs
from different networks. Incorporating the ability to perceive and respond to dynamic
obstacles is crucial for safe and reliable UAV operations. Future research should emphasize
the development of path-planning algorithms that can dynamically detect and avoid
static and dynamic obstacles, enhancing the robustness and adaptability of UAV-enabled
communications systems.

In terms of objectives to be optimized, the trends among researchers primarily focused
on minimizing time, cost, and energy. Time optimization is essential for efficient UAV oper-
ations, ensuring timely delivery of communication services or completing missions within
specified timeframes. Cost optimization considers computational, hardware, and overall
mission costs to achieve cost-effective solutions. Energy optimization is paramount as it
directly impacts UAVs’ endurance and operational range. By minimizing energy consump-
tion, UAVs can prolong flight duration and provide extended communication coverage.

Furthermore, the trends among researchers regarding the variables to be optimized
highlighted minimizing altitude and distance. These objectives align with the need for
UAVs to operate efficiently, conserve energy, and optimize communication coverage. Min-
imizing altitude helps reduce power consumption and enhances flight stability while
minimizing distance allows for shorter communication links and faster data transmission.
However, it is worth noting that specific objectives related to in-flight communications,
such as data rate, outage probability, and power transmission, have not been thoroughly
analyzed in the context of path planning, as shown in Figure 15. Future research could
explore these objectives’ optimization potential and impact on overall communication
system performance.

Figure 15. Objective to be Min-max optimized vs. Optimization Variable
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6. Open Issues and Research Challenges

This section addresses open questions and research challenges that inspire further
exploration in this emerging field. We delve into questions regarding the objectives to
maximize and the system parameters utilized in its formulation.

6.1. Objective to Be Optimized

The main objective to be optimized focus on path planning is the coverage, avoiding
collision, and energy consumption, but only a few consider providing communication dur-
ing the trip. Consequently, additional objectives are regarded to facilitate communication
during UAV flights. The Outage Probability ensures reliable and uninterrupted commu-
nication services in UAV networks, especially in challenging and dynamic environments.
Optimizing throughput is essential to maximize the data rate and network efficiency. Delay
Among terminal devices minimizing the communications delay is vital to enhance the
scalability in UAV-enable communication systems, and quality of service ensures the power
signal to decode the information.

6.2. Parameters Involved in System Formulation

The parameters commonly employed in system formulation encompass the number of
UAVs, obstacles, and the environment. However, to enable communication capabilities, it
becomes crucial to include additional parameters like Channel Models, which incorporate
path loss and fading models within the communication system is vital. Understanding
these models is essential for determining the required transmission power to transmit
information effectively. Additionally, The access technique utilized in UAV networks to
communicate with users is another critical parameter. It aids resource allocation and
becomes especially significant in scenarios involving multiple UAVs, where interference
analysis between UAVs is necessary. The application of this UAV network communication
type comes into play when UAVs gather data from IoT devices.

7. Conclusions

This paper systematically mapped out 3D path planning algorithms in UAV-enabled
communications systems. UAVs with communication technologies are promising wireless
connectivity solutions in remote and disaster-stricken areas. However, integrating UAVs
into real scenarios requires diverse technologies and algorithms, with 3D path planning
algorithms crucial in determining optimal obstacle-free paths.

Through analyzing 37 articles from the Scopus database, we provided an overview of
UAV-enabled communications systems, examined objectives to be minimized or maximized,
investigated optimization variables, and explored algorithmic strategies for solving the
3D path planning problem. Unlike existing literature focusing on 2D environments, our
study specifically addressed 3D path planning solutions, filling a critical research gap and
offering insights into recent advancements.

The study highlights the need for further research and development in several critical
areas of 3D path planning algorithms in UAV-enabled communications systems. These
include the consideration of multiple UAVs to enhance network coverage, incorporating
dynamic obstacle avoidance capabilities, and exploring multi-objective optimization ap-
proaches beyond altitude and distance minimization. Addressing these challenges can
advance UAV-enabled communications systems’ efficiency, reliability, and effectiveness,
unlocking their full potential for wireless connectivity in challenging environments and
contributing to various application domains, including disaster response, remote areas,
and beyond.
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