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Abstract: Cloud computing has become ubiquitous in the enterprise environment as its on-demand
model realizes technical and economic benefits for users. Cloud users demand a level of reliability,
availability, and quality of service. Improvements to reliability generally come at the cost of additional
replication. Existing approaches have focused on the replication of virtual environments as a method
of improving the reliability of cloud services. As cloud systems move towards microservices-based
architectures, a more granular approach to replication is now possible. In this paper, we propose a
cloud orchestration approach that balances the potential cost of failure with the spot market running
cost, optimizing the resource usage of the cloud system. We present the results of empirical testing
we carried out using a simulator to compare the outcome of our proposed approach to a control
algorithm based on a static reliability requirement. Our empirical testing showed an improvement
of between 37% and 72% in total cost over the control, depending on the specific characteristics of
the cloud models tested. We thus propose that in clouds where the cost of failure can be reasonably
approximated, our approach may be used to optimize the cloud redundancy configuration to achieve
a lower total cost.

Keywords: cloud computing; cloud services orchestration; cloud microservices architecture;
distributed computer systems; cloud reliability

1. Introduction

Cloud computing has become ubiquitous in the enterprise environment as its on-
demand model provides technical and economic benefits for its users [1]. This on-demand
model is made possible by the virtualization and containerization of resources at each
level of the cloud infrastructure [2]. Cloud computing users demand a level of reliability,
availability, and quality of service commensurate with their application domain [3,4]. The
virtualization of resources in cloud environments enables the cloud operator to rapidly re-
spond to faults, changes in demand, and maintenance requirements, redeploying resources
as needed [2].

Established approaches to cloud systems’ virtualization have used virtual machines
as the basis of their operation [5]. Recently, however, the industry has been increasingly
moving towards a container- and microservices-based architecture for cloud systems in
order to realize the benefits of lighter resource footprints and a more granular level of
control in all phases of the software development life cycle [3].

The benefits of using a microservices-based architecture include the ability to pro-
vide a finer level of reliability of cloud systems components by managing reliability at
the microservice container level [6]. In [6], we proposed a novel approach to reliability
in microservices-based cloud architectures using Task-Based Redundancy (TBR). Our ap-
proach modeled the reliability of the system with respect to the marginal cost of adding
additional redundant microservice containers in comparison with an expected cost of
failure, both of which were fixed parameters [6].
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There are several existing costing models in the cloud computing market, including
pay-as-you-go (PAYG), on-demand (OD), and spot market (SM) [7]. Of these, spot market
costing varies according to the specific market conditions at the time of usage which cannot
be predicted in advance [7]. The dynamic costing model used in a spot market thus results
in fluctuations in the usage cost per unit time, and by extension, fluctuations in the cost of
providing redundancy for critical microservice containers. These fluctuations present an
opportunity for cost optimization which would not otherwise exist in a fixed system.

In this paper, we consider the effect that such fluctuations may have on the relationship
between the cost of redundancy and the cost of failure and propose a TBR-based orchestra-
tion algorithm that takes this into account when determining the level of redundancy in
the cloud. We apply the idea of task-based, microservice-level reliability to a market-based
cloud ecosystem, where the marginal cost of adding cloud services and the expected cost
of failure are parameters dictated by the open market.

In Section 2, we survey related works. In Section 3, we discuss our model for reliability
in cloud systems through an application of TBR. Then, in Section 4, we present our proposed
algorithm for cloud orchestration with respect to the spot market conditions and reliability
requirements. In Section 5, we present our experimental methodology and the results of
simulations comparing our proposed approach with a control approach based on a fixed
reliability requirement. Finally, in Sections 6 and 7, we discuss the observed results and
draw conclusions.

2. Related Work

In this section, we review existing approaches and related work in virtualization and
containerization, microservices architectures, and resilience of cloud systems.

2.1. Virtualization and Containerization

Virtual machines (VMs) are an established method of virtualizing cloud-based as-
sets [5]. A VM is a self-contained unit comprising a guest operating system image, support-
ing libraries, and the applications required to provide service [8]. While VMs provide the
advantages of virtualization such as isolation, transferability between physical assets, and
platform independence, a significant amount of the resources they consume are wasted on
content common to multiple instances, such as operating system components [8].

Increasingly, the cloud computing industry is adopting container-based models to
address the shortcomings of VMs [2]. A container, as opposed to a VM, comprises only
those components necessary to provide the individual characteristics of the application,
while operating system binaries and other support infrastructure are shared (Figure 1) [2].
Containers “provide OS-level virtualization by leveraging kernel features to isolate pro-
cesses and define system usage limits for resources such as CPI, memory, disk I/O and
network” [9].

These efficiencies are manifested as performance improvements over VMs which
are significant at scale, as shown in several recent studies that compared VMs to contain-
ers in various applications, including the classic cloud computing use cases of artificial
intelligence [10], big data [11], edge computing [12], and databases [13].

The disadvantage of container-based systems is that they are limited in their flexibility
to support multiple types of heterogeneous operating systems [2].

2.2. Microservices Architecture

Cloud systems based on VMs, which, by their nature, are self-contained units capa-
ble of independent operation, have in the past tended toward more monolithic system
architectures [2]. However, with the trend toward containerization in the infrastructure, a
concurrent trend is being seen in the industry moving toward microservices-based system
architectures [3].
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Microservices architecture “is a cloud-native architecture that aims to realize software
systems as a package of small services, each independently deployable on a potentially
different platform and technological stack, and running in its own process while communi-
cating through lightweight [APIs]” [14]. Microservices architecture “aims to decompose a
monolithic application into a set of independent services which communicate with each
other through open APIs or highly scalable messaging” [15].

In [3], the authors identify several advantages of the microservices architecture, in-
cluding simplification and acceleration of deployment through modularity, language and
programming framework heterogeneity, and simplification of correctness and performance
debugging. In [16], the author notes cost reduction, quality improvement, agility, and
decreased time to market as benefits of the microservices architecture.

The increasing use of microservices is, in part, based on their correspondence with the
containerization model at the infrastructure level, with “each microservice accommodated
in a single container” [3].

A key innovation in the microservices architecture is that of the stateless container.
While stateful containers also exist, in which state information is kept in the container
between calls to the microservice, stateless microservice containers are designed such
that no state information is kept in the container between calls to the microservice [17].
Any stateful information required to supply the desired service is abstracted out of the
microservice into a separate, persistent repository such as a database [17].

Stateless containers are favored by cloud orchestrators due to their simpler synchro-
nization and the ability to restart and initialize them from a clean state [17]. They thus
“facilitate the architectural decomposition of microservices into functional, stateless compo-
nents supported by persistent data storage with defined scope and intention” [6] (Figure 2).

One of the advantages of stateless containers is that different instances of the same
container are functionally and statefully equivalent [6]. This property of stateless containers
makes them particularly suitable for at-scale replication and use in redundancy-based fault
tolerance and reliability strategies [6].



Future Internet 2023, 15, 288 4 of 17

Future Internet 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 

the architectural decomposition of microservices into functional, stateless components sup-
ported by persistent data storage with defined scope and intention” [6] (Figure 2). 

 
Figure 2. Stateless container architecture. 

One of the advantages of stateless containers is that different instances of the same 
container are functionally and statefully equivalent [6]. This property of stateless contain-
ers makes them particularly suitable for at-scale replication and use in redundancy-based 
fault tolerance and reliability strategies [6]. 

2.3. Resilience of Cloud Systems 
Cloud systems generally have resilience requirements that define their required be-

havior with respect to various parameters such as fault tolerance, reliability, quality of 
service, and availability [18]. 

Resilience is defined as “the capacity of a system … to remain reliable, dependable, 
failure tolerant, survivable and secure in case of any malicious or accidental malfunctions 
or failures that result in a temporal or permanent service disruption” [18]. Reliability is 
defined as “the probability that the system will be functioning at a given time and capable 
of providing service” [6,19]. 

Various approaches exist to improve the resilience of cloud systems at different levels 
of the cloud infrastructure. For example, in [4], the authors propose a cloud systems ar-
chitecture that automatically configures the fault detection and fault recovery methods in 
the context of particular service level requirements, while in [18], the authors propose to 
map component failures to different layers in the cloud architecture so that the component 
failures propagate from the lower layers to the application layer if not handled. 

Broadly speaking, the different approaches to cloud resilience can be classified into 
three categories (Figure 3): failure forecasting, protection, and recovery, with protection 
being further divided into replication-based and checkpointing-based approaches 
[6,18,20]. Checkpointing, where periodic snapshots are taken to enable rollback and re-
covery from errors, is inherently applicable to stateful systems; thus, the replication strat-
egy is most appropriate for stateless microservice containers [6]. 

Figure 2. Stateless container architecture.

2.3. Resilience of Cloud Systems

Cloud systems generally have resilience requirements that define their required behav-
ior with respect to various parameters such as fault tolerance, reliability, quality of service,
and availability [18].

Resilience is defined as “the capacity of a system . . . to remain reliable, dependable,
failure tolerant, survivable and secure in case of any malicious or accidental malfunctions
or failures that result in a temporal or permanent service disruption” [18]. Reliability is
defined as “the probability that the system will be functioning at a given time and capable
of providing service” [6,19].

Various approaches exist to improve the resilience of cloud systems at different levels
of the cloud infrastructure. For example, in [4], the authors propose a cloud systems
architecture that automatically configures the fault detection and fault recovery methods in
the context of particular service level requirements, while in [18], the authors propose to
map component failures to different layers in the cloud architecture so that the component
failures propagate from the lower layers to the application layer if not handled.

Broadly speaking, the different approaches to cloud resilience can be classified into
three categories (Figure 3): failure forecasting, protection, and recovery, with protection
being further divided into replication-based and checkpointing-based approaches [6,18,20].
Checkpointing, where periodic snapshots are taken to enable rollback and recovery from
errors, is inherently applicable to stateful systems; thus, the replication strategy is most
appropriate for stateless microservice containers [6].
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Replication of redundant components is the core principle upon which reliability and
fault tolerance strategies are based [19]. Through replication, individual component failures
can be masked and tolerated, thereby preventing a failure of the entire system [19].

We propose that replication is particularly suitable for improving the resilience of
stateless microservice containers based on the low cost of replication and user agnosticism
with respect to which particular microservice container will provide them with their
desired service [6]. Thus, provided that sufficient redundancy exists to cover the temporary
shortfall, failed components can be seamlessly replaced with no loss of user experience.

Given a suitable algorithm for determining the level of redundancy, microservice
containers can be spawned and shut down accordingly to achieve the desired level of
reliability. Various approaches exist in the literature to guide such choices of replication
and redundancy levels in cloud systems, including the classic, static redundancy level ap-
proach [19], adaptations of the Mean-Time-To-Failure (MTTF) metric [21], Petri Nets [22–24],
and Markov chains [25], among others.

2.4. Existing Spot Market Cloud Implementations

Several existing services provide a spot market for cloud resources which have been
studied in the literature. In [26], the authors considered the life cycle of spot instances (SIs)
across three different regions in the Amazon EC2 cloud service. They found that SIs were
most reliable in the first 20 to 30 min after deployment.

In [27], the authors explored a method for optimizing the usage cost of spot market-
based cloud resources using a Long/Short-Term Memory recurrent neural network to
predict the spot price.

Similar services to the Amazon EC2 spot market are provided by Google [28] and on
the Azure cloud platform [29]. In [30], the authors provide an exhaustive survey of spot
pricing in the cloud ecosystem, from both a computation and economics perspective.

3. Task-Based Redundancy in Cloud Systems

This section presents Task-Based Redundancy (TBR), a general redundancy technique
that forms the basis of our approach to managing reliability in complex cloud systems.

3.1. Background to Task-Based Redundancy

Existing approaches generally assume the need for a particular level of reliability as
an axiom, rather than determining it from an analysis of the domain-specific conditions
applicable at runtime.

Previously, we proposed an approach using TBR [6,31] as a method of modeling
and managing the reliability of a complex cloud system by decomposing its subcompo-
nents according to the tasks (or services) a system must be able to reliably accomplish for
the user.

Our approach links the source of the reliability requirement, the predictive model for
microservice container failure, and the compound nature of the cloud services under the
responsibility of the cloud orchestrator [6].

The advantage of this approach is that it closely aligns the reliability requirement, and
its consequent replication strategy, to the specific service outcomes expected by the user of
the cloud system. With modern, enterprise-grade cloud applications generally comprising
many microservice components, possibly even hundreds, to create the final solution, each
microservice container may be found to be a dependency for several independent tasks [32].

In the classic approach to reliability, each microservice container is simply replicated
to a certain desired level of replication. The level of replication is determined by what the
Service-Level Agreement (SLA) defines as an acceptable value for the probability of system
failure in a given time interval, such as in “nine-nines reliability” (where the probability of
failure in the interval is 1.0× 10−9), which we used as the control for our experiments.

In contrast, the TBR approach considers the reliability of the system not with respect
to redundant microservice containers per se, but with respect to the system’s wholistic
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ability to complete a task comprising several microservices. From a software engineering
perspective, TBR may be considered an application of use case analysis and microservices-
oriented decomposition to reliability analysis [6,33].

In the TBR approach, once microservices are grouped according to tasks, the same
probabilistic models which are applied to components in general reliability analysis are ap-
plied to these tasks, with each microservice making up an in-series or in-parallel component
of the task’s reliability function according to its configuration [6].

3.2. Applying Task-Based Redundancy to Cloud Microservices

Our proposed model for applying TBR to cloud microservices uses three tiers of
abstraction: the task tier, the microservice tier, and the container tier (Figure 4). A task is a
set of actions that depend on the acceptable functioning of one or more microservices. In
our model, microservices are abstract, stateless images that can be instantiated into as many
containers as are necessary at runtime. These containers are the instantiated redundant
instances that actually provide the service to the end user.
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In TBR, the reliability of the system with respect to some task T is modeled using
a failure function, FT(t), which defines the probability that, due to the failure of all the
redundant components, the system will enter the failure state (defined as the state where it
is unable to execute T) before time t [31].

Applying this method to our proposed cloud microservices model (Figure 4), we
develop increasingly compound failure functions at each tier, culminating in the fail-
ure function FT(t) at the task tier. The failure functions at each tier are series/parallel
arrangements of the failure functions of the relevant dependencies in the preceding
(lower) tier.

At the lowest tier (the container tier), we define a uniform failure function F(t) for each
of n container instances of some microservice [6]. F(t) reflects some real-world assessment
of the failure behavior of the microservice container.

In our empirical testing, discussed in Sections 5 and 6, we elected to use the exponential
function due to its constant hazard rate, reflecting the general case where no additional
information is known about the propensity of a particular container to fail [6]. However,
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any suitable function may be chosen, perhaps even an approximation of statistical failure
behavior in cloud systems with a monitoring history available.

Having selected some function for F(t), we can determine the failure function, FMS(t),
at the next superior tier, which defines the probability of failure of a microservice comprising
n redundant containers, as in (1) [6]. FMS(t) is found to be the product of the failure
functions of the containers because the microservice will cease to provide service iff all
redundant containers fail. While the failure functions for each microservice container, Fi(t),
are identical by virtue of the replication of the same microservice image, in order to adjust
for the different times of instantiation of each container, the argument t is offset by t0i,
where t0i is the time of instantiation of the microservice in terms of the global system time,
as in (1).

FMS(t) =
n

∏
i

Fi
(
t− t0i

)
(1)

Finally, we find the failure function of the task with respect to the failure functions
FMSm(t) of its constituent microservices. In our example, we assume a simple sequence of
calls to microservices (i.e., all microservices are required), yielding an in-series arrangement.
Thus, we find the failure function of the task to be as in (2), expanded to (3) [6].

FT(t) = 1−
m

∏
j

(
1− FMS j(t)

)
(2)

FT(t) = 1−
m

∏
j

(
1−

n

∏
i

Fi
(
t− t0i

))
(3)

4. Our Proposed Approach

This section presents our approach to managing the reliability of cloud-based systems
using spot market cloud orchestration based on TBR and dynamic costing.

4.1. Dynamic Costing of Cloud Resources

There are several different costing models used by cloud service providers to charge
their customers. In [7], the author identifies three costing models typical of the cloud
computing market: pay-as-you-go (PAYG), on-demand (OD), and spot market (SM).

As per [7], the PAYG model uses a combination of a fixed fee and a variable cost
per use of the cloud resource [7]. Under the PAYG model, the fixed fee component can
be considered a down payment to ensure that the cloud resource will be available when
required [7]. Equation (4) shows the total cost of a PAYG cloud resource, where f rep-
resents the fixed component, v represents the variable component, and τ represents the
usage time.

CPAYG(τ) = f + vτ (4)

In contrast, the OD model, which is still based on a per-use charge, does not guarantee
the availability of a resource [7]. Thus, it is suitable for tasks which are delay-tolerant [7].
Equation (5) shows the total cost of an OD resource.

COD(τ) = vτ (5)

The complement to the OD model is the SM model, in which the cloud provider sells
off access to idle resources that are not demanded by OD customers at a particular time [7].
SM resources are sold at significant discounts, but executing tasks may be interrupted at
any time and the resource reallocated to an OD customer if demanded [7].

The total cost of a spot market resource is determined by the nature of the market
pricing, i.e., whether the price per unit of time is set at the time of purchase, or whether it is
variable, recomputed at each time slot used over the course of the task in accordance with
the market fluctuations. In our model, we propose the latter, more general case, giving
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the total cost of an SM resource as in (6), where S is a set of time slots in which the SM
resource was used, and Φ(t) refers to the spot market price of the resource during the time
slot t.

CSM(S) =
|S|

∑
i

Φ(ti), tiεS (6)

Thus, in contrast with the PAYG and OD models, the cost of resources in an SM model
is dynamic, driven by various market forces including scarcity, demand, and global system
congestion [7].

4.2. Quantifying the Cost of Failure

The task of achieving a reliable system is, in its essence, a trade-off between the cost of
redundancy and the expected cost of failure. We define the expected cost of failure as the
financial cost of a catastrophic system failure multiplied by the probability of that failure
occurring. The addition of redundant components increases the cost of production (or
usage, in the cloud context) while decreasing the probability of the failure occurring.

Applied to our proposed model in Section 3, we can define the expected cost of failure
with respect to some task T before time t, ET(t), in terms of Ω, the financial cost of failure,
and FT(t), the failure function of task T [6].

ET(t) = ΩFT(t) (7)

In closed systems, particularly electronic and physical systems, changing the level
of component redundancy is often not possible or feasible after production (e.g., adding
an additional engine to an existing airplane). Thus, in the design phase, a particular level
of reliability is determined, possibly by contract stipulation, and the system is designed
accordingly. Should some externality arise that varies the probability of failure, or indeed
the cost of a catastrophic failure, it is not possible to take advantage of the change or
mitigate it, as the case may be, by changing the level of redundancy.

However, reconfiguration of software systems post-deployment is much more feasible,
with stateless cloud microservice containers being particularly suitable for this. Supposing
the probability of failure to remain unchanged, if the cost of a catastrophic failure can be
quantified at a reasonable frequency, the cloud system can be dynamically reconfigured to
add or remove stateless microservice containers, keeping the expected cost of failure to an
acceptable level and reducing the cost of idle redundancy.

In [6], we proposed a cloud orchestrator that added new microservice containers to
the cloud until it reached an optimum configuration where the marginal cost of adding
a new microservice container outweighed the benefit to the expected cost of failure. We
showed empirically that this approach achieved a lower overall cost (the sum of the running
cost and cost of catastrophic failures) than a fixed reliability approach [6]. However, this
assumed a fixed model in which both the cost of catastrophic failure and the marginal cost
of adding another microservice were constant. In this research, we propose a dynamic SM
model based on free market forces which varies both these parameters.

4.3. Proposed Spot Market Orchestration Algorithm

Our proposed algorithm for cloud systems orchestration in a spot market context
adjusts the redundancy of microservice containers in the system according to a periodically
updated reassessment of market conditions (Algorithm 1).
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Algorithm 1: Our proposed algorithm for Spot Market Orchestration for task T

1: procedure OrchestrateCloud (Microservices, t)
2: Delete failed microservice containers.
3: Ensure each microservice has at least one non-failed container
4: MaxUtility ← ∞
5: while MaxUtility > 0 do
6: SelectedMicroservice← null
7: MaxUtility ← 0
8: for each ms ∈ Microservices do
9: if Ums(t) > 0 and Ums(t) > MaxUtility then
10: SelectedMicroservice← ms
11: MaxUtility ← Ums(t)
12: end if
13: end for
14: if MaxUtility > 0 then
15: Replicate SelectedMicroservice
16: end if
17: end while
18: while MaxUtility > 0 do
19: SelectedContainer ← null
20: MaxUtility ← 0
21: for each ms ∈ Microservices do
22: for each c ∈ ms.Containers do
23: if U′c(t) > 0 and U′c(t) > MaxUtility then
24: SelectedContainer ← c
25: MaxUtility ← U′c(t)
26: end if
27: end for
28: end for
29: if MaxUtility > 0 then
30: Safely shut down SelectedContainer
31: end if
32: end while
33: end procedure

The algorithm permits two quantities to vary at runtime: the marginal cost of redun-
dancy (i.e., the price of adding an additional microservice container at the current spot
market price), Φ, and the cost of catastrophic failure, Ω. In response, the algorithm updates
the level of redundancy in the cloud system until the reduction in the expected cost of
failure is outweighed by the marginal cost of redundancy.

Similar to how each microservice may have a different failure function, as in (1),
our approach considers that the marginal cost of each microservice may also be different,
reflecting the particular characteristics and resource usage profile of the microservice. Thus,
we define the marginal cost of redundancy in terms of each microservice independently as
ΦMS(t).

Given that each microservice contributes differently to the failure function of a task,
FT(t), as in (2), and has a different marginal cost, ΦMS(t), at each iteration of the algorithm,
we replicate the microservice which provides the greatest improvement for the lowest cost.

We thus define a utility function, UMS(t), which quantifies the benefit of replicating a
particular microservice container MS, as in (8), where E(t) is the expected cost of failure
given the present configuration of the cloud, E′(t) is the expected cost of failure supposing
an additional microservice container of type MS is added to the cloud, as per (7), and
ΦMS(t) is the marginal cost of adding the microservice container [6]. With the cost of
catastrophic failure also being variable, this is expanded as in (9).

UMS(t) = E(t)− E′(t)−ΦMS(t) (8)
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UMS(t) = Ω(t)FT(t)−Ω′(t)F′T(t)−ΦMS(t) (9)

From (9), the replication of microservice MS is worthwhile iff UMS(t) > 0. Further-
more, the values of UMS(t) for each microservice in the task can be used to select which
microservice to replicate at each iteration of the orchestration algorithm, selecting the
microservice with the greatest utility, i.e., MAX(UMS(t)).

Having used (9) to add redundancy to an under-replicated cloud configuration, we
must also consider the complementary situation in which market forces leave the cloud in
an over-replicated state with respect to the cost of failure, such as late at night when there
are fewer users and consequently the financial cost of a failure during this period of time
may be less.

Thus, we define a complementary utility function, U′C(t), which determines the
improvement in overall expected cost if a redundant microservice container c is safely shut
down and removed from the cloud (10).

U′C(t) = Ω(t)FT(t)−Ω′(t)F′T(t) + ΦMS(t) (10)

Whereas UMS(t) is defined with respect to a microservice because any added microser-
vice will, by definition, spawn as a new component, U′C(t) is defined with respect to a
specific container, as the probability of failure for redundant containers of a particular
microservice may differ depending on their instantiation time.

Equation (10) is similar to (9) in that it calculates the cost of failure before and after
removing the container, but with the sign reversed on the spot price, representing the cost
savings achieved by removing the superfluous container from the system.

Thus, Algorithm 1 consists of three key steps: pruning of failed microservice contain-
ers (thereby enabling the effective redundancy of the task to be calculated), addition of
redundant microservice containers using (9) until there is no further utility, and removal of
surplus containers using (10) until there is no further utility, as the case may be.

5. Empirical Testing

This section presents our experimental method and results.

5.1. Simulation Environment

To empirically test the performance of our proposed algorithm, we extended the
open-source project Cloud Reliability Simulator, which we had previously developed in [6],
adding the logic of our proposed algorithm (Algorithm 1) as a new Orchestrator.

Cloud Reliability Simulator is built using Python 3. It uses a discrete time simulation
methodology to model the failure of cloud microservice containers [6,34]. The key com-
ponents of the software are the Simulator, Cloud, Microservice, MicroserviceContainer, and
Orchestrator classes (Figure 5).

The Simulator class is responsible for running the simulation environment, deter-
mining when to cause MicroserviceContainers to fail according to their failure probability
functions. It also manages the collection and aggregation of data from the simulation.
The Cloud class represents a particular cloud configuration being tested, which in our
case is the analog of a task. The Microservice and MicroserviceContainer classes represent
their namesakes in our model, as per Figure 4. Finally, the Orchestrator class drives the
simulation, with its children implementing the desired orchestration functionality. In our
case, we implemented the functionality of Algorithm 1 in the SpotMarketOrchestrator class.

We also added a SpotMarketProvider to represent the dynamic market behavior during
the simulation. The SpotMarketOrchestrator queried the SpotMarketProvider regularly to
determine the applicable spot price for the simulated cloud computing resource, which in
our simulation was modeled as the execution time of the MicroserviceContainer classes.
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5.2. Experimental Design

Several randomized experiments were conducted under different conditions to empir-
ically test our proposed orchestration algorithm (Algorithm 1) in comparison with a control
orchestrator (Algorithm 2). The control orchestrator implemented a “naïve” algorithm
that added or removed containers such that, at any given time, the probability of each
microservice operating reliably approximated “nine-nines reliability” (99.9999999%).

Algorithm 2: The orchestration algorithm we used as a control for task T

1: procedure OrchestrateCloud (Microservices, t)
2: Delete failed microservice containers.
3: Ensure each microservice has at least one non-failed container
4: for each ms ∈ Microservices do
5: while Pf ailure(ms, t) ≥ 1.0×10−9 do
6: Replicate ms
7: end while
8: while Pf ailure(ms, t) < 1.0×10−9 do
9: Safely shut down a container from ms
10: end while
11: end for
12: end procedure

The same SpotMarketProvider was used by both the control and experimental orchestra-
tors so that resultant costs could be validly compared. Only the experimental orchestrator
adjusted its behavior in response to market conditions.

The cloud configuration for each of the experiments consisted of two microservices
with exponential failure functions of the form Fms(t) = 1− e−λt. All experiments were
conducted over 500 samples and repeated n = 1000 times, with the spot market conditions
varied according to the design of each experiment.

In our experiments, we selected a value of 1 for the parameter λ as this gave a
99% probability of failure within 500 samples at the rate of 100 samples per second,
thus approximating the exponential distribution within the execution time constraints of
the simulator.

In each experiment, the orchestrators were run at two frequencies: once at the sampling
rate, modeling a system where failures are immediately detected and remedied, and again
at a lower frequency of once per ten samples, modeling a system where diagnostics are run
periodically to detect failures.

We used a simplified model of a spot market in the experiments which was composed
of two parameters. These parameters gave the marginal cost of running a microservice,
ΦMS(t), according to (11), where Φ(t) referred to a global “spot price” per second of
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execution and α referred to a static multiplier assigned to each microservice to represent its
resource usage intensity per unit time.

ΦMS(t) = αΦ(t) (11)

5.2.1. Experiment 1: Varying the Cost of Failure

The objective of this experiment was to compare the behavior of the experimental and
control algorithms in a market with a constant spot price of 1.00 but varying costs of failure
from 1 to 100,000 per second (Figures 6 and 7). This scenario models the expected behavior
of an enterprise cloud serving users for whom the majority of activity, and thus the highest
impact of failure, occurs during business hours. The SpotMarketProvider in this experi-
ment varied the cost of failure according to the time of day, with the peak between 09:00
and 17:00.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 6. Control algorithm behavior in Experiment 1 with immediate detection and remediation of 
failures. 

 
Figure 7. Experimental algorithm behavior in Experiment 1 with immediate detection and remedi-
ation of failures. 

Figure 6. Control algorithm behavior in Experiment 1 with immediate detection and remediation
of failures.

Figure 6 shows an example run of the control algorithm, while Figure 7 shows an
example run of the experimental algorithm. In both figures, the redundancy of each of the
microservices is shown with respect to the cost of catastrophic failure.

The results from each of the immediate and delayed configurations of the orchestrator
are given in Tables 1 and 2.

Table 1. Aggregate results of experiments with immediate failure detection and remediation.

Orchestrator Mean Running Cost Mean Actual Cost of
Failures Mean Total Cost

Exp. 1
Experimental 0.94 0.06 1.00

Control 1.60 0.00 1.60

Exp 2.
Experimental 13,438 3288 16,726

Control 53,590 0.00 53,590
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Table 2. Aggregate results of experiments with delayed failure detection and remediation.

Orchestrator Mean Running
Cost

Mean Actual
Cost of Failures Mean Total Cost

Exp. 1 Experimental 1.62 0.02 1.64

Control 3.05 0.00 3.05

Exp 2. Experimental 27,098 1424 28,522

Control 102,067 0.00 102,067

5.2.2. Experiment 2: Varying the Spot Price

In this experiment, the cost of catastrophic failure was kept constant while the spot
price of execution time was varied. This scenario models the expected behavior of a cloud
system which must operate reliably under continuous use while the spot market fluctuates.

The cost of catastrophic failure was set at a constant 100,000 per second, while the
spot price was varied in a range from 1 to 100,000 per second. The spot price was var-
ied according to the same schedule and values as the cost of failure in Experiment 1
for comparison.

Figure 8 shows an example run of the control algorithm, while Figure 9 shows an
example run of the experimental algorithm. In both figures, the redundancy of each of the
microservices is shown with respect to the spot market price.
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The results from each of the immediate and delayed configurations of the orchestrator
are given in Tables 1 and 2.

6. Discussion

The results of the aggregate experiments given in Tables 1 and 2 demonstrate that our
proposed algorithm achieved a lower total cost (the sum of the running and failure costs)
across the scenarios tested.

In the first experiment, where the cost of failure was varied, the total cost was reduced
by between 37% and 46%, while in the second experiment, where the spot price was varied,
the total cost was reduced by between 68% and 72%.

We propose that this improvement is a reflection of the market-following behavior of
our proposed algorithm, which consistently maintains the level of redundancy towards an
optimum level with respect to the spot price and cost of catastrophic failure.

By the definitions of the utility functions in (9) and (10), we propose that the specific
level of redundancy selected by the algorithm is influenced by the relationship between the
cost of catastrophic failure and the spot price.

Additionally, assuming the spot market price to be well-known, the performance of
our proposed algorithm relative to the control is influenced by the level of accuracy with
which it can predict the cost of catastrophic failure. In practice, an incorrect estimation of
this parameter may result in a non-optimal outcome, i.e., either excessive or insufficient
redundancy in the system.

Another factor we considered was the latency in detecting a failure. As shown in
Table 2, a latency of up to 10 samples was introduced to each experiment configuration
(the specific latency being probabilistically determined by the time of failure of a container
within this range). We made two observations with regard to this parameter.

Firstly, our algorithm accounted for the length of time between orchestrator runs when
computing the expected cost of failure. Thus, we observed a modest increase in the running
cost and a decrease in the failure cost, possibly the result of a higher level of redundancy
used to compensate for the increased likelihood of a failure occurring given the longer
time period.

Secondly, the magnitude of the improvement in total cost was greater when a latency
was applied. Table 2 shows that even though the control algorithm had a much lower
failure cost, its running cost was much greater than the running cost of our proposed
algorithm, thereby accounting for the difference in total cost.

This is perhaps the strongest argument for the utility of our proposed algorithm. If the
cost of a failure can be suitably quantified, our proposed algorithm can achieve a lower
total cost in comparison with an algorithm based on a static reliability requirement through
its market-following behavior.

7. Conclusions

In this paper, we proposed a novel cloud orchestration algorithm that seeks to achieve
an optimal solution for reliability relative to the spot market price and cost of failure.

Using a Task-Based Redundancy (TBR) model, we developed an algorithm for the
orchestrator which, in comparison with a static reliability control algorithm, achieved
improvements of between 37% and 46% in total cost for clouds where failures were imme-
diately identified and remedied, and between 68% and 72% for clouds where there was
latency in detecting and remedying the failure.

Thus, in cloud environments where the financial cost of a failure can be approximated
with reasonable accuracy, the results indicate that our algorithm can be used to improve
the cloud redundancy configuration, giving a lower overall total cost in comparison with
an algorithm based on a static reliability requirement.

Future research may seek to extend our model to include more complex spot market
behavior through the creation of new Orchestrator subclasses (Figure 5), and to investigate
the effects of different latency periods on the magnitude of the improvement. Another
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avenue of further inquiry may be to create more complex probabilistic failure models by
overriding the failure functions of the microservices. Further studies may also consider the
possibility of combining PAYG, OD, and SM models within the same cloud. In this study,
we compared our proposed approach with a control algorithm that used a static reliability
level, typical of scenarios where a service level is specific in an SLA. However, future
research may explore comparing our proposed algorithm with other non-TBR algorithms,
including consideration of their comparative performance across such factors as efficiency,
scalability, adaptability to varying workloads, and other factors.
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