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Abstract: Wireless sensor networks (WSN) are useful in medicine for monitoring the vital signs of
elderly patients. These sensors allow for remote monitoring of a patient’s state of health, making it
easier for elderly patients, and allowing to avoid or at least to extend the interval between visits to
specialized health centers. The proposed system is a low-cost WSN deployed at the elderly patient’s
home, monitoring the main areas of the house and sending daily recommendations to the patient.
This study measures the impact of the proposed sensor network on nine vital sign metrics based on a
person’s sleep patterns. These metrics were taken from 30 adults over a period of four weeks, the first
two weeks without the sensor system while the remaining two weeks with continuous monitoring of
the patients, providing security for their homes and a perception of well-being. This work aims to
identify relationships between parameters impacted by the sensor system and predictive trends about
the level of improvement in vital sign metrics. Moreover, this work focuses on adapting a reactive
algorithm for energy and performance optimization for the sensor monitoring system. Results show
that sleep metrics improved statistically based on the recommendations for use of the sensor network;
the elderly adults slept more and more continuously, and the higher their heart rate, respiratory rate,
and temperature, the greater the likelihood of the impact of the network on the sleep metrics. The
proposed energy-saving algorithm for the WSN succeeded in reducing energy consumption and
improving resilience of the network.

Keywords: algorithm; sensors for healthcare; wireless sensor networks (WSN); energy-saving
algorithm

1. Introduction

Research on Wireless Sensor Networks (WSN) has been conducted across different
fields, such as in agronomy, the military field, livestock, poultry, home automation, and
vehicular traffic [1]. Their objective is to monitor the phenomena that occur, determine or
take actions depending on the results obtained and extract useful information to reprogram
systems through increasingly intelligent algorithms.

WSN and communication protocols are useful in medical applications to develop mon-
itoring systems and apply the benefits of technology focused on assisting elderly patients.
Improved healthcare monitoring becomes possible if it can take values from either a phe-
nomenon or object that is in motion or static to integrate Information and Communications
Technology (ICT) with medicine to monitor a patient’s principal vital signs and investigate
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the operation of wireless transmission. This work focuses on monitoring and applying the
system for older adults, the most vulnerable population in society [2]. Improved monitor-
ing of older adults could reduce mortality. The proposed sensor system is meant to be used
in the comfort of the patient’s home and provides safety recommendations on a daily basis.

Sensor networks and their performance are increasingly being studied in health-
monitoring applications. They greatly help the medical field by obtaining online, real, and
highly available data [3]. A large number of tests carried out with the help of such sensors
have already been conducted, from monitoring body temperature to smart sensors that
help tissue reconstruction or surgical interventions [4,5]. In medicine, various values to be
sensed from the human body are considered critical when evaluating a patient. These data
must be considered for any diagnosis, becoming proactive monitoring where the physician
can observe the values generated online without having to be present in person [6]. In
addition, there are fundamental aspects when diagnosing a patient that must be considered.
These vital signs are considered essential when evaluating a patient’s health status since
they can provide an accurate signal of human body function before giving a diagnosis
based on experience, symptoms, and tests carried out [7].

In older adults, due to their advanced age, it is difficult for them to make periodic visits
to specialized health centers. This consequently gives rise to the need to adequately monitor
the principal vital signs. This makes it possible to monitor them more effectively, avoid
health status complications, and collect statistics of their different values [8]. Continuous
monitoring of the state of health guarantees timely care by the doctor, preventing their
health from deteriorating. Using sensors, this periodic monitoring is conducted remotely
without the need for the patient to attend specialized health centers or for the doctor to have
to mobilize. It is also helpful in maintaining personal reports with the possibility of sending
them to relatives or loved ones and having an updated overview of the day-to-day health
status of the older adult [9]. The study and application of WSN and the implementation of
prototypes allow us to have a clearer idea of what is intended to be monitored. In this case,
they would be the main vital signs of the elderly and some metrics related to sleep and the
way we sleep. By having a system that allows this type of monitoring to be carried out, it
is about positively impacting the quality of life of the elderly. With a timely assessment,
future inconveniences can be avoided, premature death can be avoided, and appropriate
actions can be taken.

Having knowledge on how people sleep is essential to determine their state of health,
especially when they suffer from stress or diseases such as Alzheimer’s, Parkinson’s, or
other conditions that affect rest [10]. To monitor sleep, sensors and electrodes are needed,
which are uncomfortable and, in turn, can further impair mental rest. The technological op-
portunity is great because there is the need to better understand sleep, and a large fraction
of the population needs help in sleeping [11]. REM and non-REM sleep alternate in sleep cy-
cles, which last about 90 min. REM sleep is characterized by rapid random eye movement,
dystonia, and vivid dreaming. It is also known as paradoxical sleep because of the phys-
iological similarities to waking states, including rapid, and low-voltage desynchronized
brain waves. REM sleep produces marked physical changes, including the suspension of
central homeostasis, which allows for large fluctuations in respiration, thermoregulation,
and circulation that do not occur in any other mode of sleep or wakefulness [12].

The main contributions of this research work lie in the development and application
of a wireless sensor network (WSN) for monitoring the vital signs of elderly individuals in
their homes to improve their sleep quality. The environment is the same as the home of
the elderly. The sensor network is installed in their home to be as strange or invasive as
possible. In this study, we use WSNs with low-cost sensors, including motion, pressure,
temperature, humidity, noise, light, gyroscope, and air quality sensors, to gather real-time
data from different house areas. The objective is to analyze the sleep metrics of older adults
before and after implementing the sensor network to determine the impact of the system
on improving rest. The proposed system aims to provide daily safety recommendations to
the elderly and enable remote monitoring of vital signs, helping them to live independently
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and receive timely medical care. This work addresses the challenges of monitoring elderly
individuals, especially in terms of their sleep patterns, as this age group tends to have
reduced mobility and difficulty accessing health centers. We demonstrate the potential
of using WSNs and intelligent algorithms to optimize sensor utilization, improve sleep
quality, and provide personalized recommendations for the elderly’s well-being. The
sensor system has a group of pre-written recommendations based on the possible causes of
sensor parameter anomalies. These anomalies may be due to the person sleeping in a noisy
environment, getting up several times during the night, or uncomfortably cold or warm
temperatures in their home. They are only approximations of possible causes to improve
the quality of life of people who live alone. This, being an approximation, represents one of
the system’s limitations. The findings of this study highlight the importance of continuous
monitoring and non-invasive technology in enhancing the quality of life for older adults
and preventing health complications. Overall, this work contributes to advancing remote
monitoring systems for elderly individuals, particularly in the context of sleep monitoring
and healthcare assistance.

Motivation

This work aims to find relationships between parameters impacted by the sensor
system and predictive trends based on the threshold of measurements perceived by the
sensors during the day. This proposed system consists of a low-cost WSN deployed at the
home of seniors who want to remain independent. In the context of the provided passage,
an “independent person” refers to an elderly individual who wishes to live independently
and maintain their autonomy without relying heavily on constant assistance or care from
others. This could be an elderly person who prefers to live in their own home rather than
moving to an assisted living facility or nursing home.

This system monitors the main areas of the house programmed with a low-energy
cost algorithm and sends recommendations to the person at the beginning of each day. It
is a simple algorithm based on the threshold of measurements perceived by the sensors
during the day. In this way, the nodes change hierarchies in the network and has proactive
or reactive priorities for sending information. The routing protocol takes advantage of each
node’s proactive or reactive nature to transmit the packets. The change that is optimized
in the proposed algorithm is that when the node’s measurement levels are kept within
a normal range, the protocol responds to sending packets reactively. Meanwhile, if the
measurement levels are outside the threshold, the protocol responds proactively to sending
packets to better control the information review.

The main contribution of this work is the novel categorization of the impact of metrics
related to the person’s vital signs based on the way the person sleeps. By analyzing the
sleep metrics of older adults before and after using the proposed sensor network, we will
be able to determine the level of impact (high, medium, or low) that the system will have
on improving rest once we know the person’s metrics prior to installing the sensor network.
Therefore, we discuss the usability of our proposed system from the perspective of a
non-invasive technological product and its use as a medical tool to improve people’s rest.

We found that recommendations based on measures from the sensors improved
sleep quality. In addition, the proposed energy-saving algorithm assists in optimizing the
network’s performance and directing its efforts towards areas that can have the greatest
impact on improving sleep quality for individuals.

The remainder of this paper is organized into five sections. Below is the Related
Work Section, in which the comparative relationship of the state of the art is explained.
The Materials and Methods section describes the presentation of the sensor network, the
routing algorithms, and the correlation metrics. The Results section explains the impact and
relationship of the parameters measured in people and their relationship with vital signs
to improve sleep quality. The results are also discussed here. Finally, in the Conclusions
section, the improvement of the proposed system and possible areas of opportunity it still
presents are given.
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2. Related Work

Remote monitoring systems for seniors in homes refer to technology-based systems
that allow for the monitoring of elderly individuals at their own homes, without the need
for in-person assistance. These systems often use sensors and wearable devices to collect
data about the individual’s health, activity levels, and environment.

The state of the art in remote monitoring systems with sensor networks in smart homes
for the elderly is an active field of research, with many studies and projects being conducted
to improve the capabilities and effectiveness of these systems. Some recent related works
include the use of wearable sensors to monitor vital signs such as heart rate and oxygen
saturation, as well as the use of cameras and other non-wearable sensors to track the
individual’s movements and activities. Researchers are also exploring the use of machine
learning and artificial intelligence techniques to analyze the data collected by the sensors
and detect potential issues or changes in the individual’s health or well-being. Other related
works include the use of virtual assistants and other forms of human–computer interaction
to provide support and assistance to the elderly individuals, as well as the use of blockchain
technology to ensure the security and privacy of the data collected by the system.

The exploitation of technology and, especially, sensor-based information networks,
is considered an effective solution for social assistance. With the advantages provided by
technology, several studies [13–15], have succeeded in implementing embedded systems to
achieve constant monitoring of human body values.

Specialists and researchers from different sciences, health professionals, and scientists
devoted to study biomedicine are currently developing embedded systems to monitor
patients’ health in search of real data. The works cited in [16,17] conducted studies based on
technological tools to work in unusual places without human beings and with equipment
with minimal energy consumption to process, transmit, and visualize information.

Implementing and fine-tuning remote monitoring and assistance systems is a highly
complex process that is attempting to be solved by building smart homes. Researchers of
the work cited in [18] designed a device based on an artificial intelligence algorithm that
analyzes the signals around the person to assess their level of sleep in light, deep, or REM.
Other studies [19], reveal that low-power radio waves that detect small changes in body
movement caused by the patient’s breathing and pulse rate can non-intrusively diagnose
and study sleep problems.

Studies [20] have shown that remote monitoring systems can positively impact sleep
practices in seniors. For example, wearable devices that track sleep patterns can provide
useful insights into the individual’s sleep quality and habits, allowing for the identification
of any sleep-related issues and the implementation of interventions to improve sleep.
Additionally, remote monitoring systems [21] can also provide a sense of safety and security,
which can help to reduce anxiety and promote better sleep.

However, there are also concerns that the constant monitoring and use of technology
can have a negative impact on sleep practices [22]. For instance, exposure to screens and
other sources of blue light before bedtime can disrupt the natural sleep–wake cycle and lead
to insomnia. Furthermore, the continuous use of technology can also increase the likelihood
of being woken up during the night by notifications or alarms from the monitoring system.
Remote monitoring systems for seniors in homes can have both positive and negative
impacts on sleep practices [23]. It is important to consider the potential benefits and
drawbacks of these systems when deciding on the best approach for monitoring elderly
individuals at their own homes, as in a previews work cited in [24].

Table 1 describes a comparison of metrics with related work addressing sensors
and/or wearables for sleep monitoring. Remote home monitoring systems for seniors are
designed to allow seniors to live independently while providing support and assistance
as needed. These systems typically include a variety of sensors and wearables that can
track various aspects of the senior’s health and well-being, including sleep patterns. Some
common metrics that are used in these systems include heart rate, oxygen levels, and
movement patterns. Other metrics may include sleep duration, sleep quality, and number
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of awakenings. The system configuration management in these systems may include the
use of wireless sensors, mobile devices, and cloud-based services to monitor and collect
data. The application domain of these systems is typically in the field of healthcare and
aging, with the goal of providing seniors with the support they need to live independently
for as long as possible.

Table 1. Comparison of metrics with related work addressing sensors and/or wearables for
sleep monitoring.

Reference Metrics System Configuration
Management Application Domain Brief Description

[25]
Sleep duration, sleep
efficiency, movement

detection
Wireless sensor network Elderly care

A WSN system that uses
motion sensors to monitor

sleep patterns and movement
of seniors in their homes,

with the aim of promoting
independent living.

[26] Sleep stages, heart rate
variability, respiratory rate Wearable device Sleep medicine

A wearable device that
utilizes various sensors to

measure physiological
parameters and classify sleep

stages, with the aim of
improving diagnosis and

treatment of sleep disorders.

[21] Sleep duration, activity levels,
ambient light, temperature Smart home system Geriatric care

A smart home system that
uses a combination of sensors
and cameras to monitor sleep

and activity patterns of
seniors, with the aim of

detecting abnormal behavior
and providing health

interventions.

[27] Sleep efficiency Wireless sensor network Elderly population
A WSN for monitoring sleep

efficiency in the elderly
population.

[28] Sleep duration Smartwatch Healthy adults
A smartwatch-based system
for measuring sleep duration

in healthy adults.

[29] Sleep quality Body-worn sensors Athletes
A body-worn sensor system
for assessing sleep quality in

athletes.

[30]
Sleep efficiency, Sleep

duration, Sleep
fragmentation, Sleep quality

Smartphone-based
application General population

A smartphone-based
application for monitoring

sleep efficiency, sleep
duration, sleep fragmentation,

and sleep quality in the
general population.

[31]
Sleep efficiency, sleep latency,
wake after sleep onset, total

sleep time

Wearable actigraphy device +
remote monitoring system

Independent living for older
adults

A feasibility study of using
wearable actigraphy devices

and a remote monitoring
system to track sleep patterns

in older adults living
independently.

[32]
Sleep efficiency, sleep latency,
wake after sleep onset, total

sleep time

Wearable actigraphy device +
remote monitoring system

Independent living for older
adults

A randomized controlled trial
of using wearable actigraphy

devices and a remote
monitoring system to track

sleep patterns in older adults
living independently.

[33]
Sleep efficiency, sleep latency,
wake after sleep onset, total

sleep time

Wearable actigraphy device +
remote monitoring system

Independent living for older
adults

A pilot study of using
wearable actigraphy devices

and a remote monitoring
system to track sleep patterns

in older adults living
independently in a
community setting.
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Table 1. Cont.

Reference Metrics System Configuration
Management Application Domain Brief Description

[34]
Sleep efficiency, sleep latency,
wake after sleep onset, total

sleep time

Wearable actigraphy device +
polysomnography

Independent living for older
adults

A comparison of using
wearable actigraphy devices

and polysomnography to
track sleep patterns in older
adults living independently.

[35]
Sleep efficiency, sleep latency,
wake after sleep onset, total

sleep time

Non-contact sleep monitoring
system

Independent living for older
adults

An assessment of using a
non-contact sleep monitoring
system to track sleep patterns

in older adults living
independently.

Table 2 provides a comprehensive comparison of various sleep monitoring mecha-
nisms, including proposals from the literature and the state of the art. Each mechanism
is evaluated based on its unique features and contributions. These existing mechanisms
offer valuable insights into sleep monitoring, such as detecting sleep stages, assessing
stress levels, monitoring sleep apnea, analyzing sleep patterns, observing sleep behavior,
and tracking snoring. However, our proposed system, based on a non-invasive wireless
sensor network (WSN) located in people’s homes, introduces significant advancements
in sleep monitoring technology. It operates without the need for wearables, making it
more comfortable for users. The system monitors various parameters, such as luminosity,
noise, and movement, providing a comprehensive view of the sleep environment and
body parameters. By integrating multiple parameters, the proposed system can offer
more accurate and personalized insights into sleep quality, generating personalized sleep
recommendations. This non-wearable WSN in homes ensures a seamless and convenient
monitoring experience, offering valuable improvements over existing mechanisms. Overall,
the proposed system represents a promising and innovative approach to sleep monitoring,
enhancing user comfort and providing actionable recommendations for better sleep quality.

Table 2. Comparison of Sleep Monitoring Mechanisms.

Mechanism Differences Improvements System Type

Roll-over detection [36] Measures body movement. Detects sleep stages. Wearable
Wearable heart rate sensor [37] Tracks heart rate. Assesses stress levels. Wearable
Real-time wearable system [38] Measures blood oxygen levels. Monitors sleep apnea. Wearable

IoT-assisted wearable sensor [39] Records brain activity. Analyzes sleep patterns. Wearable
Non-wearable IoT-based smart

ambient [40] Captures visual information. Observes sleep behavior. Non-wearable

Internet of Intelligent Things [41] Records ambient sounds. Monitors snoring. Non-wearable

Our proposed system
(Non-invasive WSN)

• Monitors luminosity, noise,
movement, etc.

• Generates personalized
sleep recommendations.

• Non-invasive, no need for
wearables.

• Comprehensive monitoring
of sleep environment and
body parameters.

• Personalized recommenda-
tions for better sleep quality.

Non-wearable WSN in Homes

Table 3 provides a comprehensive comparison of various state-of-the-art algorithms
for energy-saving in remote monitoring of older adults at home. It highlights the different
types of algorithms, their impacting metrics, and the percentage of global consumption
reduction they can achieve. The algorithms are classified based on their type, which
includes sleep-based, tree-based, collaborative, multi-objective, cluster-based, threshold-
based, and reactive mode based. The impacting metrics of the algorithms include energy
efficiency, network lifetime, latency, QoS, and routing efficiency. The percentage of global
consumption reduction ranges from 15% to 60%. Overall, the table aims to provide insights
into the different algorithms that can be used to enhance energy efficiency in remote
monitoring systems, and their effectiveness in achieving energy consumption reduction.
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Table 3. Comparison of State-of-the-Art Energy Saving Algorithms for Remote Monitoring of Older
Adults at Home.

Algorithm Type Impacting Metrics Global Consumption Reduction

Sleep-Scheduler [42] Sleep-based Energy efficiency, latency 40–60%
Energy-Aware Tree-Based

Routing [43] Tree-based Network lifetime, energy
efficiency 15–40%

Distributed Collaborative
Routing [44] Collaborative Energy efficiency, routing

efficiency 50%

Multi-Objective Optimized
Routing [45] Multi-objective Energy efficiency, network

lifetime 30–50%

Adaptive Clustering with
QoS [46] Cluster-based Energy efficiency, QoS, network

lifetime 30–50%

Adaptive compression [47] Threshold-based Energy efficiency, latency 50–60%
QoI-aware [48] Sleep-based Energy efficiency, latency 50%

Our work Reactive mode based Energy efficiency, latency 50%

3. Materials and Methods

This section presents the monitoring system of sensors, routers, and concentrators
with its technical specifications. In addition, real photos of some installations of the nodes
and their power supply are shown. The technical description of each type of system device
is provided. Finally, we present the methodology of the experiment and the analyses
carried out on the information of the vital signs metrics measured for each person during
the experiments.

The connection between sensors, security, and the activities of the elderly population
is multifaceted:

Sensor System for Monitoring: The sensor system collects data from various sensors,
including motion, pressure, temperature, humidity, noise, light, gyroscope, and air quality
sensors. These sensors are designed to monitor the home environment and the elderly
individual’s vital signs while being unobtrusive and comfortable for the user.

Security and Privacy: The work emphasizes the need for non-invasiveness and respect
for the privacy of the elderly. The data collected by the sensor network must be securely
transmitted and stored to protect the individual’s sensitive health information. Ensuring
data security and privacy is crucial in healthcare applications, especially when dealing with
sensitive data from vulnerable populations.

Activities of the Elderly: The sensor system aims to capture data related to the activities
of the elderly in their homes. It tracks sleep patterns, movement, noise levels, and air quality
to identify anomalies and provide personalized recommendations for improving sleep
quality. By understanding the person’s daily activities, the system can offer relevant and
targeted suggestions to enhance their well-being.

Wireless Sensor Network (WSN) and Communication Protocols: The work highlights
the importance of using WSNs and communication protocols to efficiently collect and
transmit data from the sensors. The system uses wireless communication to transmit the
collected data to a central hub or concentrator node, where it is processed and analyzed.
The use of efficient communication protocols is crucial for optimizing data transmission
and reducing energy consumption.

Energy-Saving Algorithm: The proposed energy-saving algorithm is integrated into
the sensor system to optimize power consumption. It allows the system to be proactive or
reactive, depending on the level of change in the measured parameters. Proactive mode
ensures continuous monitoring when parameters show high variability, while reactive
mode conserves energy by collecting data only on demand when the parameters are stable.

The impact of this work lies in its potential to revolutionize remote monitoring systems
for elderly individuals, particularly in the context of sleep monitoring and healthcare
assistance. By using WSNs and intelligent algorithms, the system can efficiently collect and
analyze data, providing real-time feedback and personalized recommendations to improve
sleep quality and overall health. The non-invasive nature of the system allows elderly
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individuals to receive care and assistance without the need for constant visits to healthcare
centers, thus improving their quality of life and reducing the risk of health complications.

3.1. System of Sensors Network

Table 4 shows the technical specifications of the proposed system’s sensors encompass-
ing 14 nodes. These sensors monitor the main areas of the house in order to know behaviors
and be able to send alerts or notifications to the user via email or SMS. The implemented
sensors are Motion, Pressure, temperature and humidity (PTH), Noise, Light, Gyroscope,
and Air quality.

Table 4. System Sensor Specifications.

Sensor Description

Motion

DC 4.5–20 V, 50 µA delay: 5–200 S (adjustable) the
range is (0.xx second to tens of second), Operation
Temp.: −15–+70 degrees, Detection Range: 3 m to
7 m.

Pressure, temperature and humidity

Combines thermometer, barometer and hygrometer.
Temperature range from −40 to +85 ◦C with an
accuracy of ±1 ◦C and resolution of 0.01 ◦C, and for
pressure 300–1100 hPa, accuracy of ±1 Pa,
and resolution of 0.18 Pa. Supply voltage range:
1.71 V to 3.6 V. Accuracy tolerance ±3% relative
humidity.

Noise

ULTRASONIC SENSOR HRXL-MAXSONAR.
MAX4466 with adjustable gain. 20–20 KHz electric
microphone. 2.4–5 VDC. 3.7 W. Frequency: 42 kHz.
Type: Transmitter, Receiver. Maximum detection
distance: 765 cm. Consumption: 2.1 mA. Operating
temperature: −40 ◦C 65 ◦C.

Light

LDR photoresistor sensor module. Main chip:
LM393. Minimum supply voltage: 3.3 V. Maximum
supply voltage: 5 V. Output Type: Digital. Maximum
rating: up to 38 V.

Gyroscope

7A994. Axis Type: Single. Typical Angular Velocity
(°/s): ±300. Typical Operating Supply Voltage (V):
3.3|5. Minimum Operating Temperature (◦C): −40.
Maximum Operating Temperature (◦C): 105.
Linearity: No.

Air quality

ZPHS01C Multi-in-One Air quality monitoring
Sensor Module. Target Gas:PM2.5, CO2, CH2O,
TVOC, Temperature and Humidity. Applications:
Gas detector, Air conditioner, Air quality monitoring,
Air purifier, HVAC system, Smart home.

Figure 1 shows real photos of the devices installed for the monitoring system. The
distributed sensor network consists of a hub node, which is the device connected to the
computer via a USB connection and receives and manages all the information received and
transmitted. It has three router nodes with sensors connected to their communication ports,
such as temperature, pressure, humidity, light, sound, and the others we have activated.
The sensed parameters are sent via radio frequency to the network up to the concentrator
node, which can act as a repeater. The power supply can work in two types: (1) Input
Voltage 1 (BAT): Acid/Lead Battery (12 V DC at 3.3 Ah). (2) Input Voltage 2 (CS): Solar Cell
(12 V DC, 10 W, 0.5A). The graphic software of the network shows the logical neighbors
of the node. It presents its relationship with each of its neighbors with respect to the RSSI
(Received Signal Strength Indicator) and LQI (Link Quality Indicator) signals.
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Figure 1. Real implementation of the sensor network.

Table 5 shows the main vital sign parameters related to sleep and how a person
sleeps. A smartwatch can measure the person’s main vital signs while he/she sleep. We
show typical values for a person in a resting state who does not present cardiovascular
or respiratory diseases. Upon the use of accelerometers and gyroscopes, we can monitor
the most subtle movements. Pointing at the wrist, we have an optical sensor to capture
the changes of each pulsation and calculate the oxygen level in the blood. When the heart
rate is low, and there is hardly any movement, it is recorded as deep sleep. When there is
much movement, and the heart rate is high, it is considered light sleep. To know the REM
phase of sleep, data from heart rate and movement sensors are added to the respiration
frequency to make the estimate. Also, we can know when the person is awake because they
move enough to do so. Stress measurements can be approximated by measuring changes
in the duration between beats, also known as HRV (Heart rate variability). HRV offers a
non-invasive way to pinpoint imbalances in the autonomic nervous system. Based on data
collected from many people, the variation between beats tends to be less if the system is in
a fight or flight mode. In contrast, if the nervous system is relaxed, the variation may be
more significant [49]. It is essential to mention that the consent notice given to each person
notes that consuming caffeine, nicotine, alcohol, or drugs may alter the results. In addition,
the measurements will not be very reliable in people with heart disease or asthma, who are
doing sports, or who need to wear the watch correctly. For this last reason, these types of
people have been excluded from the experiments.

The sensor network is trained with the person’s routines and keeps sensors active in
the areas where the person spends the most time. In addition, it recognizes patterns of
open windows or doors within the person’s routine so as not to send unnecessary alerts.
The sensor system monitors noise, movement, air quality, level, the door turns, and lights
to send notifications of recommendations for improving sleep quality monitored by a
conventional smartwatch. The system has an alert algorithm that can improve the quality
of the person’s sleep. For example, recommendations for fluid consumption if the person
gets up many times to go to the bathroom, decrease the amount of light in the sleeping area,
close or open doors or windows according to the amount of noise, etc. Each day, the person
receives recommendation messages based on the night immediately before via email or
SMS. This can lead to a gradual improvement in sleeping habits. The sensor system is
not invasive, and the person does not have to configure it constantly. The system has an
intelligent energy algorithm incorporated according to the adaptation of the sensors and its
continuous use in the different areas of the house.
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Table 5. Vital sign metrics [50].

Metric Typical Values

Heart rate (HR) 60 to 100 beats per min

Breathing frequency (BF) 12 to 18 breaths per min

Temperature (T) 97.8 ◦F to 99.1 ◦F (36.5 ◦C to 37.3 ◦C)

Oxygen saturation (OS) 95–100%

Total sleep time (TST) between 7 and 8 h

REM sleep (REMS) between 20 and 25% of total sleep time

Deep sleep (DS) between 10 and 20% of sleep time

Heart Rate Variability (HRV) Higher HRV indicates a relaxed and less stressed
state than a lower HRV

Snoring (S) few or none of sleep time

The algorithm described in Algorithm 1 is based on the operation of the sensor network
in conjunction with the coordinator node. When the network is turned on, the coordinator
sends packets to know the whole topology. Each node has a hierarchy, the measurement of
its sensing parameter, RSSI value and LQI value (these last two related to the quality of the
link). Each node takes the measurement of its parameter depending on the programmed
request-time. The node differentiates its measurement based on the subtraction of the initial
default value and the current value. If this difference value is greater than 50% of the
default value of the steady-state measurement, the node increases its hierarchy. This means
that the measurement is very changeable, and it is important to monitor the area constantly.
So, if the node hierarchy is greater than 3, the LQI value is 50% greater than its typical
value (in stable state), and the RSSI value is 50% greater than its typical value (in stable
state), the node is activated in proactive mode. This means that it is essential to monitor
the parameter every request-time because its value is highly variable. Otherwise, the node
goes into reactive mode, which reduces its energy consumption and only requests the
sensed value when necessary, that is, on demand. In this way, the network has an adaptive
behavior according to the home of each person.

The node is the device that has or can have multiple sensors. Indeed, the RSSI and LQI
values should not change in static nodes. However, this can be altered by other devices that
the person activates one day or by environmental conditions. Furthermore, when these
factors change, there are anomalous environmental conditions, precisely what we want to
analyze to establish the recommendations.

Therefore, the sensor system is the same for anyone, but the sensors’ operation, energy
consumption, and recommendations will be personalized to each home. Table 6 provides
recommendations for sleeping better at home, grouped into three different categories:
Group 1, Group 2, and Group 3. Each group contains a list of seven different recommenda-
tions aimed at helping individuals improve their sleep quality. Group 1 recommendations
focus on creating a comfortable and relaxing sleep environment. This includes closing the
window to block out noise, using a comfortable mattress and pillows, using a noise machine
or earplugs to block out background noise, keeping the room at a cool temperature, using a
humidifier to improve air quality, keeping the room dark and using black-out curtains, and
avoiding caffeine and heavy meals before bedtime. All these recommendations are aimed
at creating a sleep-conducive environment that is comfortable and free from distractions.
Group 2 recommendations focus on relaxation and preparation for sleep. These recom-
mendations include practicing relaxation techniques before bedtime, keeping a consistent
sleep schedule, using a weighted blanket, trying aromatherapy with essential oils, keeping
electronics out of the bedroom, using a white noise machine, and trying a sleep mask. All
these recommendations are aimed at relaxing the body and mind and preparing them
for sleep. Group 3 recommendations focus on developing good sleep habits, and include
establishing a bedtime routine, exercising regularly but not close to bedtime, avoiding blue
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light exposure before bedtime, considering using a sleep aid, avoiding napping during the
day, trying a natural sleep remedy like melatonin, making sure your bed is comfortable
and supportive. All these recommendations are aimed at developing good sleep habits
which are conducive for a good night’s sleep.

Algorithm 1 Algorithm pseudocode of the network system.

Start
all Nodes ON;
set request_time;
coordinator_node starts;

Per each node do:
hierarchy_i = 0;
set default_measurement_i;
set LQI_initial;
set RSSI_initial;

Per each request_time do:
set measurement_i;

end
d_measurement_i = |default_measurement_i - measurement_i |;
if(d_measurement_i > (0.05 * default_measurement_i ))
{

hierarchy_i ++;
}

if(( hierarchy_i > 3) && (abs(LQI_initial - LQI_i) >
(0.05 * LQI_i )) && (abs(RSSI_initial - RSSI_i)
> (0.05 * RSSI_i ))
{

node_i under proactive mode;
}
else
{

node_i under reactive mode;
}
if (hierarchy_i == 3)
{

node_i sends recommendations(group 1);
}
else if(hierarchy_i >= 2)
{

node_i sends recommendations(group 2);
}

else if(hierarchy_i >= 1)
{

node_i sends recommendations(group 3);
}

else
{

no recommendations;
}

end

Table 6. Recommendations for sleeping better at home.

Group Types of Recommendations

Group 1

1. Close windows 2. Use a comfortable mattress and
pillows 3. Use a noise machine or earplugs 4. Keep the
room at a cool temperature 5. Use a humidifier to improve
air quality 6. Keep the room dark and use black-out
curtains 7. Keep electronics out of the bedroom

Group 2

1. Practice relaxation techniques before bedtime 2. Keep a
consistent sleep schedule 3. Use a weighted blanket 4. Try
aromatherapy with essential oils 5. Avoid caffeine and
heavy meals before bedtime 6. Use a white noise machine 7.
Try a sleep mask

Group 3

1. Establish a bedtime routine 2. Exercise regularly but not
close to bedtime 3. Avoid blue light exposure before
bedtime 4. Consider using a sleep aid 5. Avoid napping
during the day 6. Try a natural sleep remedy like melatonin
7. Make sure your bed is comfortable and supportive
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This Table contains recommendations adapted to the general functioning of an average
house in Mexico in an urban area. Each one of the groups is related to characteristics of
the house or of the people, which could directly or indirectly impact the way the person
sleeps. For example, Group 1 presents recommendations for the house or its composition.
Group 2 presents recommendations mainly related to the person, which can be part of their
daily life and habits. Moreover, Group 3 has recommendations about the person’s bedroom.
These recommendations can be helpful for people who are seeking ways to improve their
sleep quality, especially for those who are using remote assistance systems for monitoring
their sleep patterns. These systems can track and monitor an individual’s sleep patterns
and provide feedback on areas where improvements can be made. By following these
recommendations, individuals can improve their sleep quality and overall well-being.

3.2. Methodology of the Experiment

Regarding the implementation and comparison of the system to evaluate energy
consumption with and without the proposed algorithm, we performed tests with 30 people
during a period of four weeks. We analyzed the system in the first two weeks without
implementing the energy-saving algorithm in the nodes. In this case, the nodes were
working without reactivity based on parameter changes. For the next two weeks, we
implemented reactivity in the nodes to observe the savings in energy consumption. In this
way, we could test the algorithm’s performance complemented with energy savings. It
should be noted that the tests on the 30 people to analyze their vital signs and the impact
on sleep were carried out with the complete algorithm, that is, with the proposed energy
savings.

The work presented here advances the state of the art in proposing a sensor system for
monitoring people at home and providing personalized recommendations for improving
sleep quality based on anomalous levels of measurements. This system leverages sensor
technology and data analysis to offer solutions to enhance sleep patterns. The development
of a sensor system tailored for home monitoring is a significant step forward. This system
likely consists of various types of sensors strategically placed within the living spaces to
capture relevant data related to sleep patterns. These sensors could include ambient light
sensors, temperature sensors, motion sensors, heart rate monitors, and even advanced de-
vices like sleep-specific wearable technology. The work proposes a data analysis framework
to process the data collected by the sensor system effectively. By analyzing and interpreting
the data, the system can identify anomalous levels or patterns in a person’s sleep-related
measurements. Anomalies could include irregular sleep duration, abnormal heart rate vari-
ations during sleep, or disturbances in sleep cycles. The key innovation lies in the system’s
ability to provide personalized recommendations based on the anomalous measurements.
These recommendations could range from changes in sleep habits, lifestyle adjustments,
relaxation techniques, or even suggestions to consult a medical professional, depending
on the severity of the anomaly detected. The energy-saving algorithm integrated into the
sensor system is another crucial advancement. By utilizing the programming nature of the
sensors (proactive and reactive), the system can efficiently manage power consumption
and extend the overall lifespan of the sensors. This algorithm likely employs techniques
like dynamic sampling, adaptive data transmission, or intelligent sleep/wake-up modes
for the sensors, ensuring that they are only active when necessary.

This study is based on monitoring people’s sleep through a smartwatch device. The
experiment is carried out for two weeks without the sensor system and two other weeks
with a sensor network installed in the main areas of the house of 30 elderly adults. Once
the averaged metrics of the older adults for the two weeks without the use of the sensor
network and with the use of the system are known, we proceed to the analysis of the
information.

The age of the people ranges between 50 and 70 years. There are 16 women and 14
men. People are relatively healthy concerning their health. They do not have heart or
respiratory diseases (because this could alter the results a bit). The collected data will likely
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provide valuable insights into sleep patterns and overall well-being for this demographic.
A consent form to approve the use of the system and its installation in their home is signed.
The nodes adapt according to the layout of each person’s house. There must be at least two
nodes in the room where the person sleeps, and in the main areas of the house (kitchen,
living room, and dining room), at least one node. The nodes are easy to install near a power
outlet. The nodes’ adaptability based on the layout of each person’s home is crucial. This
ensures that the sensor system can effectively capture relevant data points while being
minimally invasive and seamlessly integrated into the participants’ living spaces.

First, in order to demonstrate whether the variables changed or not in a statistically
significant way with the use of the sensor network, hypothesis tests for paired samples
were used. To define the relevant hypothesis test, whether it is a parametric t-test (see
in Appendix A Equation (A1)) or a non-parametric Wilcoxon test (see in Appendix A
Equation (A2)), the normality of the difference between each metric (with the sensor
network—without the sensor network) is verified using graphical methods. If the graphical
methods do not find reliability, the Kolmogorov–Smirnov hypothesis test is executed to
verify normality for a sample size greater than 50, or the Shapiro–Wilk test for samples of
size 50 or smaller (see in Appendix A Equations (A3) and (A4), respectively).

Second, we analyzed the correlations that the variables have with each other for
the two scenarios separately (without the use of the sensor network and with the sensor
network). To do this, the Pearson correlation coefficient is chosen (see in Appendix A
Equation (A5)) for each pair of variables that are normally distributed, or a non-parametric
correlation coefficient such as Spearman’s (see in Appendix A Equation (A6)) for a pair of
variables where at least one is not normally distributed. Therefore, the normality of the
metrics is verified separately, and the appropriate correlation coefficient is used.

Third, we ran a K-means clustering algorithm on the metrics for the two scenarios
(before and after using the sensor network) with the purpose of grouping people with
similar performance in their sleep-related vital signs. In Appendix A, Equation (A7) shows
the cluster’s k-means algorithm.

To choose the best grouping number of clusters we used a couple of parameters, the
higher silhouette score, and a min of 10 samples per cluster. The silhouette score is a
coefficient that goes from −1 to 1, where a number close to 1 shows a better fitness between
the elements of the clusters (see in Appendix A Equation (A8)).

Also, we decided to work with a min of 10 samples for cluster to make representative
groups. Then, we identified which samples changed to a better performance cluster, to a
worse performance cluster, and which ones remained in the same cluster after using the
sensor network. This classification is important, as it was used to compare the metrics before
and after utilizing the sensor network on sample groups with similar performance in their
metrics. Furthermore, each sample was labeled based on its performance classification,
and this label was used as the target variable in a multinomial multivariable logistic
regression with a Logit parameter estimation (see in Appendix A.9) performed to describe
the predictive power of each metric in odds ratios and the relationships among them on
the potential impact of the sensor network.

4. Results

In this section, we describe the results of the sensor system and its operation from an
energy perspective. Subsequently, we describe the results of the sensor system concerning
metrics based on vital signs and how they impact the person’s sleep mode.

4.1. Sensor Network Performance

The energy-saving algorithm implemented in the home monitoring sensor system
exploits the proactive and reactive nature of the nodes. Such algorithm is based on the
fact that if a node has more alerts due to significant measurement parameter changes, it
will enter into a proactive monitoring operation. This benefits the network because the
node is more vigilant. Every time, it will monitor the parameters because something may
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not work correctly at home for the rest of the person. On the other hand, when a node is
in reactive mode, it spends less power because its monitoring is based on need. This is
fostered because the node does not present intermittent attention alerts, and the follow-up
of its monitoring parameters is relatively average.

Based on Algorithm 1, the system presents an energy-saving concerning the regular
operation of the wireless sensor network. For this result, we consider the system’s use
for one hour, and when we apply the algorithm, we observe that the use of the sensor
batteries is reduced. This is only an added value to the system because its principal value
is monitoring the conditions of the house to give recommendations based on sleep.

Table 7 compares the energy consumption of two different system schemes. The first
row of the table shows the energy for the system without the energy consumption algorithm,
which is 5.82 W/h. The second row of the table shows the energy for the system with the
energy consumption algorithm, which is 5.13 W/h. The table shows that the system with an
energy consumption algorithm has a lower energy increment than the system without an
energy consumption algorithm. This means that intelligently switching between proactive
and reactive states of the nodes represents energy savings in the monitoring system.

Table 7. Energy consumption comparison.

System Outline Energy (W/h)

Without energy consumption algorithm 5.82

With energy consumption algorithm 5.13

Resilience WSNs refers to the network’s ability to maintain its functionality and per-
formance even in the face of various challenges, disturbances, or failures. These challenges
can include node failures, communication link disruptions, environmental changes, or ma-
licious attacks. A resilient WSN can adapt to changes and recover quickly from disruptions,
ensuring the continuous and reliable operation of the network. The concept of resilience
in WSNs is crucial because these networks are often deployed in dynamic and harsh en-
vironments where failures or disruptions are common. For example, in environmental
monitoring applications, WSNs may be deployed in remote and inaccessible locations
where nodes may fail due to harsh weather conditions or energy depletion. The ability of a
network to return to its stable state after facing a disruption is known as “time to recovery”
or “time to convergence”. It measures the duration it takes for the network to recover its
normal functioning and reach a stable state after a failure or disturbance. A shorter time to
recovery indicates a more resilient network that can quickly adapt to changes and restore
its operations.

Figure 2 shows the distribution of the grid resilience with and without the energy
algorithm. Thanks to the user’s recommendations, the network should present fewer
sudden changes in the logical topology. The logical topology is based on giving priority to
nodes under proactive nature and less priority to nodes under reactive nature. We observe
that under the energy algorithm, the network is 8% more resilient than when the algorithm
was implemented. This situation may be because the network is adapting the nature of its
nodes, and the recommendations given to the user are optimizing the person’s habits. This
is reflected in the fact that we have increasingly fewer alerts given by the system, and the
person’s sleep may tend to improve.
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Figure 2. System resilience against changes in user habits.

Table 3 provides a useful comparison considering other related works devoted to
develop ad hoc mathematical optimization models and algorithms for optimal energy
management in WSN. This scheme presents a comparison of state-of-the-art energy-saving
algorithms for remote monitoring of older adults at home. It lists seven algorithms, in-
cluding Sleep-Scheduler, Energy-Aware Tree-Based Routing, Distributed Collaborative
Routing, Multi-Objective Optimized Routing, Adaptive Clustering with QoS, Adaptive
Compression, and QoI-aware. It includes a range of approaches and metrics, allowing
interested readers to compare and evaluate the relative strengths and weaknesses of each
algorithm.

Figure 3 shows the average number of alerts that are presented per day during the
two weeks of experimentation with the algorithm in the monitoring system. We noticed
that thanks to the follow-up of recommendations by the user, the system presents fewer
alerts each day. This fact shows that the system has an acceptable and receptive degree of
adaptation toward the user. In addition, if the user respects these recommendations, the
system can guarantee a degree of improvement in the conditions to improve a person’s
sleep at home. The sensors send the alerts via email or SMS to the person to show them if a
sensor presents more significant variation than usual. This is so that the person knows that
behavior is not within the established thresholds in that area of the house. For example,
a more significant variation in air quality, higher abnormal noise levels, or greater use of
particular doors at night means that the person is not resting properly, etc. The purpose of
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evidencing these alerts from the sensor system is that they should decrease as the system
provides the person with recommendations daily.
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Figure 3. Number of alerts as the days go by with the proposed system.

4.2. Results of the Sensor Network over the Sleep Metrics

This section analyses the results of the sensor network over the sleep metrics of
30 older adults. The test includes the following metrics: deep sleep (DS), which describes
the percent of deep sleep in the total sleep; REM sleep (REMS), which describes the percent
of REM Sleep in the total sleep; heart rate (HR), which accounts for the number of beats per
minute; breathing frequency (BF), which accounts for the number of breaths per minute;
temperature (T), which describes the body temperature; oxygen saturation (OS), which
measures the amount of oxygen in the blood; Heart rate variability (HRV), is an index of
body relaxation, where a higher HRV indicates a relaxed and less stressed state than a lower
HRV; total sleep time (TST) in hours; and snoring (S), which accounts for the waking hours
between sleep time. Metrics were measured for four weeks, the first two weeks without the
use of the sensor network and the last two weeks with its use. Table 8 shows the statistical
description of the metrics with and without the use of the sensor network.
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Table 8. Statistical description of the metrics gathering without and with the sensor network.

Without Sensor Network

Metric Mean Median St. Dev.

DS 13.11 12.5 4.04
HR 81.14 82.5 14.459
BF 16.78 17 2.766
T 37.319 37.3 0.2604

REMS 19.64 20 2.153
OS 93.94 94 3.132

HRV 9.92 10 2.662
S 8.47 8 3.81

TST 5.77 6 0.737

With Sensor Network

Metric Mean Median St. Dev.

DS 15.24 15 3.137
HR 75.82 75 10.166
BF 14.59 15 1.837
T 36.812 36.8 0.2653

REMS 22.53 22 1.66
OS 95.23 95 2.304

HRV 15.98 16.5 2.902
S 5.62 6 2.943

TST 7.2 7 0.816

4.2.1. Paired Hypothesis Tests Analysis

The first step was to determine if the metrics were significantly different with the use
of the sensor network. To compare the results of each metric, it was necessary to know if
the sample differences (with the sensor network—without the sensor network) came from
a normal distribution for deciding the corresponding hypothesis test. For differences that
came from a normal distribution, the appropriate test is the Paired t-test otherwise, we
have to use the Wilcoxon test.

We plotted a Histogram and a Q-Q plot to verify whether the metrics are normally
distributed. Figure 4 shows the histogram and Q-Q plots for the metrics differences (with
the sensor network—without the sensor network).

It is not clear whether the metrics follow a normal distribution using the graphic
method. In this case, we performed a statistical normality test to take more evidence. The
most common normality tests are Shapiro–Wilk and Kolmogorov–Smirnov, Shapiro–Wilk
is used when the sample size is equal to 50 or lower. The Kolmogorov–Smirnov test is
used when the sample size is larger than 50. Because the sample size is larger than 50 we
used the Kolmogorov–Smirnov test to prove if the metrics differences follow a normal
distribution. The null hypothesis H0 for the Kolmogorov–Smirnov test is that the metrics
follow a normal distribution. If the p-value of the Kolmogorov–Smirnov test is lower than
0.05 the H0 is rejected, otherwise, the data are normally distributed. Table 9 shows the
p-value of the Kolmogorov–Smirnov test for the nine studied metrics’ differences and
whether those follow a normal distribution.

Table 9. Results of Kolmogorov–Smirnov test metrics samples differences (With the sensor network—
without the sensor network).

Metric p-Value Normal Distribution Appropriate Test

DS 0.001 No Wilcoxon
HR 0.135 Yes t-test
BF 0.077 Yes t-test
T 0.021 No Wilcoxon

REMS 0.001 No Wilcoxon
OS 0.012 No Wilcoxon

HRV 0.108 Yes t-test
S 0.000 No Wilcoxon

TST 0.000 No Wilcoxon



Future Internet 2023, 15, 287 18 of 31

Figure 4. Figures (a–i) show the Histograms of the deep sleep (DS), heart rate (HR), breathing
frequency (BF), temperature (T), REM sleep (REMS), oxygen saturation (OS), Heart rate variability
(HRV), snoring (S), and, total sleep time (TST) metrics differences (with the sensor network—without
the sensor network), respectively. And figures (j–r) show the Q-Q plot differences of the same nine
sleep metrics.

The sample difference in heart rate, breathing frequency, and heart rate variability
are normally distributed. On the other hand, the differences in deep sleep, REM sleep,
temperature, oxygen saturation, total sleep time, and snoring are not normally distributed.
Afterward, we performed the appropriate paired test for each variable. For heart rate,
breathing frequency, and heart rate variability, we performed the paired t-test. For the rest
of the variables, we performed the paired Wilcoxon test. For both tests, the H0 hypothesis
is that the variables are not statistically different. In addition, for both tests, if the p-value is
lower than 0.05 the data are significantly different with a 95% of the confidence interval,
and the H0 is rejected. Table 8 shows the results of comparing the metrics with the use of
the sensor network versus those without the use of the sensor network and if these are
significantly different or not. In addition, Table 10 shows the result direction, SN > NSN
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means that the correspondent metric is higher with the use of the sensor network, and
SN < MNS means that the metric is lower with the use of the network.

Table 10. Results of paired tests between metrics with and without the use of the sensor network.

Metric p-Value Test Statistically
Different

Difference
Direction

DS 0.000 Wilcoxon Yes SN > NSN
HR 0.006 t-test Yes SN < NSN
BF 0.000 t-test Yes SN < NSN
T 0.000 Wilcoxon Yes SN < NSN

REMS 0.000 Wilcoxon Yes SN > NSN
OS 0.004 Wilcoxon Yes SN > NSN

HRV 0.000 t-test Yes SN > NSN
S 0.000 Wilcoxon Yes SN < NSN

TST 0.000 Wilcoxon Yes SN > NSN

It is possible to show that the nine metrics are different in a statistically significant
way with the use of the sensor network.

4.2.2. Correlational Analysis

We then performed a correlation analysis between the metrics for both scenarios, with
and without the use of the sensor network. At this point, to perform the appropriate correla-
tion coefficient we examined whether each separate metric follows a normal distribution or
not. If a couple of metrics from the same scenario (with the sensor network or without the
sensor network) follow a normal distribution we can use a parametric correlation coefficient.
Otherwise, we have to use a non-parametric correlation coefficient. As in the paired hypothesis,
test analysis with the graphical methods was difficult to determine if the metrics are normally
distributed, and we used a statistical normality test. Tables 11 and 12 show the results of the
Kolmogorov–Smirnov test for the nine metrics for each scenario.

Table 11. Results of Kolmogorov–Smirnov test for metrics without the sensor network.

Metric p-Value Normal Distribution

DS 0.000 No
HR 0.021 No
BF 0.037 No
T 0.000 No

REMS 0.010 No
OS 0.000 No

HRV 0.008 No
S 0.003 No

TST 0.000 No

Table 12. Results of Kolmogorov–Smirnov test for metrics with the sensor network.

Metric p-Value Normal Distribution

DS 0.014 No
HR 0.002 No
BF 0.000 No
T 0.000 No

REMS 0.010 No
OS 0.000 No

HRV 0.000 No
S 0.004 No

TST 0.000 No

As the nine metrics with and without the use of the sensor network do not follow
the normal distribution, we used the Spearman correlational coefficient to examine the
correlations between each pair of metrics in both scenarios (with and without the sensor
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network). The following statistically significant correlations in the metrics without the use
of the sensor network scenario were found:

1. Temperature and heart rate present negative correlations of −0.331 with a p-value
of 0.001.

2. Temperature and REM sleep present a positive correlation of 0.221 with a p-value
of 0.027.

3. Breathing frequency and heart rate variability present a positive correlation of 0.211
with a p-value of 0.035.

On the other hand, with the use of the sensor network the following statistically
significant correlations were found:

1. Temperature and REM sleep present a negative correlation of −0.314 with a p-value
of 0.001.

2. Total sleep time and snoring present a negative correlation of −0.282 y with a p-valor
of 0.004.

4.2.3. Cluster Analysis

We performed a cluster analysis with the metrics to examine how the samples were
divided into clusters before we used the sensor network and how they stayed in the same
cluster or change to another cluster after the sensor network is used. With this information,
it is possible to find the impact tendencies of the sensor network on the samples.

As for gathering samples without the sensor network as well as those gathering with
the sensor network, the best number of clusters is 3 with 0.556 and 0.562 silhouette scores,
respectively. With the use of the sensor network, the three clusters present an improvement
in comparison with the clusters formed without the use of the sensor network. We classified
and labeled the samples that changed to a better performance cluster, the samples that
stayed in the same cluster, and the samples that changed to a worse performance cluster
using the sensor network. Taking into account that generally the nine metrics improve
with the sensor network we used the label’s high impact for the samples that changed to a
better cluster, the middle impact for samples that stay in the same cluster, and low impact
for samples that changed to a worse cluster. There are 31 samples labeled as high impact,
42 samples as middle impact, and 27 as low impact. Labeling samples based on changes
in metric performance is essential to perform regression analysis and discover predictive
patterns in using the sensor network. Additionally, it allows analysis of differences between
metrics before and after the use of the sensor network, for each group of samples isolated
by label.

4.2.4. Sub-Grouping Analysis

We analyzed the metrics differences without and with the use of the sensor network
for samples labeled as high impact, middle impact, and low impact in a separate way. As
we did in the analysis of paired tests section, we corroborate whether the metric differences
(with the sensor network—without the sensor network) of each class (high, middle, and low
impact) follow a normal distribution to perform the appropriate paired test. The subgroups
present a difficult normality distribution interpretation using the graphical methods, which
means we had to use a statistical test to determine it. As the number of samples for the
classes is lower than 50 we used the Shapiro–Wilk test. Tables 13–15 show the results of the
Shapiro–Wilk test and the corresponding pair test to use. Tables 16–18 show the results of
the paired tests for each impact class and the directions of the results.

We found that samples labeled as high impact have different statistical significance in
the nine metrics. For the samples labeled as middle impact, only the oxygen saturation (OS)
metric does not have a significant difference with the use of the sensor network. Moreover,
in the low impact group, the metrics temperature, REM sleep, total sleep time, heart rate
variability, and snoring show a significant difference, but deep sleep, heart rate, breathing
frequency, and oxygen saturation do not present a significant difference with the use of the
sensor network. It is possible to see that metrics temperature, REM sleep, total sleep time,
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heart rate variability, and snoring exhibit a significant difference with the use of the sensor
network in any labeled group.

Table 13. Results of Shapiro–Wilk test metrics samples differences (with the sensor network—without
the sensor network) for the class high impact.

Metric p-Value Normal Distribution Appropriate Test

DS 0.912 Yes t-test
HR 0.391 Yes t-test
BF 0.374 Yes t-test
T 0.852 Yes t-test

REMS 0.121 Yes t-test
OS 0.234 Yes t-test

HRV 0.260 Yes t-test
S 0.787 Yes t-test

TST 0.004 No Wilcoxon

Table 14. Results of Shapiro–Wilk test metrics samples differences (with the sensor network—without
the sensor network) for the class middle impact.

Metric p-Value Normal Distribution Appropriate Test

DS 0.004 No Wilcoxon
HR 0.644 Yes t-test
BF 0.495 Yes t-test
T 0.125 Yes t-test

REMS 0.048 No Wilcoxon
OS 0.254 Yes t-test

HRV 0.230 Yes t-test
S 0.027 No Wilcoxon

TST 0.016 No Wilcoxon

Table 15. Results of Shapiro-will test metrics samples differences (with the sensor network—without
the sensor network) for the class low impact.

Metric p-Value Normal Distribution Appropriate Test

DS 0.017 No Wilcoxon
HR 0.316 Yes t-test
BF 0.903 Yes t-test
T 0.186 Yes t-test

REMS 0.005 No Wilcoxon
OS 0.154 Yes t-test

HRV 0.031 No Wilcoxon
S 0.550 Yes t-test

TST 0.003 No Wilcoxon

Table 16. Results of paired tests between metrics with and without the use of the sensor network for
the class high impact.

Metric p-Value Test Statistically
Different

Difference
Direction

DS 0.001 t-test Yes SN > NSN
HR 0.000 t-test Yes SN < NSN
BF 0.000 t-test Yes SN < NSN
T 0.000 t-test Yes SN < NSN

REMs 0.000 t-test Yes SN > NSN
OS 0.000 t-test Yes SN > NSN

HRV 0.000 t-test Yes SN > NSN
S 0.000 t-test Yes SN < NSN

TST 0.000 Wilcoxon Yes SN > NSN
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Table 17. Results of paired tests between metrics with and without the use of the sensor network for
the class middle impact.

Metric p-Value Test Statistically
Different

Difference
Direction

DS 0.001 Wilcoxon Yes SN > NSN
HR 0.003 t-test Yes SN < NSN
BF 0.000 t-test Yes SN < NSN
T 0.000 t-test Yes SN < NSN

REMS 0.000 Wilcoxon Yes SN > NSN
OS 0.623 t-test No SN > NSN

HRV 0.000 t-test Yes SN > NSN
S 0.022 Wilcoxon Yes SN < NSN

TST 0.000 Wilcoxon Yes SN > NSN

Table 18. Results of paired tests between metrics with and without the use of the sensor network for
the class low impact.

Metric p-Value Test Statistically
Different

Difference
Direction

DS 0.264 Wilcoxon No SN > NSN
HR 0.130 t-test No SN > NSN
BF 0.494 t-test No SN < NSN
T 0.000 t-test Yes SN < NSN

REMS 0.016 Wilcoxon Yes SN > NSN
OS 0.901 t-test no SN > NSN

HRV 0.000 Wilcoxon Yes SN > NSN
S 0.026 t-test Yes SN < NSN

TST 0.000 Wilcoxon Yes SN > NSN

4.2.5. Regression Analysis

At this point, we know how the metrics are impacted by the sensor network on a
qualitative scale (low, middle, and high impact). With this information, we could perform
a regression analysis and identify predictive tendencies using the nine metrics gathered
without the use of the sensor network as independent variables and the tag (high impact,
middle impact, and low impact) as the target variable. In this way, we performed a
multinomial logistic regression to discover how effective the sensor network can be for
improving the sleep metrics once we know the nine metrics without the use of the sensor
network. Because the tag is a nominal variable, it is good practice to take the first class as a
reference to estimate the parameters, in this analysis we took the low impact as the reference
class. Taking the low impact class as a reference class for the estimation of parameters
clarifies the visualization of impact in the use of the sensor network over the nine metrics
because in this way we can compare the possibilities to have a middle impact or high
impact versus a low impact.

Table 19 shows the estimation parameters with the reference class low impact of the
multinomial logistic regression made with a steep back Wald test methodology.

Using a steep back Wald test methodology in the multinomial logistic regression, it
was possible to appreciate that the heart rate variability and deep sleep metrics are not in
the estimation of the parameters of Table 19. In the estimation of the multinomial logistic
regression, if the p-value of a metric is higher than 0.05 in the Wald test, the variable
modifies less than 5 percent of the variance of the class to predict. The steep-back Wald
test methodology performs the model only with the variables that predict more than 5% of
the predicted class variance, which means that heart rate variability and deep sleep have
p-values above 0.05 for the two predicted classes.
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Table 19. Significant estimation parameters result from the multinomial regression with the reference
class low impact.

Predicted Class Metric Coefficient p-Value Odd Radios

High
impact

Intersection −133.579 0.040
HR 0.174 <0.001 1.190
BF 0.607 <0.001 1.835
T 4.877 0.007 131.209
REMS −0.380 0.073 0.684
OS −0.652 <0.001 0.521
TST −1.180 0.028 0.307
S 0.357 0.005 1.429

Middle
impact

Intersection −106.781 0.062
HR 0.097 0.003 1.102
BF 0.330 0.007 1.391
T 3.249 0.039 25.762
REMS −0.475 0.008 0.622
OS −0.162 0.186 0.850
TST −0.430 0.279 0.650
S 0.053 0.579 1.054

For the class high impact, the metrics heart rate, breathing frequency, temperature,
oxygen saturation, total sleep time, and snoring are significant predictors, and the metric
REM sleep is a non-significant predictor. Also, for the class middle impact the metrics heart
rate, breathing frequency, temperature, and REM sleep are significant predictors, and the
metrics oxygen saturation, total sleep time, and snoring are non-significant predictors.

The multinomial logistic regression model has a coefficient of Cox and Snell of 0.536
and a coefficient of Nagelkerke of 0.65 indicating that the independent variables explain
approximately 60 percent of the dependent variable variance. On the other hand, the model
has a McFadden coefficient of 0.355 indicating good fitness.

5. Discussion

Remote monitoring systems based on sensor networks in smart homes for the elderly
have the potential to revolutionize the way care is provided to this population. By using a
network of wireless sensors to gather data on the individual’s activity and environment,
these systems can provide valuable insights into the individual’s health and well-being. The
use of wearable sensors to monitor vital signs such as heart rate and oxygen saturation, in
particular, can provide early warning signs of potential health issues, allowing for prompt
intervention and medical attention. This can be especially important for older adults who
may be at risk of falls or other accidents, as well as those with chronic conditions such as
heart disease or diabetes.

Furthermore, the use of machine learning and artificial intelligence techniques to
analyze the data collected by the sensors can also provide additional benefits. These
technologies can be used to detect patterns and anomalies in the individual’s behavior or
vital signs, which can provide early warning signs of potential issues. This can include
identifying changes in sleep patterns that may indicate the onset of a sleep disorder, or
detecting a decline in mobility that may increase fall risks. Additionally, these systems can
also be used to monitor medication adherence, which can be especially important for older
adults who may have difficulty remembering to take their medication.

In addition, the data collected by the systems can also be used to provide more
personalized care, based on the individual’s specific needs and preferences. By monitoring
the individual’s activities and movements, for instance, the systems can identify patterns
of behavior that can be used to adjust the individual’s care plan. This can include adjusting
the lighting or temperature in the home, or providing reminders to take medication or
perform other important tasks.

Overall, remote monitoring systems with sensor networks in smart homes for the
elderly can provide a wide range of benefits, including improved health outcomes, in-
creased safety and security, and more personalized care. By tracking vital signs and activity,
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these systems can provide early warning signs of potential issues, allowing for prompt
intervention and medical attention. Additionally, the use of machine learning and artificial
intelligence techniques can provide additional benefits, such as identifying patterns and
anomalies in the individual’s behavior or vital signs, and providing more personalized care
based on the individual’s specific needs and preferences.

A remote sensor network monitoring system can have a significant impact on alarm
feedback and recommendations for users to improve their sleeping habits. The system
allows for continuous monitoring of sleep patterns and provides real-time data on sleep
efficiency, latency, wake after sleep onset, and total sleep time. These data can be used to
provide personalized alarm feedback and recommendations to the user to improve their
sleep. For example, if the system detects that the user has a high sleep latency or wake after
sleep onset, it can provide recommendations to the user to improve their sleep hygiene,
such as avoiding caffeine or electronic devices before bedtime.

Additionally, the system can also provide recommendations for the user to improve
their sleep environment. For example, if the system detects that the user’s room temperature
is too high or too low, it can provide recommendations to adjust the temperature to optimize
sleep. It can also detect noise, light and humidity level, as well as other environmental
factors that can affect sleep quality, providing feedback to the user to minimize or eliminate
these factors. Furthermore, it can also detect the use of sleeping aids or any other drug use,
and make recommendations if needed. Overall, the remote sensor network monitoring
system provides users with valuable insights into their sleep patterns and ways to improve
their sleeping habits, which can lead to better overall sleep health and quality of life.

This study is based on an original proposal for a sensor system that adapts to the
person’s habits using a low energy-consumption algorithm. The sensor system sends
recommendations to users daily. These recommendations are tailored to a person’s ideal
sleeping conditions. Recommendations are based on the person’s use when moving through
different areas of their house. The sleep improvement information is verified daily through
a smartwatch to identify whether the system is having a positive, negative or neutral
impact on the habits of falling asleep. However, if the person truly has a sleep disorder or
is regularly interrupted, using this sensor system will not be a reliable indicator of sleep
health. Of course, the best option will be a sleep study that a physician can order to obtain
a reliable and accurate reading.

With the results of the paired hypothesis test analysis, the correlation analysis, and
the cluster analysis that includes a sub-groping and a regression analysis over the sleep
studied metrics we can discuss the following findings.

In sleep, the body enters a relaxed state, and the health metrics change. For example,
during the sleep period the heart rate, breathing frequency, and temperature tend to
decrease [51,52]. Also, for an adult, the recommended total sleep time ranges from 7 to
8 h [53] with approximately 20% of deep sleep and 25% REM sleep for quality rest. In
the paired hypothesis test analysis, it was possible to see that with the use of the sensor
network, the nine metrics were statistically different, total sleep time, deep sleep, REMS
sleep, heart rate variability, and oxygen saturation increased, while, heart rate, breathing
frequency, temperature, and snoring decreased. These results suggest that the nine metrics
improved in a general way with the use of the sensor network.

Although the correlations found in the correlation analysis are not strong, some of
them show some tendencies. Once knowing that the total sleep time increased and the
snoring decreased, the negative correlation between the total sleep time and snoring with
the use of the sensor network can mean that elderly people slept more and with less
interruptions with the use of the sensor network. Temperature and REM sleep change the
direction of the correlation with the use of the sensor network, they pass from a positive
correlation to a negative correlation. Once knowing that the temperature decreased and the
REM sleep increased the negative correlation can mean that the REM sleep increases when
the temperature decreases. According to [52], body temperature decreases in the REM
sleep states, nevertheless, REM sleep occurs over a much longer duration than deep sleep,
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which can be why REM sleep has a correlation with temperature in this study and deep
sleep does not. Finally, the weak correlations between heart rate with temperature and
breathing frequency with heart rate variability that represented a contradictory behavior
as to what the metrics would take in a quality rest disappeared with the use of the sensor
network. This can mean that the sensor network stabilizes the behavior of the heart rate,
temperature, breathing frequency, and heart rate variability.

With the estimation of parameters for the multinomial logistic regression made in the
regression analysis, we could find the metrics with a predictive trend in the impact level
that the use of the sensor network can have once known the sleep metrics without using
this. Taking the low impact labeled class as a reference to calculate the odds ratio between
the possibility to obtain a positive significant difference in the nine metrics (high impact)
versus the possibility to have a positive significant difference in five metrics (temperature,
REM sleep, total sleep time, and heart rate variability for the low impact class) we found
that:

1. For each extra heartbeat per minute and keeping the intersection and the other vari-
ables constant, the possibility of high impact increases 1.90 times.

2. For each extra respiration per minute and keeping the intersection and the other
variables constant, the possibility of high impact increases 1.835 times.

3. For each additional degree Celsius in body temperature and keeping the intersection
and the other variables constant, the possibility of high impact increases 131.209 times.
The increase is large because a Celsius grade is a big difference for a temperature body
change.

4. For each additional unit of oxygen saturation and keeping the intersection and the
other variables constant, the possibility of high impact decreases 1.919 times.

5. For each extra hour of total sleep time and keeping the intersection and the other
variables constant, the possibility of high impact decreases 3.257 times.

6. For each extra hour of snoring and keeping the intersection and the other variables
constant, the possibility of high impact increases 1.429 times.

In the odds ratios calculation between the possibility to obtain a positive significant
difference in eight of the nine metrics (except oxygen saturation for the middle impact class)
versus the possibility to have a positive significant difference in five metrics (temperature,
REMS sleep, total sleep time, and heart rate variability for the low impact class) we found
that:

1. For each additional heartbeat per minute and keeping other variables constant, the
possibility of middle impact increases 1.102 times.

2. For each additional respiration per minute and keeping other variables constant, the
possibility of high impact increases 1.291 times.

3. For each additional degree Celsius in body temperature and keeping the other vari-
ables constant, the possibility of high impact increases 25.762 times.

4. For each additional hour of REMS sleep time and keeping the intersection and the
other variables constant, the possibility of high impact decreases 1.607 times.

In the estimation of parameters for both, high- and middle-impact labeled classes,
there is a common tendency in three metrics. The higher the heart rate, breathing frequency,
and temperature without the use of the sensor network, the possibility of better results
with the use of the sensor network increase.

6. Conclusions

The remote sensor network monitoring system is a valuable tool for improving sleep
habits and health. The system provides real-time data on sleep patterns and offers person-
alized feedback and recommendations based on these data. The system can detect and
analyze a wide range of factors that impact sleep quality, including sleep efficiency, latency,
wake after sleep onset, temperature, noise, light, humidity levels, and the use of sleeping
aids or medications. These recommendations are tailored to the individual’s habits and
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sleep environment and are verified daily through a smartwatch. However, it is important to
note that if a person has a sleep disorder or regularly experiences interruptions, the system
may not provide a reliable indicator of sleeping health and a physician-prescribed sleep
study may be necessary.

In this work, we evaluated the impact of a remote sensor network monitoring system
on sleep patterns and habits. The results showed that the system had a statistically signifi-
cant impact on nine metrics related to sleep, including total sleep time, deep sleep, REM
sleep, heart rate variability, oxygen saturation, heart rate, breathing frequency, temperature,
and snoring. The study also found that the sensor network increased the total sleep time in
elderly adults making the sleep less interrupted while stabilizing temperature, REM sleep,
heart rate, breathing frequency, and heart rate variability.

However, it is important to note that while the results of this study indicate that the
sensor network can have a positive impact on sleep, it may not be a reliable indicator
for individuals with sleep disorders or those who are regularly interrupted. A sleep
study ordered by a physician remains the best option for an accurate and reliable reading.
Nevertheless, the sensor network is an innovative solution that provides users with valuable
insights into their sleep patterns and ways to improve their sleeping habits, which can lead
to better overall sleep health and quality of life.

The cluster analysis performed in the study revealed that the use of the sensor network
has a positive impact on various sleep metrics such as temperature, REM sleep, total sleep
time, and heart rate variability for the samples that were grouped into high impact, middle
impact, and low impact subgroups. Further regression analysis provided insight into
the predictive trends of the sensor network’s impact level on sleep metrics. The results
showed that factors such as heart rate, breathing frequency, body temperature, REM sleep,
oxygen saturation, total sleep time, and snoring have a significant impact on the level
of improvement with the use of the sensor network. Additionally, the study found that
higher heart rate, breathing frequency, and body temperature without the use of the sensor
network increase the possibility of better results when the sensor network is used.
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Appendix A. Equations

Appendix A.1. t-Test

t =
d̄

sd/
√

n
(A1)

https://www.mdpi.com/article/10.3390/fi15090287/s1
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where:
t: is the value of the Student’s t statistic.
d̄: denotes the average of the differences observed between the related pairs of mea-

surements.
sd: stands for the standard deviation of the differences between the related pairs of

observations.
n: indicates the sample size, which refers to the number of related pairs of observations.

Appendix A.2. Wilcoxon Test

W =
n

∑
i=1

ri (A2)

where: W: is the Wilcoxon test statistic.
n: indicates the sample size (number of related pairs of observations).
ri: is the rank of the i-th difference between the related observations.

Appendix A.3. Shapiro–Wilk Test

W =
(∑n

i=1 ai(xi))
2

∑n
i=1(xi − x̄)2 (A3)

where:
W: is the Shapiro–Wilk test statistic.
(xi): represent the ordered values of the data set, used to calculate the test statistic W.
x̄: denotes the mean of the data, used to calculate the coefficients ai required for the

calculation of W.
ai: is the coefficients calculated from the mean, variance, and covariance of the data.

Appendix A.4. Kolmogorov–Smirnov Test

Dn = max |Fn(Xi)−Φ(Xi)| (A4)

where:
Dn: is the test statistic for the Kolmogorov–Smirnov test.
Fn(Xi): is the empirical distribution function of the sample.
Φ(Xi): is the cumulative distribution function for a standard normal distribution (with

mean 0 and standard deviation 1).
max: refers to the maximum absolute difference between the two distribution func-

tions.

Appendix A.5. Pearson Correlation Coefficient

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(A5)

where
rxy: is the Pearson correlation coefficient between two variables x and y.
x̄ and ȳ: are the sample means of x and y, respectively.
n: is the number of observations in the sample.

Appendix A.6. Spearman Correlation Coefficient

ρ = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
(A6)
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where
ρ: is the Spearman correlation coefficient between two variables.
di: is the difference between the ranks of each pair of corresponding observations.
n: is the number of observations in the sample.

Appendix A.7. k-Means

The k-means algorithm seeks to partition n observations into K (K < n) set of G groups
G = {G1, G2, G3...GK}minimizing the within-cluster sum of squares.

arg min G
K

∑
i=1

∑
x∈Gi

(x− µi)
2 (A7)

where:
arg min G: is the minimum argument in the set of clusters G.
µi: is the mean of the values in the cluster Gi.

Appendix A.8. Silhouette Value

si =
bi − ai

max{ai, bi}
(A8)

where:
si: is the silhouette value for the i-th object.
ai: is the average distance between the i-th object and all other objects in the same

cluster.
bi: is the average distance between the i-th object and all objects in the nearest cluster

(other than the cluster containing the i-th object).

Appendix A.9. Multinomial Multivariable Logistic Regression with a Logit Parameter Estimation

In multinomial logistics regression, the probability of the set of C classes predicted
is calculated, and the class possibilities are associated, which means the sum of all class
possibilities is 1. Equation (A9) shows the mathematical description of the multinomial
logistics regression function to calculate a class probability.

pi =
ezi

∑C
j=1 ezj

(A9)

where:
pi: is the probability of class I.
zi: is denoted by the Equation (A10).

zi = αi1x1 + αi2x2 + αi3x3 ... + αinxn + βi (A10)

where:
x1, x2, x3... xn represent the independent variables and n is the number of independent

variables.
Also, we took a reference class to estimate the parameter in odd ratios, Equation (A11)

shows the transformed Logit function used to estimate parameters.

y = Logit(x) = log
pij

pir
(A11)

where:
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pij: is the probability of sample i belonging to class j.
pir: is the probability that the same sample belongs to the reference class r.
y: is the multinomial predicted variable.
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