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Abstract: The sixth-generation (6G) network is supposed to transmit significantly more data at much
quicker rates than existing networks while meeting severe energy efficiency (EE) targets. The high-
rate spatial modulation (SM) methods can be used to deal with these design metrics. SM uses transmit
antenna selection (TAS) practices to improve the EE of the network. Although it is computationally
intensive, free distance optimized TAS (FD-TAS) is the best for performing the average bit error rate
(ABER). The present investigation aims to examine the effectiveness of various machine learning
(ML)-assisted TAS practices, such as support vector machine (SVM), naïve Bayes (NB), K-nearest
neighbor (KNN), and decision tree (DT), to the small-scale multiple-input multiple-output (MIMO)-
based fully generalized spatial modulation (FGSM) system. To the best of our knowledge, there is no
ML-based antenna selection schemes for high-rate FGSM. SVM-based TAS schemes achieve ∼71.1%
classification accuracy, outperforming all other approaches. The ABER performance of each scheme
is evaluated using a higher constellation order, along with various transmit antennas to achieve the
target ABER of 10−5. By employing SVM for TAS, FGSM can achieve a minimal gain of ∼2.2 dB over
FGSM without TAS (FGSM-NTAS). All TAS strategies based on ML perform better than FGSM-NTAS.

Keywords: free distance optimized transmit antenna selection (FD-TAS); fully generalized spatial
modulation (FGSM); machine learning (ML); support vector machine (SVM); transmit antenna
selection (TAS)

1. Introduction

In comparison to fifth-generation (5G) wireless communication networks, 6G networks
are expected to have much higher spectral, energy, and cost efficiency, with higher data
rates (in Tbps), latency reduced by a factor of ten, connection density increased by a
factor of a hundred, and increased intelligence for full automation. Innovations such as
index modulation (IM), reconfigurable intelligent surfaces (RISs), non-orthogonal multiple
access (NOMA), and artificial intelligence (AI) will all be introduced into 6G networks
to fulfill these overall objectives [1–6]. Massive MIMO designs can increase the spectral
efficiency (SE) of 6G systems because of the higher frequencies and dense networks. In 6G,
technologies like SM, RIS, NOMA, orbital angular momentum, and rate splitting multiple
access have the potential to increase SE [7].
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The energy efficiency (EE) of wireless networks may be enhanced by using four
major approaches: (1) Resource allocation. Rather than maximizing throughput, the EE
of the network is optimized by efficiently distributing resources [8]. (2) Instead of simply
increasing the coverage area, the second option employs infrastructure nodes to increase
the network’s EE. (3) Use renewable energy sources to power communication systems.
(4) Design energy-efficient hardware solutions. In a network, IM and its derivatives can
also be utilized to shoot up EE [9,10].

Massive MIMO is an essential technique for achieving the SE requirements of 5G.
When adopting a multi-antenna system, two issues arise: inter-antenna synchronization
(IAS) and inter-channel interference (ICI) [11]. With more radio frequency (RF) links, the
hardware complexity of the system grows, lowering EE [12]. To overcome this problem,
the concept of SM has been presented [9,10]. Because one antenna is functional at a time,
the RF chain is simpler to handle in SM [9–11].

SM’s SE is given by
αSM = log2(M) + log2(Ntx), (1)

where the number of transmit antennas and modulation order are denoted by Ntx and M,
respectively. The SE of SM is proportional to log2(Ntx). As a result, in order to enhance
SE, a higher proportion of transmit antennas is required. SM cannot satisfy SE demands
since only one antenna is simultaneously active [11]. High-rate SM variants are needed for
future-generation networks to meet SE requirements [13]. The high-rate SM variants may
transmit the same or distinct symbols at the same time across multiple antennas, depending
on their operating principle. FGSM is a cutting-edge SM variant in which the transmitter
uses just one or several, or all of its antennas for transmission [13]. As a result, the possible
SE grows linearly with Ntx. Gudla V.V. et al. briefly discussed the system architecture and
functioning theory of FGSM [13].

Transmit diversity gain could not be achieved in SM since only one antenna is fully
functional at once [14–17]. The integration of TAS practices into SM improves its transmit
diversity. The receiver decides on transmitter antenna subsets driven by the channel quality
information (CQI). In ML, machines are taught new skills so that they may execute tasks
on their own using data. In terms of planning and optimizing future-generation networks,
ML plays a critical role. ML may be used to solve a wide range of technical difficulties
in future-generation systems, including massive MIMO, NOMA, device-to-device (D2D)
networks, etc. [2,3]. The present research performs TAS on FGSM using ML algorithms, and
the effectiveness of these algorithms is evaluated using classification accuracy and ABER.

Related Work

The future-generation network demands improvements in EE and SE [1]. The SE of SM
is proportional to log2(Ntx), which lowers the performance of SM in terms of SE [9,10]. To
overcome this, high-rate versions of SM are developed [13]. FGSM is a high-rate variation
of SM, where transmit antennas and SE are linearly related and could meet the expanding
demands of 6G [13].

Lower-powered integrated circuits, antenna diversity, or a mix of the two, may be
adopted to boost EE [18]. The traditional SM technique does not provide transmit diversity
gain. TAS practices have been incorporated to boost the SM system’s transmit diversity
gain [14]. TAS approaches are applied to overcome the cost and complexity challenges in
massive MIMO systems [12]. Different massive MIMO configurations have shown that
antenna selection can improve performance and lower RF costs [19]. For optimal channel
utilization, a novel SM technique is developed by fusing transmit mode switching and
adaptive modulation techniques [20]. The free distance (FD) strategy is computationally
more expensive due to the requirement of simultaneously searching for antenna pairs and
constellation orders that maximize the least FD. Although FD-TAS provides the best EE
performance, its implementation is more challenging. The FD-TAS system has gained
popularity and is used as a benchmark in many TAS-related articles [3,13–17,21].
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A capacity-optimized antenna selection (COAS) technique is addressed in conjunction
with FD-TAS, where the antenna subset with the most prominent channel capacity is
chosen [13–15,17]. The correlation angle of two antennas is used to evaluate the TAS [13,16].
In this study, the antenna subset with the least correlation is prioritized. The capacity and
correlation angle-based technique is proposed to enhance ABER performance [13] while
increasing computing complexity. A partitioning strategy that relies on the capacity and
correlation angle further reduces the system’s complexity [13]. Sub-optimal techniques are
less efficient than FD-TAS when it comes to TAS in SM and its variants [13–17].

To save the computations offered by FD-TAS, nowadays data-driven approaches are
utilized. TAS is a classification problem that can be solved using supervised ML algorithms.
A pattern recognition-based approach is proposed for traditional MIMO [22]. This work is
tested for 5000 samples with KNN and SVM algorithms. This work can be extended further
to various supervised learning algorithms and larger datasets to boost the overall system
performance. Two unique features of the channel space are the element norm of H and
element norm of HH H, which are used to analyze the performance of these algorithms.
The absolute of elements of H is used to analyze NB- and SVM-based TAS algorithms in
conventional MIMO architecture [23]. The purpose of this research is to demonstrate how
ML can be utilized to enhance the security of MIMO architecture. In the future, other ML
algorithms could be employed to carry out this research. In this example, the algorithms
are only trained on 10,000 samples; nevertheless, this number can be increased to improve
overall efficiency.

To solve power assignment problems in adaptive SM-MIMO, supervised ML algo-
rithms and deep neural networks (DNNs) are proposed and implemented [24]. The
ABER performance in this work can be enhanced by extending the training data beyond
2000 feature label pairs. Other features, such as the angle of elements of H, real and imagi-
nary parts of elements of H, etc., can be used as attributes to obtain better results. TAS as
a classification problem is addressed using DNN and SVM for SM [25]. To construct the
models, the channel gain and correlation properties of the column space of H are retrieved.
In this work, the comparison with other ML-based algorithms is not conducted with DNN
and SVM. Altın, G. and Arslan, İ.A. selected both the transmit and receive antennas for
SM using deep learning (DL) architectures [26]. We used DL-based algorithms to execute
TAS for FGSM in [3] to meet the SE requirements and improve classification accuracy. The
following is a list of research gaps identified:

• Most of these data-driven approaches are proposed and implemented for conventional
MIMO and basic SM architectures.

• These data-driven strategies are neither proposed nor implemented for high-rate
variants of SM.

• The TAS dataset is not available for FGSM in any of the repositories.

Listed below are the key contributions of this work:

• Through the repeated application of the FD-TAS algorithm, 4 different datasets (with
a total of 10,000 entries) are produced. The dataset contains channel information
for a variety of MIMO setups and antenna counts, as well as essential performance
measures, like FD.

• For FGSM, four distinct supervised ML classification methods are used and tested for
TAS: SVM, NB, KNN, and DT. The dataset size, the value of k, which is used in k-fold
cross-validation, and parameters, such as the kernel type and hyperparameter K, are
optimized to obtain the best results.

• The ABER and computational complexity of ML-based TAS approaches are contrasted
to those of FGSM-NTAS and FD-TAS.

• An analysis of the proposed work is carried out in terms of SNR gain and classifica-
tion accuracy.
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The following is how the manuscript is structured: The principle of operation of
FGSM is discussed elaborately in Section 2. The various ML algorithms used for TAS in
the FGSM system are covered in Section 3. The proposed ML-based TAS practices and
the conventional FD-TAS practice are subjected to a computational complexity study in
Section 4. The ABER performance of ML-based algorithms is contrasted to the FD-TAS
scheme in Section 5. Section 6 concludes the work by laying out future research directions.

2. System Model of FGSM Transceiver

FGSM is a high-rate version of SM that allows one, many, or all antennas to transmit
the same symbol at the same instant. The SE is directly proportional to Ntx as compared to
SM, which improves the SE. This variation does not require that the number of transmit
antennas be a power of two. The SE of FGSM is calculated as follows:

αFGSM = log2(M) + (Ntx − 1). (2)

Consider the input bits [0 0 1 1] to comprehend FGSM mapping. An example with
an SE of 4 bpcu (M = 4 and Ntx = 3) is used to demonstrate FGSM mapping. As indi-
cated in Table 1, the symbol s1 is identified using the first log2(M) bits, i.e., [0 0]. It will
be transmitted by the antenna pair (1, 2), which is selected using the next (Ntx − 1) bits,
i.e., [1 1], as illustrated in Table 2. For the given block of bits, the transmit vector gen-
erated is given by χ = [− 1√

2
+ 1√

2
j,− 1√

2
+ 1√

2
j, 0]T . Consider an alternative set of bits

[0 1 0 1], where the symbol s2 is chosen by using the first log2(M) bits [0 1], as shown in
Table 1. It will be transmitted by antenna 2, which is selected using the next (Ntx − 1)
bits, i.e., [0 1], as illustrated in Table 2. For this set of bits, the vector to be transmitted is
χ = [0,− 1√

2
− 1√

2
j, 0]T .

Table 1. A sample mapping of the constellation bits for M = 4.

Data Bits Index of Symbols Transmitted Symbols

00 s1 − 1√
2
+ 1√

2
j

01 s2 − 1√
2
− 1√

2
j

10 s3
1√
2
+ 1√

2
j

11 s4
1√
2
− 1√

2
j

Table 2. A sample mapping of the spatial bits for Ntx = 3.

Antenna Bits Antenna Index

00 1
01 2
10 3
11 1,2

The multipath channel H and AWGN η influence the transmit vector χ. At the receiver
end, the signal vector y is stated as follows:

y︸︷︷︸
Nrx×1

= H︸︷︷︸
Nrx×Ntx

χ︸︷︷︸
Ntx×1

+ η︸︷︷︸
Nrx×1

. (3)
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Consider the MIMO configuration (Ntx = 3, Nrx = 4) with M = 4. For the single
antenna operational configuration explained earlier, the received signal vector could be
expressed as follows:

y1
y2
y3
y4

 =


h11 h12 h13
h21 h22 h23
h31 h32 h33
h41 h42 h43


 0

s2
0

+


η1
η2
η3
η4

. (4)

It comes down to 
y1
y2
y3
y4

 =


h12
h22
h32
h42

s2 +


η1
η2
η3
η4

. (5)

For single antenna operational case, the generalized form of the received signal is

y = hjsm + η, j ∈ {1, 2, ..Ntx}, m ∈ {1, 2, ...M}. (6)

For the double antenna operational configuration explained earlier, the received signal
vector could be indicated as follows:

y1
y2
y3
y4

 =


h11 h12 h13
h21 h22 h23
h31 h32 h33
h41 h42 h43


 s1

s1
0

+


η1
η2
η3
η4

. (7)

It reduces to 
y1
y2
y3
y4

 =


h11
h21
h31
h41

s1 +


h12
h22
h32
h42

s1 +


η1
η2
η3
η4

. (8)

For the double antenna operational case, the generalized form of the received signal is
given by

y =
(
hj1 + hj2

)
sm + η, j1 6= j2, j1, j2 ∈ {1, 2, ..Ntx}, m ∈ {1, 2, ...M}. (9)

For the NA number of functional antennas, the generalized form of the received signal
is represented as follows:

y =

(
NA

∑
a=1

hja

)
sm + η, ja ∈ {1, 2, ..Ntx}, m ∈ {1, 2, ...M}. (10)

When a receiver possesses perfect CQI, the maximum likelihood detection for the
FGSM system with NA functional antennas is given by

[
ĵa,a=1,2..NA , ŝm

]
= arg min

ja,a=1,2..NA ,sm

∥∥∥∥∥y−
(

NA

∑
a=1

hja

)
sm

∥∥∥∥∥
2

. (11)

3. Antenna Selection Schemes for FGSM

TAS for FGSM is schematically depicted in Figure 1. TAS drives up the transmit
diversity in traditional MIMO and SM, as described in the literature review section. Let HT
=
[
h1, h2, . . . hNT

]
∼ CN

(
0, INrx×NT

)
be the channel matrix for a MIMO. Here, h1, h2, . . . hNT

are the column vectors of HT . The TAS scheme is employed to select a subset from the
candidate set S={S1, S2, . . . , Sl , . . . , SNs}. Ntx antennas are picked from NT antennas when
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the CQI is perfectly known to the user equipment (UE). There are Ns possible antenna
subsets, each with Ntx antennas, as given below:

S1 = {1, 2, . . . , Ntx},
S2 = {1, 2, . . . , Ntx − 1, Ntx + 1},

...

SNs = {NT − Ntx + 1, . . . , NT},

(12)

where Sl represents the lth possible transmit antenna subset. A low-rate feedback channel
communicates the chosen subset antenna index to the base station (BS). The CQI feedback
latency is assumed to be insignificant in this case. If Sl is selected, then the signal received
is expressed as follows:

y = H l
Tχ + η, (13)

where H l
T is the channel matrix corresponding to the selected set Sl . An example of the

TAS candidate set mapping is illustrated in Table 3 for NT = 4, Ntx = 3, &Nrx = 4.

Table 3. The TAS candidate set mapping for NT = 4, Ntx = 3, Nrx = 4.

TAS Candidate Set Possible Antenna Subset

S1 1,2,3
S2 1,2,4
S3 1,3,4
S4 2,3,4

Figure 1. Pictorial representation of TAS for FGSM.

3.1. FD-TAS Based FGSM System

The purpose of FD-TAS is to find antenna pairs that optimize the least FD between the
received constellations [3,13–17,21]. FD-TAS results in H of size Nrx × Ntx from HT of size
Nrx × NT . FD-TAS involves the following major steps:

Step 1: Compute the number of possible subsets Ns =
(

NT
Ntx

)
.

Step 2: Determine all feasible transmit vectors (2αFGSM ) for every antenna subset.

Step 3: Determine the minimum FD for every antenna subset using

dmin(HT) = min
χi 6=χj

∥∥HT
(
χi − χj

)∥∥2, (14)

here, χi, χj ∈ X is the set of all feasible transmit vectors.
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Step 4: Find an antenna subset that has the maximum FD.

l̂ = arg max
l∈{1,2,...Ns}

dmin(H l
T), (15)

here, H l
T=
[

H1
T , H2

T , . . . HNs
T

]
.

Based on the antenna subset index obtained in step 4, the antenna indices and the
associated channel matrix of size Nrx × Ntx are computed.

3.2. TAS Based on ML for FGSM

In this work, TAS in FGSM is carried out with the use of ML-based methods. An
ML-based classification architecture is depicted in Figure 2. At first, source data are
normalized using the mean normalization technique. Pre-processed data are then used to
extract features. Several ML methods are then used to train the model using the chosen
features and class labels. A trained model can be used to predict the class labels for new
data using data that have not previously been fed into the system. The process for the
execution of ML-based TAS for FGSM is shown in Figure 3. If CQI is present at the UE, the
class labels obtained by the ML algorithms are utilized to choose Ntx antennas from NT .
Algorithm 1 shows the processes that must be followed for ML-based TAS. This section
also includes details on the dataset development process and the supervised algorithms
that are employed.

Figure 2. Workflow of supervised learning algorithms during the training and testing process.

Figure 3. ML-supported TAS for FGSM.
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Algorithm 1 Primary steps involved in ML-based TAS
1. Establish a mapping between the antenna subsets and class labels.
2. Pre-process the input data using the mean normalization technique.
3. Identify the key performance indicators (KPI) for each input sample. Find out the class
label c on the basis of the KPI.
4. Employ the normalized feature matrix ĤT and the class label c to create a learning system
utilizing SVM, NB, KNN, and DT algorithms.
5. The learning system converts the test channel Hnew

T to a normalized feature vector ( f new)
and determines the class label c.
6. Compare the class label acquired in Step 5 with the map created in Step 1 to identify the
antenna subset.

3.3. Generation of a Dataset

Elements of channel matrices are used to generate the training dataset. A multiclass
classification technique is then used to divide the channel matrix into numerous corre-
sponding classes, each of which represents the optimal antenna subset. ML methods are
used to build the model. The developed models can also be used to predict the class labels
of test data.

Four major steps are involved in the collection of the dataset: (1) Generation of training
data. (2) Extraction of feature vectors. (3) Evaluation of KPI. (4) Use of the KPI information
to obtain the class labels.

1. Generation of training data.
To form the training data, the N number of channel matrices of size Nrx × NT are
randomly generated.

H =
[

H1
T , H2

T , . . . , HN
T

]
. (16)

2. Extraction of feature vectors
The training performance is generally influenced by the feature vectors. In this work,

four different features, i.e.,
∣∣∣hn

i,j

∣∣∣, ](hn
i,j

)
, channel gain

∣∣∣hn
i,j

∣∣∣2, and channel gain of

every element of the correlation matrix
∣∣∣(Hn

T)
H
(Hn

T)
∣∣∣2, are considered to train the

models. From each sample HT , a feature of size NQ (Nrx × NT) is extracted. The
process of extracting these four features is as follows:

(a)
∣∣∣hn

i,j

∣∣∣: The absolute value of each element of the channel matrix is considered
as a dominating feature, which is used throughout this work. The extraction
of the feature vector, in this case, is given as follows:

f n =
[∣∣hn

1,1
∣∣, . . . ,

∣∣∣hn
1,NT

∣∣∣, . . . ,
∣∣∣hn

i,j

∣∣∣, . . . ,
∣∣∣hn

Nrx ,NT

∣∣∣], n ∈ {1, 2, ...N}, (17)

where hn
i,j is a (i, j)th complex element of Hn

T , whose absolute value is calculated
as follows: ∣∣∣hn

i,j

∣∣∣ = √<(hn
i,j

)2
+=

(
hn

i,j

)2
. (18)

(b) ]
(

hn
i,j

)
: This is the second feature that is extracted to build the model from the

elements of HT . The feature vector is constructed as follows:

f n =
[
]
(

hn
1,1

)
, . . . ,]

(
hn

1,NT

)
, . . . ,]

(
hn

i,j

)
, . . . , ]

(
hn

Nrx ,NT

)]
, n ∈ {1, 2, ...N}, (19)

where

]
(

hn
i,j

)
= tan−1

=
(

hn
i,j

)
<
(

hn
i,j

)
. (20)
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(c) Channel gain
∣∣∣hn

i,j

∣∣∣2: The channel gain of an individual element of the matrix is
considered to be another feature to train the models whose feature vector is
given by:

f n =

[∣∣hn
1,1
∣∣2, . . . ,

∣∣∣hn
1,NT

∣∣∣2, . . . ,
∣∣∣hn

i,j

∣∣∣2, . . .
∣∣∣hn

Nrx ,NT

∣∣∣2], n ∈ {1, 2, ...N}. (21)

(d) Squared element norm of (Hn
T)

H
(Hn

T): In addition, the similarity between two
distinct column vectors is a major feature. Similar column vectors introduce
detection ambiguity while estimating the transmit antenna index. The feature
vector extraction is conducted as follows:

∣∣∣Hn
T

H Hn
T

∣∣∣2 =


(hn

1 )
H

(hn
2 )

H

...
(hn

NT
)H

[ hn
1 hn

2 . . . hn
NT

]
. (22)

To avoid bias, features are normalized using

f̄ n(q) =
f n(q)− E[( f (q)]

max( f (q))−min(( f (q))
, n = 1, . . . , N, q = 1, . . . , NQ. (23)

3. Evaluation of KPI.
Input data samples are labeled using KPI. FD is considered as the KPI in this work,
which is calculated using (14).

4. Class labeling.
Associate each feature with a label. A transmit antenna subset S={S1, S2, . . . , Sl , . . . , SNs}
is mapped to each feature vector. The feature vector corresponding to each channel
matrix Ĥn

T is mapped to label cn ∈ S. Hence, the class label vector c=
[
c1, c2, . . . , cN].

3.4. ML Methods

This section examines four different supervised ML methods utilized for TAS.

3.4.1. SVM

An SVM model consists of a hyperplane containing representations of distinct classes
in multidimensional space [22]. SVM will iteratively create the hyperplane in order to
reduce errors. SVM divides datasets into classes in order to determine the best marginal
hyperplane. TAS is a multiclass classification problem. The one-versus-one and one-versus-
all (OVA) approaches are two common ways of creating multiclass SVM classifiers. This
work looks at how OVA can be used to overcome the drawback of complexity in FD-TAS. It
creates r binary SVMs for an R-class problem. Specifically, for TAS-assisted FGSM, R SVM
models are generated as follows:

• To address this two-class classification problem for the attribute label combinations
( f n, cn), where n=1,. . . , N, r ∈ {1, 2, . . . , R}, an R order SVM is constructed. In this
case, f n represents the nth row of the normalized attribute matrix ĤT . Samples
belonging to the rth class are characterized by positive labels, while those belonging
to the other classes are characterized by negative labels.
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• The following approach is used for solving the optimization problem for the two-class
SVM:

min
ψψψr ,zr ,λr

1
2
(ψψψr)Tψψψr + Dr

N

∑
n=1

λr
n,

s.t. (ψψψr)Tφ( f n) + zr ≥ 1− λr
n, i f cn = r,

(ψψψr)Tφ( f n) + zr ≤ −1 + λr
n, i f cn 6= r,

λr
n ≥ 0, r∈ {1, 2, . . . , R},

(24)

here, zr and ψr are linear parameters, Dr and λr
n are the regularization and penalty

parameters, respectively, for rth SVM. By applying kernel function φ(.) to an attribute
vector in (23), the SVM maps them into a higher-dimensional space.

In this work, the radial basis function (RBF) kernel is utilized to fit the model, which is
specified by [22]

φ
(

f i, f j
)
= e−

‖ f i− f j‖2

2σ2 . (25)

By calculating parameters ψr and zr for all valid r∈ {1, 2, . . . , R}, the prediction func-
tions obtained can be given as follows:

(
ψψψ1)T

φ( f new) + z1.
...

(ψψψr)Tφ( f new) + zr.

(26)

For a new observation Hnew
T , we utilize (17) to retrieve its feature vector as f new,

and (26) to obtain its label.

lSVM = arg max
r∈{1,2,...R}

(
(ψψψr)Tφ( f new) + zr

)
. (27)

3.4.2. NB

An NB classifier is a supervised ML technique that uses the Bayesian theorem to solve
classification problems [21,27]. Consider the N features

[
f 1, . . . , f N] and Ns feasible classes

in a classification task. One of the Ns classes must be assigned to the new instance Hnew
T .

Ns-conditional probabilities p(l| f new), l=1,. . . , Ns are computed by the NB approach. The
calculation of joint probability becomes simpler if all features are independent. According
to Bayes’ theorem, conditional probability is calculated as follows:

p(l| f new) =
p(l)p( f new|l)

p( f new)
. (28)

In (28), prior probability of the lth class is given by p(l). Here, p( f new|l) indicates
the likelihood probability and p( f new) represents evidence probability. The probability
of evidence is the same for all classes. As a result, this term can be discarded. Using this
method, the class with the greatest probability is selected.

lNB = arg max
l∈{1,2,...Ns}

p(l)p( f new|l). (29)

Equation (29) can also be written as follows:

lNB = arg max
l∈{1,2,...Ns}

p(l)
NQ

∏
q=1

p( f newq |l). (30)

Here, f new
q is the qth feature of the new observation f new.
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3.4.3. DT

Tree-structured classifiers can classify a dataset using internal nodes as attributes,
branches as decision rules, and leaves as the inference [21,28]. Two nodes exist in a decision
tree—the leaf node and the decision node. Decision nodes make decisions and have
multiple branches, whereas leaf nodes generate the output of that decision process and
do not contain any additional branches. In a decision tree, an initial question is asked,
and based on the answer (yes/no), subtrees are constructed. The attribute value with
the highest information gain will be chosen for further branching. The probability pl of a
sample being owned by a specific class l is computed using

pl =
f req(l, T)
|T | , (31)

here, |T | is the number of occurrences in T. freq(l, T) represents the number of samples
owned by a particular class l. An entropy of T is given as

EN(T) = −
Ns

∑
l=1

pl log2 pl . (32)

The dataset |T | is split into X partitions depending on the domain values of a non-class
attribute Gl . The entropy associated with this is determined using

EN(Gl , T) = −
X

∑
k=1

|Tk|
|T | EN(T). (33)

For attribute Gl , information gain is computed using

IFG(Gl) = EN(T)− EN(Gl , T). (34)

The information gain is computed for every feature–value combination. When splitting
the root node, the feature–value combination that yields the highest information gain is
chosen. The process is repeated at all decision nodes. Repeat this process until the maximum
depth has been reached. Since the gain will not rise beyond a certain depth, the depth of
the DT is regarded as a hyperparameter in the learning process.

3.4.4. KNN

This algorithm is lazy; it does not immediately begin learning from the data [22].
Instead, it saves it and performs the action when it is time to classify. For a new instance
Hnew

T , its feature vector f new is acquired. When this feature vector is normalized, we obtain
f new. The KNN classifier finds the K-closest data points amidst N data points. The KNN
classifier performs the following main steps:

Step 1: Determine K through k-fold cross-validation for which the model has low
variance and reasonably good accuracy.

Step 2: Calculate the FD of a new observation f new for each data point in the dataset.

d( f n, f new) = ‖ f n − f new‖2. (35)

Step 3: Find out the K-nearest neighbors.
Step 4: For each K-nearest neighbor, count the data samples.
Step 5: Allocate the test data sample Hnew

T to the class label, which obtains the maxi-
mum number of votes (lKNN).

Despite its apparent simplicity, the cost of computing the FD between data samples
and the time complexity increases with the dataset size. One of the disadvantages of KNN
is that it works well for small datasets but becomes more difficult and time-expensive with
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larger datasets. Identifying the value of K is always necessary, although it might be difficult
at times.

4. Complexity Analysis

Table 4 shows the complexity analysis for traditional FD-TAS and distinct supervised
TAS systems. HT

(
χi − χj

)
requires Nrx×NT computations.

(
HT
(
χi − χj

))H(HT
(
χi − χj

))
needs (Nrx × NT)

2 computations. These computations are carried out only for one value of
FD. This process is repeated (Ns2αFGSM (2αFGSM − 1)) times for all possible antenna subsets.
It is observed that the number of computations required for TAS using the traditional
method is tedious. For ML techniques, it depends on the attribute vector length NQ. The
number of computations required is much less compared to the traditional FD-TAS for a
higher-order configuration, i.e., for a larger number of NT , Nrx, and αFGSM. KNN is the
least computationally efficient of all ML approaches because it stores the training data. This
analysis is conducted for B = 2× 105 bits. By decreasing the length of the attribute vector,
we can reduce the complexity of ML-based TAS practices. Traditional FD-TAS becomes
increasingly complex as these components rise, necessitating the use of ML techniques for
TAS to simplify the system.

Table 4. Comparison of distinct TAS techniques based on their complexity order.

ML-Based TAS Scheme Order of Complexity Configuration 1 (Ntx = Nrx = 4,
NT =5, M = 4)

Configuration 2 (Ntx = Nrx = 6,
NT = 7, M = 16)

FD-TAS O
(

Ns N2
T N2

rx2αFGSM (2αFGSM − 1)
)

[20] 1.98× 106 3.23× 109

SVM-based TAS O
(

N2
Q + NQ

)
[22] 420 1806

NB-based TAS O
(

NQ
)

[21,27] 20 42
DT-based TAS O

(
NQ log2 NQ

)
[21,28] 86.44 226.48

KNN-based TAS O
(

BNQ
)

[22] 4× 106 8.4× 106

5. Discussion on the Simulation Results

This section presents an ABER analysis of the classic FD-TAS method, four distinct
ML-based TAS methods, and the FGSM-NTAS scheme. Table 5 lists the parameters used in
this investigation. In MATLAB 2022b, all ML models are trained using the Statistics and
ML toolbox. All the simulation results are generated for distinct values of NT , Ntx, Nrx,
and M. FD-TAS and ML-based TAS are labeled as (NT , Ntx, Nrx, M) in the figures, while
FGSM-NTAS is labeled as (Ntx, Nrx, M).

Table 5. Simulation parameters.

Parameters Values

NT 4, 5, 6
Ntx 3, 4
Nrx 4
M 4, 16

Constellation mapping Quadrature amplitude modulation (QAM)
αFGSM 4, 5, 6

B 2× 105

Fading environment Uncorrelated Rayleigh flat fading

From Figure 4, it is observed that with an increased dataset size, ML models show an
improvement in classification accuracy. Since the accuracy of classification does not improve
any further after 10,000 samples, all models are trained for the same number of samples. Table 6
compares the classification accuracies of several ML algorithms with different sample counts.
SVM has the highest accuracy in classification (71.1%), NB has the second greatest accuracy
(70.2%), followed by KNN (67.2%), and DT has the lowest classification accuracy (43.8%).
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Figure 4. Comparing the classification accuracy vs. dataset size for several ML algorithms.

Table 6. Comparing the classification accuracy vs. dataset size for several ML algorithms.

Number of
Samples

Achieved Percentage of Accuracy

DT NB KNN SVM

1000 38.2% 62.8% 57.9% 67.6%
3000 40.9% 67.2% 65.3% 70%
5000 41.7% 69.2% 65.6% 70.3%

10,000 43.8% 70.2% 67.2% 71.1%

Cross-validation is an approach that allows the model to learn from many train–test
splits. This provides a better idea of how well the trained model will perform on data that
have not been seen before. In contrast, hold-out is based on a single train–test split. As
a result, the hold-out method’s score is influenced by the way the data are divided into
train and test sets. Figure 5 and Table 7 show how altering the value of k-folds during
cross-validation improves classification accuracy. The highest classification accuracy is
observed for k = 10. As a result, the value of k is set to 10.

Table 7. Comparing the distinct TAS techniques based on their accuracy performances.

ML-Based TAS
Scheme

Achieved Percentage of Accuracy

k = 3 k = 5 k = 10

SVM-based TAS [22] 70.1% 70.7% 71.1%
NB-based TAS [21,27] 69.5% 69.9% 70.2%
DT-based TAS [21,28] 42.9% 43.3% 43.8%
KNN-based TAS [22] 66.2% 66.8% 67.2%
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Figure 5. Comparing the classification accuracies of several ML algorithms for distinct values of k.

After performing normalization, these models are trained for four distinct features, as
discussed earlier in subsection 3.3. The complexities of all features based on their attribute
vector lengths are listed in Table 8. The worst-performing attribute is ]

(
hn

i,j

)
. Attribute

4 performs well only for DT, but its complexity increases with a higher-order configuration,
so it is discarded. Combining features lengthens the feature vector and increases model
complexity; hence, feature combination is avoided in this study. The absolute feature
outperforms the other features in SVM, NB, and KNN, and its complexity is low; thus, only
the absolute feature is utilized for this work.

Table 8. Complexity associated with different features based on the feature vector length.

Selected Feature Length of the
Feature Vector (NQ)

Configuration 1
(Nrx = 2, NT = 6)

Configuration 2
(Nrx = 4, NT = 10)∣∣∣hn

i,j

∣∣∣ Nrx × NT 12 40

]
(

hn
i,j

)
Nrx × NT 12 40∣∣∣hn

i,j

∣∣∣2 Nrx × NT 12 40∣∣∣hn
i,j

Hhn
i,j

∣∣∣2 NT × NT 36 100

After conventional FD-TAS, the SVM-based TAS scheme outshines other ML-based
systems, as shown in Figure 6. In comparison to the FGSM-NTAS method, the SVM-based
TAS scheme cut downs the SNR need by ∼2 dB. This analysis is conducted for NT = 4,
Ntx = 3, Nrx = 4, and M = 4. The ABER performance of the system is re-examined in Figure 7
by increasing the constellation order to 16. For larger values of M, the SNR requirement
for all ML-based methods increases. For FGSM-NTAS and conventional FD-TAS SNR
gain requirements increase by ∼1.3 dB and ∼1.61 dB, respectively. SVM outperforms the
FGSM-NTAS system in this circumstance as well, with a gain improvement of ∼2 dB.
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Figure 6. Comparison between ABER and SNR of FGSM for distinct TAS practices (NT = 4, Ntx = 3,
Nrx = 4, and M = 4).

Figure 7. Comparison between ABER and SNR of FGSM for distinct TAS practices (NT = 4, Ntx = 3,
Nrx = 4, and M = 16).

Figure 8 analyzes the ABERs of different TAS schemes for NT = 5, Ntx = 4, Nrx = 4,
and M = 4 configuration. It is found that SVM-based TAS outperforms FGSM-NTAS by
∼1.42 dB in terms of SNR gain. By increasing NT to 6, the analysis is repeated in Figure 9.
For traditional FD-TAS, the required SNR drops by ∼1.28 dB. For SVM, NB, KNN, and
DT-based TAS systems, respectively, there is a reduction of ∼0.78 dB, ∼0.66 dB, ∼0.68 dB,
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and ∼0.59 dB in the SNR requirements. In comparison to the FGSM-NTAS system, the
SVM-based TAS technique gains ∼2.2 dB. Table 9 lists the SNR gain achieved by the
proposed ML-based TAS practices over traditional FGSM-NTAS.

Figure 8. Comparison between ABER and SNR of FGSM for distinct TAS practices (NT = 5, Ntx = 4,
Nrx = 4, and M = 4).

Figure 9. Comparison between ABER and SNR of FGSM for distinct TAS practices (NT = 6, Ntx = 4,
Nrx = 4, and M = 4).
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Table 9. SNR gain achieved by distinct TAS practices over FGSM-NTAS.

Improvement in SNR gain (dB)

ML-Based TAS
Scheme

Configuration 1
(NT = 4, Ntx = 3,

Nrx = 4, and
M = 4)

Configuration 2
(NT = 4, Ntx = 3,

Nrx = 4, and
M = 16)

Configuration 3
(NT = 5, Ntx = 4,

Nrx = 4, and
M = 4)

Configuration 4
(NT = 6, Ntx = 4,

Nrx = 4, and
M = 4)

SVM-based
TAS [22] 1.76 1.89 1.44 2.2

NB-based
TAS [21,27] 1.49 1.65 1.21 1.86

DT-based
TAS [21,28] 0.59 1.08 0.46 1.03

KNN-based
TAS [22] 1.27 1.39 0.96 1.61

6. Conclusions

Four distinct ML-based TAS techniques are suggested and implemented for a small-
scale MIMO-based FGSM system in this work. For different values of NT , Ntx, and M, the
recommended algorithm’s ABER performance is compared to those of FD-TAS and FGSM-
NTAS. The SVM-based TAS scheme surpasses all proposed ML-based TAS approaches in
the simulations. The ABER performance of SVM is poorer than FD-TAS but the SVM-based
TAS scheme is more computationally efficient than FD-TAS. SVM-based TAS attains the
highest classification accuracy (∼71.1%) and a minimal SNR gain of ∼2.2 dB compared to
FGSM-NTAS. As a result, it may be a viable option for future-generation networks. These
schemes, as well as DL-based architectures, can be implemented in the future for advanced
SM variants. The proposed TAS strategies could be extended to massive MIMO systems.
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FGSM Fully Generalized Spatial Modulation
IM Index Modulation
KNN K-Nearest Neighbor
MIMO Multiple-Input Multiple-Output
ML Machine Learning
NB Naïve Bayes
QAM Quadrature Amplitude Modulation
SE Spectral Efficiency
SM Spatial Modulation
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
TAS Transmit Antenna Selection
UE User Equipment
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