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Abstract: Recently, the process control network (PCN) of oil and gas installation has been subjected
to amorphous cyber-attacks. Examples include the denial-of-service (DoS), distributed denial-of-
service (DDoS), and man-in-the-middle (MitM) attacks, and this may have largely been caused by the
integration of open network to operation technology (OT) as a result of low-cost network expansion.
The connection of OT to the internet for firmware updates, third-party support, or the intervention
of vendors has exposed the industry to attacks. The inability to detect these unpredictable cyber-
attacks exposes the PCN, and a successful attack can lead to devastating effects. This paper reviews
the different forms of cyber-attacks in PCN of oil and gas installations while proposing the use of
machine learning algorithms to monitor data exchanges between the sensors, controllers, processes,
and the final control elements on the network to detect anomalies in such data exchanges. Python
3.0 Libraries, Deep-Learning Toolkit, MATLAB, and Allen Bradley RSLogic 5000 PLC Emulator
software were used in simulating the process control. The outcomes of the experiments show the
reliability and functionality of the different machine learning algorithms in detecting these anomalies
with significant precise attack detections identified using tree algorithms (bagged or coarse ) for
man-in-the-middle (MitM) attacks while taking note of accuracy-computation complexity trade-offs.

Keywords: amorphous cyber-attacks; process control network; anomaly detection; machine learning;
man-in-the-middle attacks; SCADA

1. Introduction

The oil and gas industry is deemed critical infrastructure due to the fact that it is
a major contributor to the world’s energy needs, and disruption to its operation could
lead to a major impact on the consumers and can lead to devastating effects ranging from
catastrophic process safety incidents which may lead to loss of lives, destruction of assets
and destruction of the environment, to economic issues to host nations. The choice of stan-
dard information technology (IT) open systems, their associated communication protocols,
and their preference over proprietary dedicated operational technology (OT) systems has
exposed PCN to insecure communications which have given room to cyber-attacks [1]. The
May 2021 Darkside Ransomware attack on the Colonial Pipeline in the USA disrupted
and stopped the transportation of gasoline and jet fuel when the computerized equipment
managing the pipeline was attacked. After gaining access to the company network of the
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Colonial Pipeline, Darkside Ransomware was deployed against the company’s IT network
by intruders [2].

In the last decade, there have been highly sophisticated threats on critical infrastruc-
tures with devastating impacts, and not much attention has been given to the oil and gas
industry’s vulnerability to attacks. For the continual safe operation of an oil and gas facility,
there is a need to ensure that all the network components of a process control system are
protected from intruders or attackers through effective monitoring and surveillance which
may help in the early detection of attacks and proper mitigation of such attacks [3–5]. The
process control network (PCN) is the interconnection of real-time network devices used
to monitor and control industrial processes. It ensures effective communication between
the sensors, controllers, processes, and the final control elements [6]. The process variables
in the PCN serve as inputs to the controllers which make real-time decisions on the final
control elements to ensure a continuous and safe operation of the plant. A real-time adjust-
ment or modification of the input variables results in the controller affecting the change in
the operating conditions of the logic solvers which eventually results in altered outputs to
the final control elements. There is a need to ensure secure communication between the
field sensors, the controllers, and the final control elements [6].

As with all other sectors of the economy, continuous digital growth has impacted
the oil and gas industry. Industrial control systems (ICS) are used to operate in isolation,
without bridging over information technology (IT) infrastructures. Industry 4.0 enabled
the integration of multiple industrial technologies in ICT, and engineers are now able to
monitor operations remotely as well as maintain supervisory control and data acquisition
(SCADA) systems in real-time. This digital revolution has exposed once air-gapped OT
infrastructures to a myriad of new attack surfaces and vectors [7–9]. With the advancement
in the Industrial Internet of Things (IIoT), early identification and prevention of attacks that
can lead to PCN disasters can be achieved by continuous monitoring using algorithm-based
smart monitoring systems [10–12].

ICS operational technology networks can be penetrated by malicious cyber-attackers.
Even though there are intrusion detection systems (IDS), firewalls, demilitarized zones,
and data diodes that help in isolating ICS operational technology networks, these security
measures cannot be assumed sufficient to stop all malicious penetrations of the air-gapped
OT networks. Hackers can access the network through compromised software updates,
insider attacks, infected thumb drives, and spear phishing attacks to penetrate heavily
isolated and air-gapped OT networks. The Stuxnet malware is a famous example of a
worm that penetrated an air-gapped network by exploiting a USB thumb drive autorun
vulnerability [13].

Several supervised machine learning algorithms have shown good results in the
detection of signature-based attacks which normally are detected by intrusion detection
systems (IDS) but behavior-based attacks which can be termed anomalies or outliers have
been difficult to detect or predict based on the dynamic attack strategies deployed by
the attackers [14–17]. The choice of the machine learning algorithm to use is influenced
by some key factors which include accuracy, computational capability, prediction speed,
false alarm rates, and their application to real-time systems [8,18]. There is a need to
identify and mitigate false data signals which may be introduced in the form of man-in-the-
middle (MitM) attacks [19]. False data injection attacks (FDIA) which are deceptive can
modify measured values thereby introducing errors which will result to system failures [20].
Disgruntled employees pose a huge threat to the OT as they can become insider threats with
good knowledge of the production facility. Intentional malicious insider attacks usually
have a huge impact with a high percentage of success [21]. The oil and gas industry in
Nigeria has been faced with myriad of challenges ranging from pipeline vandalism, theft,
illegal bunkering, and now intrusion attacks [22,23]. This work is focused on the detection
and prevention of amorphous cyber-attacks on the networks of oil and gas facilities using
machine learning and real-time SCADA dataset.
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In this work, an ambitious attempt was made to reinforce the discussion on the
detection and mitigation of MitM attacks using real-time datasets. The aim is to evaluate
the performance of various machine learning candidates and propose a range of highly
performing options while noting some trade-offs. This will help in developing a reliable
security system capable of detecting amorphous network intrusions or attacks on a PCN
using different machine-learning algorithms. To achieve this objective, the following
measurable steps were taken:

1. We inject values to the collated real-time dataset at a specific date and time to make a
distinction between normal operation and anomalous conditions which may represent
plant shutdown, equipment failure, process upset conditions, or cyber-attacks.

2. We apply different machine learning algorithms on the dataset to determine the most
effective algorithm in identifying anomalies.

3. We perform a comparative study of the results from the different machine learning
algorithms, to determine their application to anomaly detection,

4. We perform a comparative review of the actualized results with results from other
researchers to validate the achieved results.

5. In addition to the real-time dataset, we demonstrated the superior performance of the
bagged tree and coarse tree algorithms using three public datasets namely: WUSTL-
2018, ORNL PowerGrid, and TON_IoT

The paper is organized as follows: Section 1 is the introduction, Section 2 is the review
of related works, Section 3 is the comparison of different machine learning algorithms,
Section 4 is the results and discussion, and Section 5 is the conclusion and recommendation
for future work. Acronyms used in this article are listed in the abbreviations section.

2. Related Works

The integration of standard open network technology has continuously exposed pro-
cess control networks to malicious cyber-attacks. The need arises to ensure secured commu-
nication between the process sensors, the controllers, and the final control elements [6,24].
The connection of the PCN to the internet has also contributed to the growth of cyber-attack
incidents with dangerous consequences [25]. The deployment of off-the-shelf IT equipment
with its inherent vulnerabilities and associated failures has also contributed to the exposure
of the PCN to cyberattacks [26]. Unstructured and unpredictable attacks are termed out-
liers to signature-based detections. These nonconforming patterns are termed anomalies,
and detection of their kind of activities could be performed using unsupervised machine
learning algorithms [27].

Ramotsoela et al. [14] noted that signature-based IDS are disadvantageous as they are
unable to detect unknown attacks [14]. The constant dynamic modes of attacks used by the
attackers are the major challenge of the work done by the authors in [28]; they used machine
learning classifiers as an effective IDS where data were pre-processed to remove unrelated
attributes from the dataset [28]. However, the public dataset used lacked sufficient details
to detect recent attack types including zero-day attacks, advanced persistent threats (APTs),
and their derivatives. Similarly, using the NSL-KDD dataset, the authors in [16] proposed
unsupervised machine learning techniques based on a clustering approach to minimize
false positives as a solution to unknown attacks including zero-day attacks [16]. Several
IDS solutions exist but they cannot detect these unpatterned attacks which may be in the
form of DoS, DDoS, MitM, or even zero-day attacks [29]. In [30], the authors reviewed
different machine learning capabilities and concluded that the effectiveness and efficiency
of a machine learning algorithm-based solution depend on the features and characteristics
of the data as well as the performance of the algorithm [30].

Rosa et al. [17], in their work on intrusion detection using anomaly detection, observed
that integration of different complex solutions for monitoring of networks will require
prolonged network downtime, which will have limited application to a PCN. In their quan-
titative comparison of 17 unsupervised anomaly detection algorithms [15,27,31] adopted
unsupervised anomaly detection algorithms becuase they are known to be the most suitable
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way to deal with zero-day attacks and concluded that minimizing the misclassification of
unsupervised anomaly detection algorithms is highly desirable and is a key challenge.

Melnick [19] explained the different forms of MitM which include session hijacking,
IP spoofing, and replay attack in which any of the attack forms will lead to the attacker
taking over the communication between the sensors and the controllers with the intention
of disrupting the process control [32]. In [33], the authors explained that fairness, data
trustworthiness, reliability, and availability are necessary for the actualization of cyber-
physical systems, for example, smart cities with robust system architecture for secured high
bandwidth systems and low-latency diffusion [33], whereas supervised machine learning
is taught by example and uses labeled data to detect known attacks [34,35], unsupervised
machine learning can analyze huge volumes of data to identify hidden patterns, clusters,
and outliers, thereby can be very effective in detecting anomalies in datasets which in-
clude process upsets, shutdowns or faulty equipment as well as attacks [15,27,31,36,37].
Deep learning algorithms have shown great results in supervised and unsupervised ma-
chine learning applications using very large datasets, timely learning ability, produced
great accuracy, and increased prediction speed with negligible false alarm rates [38–40].
Bierbrauer et al. [40] leveraged the NSL-KDD dataset to show the application of decision
tree models in detecting APT attacks with high detection accuracy.

Al-Abassi et al. [39] used an ensemble deep learning-based cyber-attack detection
method specifically designed for industrial control systems; the outcome of their work
yielded good results, but they recommended the use of real-time datasets with properly
defined attack types. In [41], the authors use a new approach to determine DDoS attack
patterns on SCADA systems using machine learning applied three machine learning
techniques using the KDDCup’99 dataset, but recommend using a real-time SCADA dataset
for improved results. The characteristics, features, and operations of Stuxnet and APTs
were reviewed by [42], in addition to highlighting their recent trends, attack features, and
prediction of future attacks. Maynard and McLaughlin [43] investigated packet pilfering,
injection attacks through HTTP, and command injection attacks. They were focused on
DDoS flood attacks without the capability of modifying packets sent by other hosts as in the
case of MitM attacks. Wilson et al. [44] in their work, Deep Learning-Aided Cyber-Attack
Detection in Power Transmission Systems, noted the need to consider multiple sources
of uncertainty and variations from subsystems renewable energy, smart grids, and so
on. Furthermore, Husák et al. [45] in their Survey of Attack Projection, Prediction, and
Forecasting in Cyber Security, emphasized the need for attack forecasting to minimize the
impact on systems.

Researchers had used different machine learning approaches with datasets such as
NSL-KDD and KDD CUP’99 to address the issue of cyber-attacks in the past. These datasets
have existed for a long time and may not be a full representation of modern-day dynamic
attack modes. Hence, the products of such research may not be relied upon for the detection
of recent amorphous attacks. Consequently, recent works have either emphasized the use of
facility-specific datasets, as argued in this paper, or the use of recent and updated datasets
such as the WUSTL-2018 [35], ORNL PowerGrid [46], and the TON_IoT datasets [47].
Table 1 summarizes the recent related works and research gaps that motivated this work.

Table 1. Related Studies and identified research gaps.

Reference Major Findings Limitations

Pu et al. [16]
Unsupervised clustering-based anomaly
detection method to minimize false
positives

i. Identical and repeated NSL-KDD
datasets which affect the learning ability
of the algorithm and the final output
ii. possibility of generating lots of false
positives which could deceive real
network traffics
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Table 1. Cont.

Reference Major Findings Limitations

Rosa et al. [17] Integration of different techniques and
algorithms for networking monitoring

i. Integration of the complex solution will
require prolonged network downtime.

Zoppi et al. [27]
Quantitative comparison of 17
Unsupervised anomaly detection
algorithms

i. High rate of misclassification of
unknown attacks
ii. High computational complexity,

Abrar et al. [28]
Machine learning approach using
different algorithms to solve intrusion
detection problems (supervised learning)

i. The model could not detect zero-day
attacks.
ii. Not enough details in the public
dataset,
iii. Computational complex programs

Joloudari et al. [38]
Deep learning and decision tree
algorithms for advanced persistent threat
attack detection

i. Could not extract important features
from the NSL-KDD dataset.
ii. The dataset did not reflect the real
scenario of the target idea.

Al-Abassi et al. [39]
Generalized ensemble deep learning for
cyber-attack detection in industrial
control system

i. Could not distinguish between system
downtime and actual real-time attacks.

3. System Model, Threat Modeling Framework and Simulation Setup
3.1. Intrusion Detection Using Machine Learning Models

This study reveals the different forms of unpatterned attacks on the PCN with their
resulting effects on the people, assets, and the environment as depicted in Figure 1. The
compromise of the intercommunication between the sensors, controllers, and the final
control elements could lead to devastating outcomes which may range from fatalities to
environmental impact. This study reviewed the application of different machine learning
algorithms in the modeling of these attacks using the 68,722 real-time SCADA datasets
from the oil and gas industry. The performances of the different machine learning algo-
rithms were assessed, which include isolation forest, k-nearest neighbor (kNN), Python
Outlier detection (PyOD) which incorporates interquartile range (IQR), kNN, local outlier
factor (LOF), long short-term memory, support vector machines (SVM) and decision tree
algorithms. The 68,722 real-life SCADA data were extracted from an oil and gas facility.

Figure 1. Interconnection of the PCN components under attack.
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To simulate the impact of amorphous cyber-attacks on the oil and gas industry, a
three-phase separator was selected as a case study (see Figure 2). Usually, the natural crude
oil flowing from the wellbore which contains entrapped gas and water is fed into a vessel
called a three-phase separator. This gravity vessel separates the crude into oil, water, and
gas based on their densities [48–51]. In this study, a three-phase separator was used as
a case study for ease of computation and simulation to showcase the effect of false data
injection in SCADA.

Figure 2. A three-phase separator.

Figure 2 shows a three-phase separator that receives crude oil from the well bore
through the shutdown valve and separates the received crude oil into gas, oil, and water.
The three-phase separator has three outlets: gas outlet, crude oil outlet, and water outlet.
The process variables measured from the vessel include supply pressure, discharge pressure,
pressure in the vessel, level of oil with water, level of oil, the temperature of the supplied
fluid, vessel temperature, and temperature of the individual discharge lines, whereas
the flow was measured on the respective outlet lines. To prevent process upset and its
escalation, there is a need for the continuous monitoring of the multivariable inputs with
consideration to their interactions in the vessel during the retention time. The 68,722 dataset
used in this study’s simulation are the three-phase separator vessel pressure data. The
outcomes of the simulations using the different machine learning algorithms on the same
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dataset are documented in the results session. A detailed overview of the system model of
this research is shown in Figure 3.

Figure 3. System Model showing the Experimentation and Selection of the Optimal Machine Learning
Algorithm.

3.2. Threat Modeling Description

Amorphous forms of threats exist for PCN ranging from external threats to internal
threats as shown in Figure 4. External threats through the internet may exploit the login
details of authorized personnel which include the remote employee or the vendor technical
support personnel who may be connecting through the internet to the business network
and then to the PCN. Adequate controls may have been applied on the firewalls to prevent
access of unauthorized persons but there is a limitation of exploited accounts. All other
external threats such as internet threats which may come as a result of the interface between
the PCN and the business network can be detected and prevented using the developed
system. Insider threats are internal users within the organization, such as employees, former
employees, business associates, and contractors who have malicious intents, with correct
authentication to the network and knowledge of the company information. Insider attacks
have been identified as one of the most dangerous cyber threats for critical infrastructures
(CIs), as the attacker continues sending real and legitimate control commands to other
network devices, it can lead to catastrophic damage to CIs. Insider attacks usually have a
huge impact and greater success rate because it is difficult to predict when they want to
attack and how they want to attack thereby making it unpreventable [21,52–54]
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Figure 4. PCN Levels showing the vulnerability point at each level. This was leveraged in the threat
modeling.
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Other forms of threats are denial-of-service (DoS) attacks, which floods the systems,
servers, or networks with unsolicited traffic to exhaust and interrupt network communi-
cation resources and bandwidth [20]; distributed-denial-of-service (DDoS) attacks, where
the attackers use multiple compromised devices to launch DoS attack and can bombard
a central server with simultaneous data requests thereby disrupting the services; man-
in-the-middle (MitM) attacks, where the attackers deliberately insert themselves into a
two-party communication interrupting the traffic flow, with the intention of data theft and
false data injection attacks [20,55]; man-on-the-side (MotS) attacks allow an adversary to
read and inject packets, but not modify packets sent by other hosts as in the case of MitM
attacks [43]; and zero-day exploit attacks, which occur after a network vulnerability has
been announced but before a patch or solution is implemented. Advanced persistent threats
(APTs) are highly sophisticated threats that focus on the critical industrial sector. APTs have
the capability to remain undetected for an extended period after they gain unauthorized
access to a computer network, and usually do not need the internet for spreading; a typical
example is 2010 Stuxnet [42].

From Figure 4, both the external threats and the insider threats are identified.
Level 0—Production process equipment, sensors and actuators;
Level 1—Controllers and real-time control of the production process;
Level 2—Human machine interface (HMI), engineering work stations and servers;
Level 3—Data historians, advanced control;
Level 3.5—Demilitarized zone (DMZ), interface between PCN and business network;
Level 4—Business or enterprise network.
Levels 0 to 3.5 are termed the process control network which may consist of different

technologies, topologies, protocols, and communication mediums. The communication
medium for levels 0 to 2 could be standard or proprietary depending on the integration
systems and vendor equipment used. Level 3 and 3.5 utilizes standard open systems
Ethernet technology whereas Level 4 utilizes open systems Ethernet LAN technology. The
newly introduced security server which houses the models for cyber-attack detection and
with the capability of monitoring the real-time data exchange between the input/output
devices and the controllers is integrated at the layer 2 of the PCN alongside the engineering
workstations with direct access to the data exchange between the controllers and the
field devices.

3.3. Simulation and Experimental Setup

The 68,722 pressure datasets collated from a three-phase separator were applied such
that 60% was used for model training, 25% for model testing, and 15% for model validation
in other to achieve optimal performance and avoid overfitting of the models. Python 3.0
libraries, deep learning toolkit, and MATLAB were used for the simulations on a CPU with
the optimal configuration of Intel(R) Core (TM) i7 CPU @ 3.00 GHz, 16 GB RAM, and GPU
Tesla K80. Other hyperparameters such as learning rates, batch size, number of epochs,
time steps, and contamination parameters were used during the simulations to improve
the model results and optimize the learning abilities of the different algorithms as seen in
Table 2. To validate the tree algorithm performance, additional simulations were performed
using three public datasets - WUSTL-2018 [35], ORNL [46], and TON_IoT [47]. This is
critical to reinforce the performance results.
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Table 2. Behavior of SCADA pressure dataset using different machine learning algorithms.

Algorithm Accuracy (%) Training Time (ms) MCE Prediction Speed (obs/s)

Decision Trees
Fine Tree (FT) 100 1.1708 0 1,200,000
Medium Tree (MT) 100 1.0781 0 1,300,000
Coarse Tree (CT) 100 0.45488 0 1,000,000
Optimizable Tree 100 21.323 0 1,300,000

Discriminant Analysis
Linear
Discriminant
(LDR)

100 1.843 24 1,100,000

Quadratic
Discriminant
(QDR)

99.2 1.1597 518 1,600,000

Optimizable Dis-
criminant 100 25.029 24 1,600,000

Logistic Regression (LR) 100 3.205 N/A 1,100,000

Naive Bayes
Gaussian Naive
Bayes (GNB) 99.2 1.4947 518 1,400,000

Kernel Naive Bayes
(KNB) 100 65.633 8 4500

Optimizable NB 100 918.96 8 3800

Support Vector Machines (SVM)
Linear SVM 100 7.3065 25 780,000
Quadratic SVM 100 383.79 17 1,500,000
Cubic SVM 80.2 1657.3 13,588 930,000
Fine Gaussian SVM 100 7.433 5 610,000
Medium Gaussian
SVM 100 5.3155 1 760,000

Coarse Gaussian
SVM 100 5.1452 20 1,100,000

Optimized SVM 100 7490.9 25 1,100,000

Nearest Neighbors
Fine KNN 100 3.6447 0 820,000
Medium KNN 100 2.0989 5 460,000
Coarse KNN 99.9 3.5228 35 130,000
Cosine KNN 99.9 17.422 35 17,000
Cubic KNN 100 2.3157 5 380,000
Weighted KNN 100 2.1524 0 450,000

Ensemble Learning (EL)
Boosted Trees 99.9 5.0025 35 1,200,000
Bagged Tree 100 8.5874 0 320,000
Subspace
Discriminant 100 4.5421 24 260,000

Subspace KNN 100 12.777 0 93,000
RUS-Boosted Tree 100 2.4396 20 960,000
Optimized
Ensemble 100 232.87 0 530,000

4. Result Discussion and Performance Evaluation

The extracted real-time 68,722 pressure values which is an essential process variable
from the SCADA system were plotted against the date and time. Pressure is a critical
process variable in this process as over-pressurization could lead to explosion and under-
pressurization could lead to the implosion of the process vessel, either with catastrophic
results which will impact adversely the people, assets, and the environment. The features of
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the extracted real-time data plotted in Figure 5a show that the data do not contain extremely
high or extremely low values of pressure for the period under review. For the purpose of
simulating the man-in-the-middle (MitM) attack, extreme values of pressure were injected
into the dataset on specific dates and times. Figure 5b shows the plot of SCADA pressure
against the date and time with the anomalies injected.

Figure 5. Visualization of the extracted pressure values from the SCADA with and without anomalies.

In Figure 6a, with the contamination parameter set to 0.1, the isolation forest algorithm
showed high sensitivity in detecting changes in the pressure values for the period under
review including the extreme high-pressure values, and detected all as anomalies. This can
be termed high False Alarm Rates (FAR). With the contamination parameter set to 0.01, the
Isolation Forest was able to detect as anomalies the extreme low-pressure values only with
reduced FAR, but it was unable to identify the extremely high anomalies in the dataset and
this makes this algorithm for real-time detecting MitM attacks as shown in Figure 6b.

In Figure 7a, with step set to 34361, batch size of 32 and 20 epochs, the long short-term
memory (LSTM) algorithm detected some of the extreme pressure values for the period
under review. Changing the batch size to 128 as in Figure 7b, the algorithm detected all the
extreme high-pressure values as anomalies though with FAR. The algorithm was unable to
identify the extremely low anomalies in the dataset, which makes it unreliable for real-time
detection of MitM attacks.

Figure 8a–c show the plot of Python Outlier Detection (PyOD) incorporating interquar-
tile range (IQR), k-nearest neighbor (kNN), and local outlier factor (LOF). The results of this
algorithm show high sensitivity in detecting pressure value changes by all three algorithms.
Although the IQR could detect extreme high-pressure and low-pressure with high FAR,
kNN, and LOF failed to detect extreme high-pressure values correctly. KNN and LOF
accuracy of about 70% and a high FAR makes them unsuitable for detecting and mitigating
MitM attacks.

We applied the same 68,722 real-time SCADA pressure dataset to several other ma-
chine learning algorithms and compared their performance metrics, which are accuracy,
Receiver operator characteristics (ROC), confusion matrix, training time, misclassification
error (MCE), and prediction speed; the outcome is shown in Table 2. Based on these
combined machine learning metrics as shown in Table 2, it was concluded that the coarse
tree algorithm has significant performance and can detect MitM attacks effectively with
negligible FAR.
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Figure 6. Effect of contamination parameter on the isolation forest algorithm.

Figure 7. Effect of batch size variation on the LSTM algorithm.
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Figure 8. Plot of local outlier factor, KNN performance, and interquartile range result.

In addition, a thorough comparison was made between the results achieved with the
real-time dataset and three public datasets, namely, the WUSTL-2018 [35], ORNL Power
Grid [46], and TON_IoT datasets [47]. It is important to state that the FAR recorded with
the SCADA was zero as compared to other datasets used by other researchers. The result
is shown in Table 3, confirming the superior performance of tree algorithms such as the
coarse tree and ensemble tree such as the bagged tree. In addition, although the bagged tree
was consistent in most of the datasets in terms of high accuracy, it came with the challenge
of high training time justifying the use of the coarse tree where an accuracy-time trade-off
is needed.

Table 3. Best and worst-performing machine learning algorithms on various public datasets.

Datasets /Algorithm Accuracy (%) Training Time (ms) FAR Prediction Speed (obs/s)

SCADA Pressure Dataset
Coarse Tree 100 0.4549 0 1,000,000
Cubic SVM 80.2 1657.3 13,588 930,000

WUSTL-SCADA-2018 Dataset [35]
Medium Tree 100 5.6605 412 4,100,000
Subspace
Discriminant 93.1 101.64 72,009 110,000

ORNL POWER GRID Dataset [46]
Bagged Tree 95.1 4.8021 241 2500
Quadratic
Discriminant 52.4 1.6364 2339 120,000

TON_IoT DATASET [47]
Bagged Tree 100 1789.5 9 61,000
Coarse Tree 82.4 94.643 81,043 1,000,000

Figure 9a–c show the plot of the Confusion matrix of the tree algorithm with the best
performance using the 68,722 real-time SCADA pressure dataset, which shows zero false
positives as compared with other WUSTL and ORNL datasets used by other researchers
which produced 141 and 170 false positives, respectively.



Future Internet 2023, 15, 280 14 of 19

Figure 9. Plot of confusion matrix of the tree algorithms using the facility dataset and public datasets.

Figure 10a–c shows the plot of the receiver operator characteristics (ROC) curve of the
best-performing tree algorithm using the 68,722 real-time SCADA pressure dataset, which
shows coarse tree produced the best result with zero false positives and better area under
the curve (AUC). In contrast, WUSTL and ORNL showed in the medium tree and bagged
tree, respectively, with lesser AUC. Besides the SCADA pressure dataset, the ensemble
bagged tree is generally desirable across public datasets when accuracy is considered over
another trade-off such as training time.

Figure 10. Plot of receiver operator characteristics (ROC) curves.

The TON_IoT dataset [47] was used for result validation. Figures 11 and 12 reveal
the true positive rate (TPR) and false discovery rate (FDR) of the bagged tree and coarse
tree, respectively. Although the coarse tree performed best in our field data, bagged tree
remains the best ensemble learning method capable of making up for the weaknesses and
leveraging the strengths of tree algorithms, as it detected the MiTM attacks.
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Figure 11. Bagged trees graph showing the (a) probability of the positive classification of all attacks
(TPR/sensitivity) and (b) the proportion of all the identified attacks that may not be attacked (false
discovery rates (FDR)) on the TON_IoT datasets.

Figure 12. Coarse trees graph illustrating the (a) probability of the positive classification of all attacks
(TPR/sensitivity) and (b) the proportion of all the identified attacks that may not be attacked (false
discovery rates (FDR)) on the TON_IoT datasets.

The TPR and FDR performance of the coarse tree and ensemble tree on other datasets
(SCADA pressure, WUSTL-2018, and ORNL Power Grid) are shown in Figures 13 and 14.
The results are consistent with the confusion matrix and ROC results.

Figure 13. Graph illustrating the probability of the positive attack classification (TPR/sensitivity)
across all evaluated datasets ((a) SCADA Pressure, (b) WUSTL-2018, (c) ORNL PowerGrid
(d) TON_IoT).
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Figure 14. Graph demonstrating the proportion of all the identified attacks that may not be attacked
(false discovery rates (FDR)) across all evaluated datasets (a) SCADA Pressure, (b) WUSTL-2018,
(c) ORNL PowerGrid (d) TON_IoT.

5. Conclusions

The outcome of this study is the evaluation of different machine learning algorithms
on the 68,722 SCADA real-time datasets using the following combined machine learning
performance metrics: high accuracy, earliest training time, fastest prediction speed, negli-
gible MCE, and less computation power requirement. Based on these combined machine
learning performance metrics using the 68,722 datasets, it was concluded that the coarse
tree algorithm showed the best performance, and is regarded as the most suitable for the
detection of MitM attacks in a process control network of an oil and gas installation. This
study can be improved upon by evaluating more machine learning algorithms as well as
the use of more real-time SCADA datasets which improve the detection of other forms of
cyber-attacks. More real-time SCADA data samples are required in order to develop very
accurate and reliable anomaly detection models. Because the tree algorithms performed
best, it is recommended to perform more hyperparameter tuning of the ensemble tree,
which will aid the trade-off between accuracy and training time. The use of different
datasets is a helpful approach to validation. However, such datasets should have a compa-
rable relationship to avoid misjudgment of performance. In this work, the coarse tree had a
limitation of confusing the MiTM attack with a backdoor attack, and more work will be
required to handle multiclass detection and classification. In our approach, we solved this
problem by employing an ensemble tree but it came with a training time burden.
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Abbreviations
The following abbreviations are used in this manuscript:

APT Advance Persistent Threats
AUC Area Under Curve
CI Critical Infrastructure
DDoS Distributed Denial-of-Service
DoS Denial-of-Service
DMZ Demilitarized Zone
FAR False Alarm Rates
FDIA False Data Injection Attacks
FDR False Discovery Rates
FNR False Negative Rates
FPR False Positive Rates
HMI Human Machine Interface
ICS Industrial Control Systems
ICT Information and Communication Technology
IDS Intrusion detection systems
IIoT Industrial Internet of Things
IoT Internet of Things
IP Internet Protocol
IQR Interquartile Range
IT Information Technology
kNN k-Nearest Neighbors
LDR Linear Discriminant Regression
LOF Local Outlier Factor
LSTM Long Short-Term Memory
MATLAB Matrix Laboratory
MCE Misclassification error
MitM Man-in-the-Middle
MotS Man-on-the-Side
NSL-KDD National Security Laboratory Knowledge Discovery in Databases
ORNL Oak Ridge National Laboratories
OT Operation Technology
PCN process control network
PLC Programmable Logic Controller
PPV Positive Predictive Values
PyOD Python Outlier detection
ROC Receiver Operator Characteristics
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machines
TPR True Positive Rates
USB Universal Serial Bus
WUSTL Washington University in St. Louis
Xss Cross-site Scripting Attack
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