
Citation: Mousa, A.K.; Abdullah,

M.N. An Improved Deep Learning

Model for DDoS Detection Based on

Hybrid Stacked Autoencoder and

Checkpoint Network. Future Internet

2023, 15, 278. https://doi.org/

10.3390/fi15080278

Academic Editor: Izzat Alsmadi

Received: 20 July 2023

Revised: 11 August 2023

Accepted: 17 August 2023

Published: 19 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

An Improved Deep Learning Model for DDoS Detection Based
on Hybrid Stacked Autoencoder and Checkpoint Network
Amthal K. Mousa * and Mohammed Najm Abdullah

Computer Engineering Department, University of Technology-Iraq, Baghdad P.O. Box 10071, Iraq;
mohammed.n.abdullah@uotechnology.edu.iq
* Correspondence: amthal.k.mousa@uotechnology.edu.iq

Abstract: The software defined network (SDN) collects network traffic data and proactively manages
networks. SDN’s programmability makes it excellent for developing distributed applications, cyber-
security, and decentralized network control in multitenant data centers. This exceptional architecture
is vulnerable to security concerns, such as distributed denial of service (DDoS) attacks. DDoS attacks
can be very serious due to the fact that they prevent authentic users from accessing, temporarily or
indefinitely, resources they would normally expect to have. Moreover, there are continuous efforts
from attackers to produce new techniques to avoid detection. Furthermore, many existing DDoS
detection methods now in use have a high potential for producing false positives. This motivates us
to provide an overview of the research studies that have already been conducted in this area and point
out the strengths and weaknesses of each of those approaches. Hence, adopting an optimal detection
method is necessary to overcome these issues. Thus, it is crucial to accurately detect abnormal flows
to maintain the availability and security of the network. In this work, we propose hybrid deep
learning algorithms, which are the long short-term memory network (LSTM) and convolutional
neural network (CNN) with a stack autoencoder for DDoS attack detection and checkpoint network,
which is a fault tolerance strategy for long-running processes. The proposed approach is trained
and tested with the aid of two DDoS attack datasets in the SDN environment: the DDoS attack SDN
dataset and Botnet dataset. The results show that the proposed model achieves a very high accuracy,
reaching 99.99% in training, 99.92% in validation, and 100% in precision, recall, and F1 score with the
DDoS attack SDN dataset. Also, it achieves 100% in all metrics with the Botnet dataset. Experimental
results reveal that our proposed model has a high feature extraction ability and high performance in
detecting attacks. All performance metrics indicate that the proposed approach is appropriate for a
real-world flow detection environment.

Keywords: DDoS detection; distributed denial of service; software defined networking; SDN;
network security

1. Introduction

Software defined networking, also known as SDN, is a novel approach to the net-
working paradigm which separates control decisions from the forwarding hardware. The
primary objective is to make it as simple as possible for software developers to rely on the
resources provided by the network for storage and computation [1]. The SDN comprises
switches that support open-flow, a controller, and a secure channel for the controller and
the switches [2]. SDN focuses on four main features [3]:

• Separation of the data plane from the control plane.
• A centralized management system and network perspective.
• Open connections between the devices in the control plane and the data plane.
• The network can be programmed by an outside administration.

SDN has two main assets, which are the centralization of control and the ability to
control the whole network through software. Those two assets are attractive features for

Future Internet 2023, 15, 278. https://doi.org/10.3390/fi15080278 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15080278
https://doi.org/10.3390/fi15080278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi15080278
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15080278?type=check_update&version=1

Future Internet 2023, 15, 278 2 of 16

attackers. Thus, several security challenges affect the SDN, including the distributed denial
of service attack (DDoS), man-in-the-middle attack, side channel attack, application manip-
ulation, diversion of traffic, application exploitation, traffic sniffing, password guessing
or brute force, and network manipulation [4]. Recently, the DDoS attack has become one
of the most serious attacks due to the inability to access the controller. The process and
communication capacity of the controller are overloaded when DDoS attacks occur against
the SDN controller because of the unnecessary flow produced by the controller for the
attack packets. The capacity of the switch flow table becomes full, leading the network
performance to decline to a critical threshold [5]. Machine learning (ML) and powerful
deep learning (DL) are two of the most common techniques to protect any network from
DoS/DDoS attacks.

This work proposes a novel model of DL-based DDoS attack detection algorithms
in SDN, evaluates those efforts, and then compares those findings to the recent related
papers. The motivation of using a proposed model to find and stop DDoS attacks on SDN
is to give an overview of the research studies that have already been conducted in this
area and point out the strengths and weaknesses of each of those approaches. Also, DDoS
attacks are a big problem for SDN networks. Traditional methods of defense may not be
able to find and stop these attacks, because attackers now use new methods to flood SDN
using different types of traffic (high and low rates), that slow down the SDN controller
and make it inaccessible to legitimate users. Additionally, many recent DDoS detection
methods have a high potential for producing false alarms, which can be time-consuming to
analyze and cause alert fatigue. Consequently, techniques that can lessen false positives as
well as increase the accuracy of DDoS detection are required.

This study proposes a model-based CNN-LSTM as a stacked autoencoder with a
checkpoint network for DDoS detection to achieve high accuracy DDoS detection. We have
demonstrated how this particular structure can enhance performance, accurately estimate
attacks, and remarkably suppress false alarms. Additionally, we provide details of the
dataset and hyperparameter values. Furthermore, we produce a comparative analysis of
the proposed approach against some recently published work. The main contributions of
this work are as follows:

• Propose a deep-stacked autoencoder-based CNN-LSTM for detecting DDoS attacks on a
network. This model can extract features effectively in an unsupervised learning approach.

• Utilize a checkpoint network model: a fault tolerance strategy for long-running pro-
cesses that permits the definition of checkpoints for the model weights at certain
locations and improves inference accuracy in real time.

After this introductory section of the paper, Section 2 provides a background of DDoS
attacks and the detection mechanism in the SDN. Section 3 presents an overview of the
most recent related studies for DDoS detection. The proposed system structure appears in
Section 4, and the experimental results of the proposed model classifiers for DDoS attack
detection in SDN appear in Section 5, along with a comparison to some relevant research.
The last topic of discussion in the paper is the conclusion in Section 6.

2. Concept of SDN and the Detection Mechanism of DoS/DDoS Attacks

The development of technology to detect and mitigate distributed denial of service
attacks in SDN environments [6] provides a significant obstacle to these attacks. A dis-
tributed denial of service attack sends many packets to the target network. Unmatched
flows are considered new if the target and source IP addresses of the forwarded packets are
fake, and switches cannot locate these packets in their flow table entries. Next, the switch
will forward the packet directly to the SDN controller or send the mismatched packet to the
SDN controller [7]. Finding the appropriate routes for these packets lies within the purview
of the SDN controller. Many disguised DDoS flows are in legitimate traffic. These flows
continually consume the controller’s resources, and as a result, those resources eventually
become unavailable for use by incoming packets. As a direct consequence of this attack, the
SDN controller goes offline, which causes the entire network to enter a downstate. Even if

Future Internet 2023, 15, 278 3 of 16

a backup controller is available, this security flaw still exists [8]. The characteristics of a
DDoS attack in a software-defined networking system are subtly distinct from those of an
attack on a traditional network. The following is a conclusion reached after researching the
DDoS attack techniques utilized against the SDN controller [9]:

• In traditional networks, there are one or more network links, and DDoS attackers go
after servers that are the endpoints. In SDN, the controller is hit with a DDoS attack. In
SDN, the main goal of a DDoS attack is to make the controller’s resources unavailable
by failing at a single point.

• The IP addresses of packets in traditional networks are real. As a result, DDoS attackers
typically target the terminal server. To conduct a DDoS assault in SDN, the attacker
attempts to counterfeit the IP addresses of the destination, involving the controller in
constant processing with fresh flows. The controller’s resources are made unavailable.

• In traditional networks, when a DDoS attack occurs, the server stops providing services
to actual users. But in SDN, if the DDoS attack occurs, the controller in the SDN loses
contact with the data plane and cannot provide services for moving data packets.

Traditional ways to find DDoS attacks use a stochastic analysis and the randomness
of network traffic to find unusual intrusions. When the detection software finds an attack
event, traffic rate-limiting and filtering are used to lessen the damage. But if it uses
mitigation strategies carelessly, they will affect legitimate traffic. Even though the victim is
not receiving a lot of traffic, a poor response like this can make it difficult for regular users
to get online. So, the detection technique must be capable of determining when a DDoS
attack occurs and distinguishing between attack traffic and normal traffic.

The current trend in DDoS detection is to use machine learning to classify and detect
malicious traffic. These techniques can learn the attributes of the underlying data smartly
without needing to be told what is normal and what is dangerous. Even though machine
learning-based techniques show promise, most focus on offline traffic analysis and have
trouble staying current with how DDoS attacks change over time [10]. Lastly, the detection
method should try to reduce false alarms, which can hurt sources that are not doing
anything wrong. So, the defense system stops attack traffic and ensures that legitimate
traffic gets to the end users reliably [11].

3. Related Works

Recent DDoS detection research utilizing machine learning approaches has achieved
promising results. These systems can intelligently understand the underlying data prop-
erties without explicitly specifying normal and harmful behaviors, bypassing the limits
of conventional detection schemes. The DDoS detection problem is a binary classification
problem in which the observed traffic is either normal or attack traffic. Moreover, detection
techniques have used deep learning more often in recent years to find DDoS attacks and
presented several approaches. Of various recent notable works in this field, some utilized
convolutional networks, some utilized recurrent neural networks, especially LSTM and
bidirectional LSTM, and some used autoencoder, an unsupervised learning approach, to dis-
cover non-linear characterizations from input data, and would then perform a classification
algorithm to differentiate malicious traffic from genuine traffic.

In 2017, Yuan, Li, and Li [12] developed a deep learning algorithm named “DeepDe-
fense”, a model that uses a deep learning model to detect DDoS attacks. To carry out their
research, they used CNN, as well as several distinct variants of RNN (such as LSTM and
the gated recurrent unit neural network (GRUNN)), and the random forest (RF) method.
The study included a comparison analysis between several deep learning methodologies
and between deep learning and machine learning algorithms (it selected RF). DeepDefense
put into action four deep learning models: LSTM, CNN-LSTM, GRU, and 3-LSTIM. We
compared the results of these models with one another. With an accuracy of 98.410% and
an area under the curve (AUC) score of 99.450%, the top deep learning model, 3LSTM,
was able to identify DDoS attacks. Shone et al. [13] found that stacking two autoencoders
allowed for the learning of more complex feature-based correlations. For intrusion detec-

Future Internet 2023, 15, 278 4 of 16

tion, they combined the stacked autoencoder with a random forest classifier. They asserted
that the soft-max layer was less effective than traditional classifiers. In 2019, Pektaş and
Acarman [14] presented a model-based deep learning method that utilized CNN and LSTM
to train the spatial-temporal characteristics of network flows. It used two datasets for
training and testing: the ISCX2012 dataset [15] and CICIDS2017 [16]. The results show
that the model achieved 0.9669 in precision, 0.9649 in recall, 0.9657 in F1-score, and 0.9666
in accuracy. The model also returned good results when using CI-CIDS2017, where it
achieved 0.9797 in precision, 0.9765 in recall, 0.9780 in F1-score, and 0.9772 in accuracy.

Some studies developed hybrid deep learning models. Gadze et al., 2021 [17] proposed
a model that combined two types of deep learning, LSTM and CNN, to detect an attack.
Mininet generated the dataset dynamically and utilized OpenFlow switches and Floodlight
as an external controller. Based on the findings, RNN LSTM outperformed linear-based
models like SVM (86.85%) and Naive Bayes (82.61%), achieving an accuracy of 89.63%
compared to their respective scores. Their model had an accuracy of 99.4%, while the
KNN technique, based on linear models, had an even higher accuracy. In addition, the
model functioned most effectively when it split the data in a 70/30 train/test split ratio.
Singh and Jang-Jaccard (2022) [18] created a hybrid autoencoder model dubbed MSCNN-
LSTM-AE. This model found anomalies in network traffic by utilizing a combination of a
multi-scale convolutional neural network (MSCNN) and LSTM. The MSCNN autoencoder
was employed initially to evaluate the spatial characteristics of the dataset. Next, it used
an LSTM-based autoencoder network to identify the temporal features of the latent space
features learned from the MSCNN-AE. The authors analyzed their work with the UNSW-
NB15 [19], NSL-KDD [20], and CICDDoS2019 tests. The accuracy score for their model
(MSCNN-LSTM-AE) came in at 93.76%, while the recall score was 92.26%. Elubeyd and
Yiltas-Kaplan [21] presented a hybrid deep learning approach for detecting and countering
DoS/DDoS attacks in SDNs. The selection of a hybrid model that included a 1D CNN, a
dense neural network (DNN), and a gated recurrent unit (GRU) took advantage of their
individual strengths that synergistically addressed the intricacies of the problem. The
model achieved good results when using CICDDoS 2019, where it achieved 0.9981 in
accuracy, 0.9996 in precision, 0.999 in recall, and 0.9993 in F1-score.

Some recent studies used a stacked autoencoder to improve DDoS detection accuracy.
Yaser et al., 2022 [22] proposed a novel approach for detecting DDoS attacks, which involved
integrating deep learning with feedforward neural networks in the form of autoencoders.
The training and evaluation of the model were analyzed using two datasets, initially
through a static approach and subsequently through an iterative technique. They developed
the autoencoding model through a layer-by-layer stacking of the input layer and the hidden
layer of self-encoding models, wherein each self-encoding model employed a hidden layer.
They assessed the performance of their model by employing a three-fold data partitioning
strategy comprising training, testing, and validating subsets. The test result showed that
the model yielded superior accuracy for the static dataset. Specifically, for the ISCXIDS-2012
dataset, the model attained a maximum accuracy of 99.35% during training, 99.3% during
validation, 99.78% for precision, 99.99% for recall, and 99.87 for F1-score. The UNSW-2018
dataset exhibited high levels of accuracy during training, with values of 99.95% for training
and 99.94 for validation, and 99.99 for recall, precision, and F1-score. Jiang et al., 2018 [23],
presented a new method (DLGraph) for detecting malware based on deep learning along
with graph embedding. Their architecture for deep learning was comprised of two stacked
denoising autoencoders (SDA). One SDA was able to learn the latent structure of function-
call graphs in programs. The other SDA was capable of learning a latent representation
of Windows API calls made by programs. They utilized the node2vec technique when
incorporating a function-call graph in a feature space. The experimental results on three
distinct datasets demonstrated that the proposed DLGraph method obtained high levels
of accuracy and exceeded the closely related DL4MD method, where it gained 99.14% in
accuracy for dataset 1, 99.36% for dataset 2, and 99.31 for dataset 3. Table 1 shows the
comparison between these related works.

Future Internet 2023, 15, 278 5 of 16

Table 1. Comparison of related works in terms of methods, performance measures, and achievement.

Ref Model Achievement

Yuan, Li [12] LSTM, GRU, CNN-LSTM, and 3-LSTIM 3-LSTIM outperformed the other models which gained
99.450% in accuracy

Shone et al. [13] combined the stacked autoencoder with a
random forest classifier

They asserted that the soft-max layer was less effective
than traditional classifiers

Pektaş and Acarman [14] LSTM and CNN

For the ISCX2012 dataset, the model achieved 0.9669 in
precision, 0.9649 in recall, 0.9657 in F1-score, and 0.9666
in accuracy. For CI-CIDS2017, the model achieved 0.9797

in precision, 0.9765 in recall, 0.9780 in F1-score, and
0.9772 in accuracy

Gadze et al., 2021 [17] LSTM and CNN

The model outperformed the other ML models, in which
it gained 99.4% in accuracy compared with RNN LSTM
that archived 89.63%, SVM achieved 86.85%, and Naive

Bayes achieved 82.61%

Singh and Jang-Jaccard, 2022 [18] Hybrid autoencoder model dubbed
MSCNN-LSTM-AE

The accuracy score was 93.76% and the recall
score was 92.26%

Elubeyd and Yiltas-Kaplan [21]
Hybrid deep learning approaches (1D CNN, a

dense neural network (DNN), and a gated
recurrent unit (GRU))

The model achieved good results when using CICDDoS
2019, where it achieved 0.9981 in accuracy, 0.9996 in

precision, 0.999 in recall, and 0.9993 in F1-score

Yaser et al., 2022 [22] LSTM-Autoencoder

For the ISCXIDS-2012 dataset, the model attained a
maximum accuracy of 99.35% during training, 99.3%

during validation, 99.78% for precision, 99.99% for recall,
and 99.87 for F1-score. For UNSW-2018, it gained 99.95%
for training accuracy and 99.94 for validation accuracy,

and 99.99 for recall, precision, and F1-score

Jiang et al., 2018 [23] DLGraph based on two stacked denoising
autoencoders (SDA)

It gained 99.14% in accuracy for dataset 1, 99.36% for
dataset 2, and 99.31 for dataset 3

4. Proposed Model Structure

Our approach uses autoencoders, a method that is now popular in deep learning.
An autoencoder is an unsupervised neural network-based feature extraction method that
learns the best feasible factors to reproduce faithfully its output given some input. One
of its many appealing features is its potential to provide a non-linear and more efficient
generalization than the principal component analysis (PCA). It achieves this result by
backpropagation with input-equivalent target values. To rephrase, it tries to figure out
how to predict the occurrence of itself as closely as possible. The typical architecture of an
autoencoder consists of three layers: an input layer, an output layer, and a hidden layer.
The hidden layer’s dimensions are lower than that of the input [24]. Figure 1 shows the
traditional (single) autoencoders.

Future Internet 2023, 15, x FOR PEER REVIEW 6 of 17

4. Proposed Model Structure

Our approach uses autoencoders, a method that is now popular in deep learning. An

autoencoder is an unsupervised neural network-based feature extraction method that

learns the best feasible factors to reproduce faithfully its output given some input. One of

its many appealing features is its potential to provide a non-linear and more efficient gen-

eralization than the principal component analysis (PCA). It achieves this result by back-

propagation with input-equivalent target values. To rephrase, it tries to figure out how to

predict the occurrence of itself as closely as possible. The typical architecture of an auto-

encoder consists of three layers: an input layer, an output layer, and a hidden layer. The

hidden layer’s dimensions are lower than that of the input [24]. Figure 1 shows the tradi-

tional (single) autoencoders.

Figure 1. Single autoencoder [24].

In the proposed method, we utilize a deep autoencoder. Unlike traditional autoen-

coders, deep autoencoders consist of two typical deep-belief networks, one for encoding

and one for decoding, with four or five shallow layers each. Deep learning can be applied

to autoencoders by a stacked autoencoder, in which many hidden layers build depth, and

the hidden layers reflect fundamental concepts. As a result of this increased depth, com-

puting costs will reduce, the amount of instruction data required will decrease, and accu-

racy will improve. The output of one buried layer serves as the input to a later, more ad-

vanced step. First-order features are often learned from unprocessed data by the first layer

of a stacked autoencoder. Second-order features based on trends in the presence of first-

order traits are typically learned by the second layer. Subsequent layers build our under-

standing of higher-order characteristics. Figure 2 shows the structure of the proposed

deep autoencoder model.

The first layer is the input layer, which receives input Xi and uses numerous hidden

layers to encode and decode it (encoder and decoder blocks). The encoding process com-

presses the attributes to make them smaller than the input data, and the decoding process

restores these attributes in reverse order to begin the final output at the deepest layer.

When processed, the output feature vector Xi is virtually identical to the input. The con-

volutional layer and LSTM are combined with an autoencoder to generate a robust DDoS

attack classifier. LSTM is excellent at understanding the context of Internet packets, iden-

tifying long- and short-term dependencies, and identifying trends in DDoS attack se-

quences. LSTM is particularly proficient at categorizing processes such as time series and

learning from experience. After the encoding is complete, based on the output result of

the hidden layer, the output layer is decoded and reconstructed according to Equation (2)

to produce an output of the same size as the input layer neuron.

The purpose of the autoencoder section is to map input 𝑥 ∈ [0,1]𝑑 to a latent repre-

sentation 𝑦 ∈ [0,1] 𝑑′, where the mapping is performed by the function

Figure 1. Single autoencoder [24].

Future Internet 2023, 15, 278 6 of 16

In the proposed method, we utilize a deep autoencoder. Unlike traditional autoen-
coders, deep autoencoders consist of two typical deep-belief networks, one for encoding
and one for decoding, with four or five shallow layers each. Deep learning can be applied to
autoencoders by a stacked autoencoder, in which many hidden layers build depth, and the
hidden layers reflect fundamental concepts. As a result of this increased depth, computing
costs will reduce, the amount of instruction data required will decrease, and accuracy will
improve. The output of one buried layer serves as the input to a later, more advanced
step. First-order features are often learned from unprocessed data by the first layer of a
stacked autoencoder. Second-order features based on trends in the presence of first-order
traits are typically learned by the second layer. Subsequent layers build our understand-
ing of higher-order characteristics. Figure 2 shows the structure of the proposed deep
autoencoder model.

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 17

𝑦𝑖 = 𝑠(𝑊𝑥𝑖 + 𝑏) (1)

Through

𝑧𝑖 = 𝑠(𝑊′𝑦𝑖 + 𝑏′) (2)

This concealed representation is mapped back into a reconstruction of the same shape

as input x. Here, s represents a non-linear function, such as the sigmoid function. The first

component is the encoder, while the second is the decoder. This model’s parameters min-

imize the average reconstruction error.

Figure 2. The general structure of the proposed deep autoencoder.

The model consists of one input layer, one convolutional layer (Conv1D), two LSTM

layers, one max pooling layer, and one dense layer in output. Figure 3 shows the training

model with the proposed deep autoencoder scheme.

Figure 3. The training model of the proposed deep autoencoder.

In addition, the checkpoint network improves the weights. Checkpointing is a crucial

functionality that expedites failure recovery, reducing the total training time and ensuring

continuous progress. Checkpoints are periodic captures of the current state of a running

process, which are then stored in a durable storage medium. The individual loads the

most recent checkpoint to recover from a setback and recommence training. In addition

Figure 2. The general structure of the proposed deep autoencoder.

The first layer is the input layer, which receives input Xi and uses numerous hidden
layers to encode and decode it (encoder and decoder blocks). The encoding process
compresses the attributes to make them smaller than the input data, and the decoding
process restores these attributes in reverse order to begin the final output at the deepest
layer. When processed, the output feature vector Xi is virtually identical to the input. The
convolutional layer and LSTM are combined with an autoencoder to generate a robust
DDoS attack classifier. LSTM is excellent at understanding the context of Internet packets,
identifying long- and short-term dependencies, and identifying trends in DDoS attack
sequences. LSTM is particularly proficient at categorizing processes such as time series and
learning from experience. After the encoding is complete, based on the output result of the
hidden layer, the output layer is decoded and reconstructed according to Equation (2) to
produce an output of the same size as the input layer neuron.

The purpose of the autoencoder section is to map input x ∈ [0, 1]d to a latent represen-
tation y ∈ [0, 1]d′, where the mapping is performed by the function

yi = s(Wxi + b) (1)

Through
zi = s

(
W ′yi + b′

)
(2)

This concealed representation is mapped back into a reconstruction of the same shape
as input x. Here, s represents a non-linear function, such as the sigmoid function. The
first component is the encoder, while the second is the decoder. This model’s parameters
minimize the average reconstruction error.

The model consists of one input layer, one convolutional layer (Conv1D), two LSTM
layers, one max pooling layer, and one dense layer in output. Figure 3 shows the training
model with the proposed deep autoencoder scheme.

Future Internet 2023, 15, 278 7 of 16

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 17

𝑦𝑖 = 𝑠(𝑊𝑥𝑖 + 𝑏) (1)

Through

𝑧𝑖 = 𝑠(𝑊′𝑦𝑖 + 𝑏′) (2)

This concealed representation is mapped back into a reconstruction of the same shape

as input x. Here, s represents a non-linear function, such as the sigmoid function. The first

component is the encoder, while the second is the decoder. This model’s parameters min-

imize the average reconstruction error.

Figure 2. The general structure of the proposed deep autoencoder.

The model consists of one input layer, one convolutional layer (Conv1D), two LSTM

layers, one max pooling layer, and one dense layer in output. Figure 3 shows the training

model with the proposed deep autoencoder scheme.

Figure 3. The training model of the proposed deep autoencoder.

In addition, the checkpoint network improves the weights. Checkpointing is a crucial

functionality that expedites failure recovery, reducing the total training time and ensuring

continuous progress. Checkpoints are periodic captures of the current state of a running

process, which are then stored in a durable storage medium. The individual loads the

most recent checkpoint to recover from a setback and recommence training. In addition

Figure 3. The training model of the proposed deep autoencoder.

In addition, the checkpoint network improves the weights. Checkpointing is a crucial
functionality that expedites failure recovery, reducing the total training time and ensuring
continuous progress. Checkpoints are periodic captures of the current state of a running
process, which are then stored in a durable storage medium. The individual loads the most
recent checkpoint to recover from a setback and recommence training. In addition to the
imperative of failure recovery, the utilization of checkpoints is necessary for transferring
training processes across various nodes or clusters. This transition may be necessary for
server maintenance (for instance, urgent security updates that cannot be delayed), hardware
malfunctions, network complications, and the optimization or reallocation of resources.
Another significant application of checkpoints involves the real-time publication of snaps
of trained models to enhance the accuracy of inference, commonly referred to as online
training. For example, we can employ an interim model obtained by checkpointing for
prediction serving. This method allows the model to continue training on more recent
datasets, ensuring the freshness of the inference model. We can also utilize checkpoints
for transfer learning, a technique where an intermediate structure state is an initial point
for training toward a distinct objective [10]. Figure 4 shows the training loop with a
checkpoint network.

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 17

to the imperative of failure recovery, the utilization of checkpoints is necessary for trans-

ferring training processes across various nodes or clusters. This transition may be neces-

sary for server maintenance (for instance, urgent security updates that cannot be delayed),

hardware malfunctions, network complications, and the optimization or reallocation of

resources. Another significant application of checkpoints involves the real-time publica-

tion of snaps of trained models to enhance the accuracy of inference, commonly referred

to as online training. For example, we can employ an interim model obtained by check-

pointing for prediction serving. This method allows the model to continue training on

more recent datasets, ensuring the freshness of the inference model. We can also utilize

checkpoints for transfer learning, a technique where an intermediate structure state is an

initial point for training toward a distinct objective [10]. Figure 4 shows the training loop

with a checkpoint network.

Figure 4. The training looping with checkpoint network [10].

The evaluation of the model occurs at the conclusion of each epoch, and the weights

corresponding to the highest accuracy and lowest loss during that specific epoch are re-

tained and saved. In the event that the weights in the model during a specific epoch fail

to yield the optimal accuracy or loss, as determined by the user-defined criteria, the

weights will not be preserved. However, the training process will persist, commencing

from the aforementioned condition.

5. Results and Discussion

This section discusses the experimental results of our proposed method. We use sev-

eral performance metrics for evaluation. We use two datasets to test the performance of

the proposed model in detecting DDoS attacks. Then, we compare these results with some

recent related works using the same datasets and with some other machine learning algo-

rithms.

5.1. Datasets

Most datasets are imperfect, and the row samples employed to cover the application

manners are insufficient in these cases. The most common DDoS datasets involve CI-

CIDS2019, CICIDS2017, KDDCUP99, ISCX2012, Kyoto 2006+, and NSL-KDD, which re-

searchers have significantly utilized for intrusion detection. In this work, we chose two

datasets to validate our proposed DDoS classifier, which are:

1- DDoS attack SDN dataset (Mendeley Data): This set is an SDN-specific dataset cre-

ated by the Mininet emulator and utilized by machine learning and deep learning

algorithms for traffic classification. The project begins by constructing 10 Mininet to-

pologies with switches connected to a single Ryu controller. It simulates a network

for benign TCP, UDP, and ICMP traffic and malicious traffic, which consists of a TCP

Syn attack, UDP Flood attack, and ICMP assault. The data collection contains 23 fea-

tures, of which some are from the switches, and others are calculated, such as the

Figure 4. The training looping with checkpoint network [10].

Future Internet 2023, 15, 278 8 of 16

The evaluation of the model occurs at the conclusion of each epoch, and the weights
corresponding to the highest accuracy and lowest loss during that specific epoch are
retained and saved. In the event that the weights in the model during a specific epoch
fail to yield the optimal accuracy or loss, as determined by the user-defined criteria, the
weights will not be preserved. However, the training process will persist, commencing
from the aforementioned condition.

5. Results and Discussion

This section discusses the experimental results of our proposed method. We use
several performance metrics for evaluation. We use two datasets to test the perfor-
mance of the proposed model in detecting DDoS attacks. Then, we compare these results
with some recent related works using the same datasets and with some other machine
learning algorithms.

5.1. Datasets

Most datasets are imperfect, and the row samples employed to cover the applica-
tion manners are insufficient in these cases. The most common DDoS datasets involve
CI-CIDS2019, CICIDS2017, KDDCUP99, ISCX2012, Kyoto 2006+, and NSL-KDD, which
researchers have significantly utilized for intrusion detection. In this work, we chose two
datasets to validate our proposed DDoS classifier, which are:

1- DDoS attack SDN dataset (Mendeley Data): This set is an SDN-specific dataset cre-
ated by the Mininet emulator and utilized by machine learning and deep learning
algorithms for traffic classification. The project begins by constructing 10 Mininet
topologies with switches connected to a single Ryu controller. It simulates a network
for benign TCP, UDP, and ICMP traffic and malicious traffic, which consists of a
TCP Syn attack, UDP Flood attack, and ICMP assault. The data collection contains
23 features, of which some are from the switches, and others are calculated, such as
the Packet count, Switch-id, duration sec, byte count, Destination IP, Source IP, Port
number, etc.

2- Botnet dataset (UNSW_2018_IoT_Botnet): Even though several datasets have been
proposed for detecting intrusions, most datasets are not updated and do not reflect
actual data. The Canadian Institute for Cybersecurity addressed these issues by
developing the Intrusion Detection Evaluation Dataset, ISCX-IDS 2012, and [25]
generated by monitoring network activity for seven days. The labeled dataset consists
of approximately 1,512,000,000 packets with 20 features. The primary characteristics
of this dataset are discussed in [25] and include real, normal, and malicious streams
comprising FTP, HTTP, IMAP, POP3, SMTP, and SSH protocols collected using real
devices. All data are categorized and marked. The collected datasets contain a variety
of intrusion kinds (Infiltrating, DoS, DDoS, and Brute Force SSH).

5.2. Performance Evaluation Metrics

A performance evaluation is the process of measuring the of a classification model
after assigning cases to their various predetermined labels. The performance evaluation
considers measures including accuracy, recall, precision, F1-score, and confusion matrix [26].
These metrics are described as follows:

1. Accuracy: The ratio of all correct predictions over the total number of packets in the
dataset [24]:

Accuracy(Ac) =
Tp + Tn

Tp + Tn + Fp + Fn
(3)

where Tp is the “True Positive,” which describes the rate where the actual instance of a
certain label is categorized as that label; Tn is the “True Negative,” which is the attack
instance’s value that is classified as an attack; Fp is the “False Positive,” which is the
number incorrectly classified for a certain class label, i.e., the instance categorized

Future Internet 2023, 15, 278 9 of 16

value as an additional class label for a given dataset; Fn is the “False Negative,” which
is the value of normal traffic which is classified as an attack.

2. Recall: Recall is the number of correctly predicted positive records over all the positive
records: a metric that can detect DDoS attack traffic compared to normal traffic [24].

Recall =
Tp

Tp + Fn
(4)

3. Precision: Precision is the proportion of actual positive instances that were correctly
predicted, i.e., it is a metric that can detect DDoS attack traffic among normal traf-
fic [24].

Precision =
Tp

Tp + Fp
(5)

4. F1-score: The F1-score is the balance between the recall and the precision [24].

F1− score = 2× Recall× precision
Recall + precision

(6)

5. Confusion Matrix: The data classification results appear in a table format. The
accuracy of a classification model is evaluated by applying it to test data for which
the results have already been determined. The study uses it to show the distribution
of the expected outcomes, despite its poor suitability for anything beyond binary
classification [24].

5.3. Results and Discussion of Base Classifier Models
5.3.1. Mendeley DDoS Attack SDN Dataset

The dataset utilized in this study is a software defined networking (SDN) dataset
generated by implementing ten distinct topologies within the Mininet framework, wherein
switches are interconnected to a singular Ryu controller. The network simulation encom-
passes benign traffic, including TCP, UDP, and ICMP, as well as malicious traffic, which
comprises TCP Syn, UDP Flood, and ICMP attacks. The dataset contains 23 features, in-
cluding extracted data from switches and calculated variables. At first, we extract packet
fields from the DDoS attack SDN dataset. The number of samples used is 100,000. The
extracted feature appears in Figure 5.

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 17

The dataset utilized in this study is a software defined networking (SDN) dataset

generated by implementing ten distinct topologies within the Mininet framework,

wherein switches are interconnected to a singular Ryu controller. The network simulation

encompasses benign traffic, including TCP, UDP, and ICMP, as well as malicious traffic,

which comprises TCP Syn, UDP Flood, and ICMP attacks. The dataset contains 23 fea-

tures, including extracted data from switches and calculated variables. At first, we extract

packet fields from the DDoS attack SDN dataset. The number of samples used is 100000.

The extracted feature appears in Figure 5.

Figure 5. Extracted feature from the original packets.

The extracted features are Packet_count, Switch-id, byte_count, duration_sec (repre-

senting the duration in seconds), duration_nsec (representing the duration in nanosec-

onds), and the overall duration obtained by summing duration_sec and duration_nsec.

Additionally, the characteristics contain Source IP and Destination IP. The numerical iden-

tifier assigned to a specific communication endpoint within a computer network is com-

monly referred to as a port number. The variable “tx_bytes” represents the quantity of

bytes that have been moved via the switch port, whereas “rx_bytes” denotes the quantity

of bytes that have been received on the switch port. The “dt” field represents the numeri-

cal representation of both the date and time. This field is utilized to monitor the flow of a

particular process at regular intervals of 30 s. The calculated features encompass the term

“packet per flow”, which refers to the count of packets transmitted during a single flow.

Similarly, “byte per flow” represents the count of bytes transmitted during a single flow.

“Packet Rate” denotes the number of packets sent per second and may be computed by

splitting the packet for each flow by the monitoring interval. Additionally, the number of

“Packet_ins” messages and the total flow inputs in the switch are relevant factors in this

context. The variables tx_kbps and rx_kbps represent the rates at which data are trans-

ferred and received, respectively. Port bandwidth refers to the cumulative value of both

the transmitted kilobits per second (tx_kbps) and received kilobits per second (rx_kbps).

The final column denotes the class label, which serves as an indicator to determine if

the traffic class is normal or malicious. In the classification scheme utilized, benign traffic

is assigned a label of 0, whereas malicious traffic is assigned a label of 1. A network sim-

ulation is conducted over a duration of 250 min, resulting in the collection of 104,345 rows

of data. The simulation is executed repeatedly within a specified time frame, allowing for

the accumulation of further data.

We split the dataset into 80% for training and 20% for testing. Attack traffic is labeled

with 1, whereas the normal traffic is labeled with 0, and we train the model for 500 epochs

to study the effect of the checkpoint strategy on improving classification accuracy. The

classification result appears in Table 2 and Figures 6 and 7.

Figure 5. Extracted feature from the original packets.

The extracted features are Packet_count, Switch-id, byte_count, duration_sec (repre-
senting the duration in seconds), duration_nsec (representing the duration in nanoseconds),
and the overall duration obtained by summing duration_sec and duration_nsec. Addi-
tionally, the characteristics contain Source IP and Destination IP. The numerical identifier
assigned to a specific communication endpoint within a computer network is commonly
referred to as a port number. The variable “tx_bytes” represents the quantity of bytes
that have been moved via the switch port, whereas “rx_bytes” denotes the quantity of
bytes that have been received on the switch port. The “dt” field represents the numerical

Future Internet 2023, 15, 278 10 of 16

representation of both the date and time. This field is utilized to monitor the flow of a
particular process at regular intervals of 30 s. The calculated features encompass the term
“packet per flow”, which refers to the count of packets transmitted during a single flow.
Similarly, “byte per flow” represents the count of bytes transmitted during a single flow.
“Packet Rate” denotes the number of packets sent per second and may be computed by
splitting the packet for each flow by the monitoring interval. Additionally, the number of
“Packet_ins” messages and the total flow inputs in the switch are relevant factors in this
context. The variables tx_kbps and rx_kbps represent the rates at which data are trans-
ferred and received, respectively. Port bandwidth refers to the cumulative value of both
the transmitted kilobits per second (tx_kbps) and received kilobits per second (rx_kbps).

The final column denotes the class label, which serves as an indicator to determine if
the traffic class is normal or malicious. In the classification scheme utilized, benign traffic is
assigned a label of 0, whereas malicious traffic is assigned a label of 1. A network simulation
is conducted over a duration of 250 min, resulting in the collection of 104,345 rows of data.
The simulation is executed repeatedly within a specified time frame, allowing for the
accumulation of further data.

We split the dataset into 80% for training and 20% for testing. Attack traffic is labeled
with 1, whereas the normal traffic is labeled with 0, and we train the model for 500 epochs
to study the effect of the checkpoint strategy on improving classification accuracy. The
classification result appears in Table 2 and Figures 6 and 7.

Table 2. Results of tests using the Mendeley dataset of the proposed model.

Accuracy (%) Validation Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

99.99 99.923 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 6. A screenshot of the output terminal (a) training and validation accuracy results; (b) metrics

results.

(a) (b) (c)

Figure 7. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of train-

ing and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 2. Results of tests using the Mendeley dataset of the proposed model.

Accuracy

(%)

Validation

Accuracy (%)

Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

99.99 99.923 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

Table 2 and Figure 6 show the final results of training and Figure 7a, b represent the

training/test loss and training/test accuracy after 500 epochs, respectively. Figure 7c shows

the confusion matrix of the proposed model. These results prove that the model achieves

very high classification results and stability with close results between training and vali-

dation, where it gains 99.99% in training accuracy, 99.923% in validation accuracy, and

gain 100% in precision, recall, and F1-score. From Figure 7a, the model training and vali-

dation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation. From

Figure 7b, the model reaches the best train/validation accuracy at epoch (19). From Figure

7c, the model achieves a significant degree of prediction accuracy. It reaches an accuracy

of about 100% in correctly detecting attacks and normal traffic flows. Moreover, the pro-

posed model has fewer false alarms since it shows a False Positive Rate (FPR) of 0.00086

and a False Negative Rate (FNR) of 0.00071. These results show the importance of using a

checkpoint network and many epochs, which can highly affect accuracy, as shown in Fig-

ure 6.

5.3.2. UNSW_2018_IoT_Botnet Dataset

The Bot-IoT dataset was developed in 2018 and published in 2019 by the New South

Wales University (UNSW). It is a contemporary and authentic dataset for training ma-

chine learning models to effectively identify and mitigate Botnet attacks within Internet

of Things (IoT) networks. The dataset comprises 72 million instances, consisting of three

dependent and forty-three independent features. The dataset encompasses various cyber-

Figure 6. A screenshot of the output terminal (a) training and validation accuracy results;
(b) metrics results.

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 17

(a) (b)

Figure 6. A screenshot of the output terminal (a) training and validation accuracy results; (b) metrics

results.

(a) (b) (c)

Figure 7. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of train-

ing and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 2. Results of tests using the Mendeley dataset of the proposed model.

Accuracy

(%)

Validation

Accuracy (%)

Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

99.99 99.923 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

Table 2 and Figure 6 show the final results of training and Figure 7a, b represent the

training/test loss and training/test accuracy after 500 epochs, respectively. Figure 7c shows

the confusion matrix of the proposed model. These results prove that the model achieves

very high classification results and stability with close results between training and vali-

dation, where it gains 99.99% in training accuracy, 99.923% in validation accuracy, and

gain 100% in precision, recall, and F1-score. From Figure 7a, the model training and vali-

dation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation. From

Figure 7b, the model reaches the best train/validation accuracy at epoch (19). From Figure

7c, the model achieves a significant degree of prediction accuracy. It reaches an accuracy

of about 100% in correctly detecting attacks and normal traffic flows. Moreover, the pro-

posed model has fewer false alarms since it shows a False Positive Rate (FPR) of 0.00086

and a False Negative Rate (FNR) of 0.00071. These results show the importance of using a

checkpoint network and many epochs, which can highly affect accuracy, as shown in Fig-

ure 6.

5.3.2. UNSW_2018_IoT_Botnet Dataset

The Bot-IoT dataset was developed in 2018 and published in 2019 by the New South

Wales University (UNSW). It is a contemporary and authentic dataset for training ma-

chine learning models to effectively identify and mitigate Botnet attacks within Internet

of Things (IoT) networks. The dataset comprises 72 million instances, consisting of three

dependent and forty-three independent features. The dataset encompasses various cyber-

Figure 7. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of training
and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Future Internet 2023, 15, 278 11 of 16

Table 2 and Figure 6 show the final results of training and Figure 7a, b represent
the training/test loss and training/test accuracy after 500 epochs, respectively. Figure 7c
shows the confusion matrix of the proposed model. These results prove that the model
achieves very high classification results and stability with close results between training
and validation, where it gains 99.99% in training accuracy, 99.923% in validation accuracy,
and gain 100% in precision, recall, and F1-score. From Figure 7a, the model training and
validation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation.
From Figure 7b, the model reaches the best train/validation accuracy at epoch (19). From
Figure 7c, the model achieves a significant degree of prediction accuracy. It reaches an
accuracy of about 100% in correctly detecting attacks and normal traffic flows. Moreover,
the proposed model has fewer false alarms since it shows a False Positive Rate (FPR) of
0.00086 and a False Negative Rate (FNR) of 0.00071. These results show the importance of
using a checkpoint network and many epochs, which can highly affect accuracy, as shown
in Figure 6.

5.3.2. UNSW_2018_IoT_Botnet Dataset

The Bot-IoT dataset was developed in 2018 and published in 2019 by the New South
Wales University (UNSW). It is a contemporary and authentic dataset for training machine
learning models to effectively identify and mitigate Botnet attacks within Internet of Things
(IoT) networks. The dataset comprises 72 million instances, consisting of three dependent
and forty-three independent features. The dataset encompasses various cyber-attacks, such
as OS and Service Scan, DoS, DDoS, Data exfiltration, and Keylogging. Additionally, the
DoS and DDoS attacks are further categorized based on the specific protocol. At first, we
extract packet fields from the DDoS attack SDN dataset. The number of samples used is
100000. The extracted feature appears in Figure 8.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 17

attacks, such as OS and Service Scan, DoS, DDoS, Data exfiltration, and Keylogging. Ad-

ditionally, the DoS and DDoS attacks are further categorized based on the specific proto-

col. At first, we extract packet fields from the DDoS attack SDN dataset. The number of

samples used is 100000. The extracted feature appears in Figure 8.

Figure 8. Extracted feature from the original UNSW 2018 dataset packets.

The UNSW 2018 dataset involves pkSeqID to represent the row identifier, Proto is

the representation of textual for transaction protocols that are resent in the network flow,

saddr is the IP address of the source, sport is the port number of the source, daddr is the

IP address of the destination, dport is the port number of the destination, seq is the argus

sequence number, stddev is the aggregated records of the standard deviation, min is the

minimum duration of the standard deviation, state number represents the feature state

numerical representation, mean is the aggregated records of the average deviation, drate

is the packets per second of destination-to-source, srate is the packets per second of

source-to-destination, max is the aggregated records’ maximum duration, attack is the

class label where 0 represents normal traffic and 1 represents the attack traffic, category is

the category of traffic, subcategory is the subcategory of traffic, and dbytes is the byte

count of destination-to-source.

Hence, like the previous dataset, we split the data into 80% for training and 20% for

testing. Attack traffic is labeled 1, the normal traffic is labeled 0, and we train the model

for 500 epochs. The classification results appear in Table 3 and Figures 9 and 10.

Table 3. Results of tests using the UNSW 2018 dataset of the proposed model.

Accuracy (%)
Validation

Accuracy (%)

Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

100 100 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

(a) (b)

Figure 9. Screenshot of the output terminal showing (a) training and validation accuracy results; (b)

metrics results.

Figure 8. Extracted feature from the original UNSW 2018 dataset packets.

The UNSW 2018 dataset involves pkSeqID to represent the row identifier, Proto is
the representation of textual for transaction protocols that are resent in the network flow,
saddr is the IP address of the source, sport is the port number of the source, daddr is
the IP address of the destination, dport is the port number of the destination, seq is the
argus sequence number, stddev is the aggregated records of the standard deviation, min
is the minimum duration of the standard deviation, state number represents the feature
state numerical representation, mean is the aggregated records of the average deviation,
drate is the packets per second of destination-to-source, srate is the packets per second of
source-to-destination, max is the aggregated records’ maximum duration, attack is the class
label where 0 represents normal traffic and 1 represents the attack traffic, category is the
category of traffic, subcategory is the subcategory of traffic, and dbytes is the byte count of
destination-to-source.

Hence, like the previous dataset, we split the data into 80% for training and 20% for
testing. Attack traffic is labeled 1, the normal traffic is labeled 0, and we train the model for
500 epochs. The classification results appear in Table 3 and Figures 9 and 10.

Future Internet 2023, 15, 278 12 of 16

Table 3. Results of tests using the UNSW 2018 dataset of the proposed model.

Accuracy (%) Validation Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

100 100 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 17

attacks, such as OS and Service Scan, DoS, DDoS, Data exfiltration, and Keylogging. Ad-

ditionally, the DoS and DDoS attacks are further categorized based on the specific proto-

col. At first, we extract packet fields from the DDoS attack SDN dataset. The number of

samples used is 100000. The extracted feature appears in Figure 8.

Figure 8. Extracted feature from the original UNSW 2018 dataset packets.

The UNSW 2018 dataset involves pkSeqID to represent the row identifier, Proto is

the representation of textual for transaction protocols that are resent in the network flow,

saddr is the IP address of the source, sport is the port number of the source, daddr is the

IP address of the destination, dport is the port number of the destination, seq is the argus

sequence number, stddev is the aggregated records of the standard deviation, min is the

minimum duration of the standard deviation, state number represents the feature state

numerical representation, mean is the aggregated records of the average deviation, drate

is the packets per second of destination-to-source, srate is the packets per second of

source-to-destination, max is the aggregated records’ maximum duration, attack is the

class label where 0 represents normal traffic and 1 represents the attack traffic, category is

the category of traffic, subcategory is the subcategory of traffic, and dbytes is the byte

count of destination-to-source.

Hence, like the previous dataset, we split the data into 80% for training and 20% for

testing. Attack traffic is labeled 1, the normal traffic is labeled 0, and we train the model

for 500 epochs. The classification results appear in Table 3 and Figures 9 and 10.

Table 3. Results of tests using the UNSW 2018 dataset of the proposed model.

Accuracy (%)
Validation

Accuracy (%)

Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

100 100 100 100 100 100 100 100

where Normal is the normal traffic, and Attack is DDoS attack traffic.

(a) (b)

Figure 9. Screenshot of the output terminal showing (a) training and validation accuracy results; (b)

metrics results.
Figure 9. Screenshot of the output terminal showing (a) training and validation accuracy results;
(b) metrics results.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 10. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of train-

ing and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 3 and Figure 9 show the final results of training and Figure 10a,b represent the

training/test loss and training/test accuracy after 500 epochs, respectively. Figure 10c

shows the confusion matrix of the proposed model. These results prove that the model

achieves very high classification results and stability with close results between training

and validation, where it gains 100% in all metrics. From Figure 10a, the model training

and validation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation.

From Figure 10b, the model reaches the best train/validation accuracy at epoch 19, which

shows the importance of using a checkpoint network and many epochs, which can signif-

icantly affect accuracy, as shown in Figure 11.

Figure 11. Best accuracy results of training and validation at epoch 19.

For further checking, we utilize the standard deviation metrics to quantify the extent

to which the attribute value of a feature deviates from its mean value. The standard devi-

ation categorization aids in the identification of features that deviate from the average

value by highlighting values that are both above and below the mean. Figure 12 shows

the standard deviation result for the proposed model for two datasets.

(a) (b)

Figure 12. The standard deviation metrics for proposed model using (a) Mendeley dataset and (b)

UNSW 2018 dataset.

Figure 10. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of
training and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 3 and Figure 9 show the final results of training and Figure 10a,b represent the
training/test loss and training/test accuracy after 500 epochs, respectively. Figure 10c
shows the confusion matrix of the proposed model. These results prove that the model
achieves very high classification results and stability with close results between training
and validation, where it gains 100% in all metrics. From Figure 10a, the model training
and validation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for valida-
tion. From Figure 10b, the model reaches the best train/validation accuracy at epoch 19,
which shows the importance of using a checkpoint network and many epochs, which can
significantly affect accuracy, as shown in Figure 11.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 10. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of train-

ing and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 3 and Figure 9 show the final results of training and Figure 10a,b represent the

training/test loss and training/test accuracy after 500 epochs, respectively. Figure 10c

shows the confusion matrix of the proposed model. These results prove that the model

achieves very high classification results and stability with close results between training

and validation, where it gains 100% in all metrics. From Figure 10a, the model training

and validation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation.

From Figure 10b, the model reaches the best train/validation accuracy at epoch 19, which

shows the importance of using a checkpoint network and many epochs, which can signif-

icantly affect accuracy, as shown in Figure 11.

Figure 11. Best accuracy results of training and validation at epoch 19.

For further checking, we utilize the standard deviation metrics to quantify the extent

to which the attribute value of a feature deviates from its mean value. The standard devi-

ation categorization aids in the identification of features that deviate from the average

value by highlighting values that are both above and below the mean. Figure 12 shows

the standard deviation result for the proposed model for two datasets.

(a) (b)

Figure 12. The standard deviation metrics for proposed model using (a) Mendeley dataset and (b)

UNSW 2018 dataset.

Figure 11. Best accuracy results of training and validation at epoch 19.

Future Internet 2023, 15, 278 13 of 16

For further checking, we utilize the standard deviation metrics to quantify the extent to
which the attribute value of a feature deviates from its mean value. The standard deviation
categorization aids in the identification of features that deviate from the average value by
highlighting values that are both above and below the mean. Figure 12 shows the standard
deviation result for the proposed model for two datasets.

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 17

(a) (b) (c)

Figure 10. Classification results of the CNN-LSTM-autoencoder model. (a) Accuracy results of train-

ing and validation per epoch, (b) loss per epoch, and (c) confusion matrix.

Table 3 and Figure 9 show the final results of training and Figure 10a,b represent the

training/test loss and training/test accuracy after 500 epochs, respectively. Figure 10c

shows the confusion matrix of the proposed model. These results prove that the model

achieves very high classification results and stability with close results between training

and validation, where it gains 100% in all metrics. From Figure 10a, the model training

and validation loss are very low, about 3.98 × 10−4 for training and 3.3 × 10−3 for validation.

From Figure 10b, the model reaches the best train/validation accuracy at epoch 19, which

shows the importance of using a checkpoint network and many epochs, which can signif-

icantly affect accuracy, as shown in Figure 11.

Figure 11. Best accuracy results of training and validation at epoch 19.

For further checking, we utilize the standard deviation metrics to quantify the extent

to which the attribute value of a feature deviates from its mean value. The standard devi-

ation categorization aids in the identification of features that deviate from the average

value by highlighting values that are both above and below the mean. Figure 12 shows

the standard deviation result for the proposed model for two datasets.

(a) (b)

Figure 12. The standard deviation metrics for proposed model using (a) Mendeley dataset and (b)

UNSW 2018 dataset.
Figure 12. The standard deviation metrics for proposed model using (a) Mendeley dataset and
(b) UNSW 2018 dataset.

As shown in Figure 12 and Table 4, the proposed model has a lower variance. As a
result, the proposed approach outperforms in terms of accuracy and reliability, and the
learning curves are smoother, indicating that the proposed model is consistent. As a result,
it is not only more accurate, but it is also more robust and consistent.

Table 4. Results of tests using the UNSW 2018 dataset of the proposed model.

Dataset Accuracy (%) Standard Deviation (%) Validation Accuracy (%) Standard Deviation (%)

Mendeley 99.99 0.0118198 99.923 0.000954
UNSW 2018 100 0.9250918 100 0.023263

5.3.3. Comparison of Results with Some Machine Learning and Deep Learning Algorithms

This section compares the proposed CNN-LSTM-autoencoder model with the LSTM
model and three other ML algorithms includes K-nearest neighbors algorithm (KNN), SVM,
and XGBoost. We use the same datasets and number of epochs to determine the difference
in performance between the proposed model and these two ML models. The results appear
in Table 5.

Table 5. Results of tests using the Mendeley dataset for ML models.

Model Accuracy (%) Val. Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

LSTM 92.6 79.433 80 80 6 62 11 70
KNN - - 97 95 97 95 97 95
SVM - 95 98 91 94 96 96 94

XGBoost 99.55 99.54 - - - - - -

where Normal is the normal traffic, and Attack is DDoS attack traffic.

From Table 5, the results show the lower performance of the LSTM model with
the DDoS attack SDN dataset when it gains 92.6% in training accuracy and 79.433% in
validation accuracy. It also achieves very low results in recall, 6% in normal and 62% in
attack, and the precision is the same in both normal and attack (about 80%). So, the model

Future Internet 2023, 15, 278 14 of 16

gains poor results in the F1-score, 11% for normal, and 70% in attack. Table 5 shows good
results for the KNN model with the DDoS attack SDN dataset when it gains 97% for normal
and 95% for attack for precision, and for recall, it gains 97% in normal and 95% in attack.
The F1-score is then good at 97% for normal and 95% in attack. However, these results are
less than the proposed CNN-LSTM-autoencoder model. The SVM also gains good results
which are 98% for normal and 91% for attack for precision, and for recall, it gains 94% in
normal and 96% in attack. The F1-score is then good at 96% for normal and 94% in attack.
The XGBoost achieves higher accuracy and reaches up to 99.54%.

By comparing the deep learning model (LSTM) with the proposed CNN-LSTM-
autoencoder model, the proposed model is more accurate and stable than the LSTM
model and achieves higher accuracy in lower epochs. Compared with the machine learning
model (KNN), the proposed CNN-LSTM-autoencoder model is also more accurate than all
ML for the DDoS attack SDN dataset.

5.3.4. Comparison of Results with Published (Base)

We compared the result of the proposed system with some recent related works using
the DDoS attack SDN dataset and UNSW2018 BoTIoT (Table 6). The obtained results
showed that the model achieves very high classification results. For the UNSW2018 dataset,
the proposed model achieves 100% in all metrics and a very low loss, about 3.98 × 10−4

for training and 3.3 × 10−3 for validation. Table 6 proves that our model outperforms
Yaser et al. [22] in all metrics using the same dataset (UNSW 2018). Ivanova et al. [27] and
Prasad et al. [28] had models that achieved an accuracy of 99.99%, whereas our model
achieves 100% accuracy. Our model outperforms their models in all metrics. Although it
had high accuracy, they showed lower precision, recall, and F1-score for normal flows. So,
our model can accurately detect and recognize normal and abnormal flows since it shows
100% in all metrics.

Table 6. Comparison results between the proposed CNN-LSTM-autoencoder model and some
recent works.

Ref. Dataset Algorithm Accuracy (%) Val. Accuracy (%)
Precision (%) Recall (%) F1-Score (%)

Normal Attack Normal Attack Normal Attack

Proposed
model

UNSW2018

CNN-LSTM-
autoencoder 100 100 100 100 100 100 100 100

Yaser et al. [22] LSTM-autoencoder 99.95 99.94 95 99 94 99 95 99

Ivanova et al.
[27]

optimized
feed-forward neural

network
99.99 99.99 82.55 99.99 66.35 99.99 73.57 99.87

Prasad et al.
[28] VMFCVD 99.99 99.99 87.72 99.99 82.55 99.99 81.97 99.99

Proposed
model DDOS attack

SDN Dataset
(Mendeley

dataset)

CNN-LSTM-
autoencoder 99.99 99.923 100 100 100 100 100 100

Ahuja et al. [29]

CNN 98.74 - 98.75 98.73 98.9 98.55 98.83 98.64
LSTM 95.60 - 96.20 94.90 95.64 95.56 95.92 95.23

CNN-LSTM 99.48 - 99.43 99.55 99.66 99.26 99.54 99.40
SVC-SOM 95.45 - 96.71 93.75 95.40 95.51 96.05 94.62
SAE-MLP 99.75 - 99.96 99.69 99.77 99.94 99.87 99.82

Yaser et al. [22] Generated
SDN dataset LSTM-autoencoder 97.62 97.68 98 88 92 97 95 93

where Normal is the normal traffic, and Attack is DDoS attack traffic.

Meanwhile, for the DDoS attack SDN dataset, our system gains an accuracy of up to
99.99% in training and 99.923% in validation and achieves 100% in precision, recall, and
F1-score. Also, the model training and validation losses are very low, about 3.98 × 10−4 for
training and 3.3 × 10−3 for validation. Our model outperforms all proposed models by
Ahuja et al. [29] in all factors. Experimental results reveal that our proposed model has a
high feature extraction ability and high performance in detecting attacks. All performance
metrics indicate that the proposed approach is the most appropriate choice to apply to a
real-world flow detection environment.

Future Internet 2023, 15, 278 15 of 16

6. Conclusions

Network virtualization imposes new risks and exploitable attacks in addition to those
currently on traditional networks. The DDoS attack group is one of the most aggressive
attack types in recent years, devastating the entire network infrastructure. To defend against
the DDoS attack, within the scope of this project, we developed and deployed a DDoS
detection system based on deep learning to detect multi-vector attacks within an SDN
environment. The proposed approach has a success rate of 99.99% in train and 99.923%
in validation and 100% for all metrics (precision, recall, and F1-score) for identifying
individual DDoS attacks in all DDoS datasets. It does so with an accuracy of 100% and an
extremely low False-Positive Rate compared to other efforts, and it categorizes the traffic
into normal and attack groups. One of our future goals is to test the proposed model as a
real-time classifier in an SDN environment under real-time DDoS traffic and normal traffic
to address its accuracy and time of detection using an emulator such as Mininet or in a
real SDN environment. In addition, our goal is to lessen the strain placed on the controller
by putting in place a network intrusion detection system that can identify not only DDoS
attacks but also others.

Author Contributions: Conceptualization, A.K.M. and M.N.A.; methodology, A.K.M.; formal analy-
sis, A.K.M. and M.N.A.; investigation, A.K.M.; writing—original draft preparation, A.K.M.; supervi-
sion, M.N.A. All authors have read and agreed to the published version of the manuscript.All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data derived from public domain resources.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Urrea, C.; Benítez, D. Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things:

A Review. Sensors 2021, 21, 6585. [CrossRef] [PubMed]
2. Nadeau, T.D.; Gray, K. SDN: Software Defined Networks; O’Reilly Media: Newton, MA, USA, 2013.
3. Feamster, N.; Rexford, J.; Zegura, E.; Tech, G. The Road to SDN: An Intellectual History of Programmable Networks. ACM

SIGCOMM Comput. Commun. Rev. 2014, 44, 87–98. [CrossRef]
4. Pradhan, A.; Mathew, R. Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN). Procedia Comput. Sci.

2020, 171, 2581–2589. [CrossRef]
5. Silva, F.S.D.; Silva, E.; Neto, E.P.; Lemos, M.; Neto, A.J.V.; Esposito, F. A Taxonomy of DDoS Attack Mitigation Approaches

Featured by SDN Technologies in IoT Scenarios. Sensors 2020, 20, 3078. [CrossRef] [PubMed]
6. Abdulkarem, H.S.; Alethawy, A.D. DDoS attack detection and mitigation at SDN enviroment. Iraqi J. Inf. Commun. Technol. 2021,

4, 1–9. [CrossRef]
7. Tan, L.; Pan, Y.; Wu, J.; Zhou, J.; Jiang, H.; Deng, Y. A New Framework for DDoS Attack Detection and Defense in SDN

Environment. IEEE Access 2020, 8, 161908–161919. [CrossRef]
8. Choudhary, A.R.; Associates, C. OpenFlow switch controller as a policy-based system. Issues Inf. Syst. 2021, 22, 320–334.

[CrossRef]
9. Wang, T.; Chen, H.; Cheng, G.; Lu, Y. SDNManager: A Safeguard Architecture for SDN DoS Attacks Based on Bandwidth

Prediction. Secur. Commun. Netw. 2018, 2018, 7545079. [CrossRef]
10. Lakshmanan, V.; Robinson, S.; Munn, M. Machine Learning Design Patterns; O’Reilly Media, Inc.: Newton, MA, USA, 2020;

Chapter 4; ISBN 9781098115784.
11. Doshi, K.; Yilmaz, Y.; Uludag, S. Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT Networks. arXiv 2020,

arXiv:abs/2006.08064. Available online: http://arxiv.org/abs/2006.08064 (accessed on 1 May 2023). [CrossRef]
12. Yuan, X.; Li, C.; Li, X. DeepDefense: Identifying DDoS Attack via Deep Learning. In Proceedings of the 2017 IEEE International

Conference on Smart Computing, SMARTCOMP, Hong Kong, China, 29–31 May 2017; pp. 1–8. [CrossRef]
13. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 41–50. [CrossRef]
14. Pektaş, A.; Acarman, T. A deep learning method to detect network intrusion through flow-based features. Int. J. Netw. Manag.

2018, 29, e2050. [CrossRef]
15. IDS 2012|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/

ids.html (accessed on 11 December 2022).

https://doi.org/10.3390/s21196585
https://www.ncbi.nlm.nih.gov/pubmed/34640905
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1016/j.procs.2020.04.280
https://doi.org/10.3390/s20113078
https://www.ncbi.nlm.nih.gov/pubmed/32485943
https://doi.org/10.31987/ijict.4.1.115
https://doi.org/10.1109/ACCESS.2020.3021435
https://doi.org/10.48009/1_iis_2021_320-334
https://doi.org/10.1155/2018/7545079
http://arxiv.org/abs/2006.08064
https://doi.org/10.1109/TDSC.2021.3049942
https://doi.org/10.1109/SMARTCOMP.2017.7946998
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1002/nem.2050
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html

Future Internet 2023, 15, 278 16 of 16

16. IDS 2017|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/
ids-2017.html (accessed on 11 December 2022).

17. Gadze, J.D.; Bamfo-Asante, A.A.; Agyemang, J.O.; Nunoo-Mensah, H.; Opare, K.A.-B. An Investigation into the Application of
Deep Learning in the Detection and Mitigation of DDOS Attack on SDN Controllers. Technologies 2021, 9, 14. [CrossRef]

18. Singh, A.; Jang-Jaccard, J. Autoencoder-based Unsupervised Intrusion Detection using Multi-Scale Convolutional Recur-rent
Networks. arXiv 2022, arXiv:2204.03779.

19. The UNSW-NB15 Dataset|UNSW Research. Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset
(accessed on 12 December 2022).

20. NSL-KDD|Datasets|Research|Canadian Institute for Cybersecurity|UNB. Available online: https://www.unb.ca/cic/datasets/
nsl.html (accessed on 6 December 2019).

21. Elubeyd, H.; Yiltas-Kaplan, D. Hybrid Deep Learning Approach for Automatic DoS/DDoS Attacks Detection in Software-Defined
Networks. Appl. Sci. 2023, 13, 3828. [CrossRef]

22. Yaser, A.L.; Mousa, H.M.; Hussein, M. Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural
Networks as Autoencoder. Futur. Internet 2022, 14, 240. [CrossRef]

23. Jiang, H.; Turki, T.; Wang, J.T. DLGraph: Malware detection using deep learning and graph embedding. In Proceedings of the 2018
17th IEEE international conference on machine learning and applications (ICMLA), Orlando, FL, USA, 17–20 December 2018;
IEEE: Piscataway, NJ, USA, 2018.

24. Elsayed, M.S.; Le-Khac, N.-A.; Dev, S.; Jurcut, A.D. Network Anomaly Detection Using LSTM Based Autoencoder. In Proceedings
of the Q2SWinet’20, Alicante, Spain, 16–20 November 2020. [CrossRef]

25. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. Comput. Secur. 2012, 31, 357–374. [CrossRef]

26. Tonkal, Ö.; Polat, H.; Başaran, E.; Cömert, Z.; Kocaoğlu, R. Machine Learning Approach Equipped with Neighbourhood
Component Analysis for DDoS Attack Detection in Software-Defined Networking. Electronics 2021, 10, 1227. [CrossRef]

27. Ivanova, V.; Tashev, T.; Draganov, I. Detection of IoT based DDoS Attacks by Network Traffic Analysis using Feedforward Neural
Networks. Int. J. Circuits Syst. Signal Process. 2022, 16, 653–662. [CrossRef]

28. Prasad, A.; Chandra, S. VMFCVD: An Optimized Framework to Combat Volumetric DDoS Attacks using Machine Learning.
Arab. J. Sci. Eng. 2022, 47, 9965–9983. [CrossRef] [PubMed]

29. Ahuja, N.; Singal, G.; Mukhopadhyay, D.; Kumar, N. Automated DDOS attack detection in software defined networking. J. Netw.
Comput. Appl. 2021, 187, 103108. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.3390/technologies9010014
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://doi.org/10.3390/app13063828
https://doi.org/10.3390/fi14080240
https://doi.org/10.1145/3416013.3426457
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.3390/electronics10111227
https://doi.org/10.46300/9106.2022.16.81
https://doi.org/10.1007/s13369-021-06484-9
https://www.ncbi.nlm.nih.gov/pubmed/35096507
https://doi.org/10.1016/j.jnca.2021.103108

	Introduction
	Concept of SDN and the Detection Mechanism of DoS/DDoS Attacks
	Related Works
	Proposed Model Structure
	Results and Discussion
	Datasets
	Performance Evaluation Metrics
	Results and Discussion of Base Classifier Models
	Mendeley DDoS Attack SDN Dataset
	UNSW_2018_IoT_Botnet Dataset
	Comparison of Results with Some Machine Learning and Deep Learning Algorithms
	Comparison of Results with Published (Base)

	Conclusions
	References

