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Abstract: When exploring alternative cloud solution designs, it is important to also consider cost.
Thus, having a comprehensive view of the cloud market and future price evolution allows well-
informed decisions to choose between alternatives. Cloud providers offer various service types with
different pricing policies. Currently, infrastructure-as-a-Service (IaaS) is considered the most mature
cloud service, while reserved instances, where virtual machines are reserved for a fixed period of
time, have the largest market share. In this work, we employ a machine-learning approach based
on the CatBoost algorithm to explore a price-prediction model for the reserve instance market. The
analysis is based on historical data provided by Amazon Web Services from 2016 to 2022. Early results
demonstrate the machine-learning model’s ability to capture the underlying evolution patterns and
predict future trends. Findings suggest that prediction accuracy is not improved by integrating data
from older time periods.

Keywords: cloud; Amazon EC2; reserved instances; price prediction; machine learning; CatBoost

1. Introduction

Cloud computing has transformed how people and businesses access and utilize
computing resources. Over time, the cloud market has become more competitive, and
technological innovation is keeping the growth stable [1]. Numerous cloud providers
are offering an even larger number of services. Service pricing strategy has an impact on
practically every aspect of cloud providers, including cash flow, profit margins, operational
expenditures, and market share [2]. Cloud providers are offering “as-a-service” products
with different pricing strategies. These include access to cloud-hosted application software,
which constitutes software as a service (SaaS); platform as a service (PaaS), where access is
provided to cloud platforms for developing and maintaining applications; and IaaS, where
access is provided to virtual servers, storage, and networking appliances. According to
Gartner [3], infrastructure-as-a-service (IaaS) was expected to have the largest end-user
expenditure increase of 29.8% in 2023. Amazon Elastic Compute Cloud (EC2) [4] is one
of the leading providers of IaaS [5], providing underlying virtual resources, including
CPU, network, memory, and storage. Amazon EC2 offers various instance types: reserved
instances, on-demand instances, and spot instances. Reserved Instances (RI) are typically
acquired for long-term production deployments at a reduced rate. On-demand instances
are generally more expensive than RI, but customers may acquire them for shorter-term
applications [6]. A cloud provider must set aside redundant resources to cope with peak
user demand, yet most of the time, these resources remain inactive. To enhance resource
reuse, Amazon also offers the potential to sell unwanted reserved instances to other users
using a biting mechanism, utilized by Amazon. Such resources are called spot instances
and are suitable for tasks that can be interrupted (background jobs, etc.).
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Pricing strategy for reserved and on-demand instances changes dynamically based
on current market trends, and its evolution becomes a significant consideration for service
deployment for the end-user designing a cloud solution. End-users need to carefully plan
their cloud service deployments [1] and forecasting price evolution can play a crucial role in
long-term strategic planning but is a challenging task due to the various factors and actors
involved. Price forecasting usually uses historical data to predict future trends [7]. For
cloud services, the value of data-driven prediction is twofold. First, it captures price trends,
patterns, and seasonality. It is possible to identify recurring patterns and correlations that
can shape future price predictions [8]. Second, the data can be fed to machine-learning
models capable of encompassing complicated patterns and making accurate predictions [9].
Current work focuses on how to use machine-learning techniques to predict spot instances
prices to enhance the biting process [10–13]. In this case, prediction is based on data
collected a few hours earlier. Different ML algorithms have been tested with encourag-
ing results.

Based on the aforementioned results, we were encouraged to explore the application
of ML methods to predict the evolution of standard product prices offered by the provider,
as, for example, a reserved instance, on a longer-term basis. Such products are offered on a
fixed price by the provider, with no biting allowed. Since consultants [5] usually study the
market on a yearly basis, we decided to explore prediction properties on a yearly basis as
well. We explore AWS EC2 price historical data [4], available from 2016 to 2022, to predict
market dynamics and trends. The cloud service price-prediction model is based on the
CatBoost algorithm. Training is carried out using data from different periods. Standard
metrics are used to evaluate the model’s accuracy, while results for different products with
different price evolution dynamics are explored.

Our work contributes to cloud price forecasting, which can assist decision makers in
optimizing cloud service deployment and managing cost. Ultimately, this research seeks to
empower businesses and organizations with the tools and insights needed to navigate the
rapidly evolving cloud service market and make informed decisions regarding their cloud
infrastructure. Furthermore, we analyze how historical data may impact the accuracy of
the ML price-prediction model and whether disruptive changes in the pricing policies may
be captivated by such a model. As a first step, we used a specific ML algorithm to better
understand the dynamics and limitations of historical data in price prediction, as in many
cases price increase or decrease is a business decision, related to the introduction of a new
product or service region, not directly related to the product characteristics. As results are
encouraging, the exploration of alternative ML algorithms should also be considered. The
rest of the paper is organized as follows: Section 2 presents the related literature, whereas
Section 3 analyzes the cloud market based on historical data. Section 4 introduces the
proposed ML approach, and Section 5 presents the results of the model. Finally, Section 6
concludes the paper.

2. Related Work

Demand and price evolution prediction is a ubiquitous research topic prevalent in
many domains such as retail [14], supply chain [15], market and stock prices [16], cryp-
tocurrency [17], and the energy market [18]. Prediction techniques fall in the categories of
statistical modeling and machine learning, discussed further below.

2.1. Statistical-Driven Approach

Statistical methods have been adopted for predicting the future amount of computing
resources or future prices.

In [19] short- and long-term CPU usage is predicted based on seasonal ARIMA
(SARIMA) and long short-term memory (LSTM) models based on Azure data. The hedonic
price index was adopted in [20] in pricing policy based on the Amazon dataset, highlighting
the importance of non-functional features, which resulted in estimated prices being lower.
In [21], various algorithms are applied to Amazon’s spot instance prices, with SARIMA
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delivering the highest prediction accuracy. In [22] the authors tested linear autoregressive
(AR), the ARIMA model, exponential smoothing (ETS), and generalized autoregressive
conditional heteroskedasticity (GARCH) for predicting the upcoming graphics-processing
unit (GPU) spot instance price. Based on the results, the GARCH model delivered better
results for dynamic short-term and middle-term GPU instance pricing prediction, whereas
for variance-based middle-term and long-term GPU instance pricing prediction, the AR
model provided the best results. In addition, the ETS model produced superior results
for long-term GPU spot pricing prediction based on smoothness, and the ARIMA model
offered the best results for long-term GPU spot price prediction based on variations. In [23],
a hybrid of ARIMA and fuzzy regression, known as fuzzy autoregressive predicted traf-
fic in cloud computing, was used. In addition, the proposed model determined models
with higher accuracy. Based on the results, the root mean square error and coefficient of
determination indicated that the proposed model was a suitable model for the prediction.

2.2. ML-Driven Approach

Several works focus on ML-driven cloud service characteristics prediction. Many
of them focus on cloud service prices. In [24], the extreme gradient boosting (XGBoost)
model was applied to forecast energy-related costs in data centers based on Canadian
operator data. Several papers have also addressed resource prediction using ML [25].
In [26], computing resource demand was predicted through various ML algorithms, and
tests were performed reflecting the system’s yearly performance using AWS data. An
innovative sliding window method was adopted to preprocess the data. Spot instance price
prediction was carried out using k-nearest neighbors (KNN) in [11]. In [12,13], the authors
adopted several machine-learning approaches to forecast the future pricing of EC2 spot
instances, such as linear, ridge, and lasso regressions, multilayer perceptrons, k-nearest
neighbors, extra trees, and random forests. Based on the results, machine learning is an
encouraging approach for predicting spot prices. In [10], the authors presented a regression
random forests model to predict spot prices on an hourly, daily and weekly basis. Low-end
instances had better prediction accuracy than high-end instances, indicating that this is a
rapidly changing market. Table 1 summarizes existing work on price prediction for cloud
services. ML algorithms have been recently utilized for spot instance price prediction, with
encouraging results.

Table 1. Overview of the Related work.

Topic Ref Method Contribution

Statistical approach
[19] ARIMA Long-term CPU usage prediction
[20] Hedonic models price prediction for IaaS service

[22]
Autoregressive (AR), ARIMA
model, Exponential smoothing
(ETS)

Graphics-processing unit (GPU) Spot
instance price

Machine-learning approach

[24] XGBoost
Prediction of energy-related costs in
data centers based on Canadian
operator data

[25,26] Artificial neural network cloud resources prediction

[11] k-nearest neighbors (kNN) Amazon’s spot instance price
prediction.

[12]

Linear, Ridge & Lasso Regression,
Multilayer Perceptrons, k-nearest
neighbors, extra trees, random
forest.

Amazon’s spot instance price
prediction.

[10] Regression random forest model Amazon’s spot instance price
prediction.

Current work CatBoost Price prediction of Amazon’s reserved
instances
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2.3. Aim and Contribution of This Work

Based on the aforementioned results, we were encouraged to explore the application
of ML methods to predict the evolution of standard product prices offered by the provider,
as, for example, a reserved instance, on a longer-term basis. Such products are offered on a
fixed price by the provider, with no biting allowed. In this case, prediction on an hourly or
daily basis as in spot instance is not useful. Prediction should scale on a monthly or yearly
basis to provide meaningful information to end-users.

For this effort, we decided to utilize the CatBoost algorithm. CatBoost is a popular
algorithm applied in several fields such as electricity [27], financial markets [28], and
healthcare [29]. Regarding the cloud industry, CatBoost was already used to explore cloud
security on a dataset based on reserved instance features [30].

The CatBoost algorithm works with a broad variety of data types and addresses a
wide range of data challenges. In addition, CatBoost can support numerical and categorical
variables and has an effective method for dealing with categorical data. Finally, CatBoost
is a robust machine-learning algorithm that serves efficiently for forecasting cases. As a
result, it is seen to be a suitable fit for our suggested ML technique [31].

One should have in mind that the accuracy of the explored ML algorithms utilized for
spot instance price prediction varies significantly, based on the evidence of existing work.
Thus, the selection of one of the explored or proposed algorithms was not a straightforward
solution in our case. Furthermore, the prediction period and the sample variance in our
case was much different than that in the cases of the spot instance price prediction studied
in the literature.

In addition, we focus on how the selection of time periods and corresponding datasets
can improve the accuracy of the ML price prediction. Based on existing work [10], longer
time periods do not necessarily improve accuracy. We wanted to explore this assumption
in our case.

Furthermore, we wanted to explore whether significant changes in the pricing policies
may be captivated by such a model. As a first step, we used a specific ML algorithm, to
better understand the dynamics and limitations of historical data in price prediction, as
in many cases price increase or decrease is a business decision, related to the introduction
of a new product or service region, not directly related to the product characteristics. As
the results are encouraging, the exploration of alternative ML algorithms should also
be considered.

Concluding the current section, it is evident that cloud price prediction has been
discussed in several papers. However, to the best of our knowledge, it is the first attempt
to predict RI prices using machine learning in contrast to spot instances. The current
paper can be considered the initial phase of this exploration since the proposed models
based on CatBoost are trained on datasets from diverse time periods, in order to achieve
an acceptable predicted accuracy. Finally, a comparison of actual and predicted prices is
shown, underscoring the models’ dependability as well as potential challenges.

3. IaaS Pricing Historical Data and Analysis
3.1. Dataset Description

AWS data from 2016 onwards will be used to study the industry’s historical trends
and to forecast future pricing. In 2022, Amazon was the major IaaS provider with more
than half of the market share [5]. The pricing dataset (https://docs.aws.amazon.com/
awsaccountbilling/latest/aboutv2/using-ppslong.html (accessed on 5 January 2023)),
which spans over the last 7 years, is a useful resource for understanding broader mar-
ket trends in IaaS and provide prediction models for market trends in the future.

The Amazon EC2 dataset consists of table rows, each describing an offer for a RI type,
the corresponding date, and the offered characteristics, which include a wide selection of
instance types optimized to fit different use cases. Instance types are different combinations
of CPU, memory, storage, and networking capabilities and are categorized into instance
families, described below:

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/using-ppslong.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/using-ppslong.html
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• General purpose instances provide an adequate combination of computing, memory,
and networking capabilities, and may be utilized for a wide range of tasks. These
instances are appropriate for applications such as web servers and code repositories
that require these resources in equal portions.

• Memory-optimized instances are intended to provide rapid performance for tasks that
handle huge quantities of data in memory.

• Compute-optimized instances are suited for compute-intensive applications that benefit
from powerful CPUs. Media trans-coding, high-performance web servers, high-
performance computing (HPC), scientific modeling, dedicated gaming servers, ad
server engines, machine-learning inference, and other compute-intensive applications
are well suited for instances in this category.

• Storage-optimized instances are designed for applications that need high-throughput,
sequential read/write access to large datasets on local storage. They are designed to
provide applications with tens of thousands of low-latency, random I/O operations
per second (IOPS).

• GPU-optimized instances are VMs with enhanced graphics acceleration capabilities.
• Field-programmable gate array (FPGA) instances, offering customizable hardware acceler-

ation with FPGAs.
• ML-application-specific integrated circuit (ASIC) instances delivering high-

performance ML inference. End-users can use them to run large-scale machine-
learning inference applications such as search, recommendation engines, computer
vision, speech recognition, natural language processing, and fraud detection.

Table 2 summarizes the number of offers per family in the dataset in the 7-year time
period. Memory-optimized instances are the most popular family followed by storage-
optimized and general purpose. ML/ASIC appears to have the lowest number of offers
as they were announced in late 2022 [32]. Since FPGA and ML/ASIC instances had few
offers, we decided not to include them in the price-prediction models. Figure 1 provides
further insight in the price distribution for each year in the dataset. For each year, the
corresponding subplot contains a plot of the instance price per hour in United States dollars
(USD) with respect to the offer index.

Table 2. Instance families and their number of offers across the years 2016–2022.

Instance Family Offers

Memory-optimized 207,843
Storage-optimized 128,812
General purpose 113,364
Compute-optimized 82,958
GPU instance 24,350
FPGA instances 1040
Machine-learning ASIC instances 128

Figure 1 reflects how the number of offered bundles has increased over time. In
years prior to 2019, it was significantly lower than in 2022, and one can distinguish some
price clustering before 2019. In later years, the range of instance offerings has increased
in response to the evolving needs and demands of end-users. The Figure illustrates a
trend for continuously expanding the selection of services while raising prices on high-end
appliances made available to accommodate new end-user requirements.

The prevalence of the memory-optimized instance family, as shown in Table 2, highlights
the significance of delivering cloud services with robust memory capabilities. This instance
family satisfies the expanding demand for memory-intensive tasks, such as data processing
and analytics, to be performed by computational resources that are particularly designed for
such tasks. Likewise, the prevalence of the storage-optimized instance family demonstrates
the growing significance of storage capacity and efficiency in cloud services. With the rise of
data-intensive applications and the ever-increasing volume of data produced, the demand
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for efficient storage solutions has increased significantly [33]. On the other hand, the
emergence of the GPU instance family suggests a niche market within the larger landscape
of cloud services. GPUs (graphics-processing units) are highly specialized hardware
components that excel at graphics-intensive tasks and accelerated computation, such as
machine learning and artificial intelligence programs. The relatively smaller number of
GPU instances compared to other families suggests that these resources appeal to a subset
of users with specialized needs and duties.

Figure 1. Density of RI price per year.

3.2. Price Evolution

To gain further insight into the price evolution, we plot the yearly median offer
price for each family in Figure 2. We have chosen the median rather than the mean price
because mean values are significantly affected by extreme values and outliers. Median
values are more resistant to such effects and are considered a more accurate measure for
evaluating tendencies in general statistical data that can be asymmetrical and non-normally
distributed [34]. The evolution of the median price value provides valuable insights into
the dynamics of the cloud service market and its relationship to the larger global and social
environment during that time period. With respect to Figure 1, we note that, in 2016, the
prices for all families ranged from $0.21 to $1.14 per hour, the lowest being the general-
purpose category and the highest being the storage-optimized category. This reflects the
fact that, back in 2016, the market was still emerging with a limited range of specialized
products. Following that, in 2017 and 2018, the median prices of some instance families
fluctuated, and for memory-optimized instances, they increased by five times, reaching
$3.9 per hour in 2017, indicating an increase in demand or a change in the market dynamics
for memory-intensive applications. In 2018, GPU instances experienced a significant price
increase to $4.30 per hour, indicating an increasing demand for specialized computational
duties requiring high-performance graphics processing capabilities.

In 2019, the median hourly costs of GPU instances experienced a significant decline,
dropping from $4.33 to $1.04, which represents a more than fourfold reduction. On the
other hand, compute-optimized instances saw a 70% price increase, indicating a higher
demand for computational capacity and high-performance computing resources. This
suggests that users were opting for more cost-effective GPU instances while seeking greater
computing power. In 2020, the median prices of GPU instances aligned with those of other
instance families, ranging from $1.5 to $2.1 per hour. This convergence implies a potential
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stabilization of market forces, increased adoption of GPU instances, or the emergence of
more competitive pricing strategies within the industry.

Figure 2. Evolution of median price for each instance family.

Furthermore, there was a general decline in median prices across all instance families of
10% compared to the previous year, likely due to intensified competition, economies of scale,
and improvements in infrastructure efficiency. However, in 2022, median prices experienced
a significant increase of approximately 35% across all instance families. Memory-optimized
instances stood out with a substantial 70% price increase, indicating a growing demand
for memory-intensive applications and potentially reflecting increased costs associated
with memory resources. These price trends demonstrate the influence of various factors on
cloud service providers’ pricing strategies, including inflation, market dynamics, resource
requirements, and technological advancements. The popularity of specialized instance
families underscores the widespread adoption of cloud services across different industries.
Additionally, a combination of technological advancements, market competition, customer
preferences, and resource availability affect the observed price patterns.

It is crucial to consider the broader socioeconomic factors that may have influenced
the cloud services market during this period. Economic fluctuations, geopolitical events,
and advancements in related industries such as artificial intelligence, big data analytics,
and machine learning can impact pricing strategies and market dynamics. Changes in user
preferences, emerging industry trends, and regulatory adjustments may also contribute
to the observed price patterns. These multifaceted interactions highlight the dynamic
nature of the cloud services market and emphasize the importance of ongoing monitoring
and analysis.

4. Machine-Learning Algorithm

The CatBoost algorithm was chosen due to its ability to effectively manage categorical
variables [31,35], which is essential for describing the diverse characteristics of cloud service
instances. The algorithm is resistant to over-fitting and can deal with absent values [36,37]
in real-world datasets.

The input data are preprocessed from the rows of the Amazon EC2 dataset. The target
parameter for the algorithm is the offered price per unit, which is the predicted variable. In this
work, we also seek the optimal historical period for the pricing forecast, taking into account
factors such as the existence of sufficient historical data to identify significant patterns and
trends, and accommodate multiple price cycles due to changing market conditions.
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The model’s performance will be evaluated using metrics such as the mean absolute
error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE).
If X̂i are the predicted variables and Xi the actual variable inside a data subset with n values
(typically not included in the training), then these are given by [24]:

MAE =
1
n

n

∑
i=1

∣∣Xi − X̂i
∣∣ (1)

RMSE =

√
1
n

n

∑
i=1

(
Xi − X̂i

)2 (2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣Xi − X̂i
Xi

∣∣∣∣ (3)

Note that both the MAE and RMSE measure the absolute error. In the RMSE, differ-
ences are squared, and, hence, larger errors have a more significant impact. The MAPE, on
the other hand, measures the relative error, which is often useful but is undermined in the
case of small denominator values.

4.1. Data-Driven Approach

Figure 3 presents an overview of the data-driven approach adopted in this work. After
the collection of the dataset, the next step involves preprocessing related to data cleansing
and handling missing values. We then choose the features to be taken into account when
training the algorithm. The set is then split into training and test subsets used to train and
validate the algorithm, respectively. The training set is fed to the Catboost algorithm, which,
using gradient boosting, builds an ensemble of prediction trees to reduce the prediction
errors in terms of the metrics mentioned above. We then further fine-tune the algorithm
and repeat the training to obtain better results. Finally, the obtained results are visualized
and analyzed to ascertain the model’s accuracy. We further highlight some key aspects of
the data-driven approach in the subsections that follow.

Figure 3. Data-driven approach for cloud service price prediction.

4.2. Data Collection

The AWS EC2 historical data repository serves as a source of pricing data for various
instance categories. It contains about 1.5 million rows, each representing a specific instance,
whose characteristics are described in the dataset columns. Null cells are present and
need to be removed in the preprocessing stage. In addition, some instance families are
relatively new and do not appear throughout the dataset. As discussed in Section 3, we only
considered families with sufficient historical data. The structure of the dataset considered
is depicted in Table 3 for the GPU instance. It includes various attributes related to cloud
service instances, such as the price per hour, lease contract length, purchase option, virtual
CPU (i.e., number of cores), memory [GB], storage size [GB], network performance [Mb/s],
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effective date, disk type, and operating system, as well as the year and relevant quarter.
It contains multiple instances representing different configurations within each instance
family, allowing for a comprehensive analysis of the pricing variations based on the features.
This dataset serves as the foundation for the subsequent analysis and modeling conducted
in the study.

Table 3. Dataset example as per Instance Family.

Price per Unit
[USD/Hour]

vCPU
[Cores]

StorageSize
[GB]

Memory
[GB]

Network
Performance

Lease Contract
Length [Years] ... Purchase Option Effective Date Disk Type Operating System Year Quarter

0 1.57775 48 3800 192 40.0 3 ... Partial Upfront 1 June 2022 NVMe SSD RHEL_HA 2022 2
1 4.88196 48 3800 192 40.0 1 ... No Upfront 1 June 2022 NVMe SSD RHEL_HA 2022 2
3 3.39524 48 3800 192 40.0 3 ... No Upfront 1 June 2022 NVMe SSD RHEL_HA 2022 2
4 2.89050 48 3800 192 40.0 1 ... Partial Upfront 1 June 2022 NVMe SSD RHEL_HA 2022 2
5 2.32860 48 3800 192 40.0 1 ... Partial Upfront 1 June 2022 NVMe SSD RHEL_HA 2022 2
... ... ... ... ... ... ... ... ... ... ... ... ... ...
20531 0.53657 16 600 64 10.0 3 ... No Upfront 1 April 2021 NVMe SSD Linux 2021 2
20532 0.38480 16 600 64 10.0 1 ... Partial Upfront 1 April 2021 NVMe SSD Linux 2021 2
20533 0.31953 16 600 64 10.0 1 ... Partial Upfront 1 April 2021 NVMe SSD Linux 2021 2
20534 0.29665 16 600 64 10.0 3 ... Partial Upfront 1 April 2021 NVMe SSD Linux 2021 2
20535 0.64077 16 600 64 10.0 3 ... No Upfront 1 April 2021 NVMe SSD Linux 2021 2

4.3. Data Preprocessing

The input features consist of specific characteristics of IaaS services considered of
importance for determining the price of a specific service. The selection is based on
previous studies by the authors [38,39] when linear regression models are used. The
features reflect the basic characteristics, functional and not functional, of reserved and
on-demand instances and are presented in in Table 4. They all have significant bearing on
the price of the instances.

To reduce numerical errors due to variable scale, normalization techniques were
applied to the numerical variables. Normalization scales the data to a specific range, such
as between 0 and 1. These techniques eliminate any biases caused by varying scales or units
of measurement, allowing for fair comparisons and accurate analysis. We also introduced
a new variable to replace the effective date, reflecting the quarter in which the offer was
made. This approach was adopted to reduce the fine-grained nature of the data in terms of
the dates of the offers; we are rather interested in quarterly rather than daily predictions.

Table 4. Considered Features for the Machine-Learning Algorithm.

Feature Description

LeaseContractLength Length of the lease contract for reserved instances
PurchaseOption Payment option (no upfront, partial upfront, all upfront)

Location Region where the instances are hosted
vCPU Number of virtual CPUs

Memory Memory capacity
OperatingSystem Operating system (Windows or Linux)

NetworkPerformance Network performance capability
StorageSize Storage capacity
DiskType Type of storage disk

YearQuarter Combined feature of the year and quarter

Table 5 summarizes the location of the offers contained in the dataset. The majority of
offers are concentrated in the Asia–Pacific, United States, and Europe regions, and offers
in these regions span the entire dataset from 2016 to 2022, unlike other regions. We have,
therefore, decided to assume offers only from these three regions in the training and remove
the location area as a feature.
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Table 5. Summary of offers in AWS EC2 historical data (2016–2022) in each location.

Location Total Offers Offers in All Years
(2016–2022)

Offers in All
Instance Families

AsiaPacific 170,419 Yes Yes
Europe 152,439 Yes Yes
US 132,339 Yes Yes
AWSGovCloud 33,972 No Yes
SouthAmerica 19,694 No Yes
Canada 19,568 No No
MiddleEast 16,352 No No
Africa 12,544 No No

The model’s accuracy may also be affected by outliers. To address this problem, we
have chosen a common method for detecting outliers, which is the z-score, which measures
the number of standard deviations a data point deviates from the dataset’s mean. The z-
score method was chosen for outlier detection due to its statistical robustness and usability.
The z-score indicates, in terms of standard deviation, the distance of a particular data point
from the mean. This enables a standardized evaluation of data point abnormalities, which
is essential for large datasets with diverse ranges of values [40], such as the one utilized
in this study. Extreme value sensitivity is one of the primary advantages of the z-score
method. By setting a threshold of 0.75, this method allows us to eliminate data points
that substantially deviate from the mean, thereby enhancing the consistency and reliability
of our analysis. The removal of these anomalies strengthens our model by preventing
extreme values from skewing the overall results. It is essential to observe, however, that
the selection of the z-score method and the particular threshold was not arbitrary but
rather based on the particular characteristics of our dataset. Before deciding on the z-score
method, we examined our data in detail, taking into account its size, structure, and inherent
variability. This procedure confirmed that the z-score method was the best option for our
particular situation.

4.4. Parameter Tuning

Table 6 summarizes the algorithm parameters used in the training. These parameter
selections were made to optimize the efficacy of the model in predicting the prices of cloud
services. The high number of iterations enables the model to discover complicated data
relationships, while the low learning rate ensures a delayed but more accurate convergence.
The depth of 16 enables the model to capture more complex interactions between features,
but it also increases the likelihood of overfitting. The bagged temperature of 0.2 regulates
the regularization technique’s strength and prevents overfitting. The iterative outlier-
detection strategy and the waiting period contribute to an early termination if the evaluation
metric remains unchanged.

Table 6. CatBoost algorithm parameters.

Parameters Value

iterations up to 15,000
loss_function RMSE
learning_rate 0.001
depth 16
custom_metric RMSE
random_seed 42
bagging_temperature 0.2
od_type Iter
metric_period 75
task_type GPU
od_wait 100
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By utilizing the GPU for training, the model can process data faster and more effec-
tively manage larger datasets. Experimentation and domain knowledge were used to select
these parameter settings for optimal performance in predicting cloud service prices.

4.5. Implementation

The five predictive models developed in this research are publicly available
and can be accessed on the project’s GitHub repository (https://dagshub.com/gfragi/
CatboostPredictionModels.git (accessed on 10 August 2023)), providing a valuable resource
for researchers and practitioners in the field of cloud pricing prediction.

Computational Cost

It is vital to note that our proposed models are highly efficient in terms of computa-
tional cost. On average, each model required 15 min of training time on a configuration
of hardware outfitted with an NVIDIA GeForce GTX 1660 Super. Despite the fact that
this duration may vary based on the specifics of the dataset and model configurations,
GPU-accelerated processing substantially accelerated our training process in comparison
to CPU-based methods.

Once the model has been trained, generating predictions becomes an immediate pro-
cedure that is frequently completed within seconds. Our model is optimal for applications
that require real-time or near-real-time predictions due to its rapid response. In addition,
our model’s storage requirements are typically in the order of a few megabytes, allow-
ing for simple deployment in a variety of environments, from high-capacity servers to
resource-constrained peripheral devices.

5. Results

In this section, we analyze the results of our experiments. Our target was to use the
dataset for prices for the year 2022 as the basis to explore generated predictions using the
CatBoost algorithm. We predicted prices for the year 2022 using data for 1 to 6 years back in
time, utilizing the data available from Amazon. In the following, we explore the efficiency
of the CatBoost algorithm, the impact of historical data on prediction efficiency, and also
compare predicted vs. real prices for all instances of the year 2022. The metrics discussed
in Equations (1)–(3) are used.

5.1. Impact of Historical Data

Tables 7–11 exhibit the results of the metrics (MAE, MAPE, and RMSE) for each
timeframe utilized for prediction. These tables provide an evaluation of the efficacy of the
prediction models over various time periods. The Mean Absolute Percentage Error (MAPE)
values indicate a small percentage of error in the model’s predictions, highlighting the
precision of the forecasts. The Root Mean Squared Error (RMSE) values display a similar
pattern, emphasizing the close proximity between the predicted and actual prices.

Table 7. Metrics results for memory-optimized instance family.

Memory-Optimized
6 Years Back 5 Years Back 4 Years Back 3 Years Back 2 Years Back 1 Year Back

MAE 1.04 1.03 1.04 1.01 0.94 0.56
MAPE 0.41 0.41 0.42 0.41 0.38 0.22
RMSE 1.62 1.63 1.65 1.61 1.58 1.16

Table 8. Metrics results for storage-optimized instance family.

Storage-Optimized
6 Years Back 5 Years Back 4 Years Back 3 Years Back 2 Years Back 1 Year Back

MAE 0.68 0.70 0.71 0.65 0.61 0.61
MAPE 0.35 0.35 0.36 0.33 0.32 0.29
RMSE 1.08 1.09 1.10 1.02 1.02 1.02

https://dagshub.com/gfragi/CatboostPredictionModels.git
https://dagshub.com/gfragi/CatboostPredictionModels.git
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Table 9. Metrics results for general purpose instance family.

General Purpose
6 Years Back 5 Years Back 4 Years Back 3 Years Back 2 Years Back 1 Year Back

MAE 0.73 0.75 0.79 0.78 0.72 0.41
MAPE 0.34 0.34 0.39 0.36 0.36 0.22
RMSE 1.21 1.24 1.24 1.23 1.18 0.81

The analysis of the impact of historical data on the accuracy of the prediction models
reveals interesting insights as shown. The results indicate that using historical data from
a shortened time period improves prediction accuracy. This observation suggests that
more recent data points have a greater impact on pricing patterns and trends in the market
for cloud services. Incorporating an excessive amount of historical data may introduce
noise and obsolete information that hinders the models’ ability to accurately capture the
current dynamics.

Table 10. Metrics results for Compute-optimized instance family.

Compute-Optimized
6 Years Back 5 Years Back 4 Years Back 3 Years Back 2 Years Back 1 Year Back

MAE 0.70 0.72 0.76 0.76 0.72 0.57
MAPE 0.35 0.36 0.41 0.40 0.39 0.30
RMSE 1.19 1.21 1.24 1.25 1.20 1.05

Table 11. Metrics results for GPU instance family.

GPU Instance
6 Years Back 5 Years Back 4 Years Back 3 Years Back 2 Years Back 1 Year Back

MAE 0.19 0.18 0.16 0.15 0.15 0.13
MAPE 0.11 0.10 0.09 0.09 0.09 0.08
RMSE 0.38 0.30 0.25 0.26 0.25 0.22

Comparing the prediction accuracy of GPU instances to that of other instance families
reveals that GPU instances have, on average, greater prediction accuracy. This suggests
that GPU instances may have more distinct and predictable pricing patterns than other
instance types. Over multiple time intervals, the precision of GPU instances is consistently
higher, indicating a relatively stable and predictable pricing behavior.

Another interesting finding is that the decrease in the metrics (MAE, MAPE, and
RMSE) when using the previous year as the timeframe for prediction, especially in the
general purpose and memory-optimized instance families, shows that the model’s accuracy
improves significantly with more recent data. Examining thoroughly the aforementioned
results, it is obvious that there is a strong correlation between the length of the historical
data and the accuracy of the prediction models. Data play a crucial role in capturing
the pricing trends and dynamics of cloud service instances. By focusing on more recent
information, the models can better adapt to evolving market conditions and make more
accurate predictions.

Pricing for cloud services is a dynamic and evolving market. The factors that affect
pricing may change over time, and including older years in the analysis may introduce
obsolete data that no longer reflect the current market dynamics. By focusing on more
recent years, the prediction models are able to capture the most pertinent and up-to-date
pricing patterns, resulting in increased precision.

The presence of substantial peaks (Figure 2) in the median price evolution of various
instance families over time is an intriguing discovery of the analysis. These summits
represent price fluctuations or anomalies within the cloud pricing market. Curiously, these
price fluctuations do not appear to have a significant effect on the evaluation metrics
utilized in this study.

As shown in Table 11, when analyzing the GPU instance family, the results demonstrate
consistent and robust metrics across various subsets of years. This indicates that the method
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utilized in this study is effective at capturing the underlying patterns and dynamics of
the data, particularly in terms of feature selection, model training, and outlier detection.
Despite the observed price fluctuations, the model maintains accurate and consistent GPU
instance family predictions.A similar pattern is observed in the memory-optimized family,
where the median price reached its apex in 2017. Comparing relative metrics between
years (Table 7) reveals, however, that there has been no significant change. This finding
strengthens the method’s robustness and its capacity to make consistent predictions even
in the presence of price anomalies or fluctuations.

In the cloud market, technological advances frequently result in a shift in pricing
strategies. As newer and more effective technologies become available, providers may
revise their pricing structures to reflect their value and capabilities [41]. The introduction of
faster CPUs, larger memory capacities, or more scalable storage solutions, for instance, can
enable providers to offer cloud instances with superior performance at competitive prices.
On the other hand, as outmoded technologies become less prevalent, they may be priced
higher due to diminished availability or increased maintenance costs.

5.2. Price Comparison: Actual vs. Predicted

Figure 4 compares the actual and predicted pricing for the GPU instance subset using
the model built in the earlier step. The model was developed using historical data from
2021, and it was used to forecast prices for 2022. The illustration shows a line plot, with
the x-axis representing time and the y-axis representing price. The plot depicts the actual
prices in blue, while the expected values are indicated in red. According to the comparison,
the anticipated prices are quite similar to the actual prices.

Figure 4. Comparison of actual and predicted GPU instance subset prices for 2022.

This implies that the model’s projections for the GPU instance subset are correct
and match the prices observed in 2022. The proximity of the actual and expected prices
indicates that the model grasped the underlying patterns and trends in the data, allowing
it to generate trustworthy forecasts. Overall, this graph indicates the model’s efficacy in
projecting pricing for the GPU instance subset, offering useful insights for decision making
and cost management in cloud computing settings.

On the other hand, there is the Memory-optimized instance family. As observed
in Figure 2, the median price increase between 2021 and 2022 reaches 70%. This is an
unusually significant change in price evolution over time that may be characterised as
disruptive. The potential to predict such a change is explored.

Examining the Figure 5 reveals a noticeable disparity between the predicted and actual
values. This difference suggests that the predictions of the model for the memory-optimized
instance family can not be as accurate. The discrepancy between predicted and actual
prices could be attributable to the presence of external factors not adequately accounted for
by the model.
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Figure 5. Comparison of actual and predicted memory-optimized subset prices for 2022.

In practice, even though the properties of memory-optimized instances are similar
between the years 2021–2022, there is a significant increase in the price, especially for high-
end instances. A detailed look at the results reveals that the Memory-optimized instance
family has a broader price range than the GPU instance family. As shown in Figure 5,
the model struggles to accurately predict prices for instances with higher prices while
performing relatively well for instances with lower prices. These higher price instances are
the ones subjected to a disruptive price increase. Even so, the model correctly predicted the
price increase in all cases; however, the percentage increase was not predicted, especially in
cases that exceeded 50% of a corresponding price in 2021.

6. Discussion

Within this particular section, we will explore the constraints that arose during our
analysis of the findings, providing insight into the aspects where our study could poten-
tially benefit from additional improvement and investigation. In acknowledging these
constraints, our aim is to foster a more profound comprehension of the variables that
impact the pricing of cloud computing as well as stimulate further inquiries in this field.

In addition, we offer contemplation on prospective directions for future research with
the intention of expanding upon the knowledge acquired from this study. Through the
exploration of novel methodologies, the integration of supplementary functionalities, and
the evaluation of alternative machine-learning algorithms, it is posited that further progress
can be made in the realm of cloud service price prediction.

6.1. Discrepancy in the Predictions

Further investigation is necessary to enhance prediction in cases of disruptive changes
in prices, as observed in the memory-optimized instance family. Considering the complex
and multifaceted nature of the issue, it is hypothesized that several potential factors may
be contributing to the observed trend. Furthermore, since the efficiency of prediction is
not the same in all instance families, though the properties of instances serving as input
parameters in the ML model are the same, further investigation on this issue is also useful.

It is essential to note that the identification and correction of such discrepancies will
improve the model’s robustness. It is this process of continual refinement that makes
machine-learning models effective. By iterating on the model based on findings from
real-world data, we can improve its predictive precision, not just for the memory-optimized
instance family, but also for other families demonstrating similar complexity. Potential
factors to explore consist of:

External factors: Our current model does not fully incorporate the impact of external
market dynamics, such as industry trends, policy changes, or technological advancements.
These elements, although external to AWS’s pricing strategy, can significantly influence
it. One could explore the inclusion of additional data sources that capture these external
influences, though this is not an easy task. By integrating variables such as global techno-
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logical shifts, regional demand patterns, or even provider policy observations, our model
may provide a more comprehensive prediction of price trends, which is beyond the scope
of the current study.

Instance family’s heterogeneity: The GPU instance family is a coherent sample. Other
larger instance families encompass a diverse range of instances that possess unique capaci-
ties and specifications. Hence, it is plausible that the observed disparity could be attributed
to the inherent heterogeneity present within this particular group of instances. One poten-
tial approach to addressing this issue involves the clustering of similar instances within the
family and the subsequent development of individualized models for each cluster.

6.2. Sensitivity to Historical Data

The decision to utilize the CatBoost algorithm was motivated by its strong ability to
effectively handle categorical data and missing values. Nevertheless, it is imperative to
acknowledge that alternative algorithms may exhibit different levels of sensitivity when
it comes to older historical data. The analysis conducted indicates that the incorporation
of these data has the potential to introduce additional interference into our model, which
could potentially impede the accuracy of our predictions. The aforementioned discovery
is consistent with observations made in the field of time-series forecasting, where the
significance and practicality of past data play a crucial role in making precise predictions
for the future [42].

The phenomenon known as “concept drift” brings attention to the difficulties posed
by dynamic and rapidly evolving systems, such as cloud computing. The phenomenon
being discussed pertains to alterations in the processes that generate data over a period
of time. This suggests that models that are trained on older data may exhibit suboptimal
performance when attempting to predict more recent or future observations [43]. The
utilization of up-to-date historical data that accurately represents the present condition of
the system may result in advantages in dynamic systems such as cloud pricing [44].

In domains such as cloud computing, which are marked by continuous technological
progress, competitive dynamics, and evolving market demands, the relevance of older data
may diminish over time. The cost structure for providing these services can be subject
to change due to the continuous introduction of new instance types and the phase-out of
older ones. These changes can be influenced by factors such as technological advancements,
economies of scale, and fluctuations in energy costs.

Therefore, our research proposes that the utilization of recent data could potentially
offer a more accurate basis for making predictions about future prices. The utilization
of outdated data has the potential to introduce extraneous information and diminish the
precision of predictions, thereby reflecting circumstances that are no longer applicable.

Further research could entail conducting comparative analyses using various machine-
learning algorithms. The CatBoost algorithm was chosen based on its unique strengths.
However, it is important to note that alternative models may exhibit different performance
characteristics and varying sensitivity to the influence of older data.

6.3. Comparison with the Existing Literature

The comparison of our findings with previous research on spot instance pricing holds
significance, regardless of the inherent disparities between the two pricing models that
necessitate consideration. Furthermore, it is imperative to emphasize that our research
represents one of the initial attempts to specifically investigate price forecasting for reserved
instances. Consequently, the scope for direct comparisons with prior studies is constrained.

Spot instances and reserved instances exhibit distinct characteristics in relation to their
pricing dynamics and utilization patterns. Spot instances are subject to real-time pricing
that is determined by current supply and demand conditions. Consequently, spot instances
can experience significant fluctuations in price. In contrast, reserved instances are acquired
at a predetermined cost for a specified duration, providing a consistent pricing structure
but limited adaptability.
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In order to provide a comprehensive comparison, several studies have examined spot
instance pricing and reported MAPE values. These studies [11–13] have found that short-
term forecasts, typically ranging from 1 to 3 hours ahead, exhibit MAPE values between
10% and 20%. Conversely, longer-term forecasts, specifically those made 24 h in advance,
demonstrate MAPE values ranging from 20% to 40%. The observed values for spot instance
pricing generally exhibit higher values compared to those obtained for reserved instance
pricing, indicating the greater price volatility associated with spot instances.

Although previous research has extensively examined the prediction of spot instance
prices, our study distinguishes itself by encompassing a diverse array of offers within each
instance family. The prevailing body of literature has primarily focused its examination on
a limited number of case types, potentially neglecting the complex and multifaceted aspects
of pricing dynamics in cloud services. The comprehensive methodology employed in our
study enables a deeper understanding of pricing trends among various instance families,
thereby offering a more holistic perspective of the pricing environment in cloud computing.
The extensive range of services offered is especially advantageous for consumers who aim
to maximize their utilization of cloud resources and minimize costs across various services,
rather than concentrating solely on a specific instance type.

6.4. Implications for Cloud-Usage Strategies and Planning

The primary objective of forecasting cloud pricing does not solely revolve around
achieving cost reduction, but rather focuses on empowering users to make better-informed
decisions. The determination of cloud service pricing is a complex matter that is impacted
by a range of factors, such as the types of instances available, the geographical regions in
which the service is offered, and the various payment options that customers can choose
from. Nevertheless, the task of price prediction constitutes only a fraction of the overall
equation. This tool serves as a valuable resource for users to enhance their cloud utilization
strategies and planning.

This assumes that a user makes a decision to reserve instances in a particular region
and selects an upfront payment option, taking into consideration our projected prices.
Subsequently, the user discovers the presence of idle reserved instances in their possession,
prompting their desire to engage in the process of selling said instances. In this scenario,
our predictive model can assist the user in determining the most advantageous moment
to sell these instances by forecasting future prices. By strategically selling assets during
periods of predicted price increases, users have the potential to recover a greater portion of
their initial investment.

Moreover, the inclusion of regional price predictions in our model would enable users
to make informed decisions regarding both the timing and location of their sales. The
variation in demand levels and pricing fluctuations across different regions underscores the
importance of accurately predicting prices on a regional basis. Such predictive capabilities
would yield significant benefits.

7. Conclusions

In this paper, we examined the potential of machine-learning techniques for predicting
future prices for IaaS services. ML price-prediction models were built for Amazon’s
instance families using the CatBoost algorithm. Amazon is the leading provider in the IaaS
market, while RI is the most mature pricing option; thus, we focused on it as a first step in
our exploration.

The models’ close correlation with actual prices showed that they were capable of
capturing and interpreting the fundamental pricing trends and patterns. Evaluation results
show that shorter time periods provided lower MAE values, suggesting more accuracy in
projecting cloud service pricing. This means that current data, independent of instance
family, has a greater effect on pricing patterns and market trends in the cloud services
business. In addition, the analysis of ML algorithm performance over different instance
families demonstrated that a disruptive change in pricing policy, not related to a corre-
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sponding change in instance properties, as in the case of memory-optimized instances, may
be predicted as a trend, though accurate results are difficult to obtain. This could only be
achieved if related external factors, as resource cost, could be provided as input parameters
into the model.

This study focuses on the task of forecasting the complex and constantly shifting
pricing structures of cloud services. Our research stands out due to its broad examination
of various offers within each instance family, distinguishing it from previous studies that
primarily concentrated on specific instance types in the spot instance market. The all-
encompassing nature of our methodology enables an expanded understanding of the
pricing dynamics among various instance families, offering valuable insights for cloud
consumers who employ a wide range of services.

It is essential to recognize the limitations of this research. The precision of the forecasts
is highly dependent on the availability and quality of historical data. Incomplete or skewed
data can induce uncertainty and have an effect on the efficacy of the models. In addition,
the models presume that the factors influencing cloud pricing will remain relatively stable
over time; however, external factors such as market dynamics or changes in the competitive
landscape may impact the accuracy of the predictions.

To further improve the precision and generalizability of the models, future research
may investigate multiple paths. First, the incorporation of more diverse datasets from mul-
tiple sources would broaden the perspective and enhance the performance of the models. In
addition, investigating sophisticated machine-learning algorithms and techniques, such as
ensemble methods or deep learning, could result in further enhancements to the accuracy
of predictions. In addition, considering the wide variety of pricing patterns observed in cer-
tain instance families, a clustering strategy could be investigated. By organizing instances
according to their specific characteristics and pricing dynamics, models can account for the
heterogeneity within families, resulting in more accurate predictions.

This study contributes to the expanding corpus of knowledge concerning machine-
learning applications in cloud computing pricing. The developed models provide busi-
nesses with valuable insights for optimizing cloud resource utilization, making informed
decisions, and managing IT budgets effectively. Recognizing the limitations, the findings
pave the way for future research and the refinement of predictive models in cloud comput-
ing pricing, which will ultimately benefit organizations attempting to navigate the dynamic
cloud services landscape.
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Abbreviations
The following abbreviations are used in this manuscript:

RI Reserved Instances
IaaS infrastructure-as-a-service
AWS Amazon Web Services
EC2 Elastic Compute Cloud
ML Machine Learning
GPU Graphical Process Unit
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
RMSE Root Mean Squared Error
FPGA Field Programmable Gate Arrays
ASIC Application-Specific Integrated Circuit
ARIMA AutoRegressive Integrated Moving Average
SARIMA Seasonal AutoRegressive Integrated Moving Average
AR Autoregressive
GARCH Generalized AutoRegressive Conditional Heteroskedasticity
XGBoost Extreme Gradient Boosting
IESO Independent Electricity System Operator
CLI Command-line interface
kNN k-nearest neighbors
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