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Abstract: Microservices have become promising candidates for the deployment of network and
vertical functions in the fifth generation of mobile networks. However, microservice platforms
like Kubernetes use a flat networking approach towards the connectivity of virtualised workloads,
which prevents the deployment of network functions on isolated network segments (for example, the
components of an IP Telephony system or a content distribution network). This paper presents L2S-M,
a solution that enables the connectivity of Kubernetes microservices over isolated link-layer virtual
networks, regardless of the compute nodes where workloads are actually deployed. L2S-M uses
software-defined networking (SDN) to fulfil this purpose. Furthermore, the L2S-M design is flexible
to support the connectivity of Kubernetes workloads across different Kubernetes clusters. We validate
the functional behaviour of our solution in a moderately complex Smart Campus scenario, where
L2S-M is used to deploy a content distribution network, showing its potential for the deployment of
network services in distributed and heterogeneous environments.

Keywords: microservices; cloud computing; virtual networks

1. Introduction

In the last couple of years, the continuous development of the Internet has led to an
unprecedented increase in the demand for telecommunication services from users. This
increase has brought new challenges for operators and service providers, which have
been forced to adapt new models and disruptive paradigms to accommodate the ever-
increasing demand. These challenges include, among others, reducing development cycles
and decreasing the speed needed to launch new services to the market; supporting their
continuous update transparently to users to satisfy the constant demand for innovation;
supporting the scalable operation of services by taking into account a high potential number
of users, where an appropriate quality of experience must be delivered; etc.

In response to these challenges, cloud technologies, particularly the cloud-native
model, have received great interest from the involved actors in the provision of Internet
services. According to the Cloud Native Computing Foundation (CNCF) [1], “Cloud native
technologies empower organisations to build and run scalable applications in modern, dynamic
environments such as public, private, and hybrid clouds”. This model favours an application
design based on microservice architectures [2], in contrast to traditional approaches based
on monolithic designs. By following a microservices approach, an application is developed
as a set of small services communicated through simple, well-defined mechanisms, for
example, based on HTTP. This model allows to overcome the inherent limitations of the
monolithic design, where every application is developed as a single indivisible block, which
requires more coordination between development teams, introduces further complexity in
the updating processes, and does not allow to independently scale parts of an application.

In a cloud-native model, microservices can be executed in virtualisation containers [3].
This allows a high degree of flexibility when deploying an application since containers are
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lightweight in comparison with traditional virtualisation platforms based on hypervisors.
Containers can be exported to other virtualisation platforms with enough computational,
networking and storage capacity to run them. Furthermore, they are able to pack the
required software to execute every microservice independently from the rest since their own
containers have all the software needed to run the service without the need for emulating an
entire operating system. In the same fashion, containers offer a scalable solution that allows
to flexibly adapt a service to its demand. For example, if an application experiences a sharp
increase in traffic, new containers can be quickly deployed to provision for this demand,
minimising service cut-offs. Given the rise in the popularity of container technology, there
are several platforms that allow the management and orchestration of containers, both
open source, such as Kubernetes (K8s) [4], Docker Swarm [5] or OpenStack [6], as well as
solutions offered by cloud providers, like Google Kubernetes Engine [7] or Amazon Elastic
Kubernetes Service [8]. It is worth mentioning that K8s has become the most popular tool in
the service cloud-native market. According to the 2021 survey of CNCF [9], performed over
the global cloud-native community (including software and technology, financial services,
consultancy and telecommunication organisations), 96% of the surveyed reported the use
of K8s in their organisation.

The rise of the cloud-native model has provided multiple benefits for the deployment
of Internet services. However, microservice technologies have also been regarded as excel-
lent candidates for the deployment of network functions in cloud-native environments for
the next generation of mobile networks (5G and 6G). The network function virtualisation
(NFV) paradigm has greatly assisted in the agile deployment and development of network
services (NSes) in both cloud and edge environments. NFV aims at the softwarisation of
network services and functionalities through the use of virtualisation technologies, such
as virtual machines (VMs), reducing the deployment and development costs since it is
not necessary to develop and maintain the dedicated hardware involved in the provision
of some network functions. Naturally, containers have been regarded as the next step
for the deployment of NSes under the NFV umbrella since their lightweight nature and
easier management can enhance the provision of NSes in comparison with more com-
putationally demanding solutions. Naturally, the provision of network services involve
certain degree of orchestration between containers to ensure its proper functionality. In this
regard, microservice platforms like K8s are excellent candidates for this purpose, thanks
to their orchestration and abstraction tools (automated rollouts and rollbacks, self-healing
properties, service discovery . . .) that assist in the swift and efficient deployment of NSes in
data centre environments, allowing microservices to properly interact with each other to
offer a complex application.

Some examples of NSes that could be deployed using NFV technologies include
load balancing, service discovery and routing functionalities. All these services must be
connected to one or several virtual networks able to isolate each VNF in different local area
network (LAN) domains. This behaviour provides these functions with a finer control of
their networking aspects within the platform where they are deployed, regardless of their
location. These virtual networks are of the utmost importance for any NFV deployments
since they enable isolation between different VNF instances at the network level to operate
independently and securely, thus allowing to implement the VNF chaining necessary for
the deployment of complex NSes.

Virtual networks are necessary for the deployment of NSes in cloud-native environ-
ments. However, microservice platforms, like K8s, usually take a hands-off approach
towards the connectivity of container networking: the flat networking approach. In this
model, all microservices are visible to each other at the network (IP) layer through the
use of networking agents deployed over a platform. These communications are especially
useful when the applications and workloads must communicate through application-based
communications (i.e., using APIs to communicate with one another) since these mecha-
nisms dissociate the network configuration from the application itself. This approach in
turn can provide high availability and higher resilience to failures, and its implementation
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can benefit microservice-based applications in multiple ways (high availability, automatic
service discovery, etc.).

Unfortunately, there is an important downside that could limit the deployment of
NSes in microservice platforms, as this flat networking approach prevents the creation
and management of virtual networks, which are necessary to interconnect all the VNFs
that compose a NS. Since all microservices are able to “see” each other at the network
layer, there is no isolation between them. In consequence, the VNF chaining needed
cannot be performed. Therefore, it is impossible to effectively deploy NSes in microservice
platforms that only implement a flat networking approach towards their connectivity, as
they lack the necessary tools to create and manage the required virtual networks used in
NFV deployments.

In order to address this limitation, this paper presents a networking solution that
enables the link-layer connectivity of microservice platforms using software-defined net-
working (SDN) technology. More concretely, link-layer secure connectivity for microservice
platforms (L2S-M) provides a programmable data plane that virtualised workloads can use
to connect among each other at the link-layer level, enabling the establishment of point-to-
point or multi-point links between workloads in a microservice environment. Furthermore,
this paper also explores the potential of L2S-M to provide link-layer communications
between workloads located in different clusters if they are managed by a microservice
platform, or sites, which can be managed by other virtualisation platforms based on VMs.
As a validation use case example, this paper presents a Smart Campus scenario, where L2S-
M is deployed to communicate different campuses located in geographically distributed
scenarios and managed using distinct virtualisation technologies/orchestration functions,
implementing a content delivery network (CDN) service to provide multimedia content in
a university environment.

2. Background

The world of telecommunications and services has recently experienced an unprece-
dented demand for more efficient, resilient and robust applications able to support the
ever-increasing demand of consumers, thanks to the new services and solutions that have
flourished under the umbrella of the 5th Generation of mobile networks (5G). In this regard,
the traditional monolithic design used in the development of telecommunication services
falls short in many aspects. Under this model, the functionality of a complex application
is wrapped as a single program or process, usually running inside a single host able to
have all the necessary resources to execute its modules and functionalities. This model
has significant drawbacks that come with this design architecture: higher complexity, less
adaptability (a change in one module can have effects in the entirety of the code), lower
scalability and long-term support [10]. To combat all these challenges that prevent the
effective development of new telecommunication applications and services, microservices
architectures have rose as a key enabler towards the development and deployment of
scalable, resilient and cost-efficient applications. In this model, each application is split
into individual modules that can be distributed among several hosts and architectures.
In order to build a complex functionality, each module is able to communicate with each
other regardless of their physical location, and they can operate independently of the rest
of the services, as it will usually perform a single task [11]. This model assists with all of
the problems that come with monolithic applications since complexity can be alleviated by
focusing on each module (i.e., not having to modify an entire program), and scalability is
increased through the deployment of multiple copies of each module used in the provision
of the service (as well as being distributed in multiple architectures).

Precisely due to this paradigm shift in application development, there is a conscious
effort in applying novel virtualisation technologies to enable this transition since tradi-
tional virtualisation technologies (i.e., hypervisor-based solutions) use more resources than
container-based technologies [3]. Virtual machines rely on hypervisors, which are software
programs that operate at the hardware level within a host: its purpose is the emulation
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of an entire operating system isolated from the host that they are running, including its
kernel. Containers, on the other hand, use the core operating system in the host to execute
some of their functionalities, while having a file system isolated from the host [12]. Since
containers require far fewer resources than a virtual machine, a single host is able to deploy
a wider array of functionalities and applications, which in turn provides higher scalability,
resiliency and efficiency in comparison with virtual machines [3,13,14].

This performance improvement makes containers the perfect candidate for the im-
plementation of distributed architectures for the implementation and deployment of ap-
plications within the 5th generation of networks. With this idea in mind, there have been
conscious efforts to apply container technology for the deployment of network functions
and verticals, for instance, in [14], where the authors define an application/service devel-
opment kit (SDK) for the deployment of NFV-based applications for both hypervisor-based
and containerised approaches. In [15], the authors build a lightweight docker-based archi-
tecture for virtualising network functions to provide IoT security (although VNFs were
connected using standard Docker network capabilities).

One fundamental aspect of container-based environments is guaranteeing that these
containers are provided with a functional network interface, which enables the communi-
cation between microservices and other elements or devices outside (for example, devices
connected to the Internet). In this regard, CNCF provides the container network interface
(CNI) solution [16], a specification and a set of libraries to provide a reference framework to
develop plugins that allow the configuration of network interfaces for containers. Currently,
this reference framework has been adopted by multiple container management solutions,
such as the case of K8s, which supports multiple plugins for a wide arrange of networking
plugins for microservice platforms: Flannel [17], Calico [18] or Multus [19] are some of the
most widely known (and utilised) in K8s. In consequence, the CNI model eases the addition
of network interfaces in containers, allowing the connectivity between containers through
their respective network interfaces. This connectivity model is clearly appropriate for
microservice-based applications, where all of them must be able to communicate between
each other (due to their intrinsic design, described in previous paragraphs).

Naturally, microservice platforms tend to use this CNI solutions to define how the
different microservices interact between each other. In this regard, K8s explicitly state
that every pod, the minimal computation unit that can be deployed in K8s composed
of one or more containers (sharing a common network namespace), must have its own
IP address, so it is not necessary to explicitly build links between pods. Moreover, K8s
imposes the restriction that all pods deployed in any networking implementation must be
able to communicate with all other pods on any other node without the use of network
address translation (NAT) functionalities.

Regarding the logical interactivity of the services running within a microservice
platform, although CNI plugins enable the network connectivity of the containers that are
deployed over a cluster (as it was explained beforehand), they do not define how each of
the microservices interact with each other using these communications, i.e., they do not
implement the networking logic that a module (or set of modules) must have in order to
provide the functionality of a complex application, or its relation with each module. For this
reason, microservice platforms usually rely on the service mesh concept to connect different
services (networking abstractions that can integrate one or several microservices, usually of
the same type) and define how each microservice communicates within an infrastructure.
Service mesh solutions like istio [20] and Envoy [21] use proxy functionalities that build
a data plane between the microservices over a cluster, and use these functions to filter
traffic and apply policies to the data sent to/from the proxies. This service mesh has its
limitations, however, as it does not provide isolation between microservices since it only
modifies routing information in a host, so the flat network implemented with the CNIs
is still present regardless (i.e., all microservices can still see each other at the network
(IP) level).
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However, although this connectivity model is appropriate for applications, it is im-
portant to mention that it presents some limitations when deploying NFV services. In
the NFV paradigm, services are deployed as sets of VNFs interconnected through virtual
networks. These virtual networks provide the abstraction of point-to-point or multi-access
links to the VNFs: they allow two or more VNFs to effectively connect to a single link-layer
network, sharing a single broadcast domain, where all connected VNFs can be seen as
‘neighbours’ at a single IP hop distance. Furthermore, the traffic transmitted over a virtual
network is not accessible to VNFs and entities outside the virtual network. Under the
previous considerations, the connectivity model between cloud-native platforms presents
some difficulties to support the abstraction offered by virtual networks commonly used in
NFV ecosystems.

Despite these limitations, the integration of cloud-native technologies in the NFV
ecosystem can present important advantages. Among others, we can mention the follow-
ing: (a) the use of lightweight containers, portable and scalable, and the use of continuous
integration and continuous deployment (CI/CD) methodologies, offering a solution to
tackle the development and deployment of NFV services in microservice platforms; (b) the
immense popularity of the cloud-native model and its adoption state, both in develop-
ment and production environments, opens up new opportunities to the incorporation
of developers, manufacturers and cloud service providers into the NFV market, which
will positively impact the innovation process and the flexibility of options for service
deployment—additionally, the access to a vast catalogue of virtual functions, developed
through the cloud-native model, would be enabled for the provision of NFV services of ag-
gregated value; and (c) the current initiatives to translate cloud-native technologies to edge
environments, like the cases of KubeEdge [22], OpenYurt [23] or K3s [24], centred around
the use of K8s. These initiatives represent a promising alternative to have potentially
limitless computation, storage and networking resources for the automatic deployment of
operator services and verticals in the future.

Even though the flat networking approach has been the de facto standard in mi-
croservice platforms, some CNI solutions have tried to go beyond this model to provide
networking functionalities similar to the ones implemented in other virtual infrastructure
manager (VIM) solutions. For example, the OpenShift SDN network plugin [25] allows the
isolation of pods at the project level and the application of traffic policies, which can help
with isolating workloads in a cluster (although they will still see each other at the network
level, and it is only available for OpenShift clusters). The Nodus network controller [26]
enables the creation of subnetworks that pods can use to enable their connectivity in a K8s
cluster. However, this subnetting is limited since the subnetworks are all located in the
same IP range, so pods are not completely isolated within a K8s cluster. The Kube-OVN
CNI plugin [27] implements an OVN-based network virtualisation with K8s, which allows
the creation of virtual subnetworks (not dependent on a single IP address range, contrary
to the Nodus solution) that pods are able to attach to. This solution has its limitations how-
ever, as it does not allow the implementation of traffic engineering policies to route traffic
between pods, it is not compatible with physical networking devices in a K8s clusters, and
its inter-cluster capabilities is limited (it can only connect workloads at the network level).

The open-source software community is taking the first steps towards the evolution
of networking models in cloud-native technologies, as well as adapting them to the NFV
ecosystem. As an example, the ETSI Open Source MANO (OSM) project [28], whose main
objective is developing a management and orchestration platform for NFV environments
in accordance to the ETSI standards, has supported the deployment of virtualised functions
in K8s clusters since its SEVEN release. Nevertheless, this support is limited since it does
not enable the creation of virtual links (VLs) to enable the isolated connectivity of different
Kubernetes-based VNFs (KNFs) in a NS, as K8s does not natively provide a networking
solution for creating virtual networks (i.e., OSM only deploys KNFs but does not define
their connectivity, and all KNFs can communicate with each other). This is an important
step towards the integration of NFV in microservice platforms since the management of
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VLs (usually represented as virtual networks) is a fundamental aspect for the effective
deployment of NSes, as seen in works like [29], where the authors perform a comprehensive
analysis of NFV systems and deployments, or [30], where the authors explain in detail
the use of virtual networking and its performance impact depending on the virtual link
types. In this regard, the interest of the research community in closing the gap between
NFV and microservice platforms can be seen in such works as [31], where the authors
propose an architecture based on the monitoring, analysis, planning, and execution (MAPE)
paradigm for the optimisation of network service performance to guarantee quality of
service (QoS) in NFV environments, including container-based solutions, such as Docker
and Kubernetes. Similarly, another example of this effort can be seen in the work [32],
where authors propose an implementation of a novel framework that enables the optimal
deployment of contained-based VNFs, using a multi-layer approach based on monitoring
and analysing data from the physical, virtual and service layers.

There have also been proposals to enhance the networking of microservice platforms
in the NFV context. One prominent example is the network service mesh (NSM) [33].
NSM offers a set of application programming interfaces (APIs) that allow the definition of
network services (for example, an IP router, a firewall or a VPN tunnel), and establishes
virtual point-to-point links between pods that want to access determined network services
and pods that implement such services. NSM is designed to provide its connectivity service
in scenarios with multiple clusters or cloud infrastructures, keeping the CNI solution used
in every cluster. NSM presents a promising approach for exploiting the potential of cloud-
native technologies in an NFV ecosystem. In such an ecosystem, NSM would provide the
abstraction of a network service. For example, if a VNF offers an IP routing service, NSM
would allow the establishment of virtual point-to-point links among this VNF and the
remaining VNFs that must have IP connectivity with the former, depending on the NFV
service to be deployed. However, this connectivity service does not provide the versatility
of a virtual network. On the one hand, NSM does not allow to connect multiple VNFs into
a single link-layer network in such a way that they can share a single broadcast domain
(i.e., NSM does not offer the multi-access link abstraction). This aspect can be a limiting
factor to deploy telecommunication or verticals services in an NFV ecosystem. On the other
hand, the NSM APIs do not offer an open interface that allows the cloud infrastructure
administrator to flexibly manage the existing virtual links. Following the previous example,
it could be desirable to change the configuration of a point-to-point link in such a way that
it terminates in another IP router instance in order to support load balancing; mirroring
port configurations could be required to monitor data traffic transmitted over a link; or
the temporary shutdown of certain links and their subsequent activation could be needed
when managing a security incident; etc.

3. Virtual Networking for Microservice Platforms: L2S-M
3.1. Problem Statement

Due to the intrinsic nature of cloud-native environments, applications are developed
and deployed with the following principles of architectural patterns: scalability since
applications should be able to increase or decrease their performance based on demand
and cost effectiveness; elasticity, as applications should be able to dynamically adapt
their workloads to react against the possible changes in the infrastructure; and agility,
as applications should be deployed as fast as possible to minimise service down times.
In principle, an application should be able to be deployed over a distributed cloud in
such a way that it can provide its service without any, or minimal, disruptions, while also
adapting its performance (and distribution) to the demand and available resources in an
infrastructure [2]. One prominent case that focuses on this philosophy is microservice
platforms: each function is composed of several modules (usually implemented as separate
containers, as described in previous sections) that interact with each other to execute a
complex functionality for one (or sometimes several) applications. These modules might
not be deployed in the same infrastructure, physical equipment or virtual machine: it is
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usual that they are distributed across multiple geographical locations, or even spread across
multiple clouds managed by different service providers. This model is an antithesis of
the monolithic design (i.e., a single application with all its components embedded in its
code), and it provides several advantages over its counterpart: high availability since a
module might have several copies distributed over the cloud; resilience since a failure in
one module does not compromise the entire functionality of the application; and shorter
development and deployment cycles.

Taking into account the main characteristics of cloud-native environments, it is es-
sential to define the networking between applications and modules to allow for seamless
connectivity without compromising any of the benefits of the microservice model. In
order to preserve such advantages, most solutions rely on a flat networking approach that
facilitates communication among deployed functions and modules across different clouds,
independently of the physical location and network configurations [17,18]. In this model,
each microservice is able to reach at the IP level all of the containers that are deployed
within an infrastructure. By using this approach, high-level APIs, such as RESTful APIs, can
be implemented to enable the exchange information between functions (since all containers
are connected between each other, their proper communication can only be guaranteed
through application-layer mechanisms).

Naturally, in order to effectively implement a complex application, it is essential that
networking solution enables external connectivity for some of its modules (containers).
As it usually is not possible to directly send data to a particular container from outside
a microservice platforms, platforms like K8s rely on networking abstractions to enable
its connectivity from the outside. In this regard, K8s relies on K8s Services to expose its
own pods to the exterior. For this purpose, K8s uses a Service API to define a logical set
of endpoints (usually these endpoints are pods) to make those pods accessible within the
platform. Then, the own K8s distributes this incoming traffic to each pod. Furthermore,
some CNI plugins (like Calico [18]) also implement some mechanisms to filter traffic for/to
the pods, for instance, defining network policies that filter out undesired traffic (at the
application layer).

It is clear that this model has its advantages in cloud-native environments: as appli-
cations might not be permanently deployed in a single node or cloud (either due to its
unavailability or to optimise resources), a flat networking approach allows communication
with/to an application regardless of its distribution and IP addressing. Furthermore, this
model allows application developers to pass over the inner networking being performed
in an infrastructure since it is completely transparent to the applications themselves. In
other words, developers can assume that other modules of an application will always have
connectivity, and that no further configurations should be required in the modules to be
used in the infrastructure.

Despite its advantages, this model might not be suitable for all the services that could
be provided through cloud-native platforms. In a previous work, we realised the potential
of microservice platforms [34] as enablers for the deployment network and vertical services
in the context of the 5th and 6th generations of mobile networks (5G/6G) in cloud-native
environments (particularly, microservice platforms, which are a subset of functions in
the cloud-native model). Microservice platforms, like Kubernetes (K8s), usually employ
container technology to build applications in their managed infrastructures. Due to their
lightweight nature, in some environments (e.g., resource constrained scenarios), these plat-
forms have multiple benefits over traditional virtualisation solutions like OpenStack, which
usually require more resources for the management and deployment of NSes. However,
due to the intrinsic nature of NSes, it is necessary to ensure that communication at the
lower layers is available (and not just at the application layer) for the functions that build
the service.

One prominent example of the necessities of virtual networking can be seen in the
implementation of a router functionality. A traditional router must analyse incoming
packets at the IP level from one of its network interfaces in order to check the destination
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that will be forwarded. However, this functionality can only be performed if each one of its
interfaces is located in a different LAN. The same situation is present when dealing with
virtual networks: in virtual networks, each function is located at different LANs (despite
their geographical location) and a router functionality would have one interface in each
virtual network, enabling the analysis of the incoming/outgoing packets to be forwarded to
the corresponding functions located in different (isolated) virtual networks. In consequence,
functions are isolated between each other at the network level and can only communicate
through the corresponding router, which enables the secure deployment and isolation of
network functionalities, as well as their chaining (necessary for NS implementations).

However, this behaviour is impossible to achieve in flat networking approaches: if
all the functionalities are located in the same LAN (like they are in the flat networking
approach), then there is no isolation between functions since they are in the same network
domain, so the router cannot “decide” the routing/forwarding of the incoming/outgoing
packets to each function. Hence, this problem heavily hinders the implementation of
networking services in cloud native to host NSes in one, or several, clouds.

To further illustrate the issue that microservice platforms have for the implementation
of NSes in cloud environments, Figure 1 showcases a logic implementation of a multimedia
content delivery service, in particular, a simple content delivery network (CDN) service.
This CDN has two HTTP proxies: the first one is utilised to cache the content sent from
a multimedia server, which allows to make the content closer to the end users (reducing
download times and bandwidth used in the network) while the second one is a firewall
that filters undesired requests from a function outside the CDN. Ideally, a service of such
characteristics must enable sending the requests from/to the corresponding proxies and
servers involved in the CDN, following the schema depicted in the upper side of the
figure. Furthermore, the HTTP proxy must be able to analyse incoming packets at the
network layer to appropriately filter undesired requests. Implementing services like the
one depicted in this example is often performed in cloud environments through virtual
links (i.e., virtual networks) that enable the isolated communication of different modules,
which can only reach the corresponding peers of a particular virtual network. This enables
the creation of links between functions similar to the ones that are used in NSes in the
context of NFV, enabling the connectivity of microservices in schemas like the one shown
in the upper part of the figure.

Figure 1. CDN service in a traditional networking approach vs. flat networking.
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Unfortunately, due to the intrinsic behaviour of the networking model used in mi-
croservice platforms, an implementation of such characteristics is impossible to achieve. As
it is depicted in the bottom part of the figure, microservice platforms with flat networking
approaches do not isolate these components: all of them are able to see each other at the
network level, usually through a set of networking agents in charge of forwarding traffic to
the rest of the components deployed over the platform. Although these agents can usually
discriminate traffic based on some protocols (normally application-layer based), they do
not completely isolate these components between them since they all are reachable at the
IP layer.

With the drawbacks of flat networking approaches in microservice platforms in mind,
this paper presents a solution that enables the use of virtual networking for the deployment
of network services and verticals in cloud-native environments: L2S-M. L2S-M aims at the
provision of secure link-layer connectivity to NSes in cloud-native environments. Instead of
being developed as a full networking solution to replace established connectivity solutions
in different microservice platforms, L2S-M provides a flexible complementary approach to
allow containers present in a cloud to attach into a programmable data plane that enables
point-to-point or multi-point link-layer connectivity with any other container managed by
the platform, regardless of its placement inside the infrastructure. This programmable data
plane relies on software-defined networking (SDN) techniques to ensure the isolation of the
link-layer traffic exchanged between containers. Moreover, SDN allows the application of
traffic engineering mechanisms over the programmable data plane based on several factors
like traffic priority or delay.

3.2. Functional Design of L2S-M

In our previous work [35], L2S-M was first introduced as a complementary networking
service to enable the deployment of NSes in NFV infrastructures (NFVIs) composed of
resource-constrained environments (particularly, aerial microservice platforms based on
K8s, as it is the de facto microservice platform and the one that could provide significant
advantages in comparison with other VIMs [34] in UAV networks). In this regard, L2S-M
was created to address the limitations that NFV Orchestration could have in such scenarios
as seen in our previous works [36,37]. Particularly, L2S-M enables the creation of virtual
networks that could connect different VNFs at the link-layer level, which is essential to
ensure the deployment of NSes for aerial networks (as seen in our previous works like [38]).
Moreover, the use of SDN could allow modifying the paths that traffic could use in aerial
ad hoc network scenarios in response to sudden cut-offs, instead of leaving this task to the
routing protocol in an aerial network.

However, it is clear that there is a need for bringing virtual networking solutions in
cloud and edge microservice-based platforms, which is necessary to ensure the proper
provision of applications and services in the form of cloud network functions (CNFs),
particularly in K8s platforms. The flexibility of its design allows L2S-M to not interfere
with standard networking models already implemented in microservice platforms, such
as K8s, bringing a complementary solution instead that can be exploited by any develop-
ers/platform owners interested in deploying CNFs in microservice platforms. Moreover,
L2S-M also has the potential to enable secure link-layer connectivity between several cloud
and edge solutions, effectively enabling inter-site communications for network functions
and verticals deployed over multiple infrastructures. With these ideas in mind, this paper
showcases the design of L2S-M as a cloud-native solution that enables the management
of virtual networks in microservice platforms. Particularly, this paper presents a full
architectural design of this solution, envisioned as a K8s operator used in data centre
infrastructures that, due to its flexibility, can be exported to other kind of scenarios (e.g.,
edge environments). This work presents an implementation of L2S-M as a K8s operator in
order to detail its functionality in the well-known microservice platform (although it can
be exported to any microservice platform).
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Figure 2 showcases the design of L2S-M in a cloud infrastructure. L2S-M delivers a
programmable data plane that applications and services can use to establish point-to-point
or multi-point links between each network function on demand. This objective is achieved
through the creation and management of virtual networks, to which applications are able
to attach, sharing the same broadcast domain between all the containers that joined one of
these virtual networks, i.e., all containers will see each other in the same fashion as if they
were in the same local network, regardless of their physical location within a cluster (set
of machines governed by the same cloud-native management platform). This behaviour
enables the direct point-to-point and multi-point link-layer communication between each
container, isolating the traffic from each network to avoid unnecessary traffic filtering (for
example, by having to implement multiple traffic policies for each application) and to
ensure their secured operation.

Figure 2. L2S-M design in a cloud infrastructure.

The way that L2S-M is able to introduce this virtual networking model is through a set
of programmable link-layer switches spread across the infrastructure as seen in Figure 2.
These switches can either be physical equipment (labelled as Switch in the figure (such as
the ones that can be found in traditional data centre infrastructures)) or virtual switches
(labelled as V-SW in the figure), which can take advantage of the benefits of container vir-
tualisation technology. In order to establish the point-to-point links between the switches
to allow their communications and enable the desired in the cluster, IP tunnelling mech-
anisms are used, for instance virtual extensible LANs (VXLANs) [39] or generic routing
encapsulation (GRE) [40]. That way, the basis of the L2S-M programmable data plane is
established through this infrastructure of switches. Figure 2 showcases an infrastructure
that divides three different availability zones with different characteristics. For example,
one has physical switches that could be used to deploy hardware-accelerated functionalities,
while another zone is an edge with resource-constrained devices like UAVs.

It is worth mentioning that most networking solutions in cloud-native environments
also rely on IP tunnelling mechanisms to build their communications ‘backend’. However,
there are noticeable differences with respect to the approach used in L2S-M: first of all,
these solutions build the IP tunnels to interconnect their own networking agents, which
perform routing tasks in host IP tables themselves, and can interfere with the networking
of some machines and/or functions (and cannot be easily modified) in turn. Furthermore,
these tunnels are built between all members of a cluster to build a mesh, while L2S-M has
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the flexibility to allow the use of any kind of topology and can be dynamically adapted
depending on the necessities of the platform owners.

This overlay of programmable link-layer switches serves as the basis for the creation
of the virtual networks. In order to provide the full programmable aspect of the overlay,
L2S-M uses an SDN controller (SDN-C in the figure) to inject the traffic rules in each one
of the switches, specifying which ports must be used in order to forward, or to block,
the corresponding traffic coming from the containers attached to the switches and/or
other members of the overlay. This SDN controller can also be embedded into the own
virtualisation infrastructure as shown in Figure 2. The use of this SDN approach can also
enable the application of traffic engineering mechanisms to the traffic distributed across
the programmable data plane. For instance, priority mechanisms could be implemented in
certain services that are sensitive to latency constrains.

Service mesh solutions like Istio [20] could be seen as alternatives that would enable
a similar behaviour as the one provided by L2S-M. However, the service mesh was de-
veloped with the same ideas and concepts as the flat networking approach: instead of
managing the network interfaces directly, service mesh solutions use proxy functionalities
to forward/block traffic based on networking services (network abstractions) in a separate
data plane from the one presently used in the cluster, basing its routing/forwarding in
their logical definition (i.e., the user defines which services must communicate with each
other). Although this is a favourable approach to provide high availability and keep the
abstraction models present in the microservice platforms, this solution still does not address
the isolation aspects needed for NFV deployments since all their containers are still located
in the same LAN domain (through its CNI Plugin agents) and can be directly reached by
the rest of the containers. Therefore, L2S-M provides a behaviour that service mesh cannot
provide, as it does not have the proper tools to enable the use of virtual networks needed
in NFV deployments.

It is true that other solutions have explored similar virtual networking concepts in
microservice platforms, highlighting Nodus [26] and Kube-OVN [27]. However, all these
solutions have tried to implement a substitute for current CNI plugins, while L2S-M
provides this behaviour as a complementary solution for those applications that may
require such a degree of networking control. Furthermore, L2S-M has been designed to
enable its seamless use with physical switching infrastructures (commonly found in data
centre networks) through single root input/output virtualisation (SR-IOV) interfaces [41],
which can greatly extend its use for multiple use cases in the NFV space (e.g., network
acceleration, and 5G CORE deployments). Finally, L2S-M has a higher degree of flexibility
to accommodate different SDN applications to introduce traffic engineering mechanisms
based on the required scenario (which cannot be performed with the previous solutions, as
they rely on an internal SDN mechanism that cannot be easily modified to implement new
algorithms and applications).

3.3. Inter-Cluster Communication through L2S-M

The previous section explained how L2S-M allows establishing link-layer virtual
networks that connect CNFs executed in the same cluster through the combined use of
network-layer tunnelling and SDN technologies. We refer to this type of connectivity as
intra-cluster communications. Nonetheless, this idea can be extended to the inter-domain
scope to provide link-layer connectivity between CNFs that run in different clusters. We
will refer to the latter as inter-cluster communications. For this section, clusters may include
any kind of cloud-native environments (not only K8s), since the L2S-M design is flexible
enough to accommodate any kind of infrastructure.

At this point, it is necessary to introduce two new elements in the L2S-M design to
enable the inter-cluster communications: the network edge devices (NEDs) and the inter
domain connectivity orchestrator (IDCO).

The NEDs are programmable switches similar to the ones shown in the previous
subsections: they can be either implemented as software, or be physical hardware present in
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every site. Each cluster can be connected to one or more NEDs to constitute an inter-domain
programmable switch infrastructure. Each NED must have network-layer connectivity
with at least another NED. Following a similar approach to the one used for the intra-cluster
communications, an overlay network is created by connecting the NEDs through secure
network-layer tunnels that encapsulate the link-layer frames (e.g., VXLAN over IPSec).
This overlay can be manually created when deploying the NEDs, although a new overlay
manager can be present in order to manage the establishment of these tunnels.

Each frame that is transmitted from a certain cluster A to a cluster B travels from one
of the NEDs of cluster A to one of the NEDs of cluster B, traversing the overlay network
and possibly going through other NEDs in other clusters. The interconnection of the cloud-
native platforms with the NEDs will vary depending on its nature: for instance, a K8s cluster
could deploy a NED as a pod in one of the nodes of the cluster and attach several ports into
an L2S-M switch so that the communication in the cluster is managed through several pre-
defined virtual networks in the cluster (to indicate to L2S-M to which ports the traffic should
be sent for inter-domain communications); in OpenStack environments, a NED can be a
VM attached to a provider network, which can be relied on to distribute and/or send traffic
accordingly. Nevertheless, this setup provides the link-layer communications between
elements in different clusters (although it does not isolate traffic between them yet).

The IDCO element is in charge of managing the inter-cluster virtual networks. It has
both northbound and southbound interfaces. The northbound interface is implemented as
an HTTP REST API that allows external authorised entities to create, modify or delete the
virtual networks. The southbound interface is used by the IDCO to obtain information from
the NEDs and to inject the switching rules in them through a SDN southbound protocol
(e.g., OpenFlow [42] or P4Runtime [43]).

The IDCO decides how the frames that belong to each inter-cluster virtual network
should traverse the overlay network and injects several rules in the NEDs to create the
needed paths and accomplish the network isolation between them.

4. Implementing L2S-M in a Cloud-Native Platform for Intra-Site Connectivity:
K8s Case
4.1. L2S-M Implementation as a K8s Operator

This subsection introduces an implementation of L2S-M as a K8s operator, enabling the
creation and management of a virtual network in a distributed K8s infrastructure to securely
communicate workloads at the link-layer level. Although this subsection focuses on the
intra-site implementation of L2S-M, the validation present in this paper will showcase the
basic functionality of inter-cluster communications (described in the previous section) to
demonstrate its functionality in those scenarios.

Figure 3 depicts the detailed implementation of the full L2S-M solution in a K8s
cluster. This implementation contemplates the deployment of all the components depicted
in Figure 2 with their respective particularities to allow functionality inside a K8s cluster
since the implementation of this solution is not a straightforward task due to the complexity
that pod namespace isolation and API model introduce in K8s.

First of all, L2S-M requires the deployment of a set of L2 switches over the K8s infras-
tructure, as it is showcased in Figure 2. These switches are necessary components to enable
the establishment of the L2 overlay required to exchange data between pods. However,
instead of directly installing the switch in the node itself, L2S-M relies on the advantages
that K8s provides (containerisation, automatic deployment, life-cycle management, etc.)
to deploy each switch as a pod on every node of the cluster. Particularly, L2S-M uses a
“daemonset” (a K8s resource that deploys one pod per node in the cluster) that installs an
open virtual switch (OVS) in the node. Although any L2 switch solution can be used for
this purpose, L2S-M uses OVS due to its compatibility with multiple OS and distributions,
as well as its simplicity for its installation and configuration.
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Figure 3. L2S-M implementation in a K8s infrastructure.

Once the switch infrastructure is available in the K8s cluster, it is necessary to deploy
point-to-point links between the desired neighbouring nodes to enable link-layer connectiv-
ity between each other through IP tunnelling mechanisms, as showcased in the design and
in Figure 2. Instead of building a mesh with all the members of a K8s cluster (a common
practice in CNI plugin solutions), each programmable switch is only interconnected to the
desired peer, which can either be a virtual switch or a physical one. The figure depicts these
connections (thick blue links between V-SWs) performed using VXLAN tunnels, although
any IP tunnelling mechanism can be used (for instance, GRE [40]).

L2S-M must be able to create this overlay as well. However, having the switches
containerised introduces a problem, as it can be seen in Figure 3: the pods are not able to
reach the other nodes directly since they are located behind their own namespace inside
the node, so directly building an IP tunnel with the node would not work, or it would be
necessary to use the CNI plugin for the standard K8s networking (which follows the flat
networking approach and is incompatible with the concept of the solution). To avoid this
struggle, L2S-M builds the VXLAN tunnels beforehand in the host namespace (since they
must be able to see other at the IP layer, as a requirement of the K8s cluster), either using
a dedicated interface for this purpose or its main interface. Afterwards, L2S-M “moves”
these tunnel interfaces into the switch pod using the Multus CNI plugin since this plugin
enables to bring the pre-created VXLAN interfaces into the OVS pod without losing the
link-layer configuration.

Regardless of the containerisation of the switches, it is necessary to enable the at-
tachment of the pods with the switches of the overlay deployed in every node in order
to perform the data exchange between other pods. However, every pod is located in its
own namespace, so connectivity between the pods and their (virtualised) switch cannot
be directly established (as it can be seen in Figure 3). To overcome this problem, a virtual
Ethernet (vEth) element can be used to exchange messages between each namespace, as
it mimics a “real” Ethernet cable, where packets sent at one end of the vEth appear at the
other end, regardless of the namespaces at which they are located.

L2S-M builds a set of vEth pairs in the host namespace, and then L2S-M attaches one
extreme to the switch, leaving the remaining one in the host namespace. Once a pod desires
to connect to a virtual network, L2S-M uses the Multus plugin to attach the other end into
the pod, effectively connecting these two elements (just as it is done in a physical switch):
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when a packet is generated inside the pod, the vEth will forward the packet into the Linux
Kernel, and the packet will be forwarded to the switch.

However, K8s does not have the tools to deal with the definition and management
of virtual networks on demand, or allowing the assignment of the corresponding vEth
pairs in each one of the hosts to the workloads deployed in the cluster. This is where a key
element in the L2S-M design comes into play: the L2S-M K8s operator. A K8s operator [44]
is a software extension to Kubernetes that allows the management of custom resources in a
K8s cluster, which might contain any information and can only be used by coordinating
the K8s API events with the operator to perform certain actions or events in the cluster.

The L2S-M K8s operator takes advantage of a pre-existing CustomResourceDefinition
(i.e., resources that are not native to the K8s environments) (CRD) from Multus (the well-
known NetworkAttachmentDefinition (NAD)) to define the virtual networks that we want
to create in a cluster. If we want a pod to be added into one of these virtual networks,
it will be written in its metadata in the same fashion as it would be done in a standard
Multus definition (a common standard in real K8s deployments). However, these are not
mere Multus annotations since they must be managed by an element that is able to identify
which pods want to belong to which virtual networks, as well as to perform the necessary
actions to attach the ports of each switch into the pod.

Therefore, L2S-M includes the definition of the L2S-M operator, which is an agent
(deployed as a pod) that is deployed in a controller node of a cluster as it can be seen
in Figure 3. This pod will constantly monitor the calls between the K8s API, picking up
several events that occur within the cluster. Depending on the type of event that is picked
up by the operator, it will perform a different action. In this fashion, the L2S-M operator
will be triggered when a “creation event” with a NAD is registered from the K8s API to
check if the corresponding resource is a virtual network or a standard Multus definition (in
such a case, the operator will not perform additional actions). If it is a virtual network, it
will register its creation in the cluster, writing this network in its database (L2S-M DB).

After the creation of a virtual network, once a pod starts its deployment in a cluster, it
will generate a creation event and, if the pod being generated includes a NAD annotation
in its metadata, the operator will begin to process this annotation prior to its deployment.
The operator will then identify each one of these annotations to see if the pods express
their desire to be attached into one, or several, virtual network(s), checking if any of the
networks created in the cluster are present. If not, the operator will let Multus handle the
deployment. Otherwise, the operator will retrieve the node where the pod is going to be
deployed, and will check if there are available interfaces (i.e., free vEth ends) in the host
namespace. Once a vEth is selected, the operator will assign that interface to the pod and
register that it belongs to a particular virtual network. In case the Kubernetes API schedules
the pod’s deletion, the operator will remove the interface from the virtual network in the
corresponding node, and the vEth will be returned to the host namespace to be available for
future workloads. During all these events, the operator will be modifying its DB depending
on their actions.

In order to provide the mechanisms to isolate traffic between virtual networks, L2S-M
contemplates the deployment of a software-defined networking (SDN) controller in the
K8s cluster as seen in Figure 3. The L2S-M operator and the controller interact through
a common API, which allows the operator to communicate the interfaces (ports) where
each pod is attached since the operator knows which virtual networks the pod belongs to.
The SDN controller will use this information to send the appropriate traffic rules to each
one of the programmable switches to ensure that the traffic generated in each network will
only be sent to the proper ports (either forwarding the information to the corresponding
neighbour in the overlay or to one of the ports in the switch). This mechanism ensures that
the traffic in each virtual networks becomes isolated between each other since traffic will
not be forwarded between workloads unless they belong to the same virtual network (i.e.,
they are treated as if they were in the same LAN). The current version of L2S-M [45] does
not implement the entire isolation mechanism: it is able to isolate most of the traffic within a
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virtual network since it can interact with an ONOS controller [46] to enable the forwarding
only with the appropriate ports depending on the network. However, traffic destined to
multiple hosts/pods (e.g., broadcast traffic in ARP Requests) must be forwarded to all
elements in the overlay since ONOS does not natively implement a way to isolate this
traffic. Future versions of L2S-M will fully isolate traffic in their respective virtual networks,
regardless of their nature, using a specific SDN application used with ONOS.

4.2. Virtual Network Management Flow

Figures 4–6 showcase the communications that are established between all the compo-
nents of the L2S-M solution, divided into four main steps: the creation of a virtual network
in the K8s cluster, the attachment of a pod into a virtual network, the deletion of a pod in
the cluster and the deletion of a virtual network in a K8s cluster.

Figure 4. Creation of a virtual network in L2S-M.

Figure 5. Attachment of a pod into a virtual network in L2S-M.
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Figure 6. Deleting a pod from a virtual network in L2S-M.

4.2.1. Virtual Network Creation

First of all, when a user wants to create a virtual network, as seen in Figure 4, the user
will instruct K8s through its command-line interface (kubectl) to create the resource inside the
cluster (i.e., a NAD with the definition of the virtual network). Once this creation is performed,
the L2S-M operator picks up the K8s event and checks that this NAD definition corresponds
to a virtual network. The way the L2S-M knows is that the NAD includes a virtual interface
(i.e., an interface that is not physically defined in the host) called “l2sm-vNet”, informing
L2S-M that the annotation is a virtual network. Once the event is picked up, the operator
registers the creation inside its database, completing the creation of the virtual network.

4.2.2. Attachment of a Pod into a Virtual Network

The attachment of a pod into one, or more, virtual networks using L2S-M follows this
structure as seen in Figure 5:

1. When a pod wants to be deployed in the cluster associated with one (or several)
virtual network, it will introduce the corresponding annotation in its descriptor, using
the standard Multus annotation format. The user will then use kubectl to deploy the
pod, generating a creation event in the K8s cluster.

2. The L2S-M will pick up the event and check whether the pod has the corresponding
annotation and if so, it will check each annotation element to see if it corresponds to a
virtual network NAD from its database. Once it matches, L2S-M checks in its database
the free vEth in the node where the deployment is being performed (these data are
retrieved using the K8s API), writing an entry in the database for that interface with
the name of the pod and the virtual network that this interface is associated with.

3. The L2S-M operator updates the deployment with the new interface annotation,
instructing the Multus agent in the node of the vEth pair interface that will be aggre-
gated to the pod. Once this operation is completed, the pod finishes its deployment
phase attached to the OVS switch of the node.

4. After the deployment, the L2S-M operator sends the SDN controller the new attach-
ment of the pod, notifying the controller that the new port of the switch is associated to
a new virtual network. With this information, the SDN controller can configure all the
switches of the overlay with the corresponding rules to exclusively forward packets
between the members of the virtual network. This behaviour is up to the application
running in the SDN controller, which is in charge of finding the appropriate path
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between the pods and configuring the forwarding rules of the switches. One way
to perform this could be using intent-based connectivity in such a way that L2S-M
provides the MAC address of the members of the virtual network to the SDN controller
using intents so that the controller can properly configure the paths between them.

4.2.3. Detachment of a Pod from a Virtual Network

The procedure to delete a pod from a virtual network is very similar to the one for its
deployment as seen in Figure 6:

1. Once the pod is scheduled to be deleted from the cluster (either from a deletion event
or a failure in the pod/node), L2S-M picks up the event generated from the K8s API
and realises that the pod being removed is attached into a virtual network.

2. L2S-M removes the pod entry from its database, marking the interface as idle.
3. Simultaneously, L2S-M sends to the SDN controller the instruction to remove the

pod from the virtual network (e.g., removing the previous intent(s) generated in the
attachment phase).

4. The SDN controller will configure the forwarding tables from the switches to remove
the entries related to the pod that have been deleted, effectively removing the pod
from the virtual network.

4.2.4. Virtual Network Deletion

Finally, once a user wants to create a virtual network, as seen in Figure 7, the user will
instruct K8s through kubectl to delete the resource inside the cluster. Similarly to the creation
of networks, L2S-M picks up the K8s event and removes the virtual network entry from its
database. This action will only be possible if all pods have been detached from the network;
otherwise the operator will throw an error and prevent the deletion of the virtual network.

Figure 7. Deleting a virtual network in L2S-M.

4.3. L2S-M Information and Uses

L2S-M has been released as a publicly available open-source code that can be used
in most K8s distributions [45]. This solution has received interest from the research com-
munity, as it has been used in multiple European research projects in different contexts:
LABYRINTH [47], focused on providing security functions using UAVs, using L2S-M
to enable communications between the aircrafts; and the FISHY project [48], focused on
providing a coordinates framework for cyber-resilient supply chain systems, where L2S-M
is used as the basis of the main platform built to deploy the functionalities used in the
project, the FISHY reference framework (FRF).

As it was described in previous paragraphs, current NFV orchestrators, like the well-
known Open Source MANO (OSM) [28], have limited support for the deployment of NFV
cloud functions using K8s since there is no native way to create virtual networks able
to interconnect several VNFs in the clusters. However, our ongoing work includes the
definition of a new feature to be included in the codebase of OSM to enable the deployment
of network functions in K8s clusters. This feature, named “Connectivity among CNFs



Future Internet 2023, 15, 274 18 of 28

using SDN”, has already been approved and it is currently in the design phase in direct
collaboration with the OSM community. The details of this feature can be seen in the official
OSM site [49]. In this regard, we will briefly describe the steps that will be performed to
add a K8s cluster in the OSM ecosystem using L2S-M, as well as the deployment of a NS
using virtual networks within the cluster:

• At the cluster (VIM) registration time, the OSM user selects that the data plane used in
the CNFs communications is provided by L2S-M. Then, the user defines the resource
definitions (i.e., .yaml templates or Helm [50] charts) in order to tell the orchestrator
how to build and manage these networking resources within the cluster.

• When a new network is deployed using the orchestrator, the resource orchestrator
component (RO) of OSM takes the values and configuration parameters of each VL in the
descriptor and translates them into the parameters used in the L2S-M virtual networks.
After this process, the orchestrator contacts the K8s cluster and follows the flow seen in
Figure 4.

• Once the VLs have been processed, then the orchestrator proceeds to add the corre-
sponding K8s annotations to each VNF to add the VLs associated with them, and start
their deployment within the K8s cluster (as seen in Figure 5), finalising the deployment
of the NS using L2S-M as the data plane networking solution in the cluster.

5. Practical Experience with L2S-M
5.1. Description of the Testbed

This section describes the testbed that is considered to validate the implementation
of the design introduced in Section 3. This testbed mimics the infrastructure that could
be deployed in a university Smart Campus environment. Universities, due to the nature
of the academic and research activities that they perform on a daily basis, must have a
powerful, reliable and secure infrastructure that allows them to flexibly deploy various
applications used by the members of the university. These applications, ideally, should be
able to effectively use the resources provided by the university infrastructure, as well as
having good scalability properties (to adapt the service to the possible demands, which can
dynamically be modified) and be resilient to temporary failures and/or service cut-offs. In
this regard, microservices are able to provide most of these characteristics. Unfortunately,
some of these services require networking capabilities that solutions like K8s are not able
to provide. One prominent example of this situation is the use case presented in this paper:
the implementation of a content-delivery network (CDN) for the distribution of academic
content in a Smart Campus scenario.

Generally, universities are composed of several campuses spread in distributed ge-
ographical locations. Each campus has its own size and importance inside the structure
of the university, especially regarding the resources that they are able to provide for their
own cloud environments for content distribution. This can potentially be an issue since a
pure centralised model might impact the performance needed to effectively send content to
remote campuses, possibly being a more desirable solution to move the content closer to
the users to avoid overloading the main infrastructure of the network, which in turn may
reduce latency as well. A centralised model can also introduce a single point of failure if
the main infrastructure is down and/or link disruptions occur. Finally, it is important to
mention that the network infrastructures of these campuses should be able to be dynami-
cally modified to accommodate the demand that each campus may require at each moment,
without interfering with the functionality.

Microservice solutions like K8s are not usually able to provide the necessary tools to
implement a distributed scenario due to its flat networking approach and the limitations of
inter-cluster communications. However, L2S-M will be used in this paper to provide a CDN
to distribute content across different campuses of a wide variety of characteristics located
across geographically distributed regions, while also allowing to easily accommodate new
infrastructures and members to fit the necessities of the university (for instance, setting up
a temporary network for an event).
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This use case includes four different sites distributed along two campuses to prove the
effectiveness of the solution in an intra-campus scenario and of the NEDs for the inter-cluster
communications. Each campus is designed to include different resources to showcase the
interaction between heterogeneous infrastructures. Accordingly, there are two different sites
inside each campus, resembling the cloud and edge of each campus, where each site can
have its own infrastructure and implementation, to validate the initial statements.

The scenario presented in this paper can be seen in Figure 8. The first campus in the
scenario (on the right) is composed of two different sites: one central campus environment,
and one temporary edge site, which is set up only if an event is performed in the university
facilities (e.g., a conference or a workshop). The central infrastructure of this campus is
regarded as the main cloud of the whole organisation, holding most of the software and
teaching resources available to the students and teachers. In consequence, the representation
of this site is conducted through two VMs (since these are considered “heavier” machines
in terms of available resources). One of the VMs is used as a general-purpose server to
host multimedia and software contents. The remaining VM hosts the corresponding NED
used to connect this site with the rest of the sites of the university, both the ones in other
campuses (inter-campus communications) and the ones in its own campus (intra-campus
communications), as long as they are in different sites or clusters. The second site is the edge
environment of the campus, and it is meant to represent the temporary devices deployed
for an opportunistic event that members of the university will use to retrieve the content, as
well as providing a cache server for the university’s CDN. It comprises two Raspberry Pi 4
Model B computers that act as nodes of a K8s cluster where L2S-M is installed. The NED of
this site provides the connection of this site with the general cloud, which is the other site in
this same campus, and with the other cloud present in the second campus.

The second campus has two different sites as well. The first one is the designated
campus’ cloud, which is used as a proxy for the connectivity of the edge environment
deployed in the remaining site. This edge environment provides the infrastructure that
students will use on a regular basis to download the university content. Naturally, the
site offers a proxy as part of the CDN in order to store content in its premises, closing the
information to be closer to the students. The NED of the cloud allows for the connection
to the two sites in Campus 1 and to the other site in the same campus’ edge. The second
edge NED connects this site with the same campus’ cloud. The structure of both edges is
symmetrical in our deployment, although each site may have a different infrastructure and
configuration, validating the initial premise of the benefits of L2S-M.

The use case that is implemented to validate this research aims to simulate the pre-
viously described CDN, where a content server is located in the general cloud, to store
all the desired data, one proxy server is located in the edge of the first campus, and two
proxy servers are located on the second campus, one on its cloud and one on the edge, all
aiming to cache data closer to the user. They will be deployed as different pods running
a nginx [51] web server with the functionality of an HTTP reverse caching proxy. In the
cloud of the first campus, the server was installed inside a VM to act as the main content
server (i.e., where the information is permanently stored). In order to protect the access to
this main cloud from external sources, an HTTP proxy was deployed in the cloud of the
neighbouring campus. Regarding the edge sites (present in both campuses), an additional
HTTP proxy was deployed to cache the content coming from the remote server. Both edges
were designed in a symmetrical way. Apart from the proxy, one access point (AP) was
deployed as a pod on each edge, giving the user the possibility to download the content
from the CDN by connecting to the proxy available in the edge. To effectively enable this
connection, a domain name system (DNS) provides the user with the IP address of the
edge HTTP proxy when introducing the URL corresponding to that content. To avoid
reaching the HTTP server directly without connecting to the enabled AP service, a firewall
service (developed as a Linux router) was introduced in both edges, and it is in charge of
forwarding the traffic from the AP into the nginx proxy and vice versa.
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Figure 8. Use case high-level design.

For this scenario, some virtual networks must be created to attach the different compo-
nents, once again in a symmetrical way between campuses 1 and 2, connecting, in the first
network, the router and firewall with the DNS and the AP. This can be seen in Figure 9,
where Net1 corresponds to the virtual network in the first campus and Net2 to the one in
the second campus. Another virtual network is deployed among the different campuses,
connecting the content server with the different proxies and routers. This stands in Figure 8
as Net3. All these deployments allowed for the connection between elements of the network
to be established and for the behaviour of the scenario to be as expected.

Figure 9. Use case detailed implementation.
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5.2. Experimental Environment

Figure 9 showcases the detailed implementation of the scenario, with the different
pods that were deployed on each site and the connections between them.

Starting with the first campus, the edge site is represented using a rack of four Rasp-
berry Pi4 Model B computers, all of them having 8 GB of RAM and running an Ubuntu
Server 20.04 installation. All these RPis were connected using gigabit Ethernet connectivity
(since these are considered fixed devices that could be placed in classrooms all over the
campus). All RPis are part of the same K8s cluster, using the L2S-M operator for intra-
cluster communications. In order to enable the communications between pods and avoid
loops over the L2S overlay created within the cluster, a RYU SDN controller was deployed
(running as a pod) using the spanning tree protocol (STP).

Each RPi hosts a different functionality, all of them deployed as K8s pods, which can
be seen in more detail in Figure 9. The first RPi, the closest one to the users, hosts the AP
functionality (enabling the requests of content downloads) and the DNS service within the
edge cluster. The next hop of the CDN service, once a download has been requested from
the AP, is the firewall (implemented as a Linux router) that will redirect the HTTP requests
to the proxy, located in the second RPi. This proxy also provides a cache that allows hosting
some of the requested content inside the cluster (allowing to have the information closer
to the users). The cache can be dynamically modified depending on the demand and the
status of the network. If the content is not found in this proxy, it will redirect the request
to the proxy located in the campus cloud through the NED present in the remaining RPi,
which oversees these inter-cluster communications.

This cloud is composed of a single VM (Ubuntu Cloud 20.04) that hosts a K8s cluster.
Two functionalities were deployed (as pods): one proxy HTTP, in charge of redirecting
the requests from the edge campus to the main cloud of the university, and the SDN
controller used for inter-cluster communication. This last component is essential for the
whole functionality of the university since it allows the configuration of all the NEDs
present in each cluster/site. Similar to the intra-site communications, this controller was
implemented using the RYU SDN controller running a SPT protocol to avoid network loops.

All of the previously described K8s clusters were installed using the 1.26 version of
kubeadm [52], running the K8s 1.26 release. using containerd as the container runtime. For
the default networking CNI Plugin, we selected Flannel [17] since it is one of the most-used
CNI plugin solutions in production clusters.

In the case of the main campus, the content server is directly installed and configured
in one VM within an OpenStack cluster, and it is connected to the cloud of the second
campus and to the other site in the campus premises through a NED, installed inside
another VM. Both VMs run an Ubuntu Cloud 20.04 image, using 2 CPUs and 8 GBs of
RAM. This content server stores all the multimedia files, Linux images, Debian packages
and many other types of files that could be used daily in a university environment. The
combination of all the functionalities and elements of both campuses build the CDN service
that is implemented in this work.

Due to the nature of the activities that could be present in a university, the edge
environment of the main campus is considered a temporary infrastructure that is aggregated
into the Smart Campus infrastructure. This new edge site, built as a K8s cluster using
L2S-M for intra-cluster communications, has the same functionalities as the edge of the
second campus, with the exception that its proxy will directly request the content to the
main content server, rather than using an intermediate proxy.

All of the configuration, deployment and network files used in this validation section
can be found in the corresponding repository [53].

5.3. Functional Validation and Results
5.3.1. Throughput Performance

This first set of validation tests aimed at showcasing the possible impact that L2S-M
could have in the available throughput for the virtual functions deployed over a K8s cluster.
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To test this impact, we used the well-known traffic-generation tool iperf3 [54] in order to test
the total available bandwidth between the two pods deployed in the scenario, testing both
the standard K8s networking (flannel [17] for intra-cluster networking, and K8s NodePort
for inter-cluster networking) and L2S-M in each scenario. In particular, the pods were
deployed using the following configurations:

• Two pods deployed in the same node of Campus 2 edge cluster (RPi1).
• Two pods deployed in different nodes of Campus 2 edge cluster (RPi1 and RPi3).
• Two pods deployed in different clusters (RPi1 of Campus 2 edge cluster and Campus

2 cloud cluster).

For each configuration, an iperf3 flow of 180 s was established between each pod in
both directions, using the standard K8s networking and the L2S-M in every iteration of the
test. In this regard, each iteration was run 30 times, and then the average of each run was
used to calculate the values shown in Table 1.

Table 1. Throughput comparison between Flannel and L2S-M in all the possible scenario configurations.

Test Flannel (Mb/s) L2S-M (Mb/s)

intra-node 4860 5350
intra-cluster 870 847
inter-cluster 915 869

As it can be seen in Table 1, the performance of L2S-M does not introduce any signifi-
cant performance degradation in comparison with the standard K8s networking approaches
(Flannel and service abstraction). L2S-M improves the throughput between the pods when
they are co-located in the same node since the traffic generated between them does not
need to pass through the Flannel agent deployed in the node, which introduces some per-
formance degradation. For the connectivity between pods that are located inside the K8s
cluster, but in different nodes, L2S-M and Flannel exhibit quite similar performance, with
a slight throughput decrease in the L2S-M case. Overall, the performance between both
solutions is very similar, and showcases that L2S-M does not harm the traffic performance
over the K8s cluster.

Regarding the inter-site connectivity scenario, L2S-M provides approximately 50 Mb/s
less throughput than its counterpart as expected since K8s services establish the connection
directly without the use of IP tunnelling mechanisms, while L2S-M still requires the use of
VXLAN tunnels between the infrastructures, which in turn introduces some overhead in
the packets exchanged between the pods/VMs. Nevertheless, NodePort communications
do not isolate the exchanged traffic between pods, unlike L2S-M, which only distributes
traffic to the pods located in the same virtual network.

These tests showcase that L2S-M does not introduce significant performance degrada-
tion in comparison with standard CNI plugin communications in K8s.

5.3.2. CDN Download Test

The purpose of this test is to show the capacity of L2S-M to implement complex NSes,
like the CDN proposed in this paper, over heterogeneous infrastructures implemented with
different management and orchestration solutions.

For this round of tests, we performed the downloading of a fairly large video file
(1 GB) from Campus 2 edge and measure the average throughput that the CDN has when a
user tries to download some media content in the Smart Campus scenario.

For this test, a pod located in the edge cluster of Campus 2 downloads a video using
a specific URL that represents the video content “https://university-content/edu.mp4”.
When the pod tries to download the video content (using the well-known wget program),
the DNS service present in the campus edge will translate the URL into the IP address of
the local (i.e., campus) nginx server, sending the HTTP request in the process, following
the process described in the previous subsection.

https://university-content/edu.mp4
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In order to test the efficiency of the CDN in realistic scenarios, these tests emulate the
congestion of one of the links used for the download, using iperf3 to send a TCP download
at the maximum available rate possible. In this case, the link that is congested during
the tests is the one interconnecting both campus clouds since in a realistic scenario it is
expected to be the link that exchanges the highest amount of data between campuses.

The cache will be set in two different ways: firstly by disabling the whole cache
(making the server a simple http proxy), and secondly, allowing the cache to store the
whole video. These modes will clearly showcase the impact of having a cache inside the
scenario by reflecting if there is any significant improvement to the available throughput
and/or the download speed.

With all these considerations, the performed tests were the following: one set of tests,
where the cache in the edge was disabled, performing the download when the link between
campuses was idle and then congested. Each set was performed 30 times. Afterwards,
the cache was enabled to hosts the whole video, repeating the aforementioned tests (idle
and congested links). Figure 10 showcases the average throughput results, including the
95% confidence intervals.

Figure 10. Throughput with cache enabled and disabled.

As it can be seen in the figure, the presence of a cache obviously improves performance
in terms of throughput in both scenarios: since the content is closer to the user, it traverses
fewer functions and infrastructures, which in turn makes it easier for the nginx to send the
content from one site to the other. When the cache is disabled, there is also a significant
decrease between the idle and congested scenario. This is the expected behaviour since the
content must traverse (and be processed) by an additional nginx server (the one located in
the second campus).

This behaviour can be further seen in Figure 11, where the traffic on each nginx
element can be seen for two runs: one where the cache is disabled, and one where it is
enabled (in both cases, the link was not congested). As it can be seen in all figures, traffic
is present in all pods/VMs when the cache is disabled since the traffic is generated from
the video-source VM in the main campus cloud and traverses the middle nginx pod. Since
these entities must process this traffic, the overall throughput is lower, and the download
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takes significantly more time to finish. On the other hand, when the cache is enabled, the
traffic is only generated from the edge nginx in Campus 2, which in turn requires less
packet processing in the infrastructure (fewer nginx servers are involved), so the overall
bandwidth is higher, and the download is significantly shorter.

Figure 11. Traffic capture in every CDN element of the cluster.

5.3.3. Cluster Addition and Wi-Fi Download Test

The last test of this validation section will provide some insights about the capabilities
of L2S-M to incorporate a new infrastructure into a complex scenario such as the Smart
Campus. It is common that universities hold events with many participants that require
access to the Internet or/and retrieve content from the university to perform some activity.
Some examples might include congresses, practical/lab sessions, etc. In all these cases,
it is important to be able to set up an adequate infrastructure able to effectively host the
network services required for each activity. Nevertheless, this set-up must be quick and
dynamic since these events frequently change, so the requirements and equipment needed
will vary depending on the type of activity being performed.

In this regard, the set-up of a K8s cluster is well known to be simple and fast to deploy
(a cluster can be set up in 20 min using administration tools such as Kubeadm [52]). In a
similar fashion, L2S-M (and its inter-cluster functions) can be easily deployed within a K8s
cluster as well since its configuration and set-up can be performed in a short period of time
(approximately 10 min).

For this test, the Campus 1 edge was deployed using two RPis (which can act as
AP) and a Mini-ITx compute node to provide the connectivity with the main university
cloud. This last battery of tests uses the RPis Wi-Fi module to provide the channel for the
downloads, emulating a real scenario, where other clients would connect into an AP and
download the content from there (rather than downloading it in the equipment, unlike in
previous tests).

In this case, the audiovisual content was downloaded from an external PC connected
into the virtualised AP of an RPI, enabling and disabling the cache to test the CDN function-
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ality. This process was repeated 30 times for every mode, obtaining the download values
that can be seen in Table 2.

Table 2. Download throughput and time used for retrieving content using Wi-Fi.

Cache Enabled Throughput (Mb/s) Download Time

Off 4.207 3:20
On 4.780 3:05

As it can be seen in the table, the download speeds are lower than the ones in previous
tests. These were due to the use of an unstable medium, such as the Wi-Fi connectivity of
the RPis. Nevertheless, both download speeds and average throughput were improved
when the cache was enabled in the site, proving again the effectiveness of the CDN.

Beyond the particular results (throughput, etc.) obtained for the different featured
scenarios, the main objective accomplished was to show that L2S-M can be used to provide
complex network services that might involve different kind of network interfaces like
wireless interfaces. This is also a starting point for the exploration of this concept since L2S-
M could be used to enable the connectivity with private networks over an infrastructure
(e.g., the same way in which VIMs like OpenStack connect to provider networks).

6. Conclusions and Future Work

The rise of new paradigms like NFV in the context of the 5th generation of mobile
networks has provided new ways to enable the development and deployment of network
services. In this regard, microservice platforms assist in the optimisation and orchestration
of network functions in distributed infrastructures. However, these platforms have some
limitations due to the flat networking approach that they implement for the communication
of their workloads (containers) in order to build a complex application. Furthermore,
these solutions can also have some limitations for connectivity with other infrastructures,
requiring networking abstractions that could prevent communicating network functions
between clusters or other platforms.

To address these issues, this paper has presented L2S-M as a solution that enables link-
layer connectivity as a service in cloud-native ecosystems. L2S-M provides a programmable
data plane that microservice platforms (like K8s) can use to create virtual networks that
can be used by the containers to communicate at the link-layer level, since they will see
the rest of the containers as if they were located in the same local area network (even
though they might be distributed in different locations, depending on the cluster and the
underlying infrastructure). Using these virtual networks, L2S-M provides the necessary
network isolation required to deploy network and vertical specific functions in microservice
platforms, which current solutions cannot easily provide. Furthermore, since L2S-M uses
SDN technology to establish the paths between pods in a cluster, other SDN applications
can be flexibly deployed to support traffic engineering and optimise traffic distribution,
using an alternative network path across the L2S-M overlay.

This paper also provides a first exploration of the potential of L2S-M to provide inter-
cluster communications between containers using virtual networks, enabling the direct
communication of network functions between heterogeneous infrastructures managed by
different platforms, which can implement different virtualisation techniques, or even run
bare-metal functions.

This paper also presented the use implementation of L2S-M in a complex Smart Cam-
pus scenario, deploying a CDN to distribute multimedia content in a complex, distributed
and heterogeneous scenario. The tests performed in the validation of this paper showed
that L2S-M is suitable to deploy complex NSes based in microservices that require the
use of multiple isolated virtual networks for their proper functionality, interconnecting
workloads located in different infrastructures over geographically distributed locations.
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Moreover, these tests depicted the flexibility of L2S-M to incorporate new infrastructures,
like Wi-FI access points, to extend the functionality of the NSes in the use cases.

Our future work for the advancement and further development of L2S-M includes
the implementation of the overlay manager figure in the solution to dynamically modify
the overlay network. Furthermore, we will also explore the implementation of L2S-M with
SR-IOV interfaces to enable its direct use with the physical switching equipment commonly
present in data centre infrastructures. This future work will also involve the exploration of
alternative SDN controllers to increase the functionality and isolation aspects of L2S-M, as
well as the development and application of SDN algorithms to apply traffic engineering
mechanisms. Finally, we want to contribute to the relevant open-source communities with
L2S-M. In this regard, we are working on a feature in OSM to support the creation of virtual
networks in K8s clusters, using L2S-M as the reference operator [49].
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