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Abstract: Recently, the significance and demand for biogas energy has dramatically increased.
However, biogas operators lack automated and intelligent mechanisms to produce optimization. The
Internet of Things (IoT) and Machine Learning (ML) have become key enablers for the real-time
monitoring of biogas production environments. This paper aimed to implement an IoT framework to
gather environmental parameters for biogas generation. In addition, data analysis was performed
to assess the effect of environmental parameters on biogas production. The edge-based computing
architecture was designed comprising sensors, microcontrollers, actuators, and data acquired for the
cloud Mongo database via MQTT protocol. Data were captured at a home digester on a time-series
basis for 30 days. Further, Pearson distribution and multiple linear regression models were explored
to evaluate environmental parameter effects on biogas production. The constructed regression model
was evaluated using R2 metrics, and this was found to be 73.4% of the variability. From a correlation
perspective, the experimental result shows a strong correlation of biogas production with an indoor
temperature of 0.78 and a pH of 0.6. On the other hand, outdoor temperature presented a moderated
correlation of 0.4. This implies that the model had a relatively good fit and could effectively predict
the biogas production process.

Keywords: biogas energy; Internet of things; regression modeling; correlation analysis

1. Introduction

The use of renewable energy is expanding globally due to resource availability and
fluctuating energy prices, with efforts to mitigate the effects of climate change [1]. By
2015, its usage accounted for nearly 22% of the total energy consumed worldwide [2,3].
Developed nations are advancing their use of renewable energy; for example, renewable
energy sources are anticipated to produce adequate electricity in several US states over the
following two decades [4]. Further, Africa as a continent presents the highest potential to be
the first continent to base a major amount of its industrial and economic growth on clean and
renewable energy sources [5,6]. Unlikely other renewable energies, biogas is a promising
solution since its characteristics are available and affordable to the local community. Biogas
is a renewable gaseous fuel that is generated through the breakdown of organic materials
without the presence of oxygen in a process called anaerobic digestion [7]. Domestic
biogas is made from animal excrement from cow, or pig dung, coupled with food waste,
agricultural waste, and occasionally human excreta. Biogas’s major ingredients are methane
(CH4) and carbon dioxide (CO2), representing 50–60% and 35–45%, respectively [8].
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Rwanda’s government has invested extreme efforts over recent years to encourage the
adoption of biogas usage through various initiatives, including the construction of biogas
digesters for local communities and the Girinka project (One Cow per Poor Family) [9],
which has gradually increased cattle dung which is a major source of biogas in Rwanda.
Figure 1 presents a report from the Rwanda Energy Group (REG) regarding the distribution
of biogas plants in the local community until 2019.
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Despite various governments’ support policies, these studies disclosed that the adop-
tion and diffusion of biogas technology have been considerably low [10,11]. This is not
isolated to Rwanda; the lower adoption of domestic biogas technology has been recognized
globally [12,13]. These issues are not limited to technical challenges such as a lack of classi-
fication requirements, as well as insufficient raw materials, and a lack of precise technology
for controlling the operating parameter.

Several works of research on the parameters affecting the production of biogas in
the anaerobic digestion (AD) process have increased in importance over the past few
years. Feedstock characteristics, digester structures, continuous processing, operating,
and environmental conditions present importance in biogas production [14]. Concerning
environmental conditions, parameters including temperature, pH, moisture content, hu-
midity, and pH presented a high impact during biogas generation [15,16]. For example,
Toutian et al. [17] discussed a lab-based experiment on the effect of temperature on biogas
production during the hydrolysis stage. It presented the efficiency of production in the
mesophilic environment [18]. Abudi et al. [19] detailed the contribution of pH for optimum
biogas generation. Optimal biogas production was obtained at a pH range between 6.8
and 7.4 [20]. Furthermore, the moisture content in the substrate allowed for the free and
relaxing movement of microorganisms, resulting in high biogas production [21]. Therefore,
to ensure the consistent and effective generation of biogas, it is essential to maintain proper
continuous control over the environmental parameters. This research aimed to assess the
impact of environmental parameters on biogas production using a combination of IoT
technology and ML techniques.

In recent years, the global renewable energy robot market has been predicted to reach
USD 75.82 Billion by 2030, with a growth rate of 27.9% during 2022–2030 [22]. Recent
researchers have demonstrated the impressive contributions of artificial intelligence (AI)
and the IoT on renewable energy economies and how these can be implemented in the
entire process from energy generation to transmission and use [23–25]. The most recent IoT
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trends indicate the potential application of the IoT in energy, including energy utilization
monitoring in smart cities, solar plant health monitoring, and more [26,27].

This has been commonly applied in other industries, where IoT technology has been
adapted for designing and optimizing the anaerobic digestion process [28]. For example,
research on the IoT performance of anaerobic digestion was performed, where an operating
condition monitoring tool was developed; however, this article lacked intelligent control
mechanisms to regulate the optimum condition [29]. In [30], technologies covering the IoT
architecture, and data analytics modeling, were leveraged to explore the existing works
in biogas supply chain management. It experienced limitations when implementing the
proposed architecture in a specific case study. Additionally, the authors of [31] proposed an
IoT-based biogas measurement monitoring system that was capable of classifying various
gases. However, the authors did not consider monitoring environmental conditions and
behaviors that could affect production. Furthermore, in [32], the security mechanism for
IoT applications in biogas generation was proposed focusing on cyber-physical systems.
Among these related works, the works in [33,34] investigated the integration of the IoT and
data analytics models approach for anaerobic digestion performance. The main emphasis
of these two publications was primarily on the algorithms used for analysis. Overall, based
on the state-of-the-art IoT in AD automation, IoT technology has already been integrated
by proposing various applications to support people. However, there is still a lack of
applications in the community with the available validated dataset to support the AI
modeling process.

The main contribution of this paper was to design and implement an IoT framework for
gathering data, monitoring, and controlling operating conditions in the biogas generation
process while addressing some of these existing limitations. This paper also proposed the
application of data validation algorithms to avail datasets for further prediction purposes
and support the production control of biogas in the Rwanda context. This work proposed
the use of multi-linear regression and Pearson distribution models to perform a correlation
analysis of biogas production by considering multivariant environmental parameters in
the biogas generation context. These models were validated using data gathered by the
implemented IoT framework.

Figure 2 presents an overview of the proposed IoT framework for acquiring the biogas
digester’s environmental parameters, such as indoor temperature, ambient temperature,
humidity, Ph, and the moisture content of the subtract. The proposed IoT framework
comprised three main components: (1) the edge layer with sensors, microcontrollers, and
actuators; (2) the network layer was made by an IoT Wi-Fi gateway; and (3) the cloud layer
was made of a web-based platform with persistent data management hosted on the cloud
server. In this study, edge computing architecture was chosen since it enabled a flexible
framework through the early decision provision paradigm. Each layer was independent;
hence the decision could be made at any layer [35].

The purpose of this research was to provide environmental data control using the
IoT technology and to investigate the effect of environmental parameters in the biogas
generation context.
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2. Materials and Methods

This section details the materials and methods that were adopted for implementing
IoT framework, data preprocessing, and data analysis used in this study.

Figure 3 describes the flow of the methodology, which was used to validate the
proposed architecture as well as the data correlation modeling process. From a material
perspective, the IoT framework was developed and deployed on physical digesters to
collect time series data. From a method perspective, a series of data pre-processing, such
as missing values, the high peak value records removal, and datatype conversion, was
performed before data validation analysis was conducted and validated.
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2.1. IoT Framework Design and System Setup

During this research, a single-stage low-cost polyethylene tube digester of 4000 L was
experimented on, and cow manure and home wastes were considered as input materials.
This research was conducted in the eastern province of Rwanda, specifically in the Rwama-
gana district. The reason for choosing this case study area was that it was recognized as a
hub for agriculture and animal husbandry [36]. Therefore, it is held a promising supply
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of biogas from crop residues and animal manure. Furthermore, the selected district often
experiences a high average temperature, which is a crucial factor in biogas production [37].

The proposed IoT framework was composed of ground-based nodes mounted on a
digester to periodically collect related environmental data. Table 1 presents the detailed
role of each layer during the system’s implementation.

Table 1. Description of proposed architecture.

Component Description

Edger layer

Comprises sensors, the actuator and microcontroller
Perform local data analysis for controlling actuators
Ensure data security through authentication
Perform local data analysis

Network layer Comprises the Wi-Fi module
Perform data routing and transmission

Cloud layer
Allow permanent data storage
Allow public data access
High data performance analysis

The detailed system design and implementation of the edge and cloud node are
discussed in the next subsections.

2.1.1. Edge Lyer

The designed sensor kit comprised various sensors to acquire data such as moisture
content, pH level, pressure, and temperature, respectively. Sensing devices were connected
to a customized Raspberry Pi 3 B+ microcontroller with a built-in Wi-Fi module and were
used as an IoT gateway where captured data from these sensors could easily be sent to the
database. Each node was connected to a solar panel power supply. Table 2 describes all the
devices required to design the kit.

Table 2. Components of designed sensor kit.

Device Description

DS18b20
OAT-M-24

Indoor Temperature, Humidity
Ambient Temperature

700KPGPN Gas pressure
DIY Ph pH
Capacitive Moisture Moisture
Solderless breadboard Breadboard
Raspberry Pi.3 Microcontroller

Figure 4 presents the IoT kit design setup, which was implemented to connect and
control the IoT sensing devices.

In addition, a set of activation tools were implemented to provide environmental con-
trol mechanisms. Table 3 presents a set of actuator devices, such as sprinklers, thermostatics,
and thermal electric actuators, which were implemented.

Table 3. The actuators implemented in smart biodigester.

Components Description

Sprinkler Discharge water when the effect of low moisture is detected

A thermostatic Provide heating in the environment when the system notifies

Thermal electric Provide cooling in the environment when the system notifies
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2.1.2. Cloud Layer
Data Storage

The sensor data were pushed to the MongoDB database hosted on the cloud server.
MongoDB is an open-source that is used to store semi-structured data (NoSQL): a database
that saves and retrieves documents in either JavaScript Object Notification (JSON) or
extensive Markup Language (XML). Mongo is recommended to be adapted to big data
management due to its characteristics [38]. In this research, MongoDB was chosen due
to its capability to store and process data in real time. The application implemented with
Mango had capabilities such as scalability and a high processing speed [39].

MQTT Protocol

The MQTT (Message Queueing Telemetry Transfer) is a communication protocol
that can be adapted at the application layer. MQTT Serving, as a client-server, pub-
lishes/subscribes to the messaging protocol designed for machine-to-machine communica-
tions in a low bandwidth environment [40]. MQTT has been adopted in many IoT-based
applications, such as manufacturing process management and healthcare [41,42], energy
generation and trading [43], and agricultural environmental monitoring [26]. Developing
an IoT system involves IoT data transmission and thus requires IoT communication pro-
tocols. MQTT presents a remarkable contribution to IoT applications due to low power
consumption, a small bandwidth, and less memory, which are common in IoT systems [44].

Figure 5 displays the sensor node publishing data to the Mongo database. These
data were sent to the MQTT broker, followed by the MQTT client subscriber, as shown in
Figure 6.

Cloud Web Platform

The web application is a major part of the IoT system; it enables intended users to
view and understand the status of the biogas station in real time. ReactJS Programming
language was adapted to develop the front-end and the back-end web services, which were
developed using the Laravel PHP framework. The web application is currently running on
the cloud server. Table 4 presents the summarized functionalities of the application.



Future Internet 2023, 15, 265 7 of 14

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

system involves IoT data transmission and thus requires IoT communication protocols. 

MQTT presents a remarkable contribution to IoT applications due to low power consump-

tion, a small bandwidth, and less memory, which are common in IoT systems [44]. 

Figure 5 displays the sensor node publishing data to the Mongo database. These data 

were sent to the MQTT broker, followed by the MQTT client subscriber, as shown in Fig-

ure 6. 

 

Figure 5. MQTT communication pathway. 

 

Figure 6. Sample of captured data appearing on the web user interface. 

Cloud Web Platform 

The web application is a major part of the IoT system; it enables intended users to 

view and understand the status of the biogas station in real time. ReactJS Programming 

language was adapted to develop the front-end and the back-end web services, which 

were developed using the Laravel PHP framework. The web application is currently run-

ning on the cloud server. Table 4 presents the summarized functionalities of the applica-

tion. 

Figure 5. MQTT communication pathway.

Future Internet 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

 209 
Cloud web platform 210 

The web application is a major part of the IoT system, it enables intended users to 211 
view and understand the status of the biogas station in real-time. ReactJS Programming 212 
language was adapted to develop the front end, and the back-end web services were 213 
developed using the Laravel PHP framework. The web application is currently running 214 
on the cloud server. Table 4 presents summarized functionalities of the application. 215 

 216 
                                                          Table 4: Web Application Features 217 

 218 

                                                    219 

 220 

                                                          221 

                                                                2.3 Data acquisition                222 
As discussed in previous sections, a novel contribution of this paper is the implementation 223 
and integration of an IoT framework that automates environmental data collection and 224 
data analysis. Data acquisition is a fundamental and essential task when conducting data 225 
analysis. The IoT kit was placed for a period of 30 days to collect data in 16 minutes.  226 
         Figure 6 presents the sensor data observations acquired on the on-cloud Mongo 227 
database and visualized on the web dashboard. The dashboard presents the last sensor 228 
records in widget form and a sample of temperature and biogas variation for a specified 229 
period. The developed web application intends to facilitate the biogas operators in 230 
decision-making processes. 231 

  232 
                233 

 234 
                                                                    Figure 6: Sample of captured data appearing on the web user interface. 235 

Non-function Functional 

Scalable design enables fast response Dashboard for data visualization  
Security via user authentication Instant Notification 

Responsiveness across multiple devices Data Export capabilities 

Figure 6. Sample of captured data appearing on the web user interface.

Table 4. Web application features.

Non-Function Functional

Scalable design enables fast response Dashboard for data visualization
Security via user authentication Instant Notification
Responsiveness across multiple devices Data Export capabilities

2.2. Data Acquisition

As discussed in previous sections, a novel contribution of this paper is the imple-
mentation and integration of an IoT framework that could automate environmental data
collection and data analysis. Data acquisition is a fundamental and essential task when
conducting data analysis. The IoT kit was placed for a period of 30 days to collect data in
16 min.



Future Internet 2023, 15, 265 8 of 14

Figure 6 presents the sensor data observations acquired on the on-cloud Mongo
database and visualized on the web dashboard. This dashboard presents the last sensor
records in widget form, such as temperatures, moisture, pH, and biogas variation for
a specified period. The developed web application is intended to facilitate the biogas
operators in decision-making processes.

During the data collection period, a dataset of 3000 records was acquired on the Mongo
database, and each record had 6 variables.

Table 5 presents the sample of the first five rows, The description of variables within
the dataset is as follows: (1) the moisture content of substances (moisture), presenting the
moisture content level of substances within a biogas digester in its percentage (%). (2) the
outdoor temperature (Temp_out), which presents the outdoor temperature of the digester
in degrees Celsius (◦C). (3) The temperature of substances within the digester (Temp_in) is
presented as the indoor temperature in Celsius. (4) The pH level of the substances (pH)
represents the acidity level of the substances, which ranged from 0 to 14. (5) The gas
generated (gaz_change), which presents the gas yield from the biogas generation process
in a decimeter cube (dm3), and (6) acquisition time (time_occur), presenting the timestamp
when the data were captured.

Table 5. Dataset sample.

Moisture Temp_out Temp_in pH Gaz Value Time-Occur

85.24 20.32 36.90 6.86 0.08 3 January 2023 0:01
85.95 19.59 36.60 7.62 0.07 3 January 2023 0:16
86.04 20.96 37.77 6.27 0.08 3 January 2023 0:31
83.31 19.67 35.00 7.31 0.06 3 January 2023 0:46
85.18 20.33 36.50 6.24 0.08 3 January 2023 1:01

2.3. Data Pre-Processing

The data acquired from the experiment were extracted in the CSV file format to be
used in the machine learning model as input data. Data preprocessing was performed using
the Anaconda Python programming environment. Before preprocessing, a set of Python
libraries, such as Matplotlib, Pandas, Scikit-learn library, and NumPy, were imported for
data preprocessing. The dataset was imported using the read_csv () function of Panda’s
library. The CSV file contained certain extra columns and rows with missing values and
high peak values that were impractical. The rows with missing and high peak values were
replaced with the mean values of the entire available values via the Imputer class of the
sklearn preprocessing library. In addition, timestamp values were converted from the 12 h
system to 24 h using the strftime () function from the datetime library to easily employ
time in our model. The many targets here tacked days onto an hourly basis since this could
impact the variability of some parameters. Table 6 shows the sample of the dataset after
pre-processing.

Table 6. Dataset after preprocessing.

Moisture Temp_out Temp_in pH Gaz Value Date Time (12 h) Time (24 h) Day_Hour

85.24 20.32 36.90 6.86 0.08 3 January 2023 12:01 a.m. 0:01 12.0
85.95 19.59 36.60 7.62 0.07 3 January 2023 12:16 a.m. 0:16 12.2
86.04 20.96 37.77 6.27 0.08 3 January 2023 12:31 a.m. 0:31 12.3
83.31 19.67 35.00 7.31 0.06 3 January 2023 12:46 a.m. 0:46 12.5
85.18 20.33 36.50 6.24 0.08 3 January 2023 1:01 a.m. 1:01 1.0

2.4. Data Analysis

A major objective of the IoT framework was to improve the quality monitoring of
environmental parameters in the biogas generation context using sensors and data analytic
tools. In this regard, the multiple linear regression model was adopted to assess the fitness of
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environmental parameters, and subsequently, the Pearson correlation analysis was utilized
to examine the relationship between environmental parameters and biogas production.

2.4.1. Multiple Linear Regression Model

Multiple linear regression is a supervised machine learning model that employs two
or more independent variables to forecast the outcome of a dependent variable [45]. This
paper was adapted in (Equation (1)) to validate the contribution of digester environmental
parameters in biogas generation. The Ordinary Least Squares (OLS) regression analysis
technique was employed to find the best fitting. In essence, the OLS entailed leveraging the
parameter estimation from linear regression and considered the sum of squared discrepan-
cies between the real sample value and the OLS estimation as the main point of reference
for parameter estimation [46]. In this context, Y represents the dependent variable, and βs
are the regression coefficients. Additionally, a set of X’s presents the independent variable.

Y = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε (1)

The multiple linear regression model could be evaluated by several metrics, including
the mean squared error (RMSE), mean absolute error (MAE), and R Squared (R2). This study
explored R2 to validate the model since it was very informative compared to others [47].

2.4.2. Pearson Correlation Coefficient

The Pearson correlation coefficient, indicated in (Equation (2)), is a measure of linear
correlation that could analyze the relationship between two or more variables [48]. In this
context, the Pearson correlation was adopted to express the degree of linear correlation
between environmental parameters and biogas production.

rxy =
∑ (x − x)(y − y)

N·SxSy
(2)

The formula given defines the correlation coefficient of the two variables. In the
formula, N represents the total number of data samples, while x and y represent the mean
values of the two sets of variable data. Sx and Sy represent the standard deviations of the
respective variable data samples.

3. Result
3.1. Model Validation Results

The validation of the models was assessed using R2 metrics. The model was con-
structed by taking the indoor temperature, ambient temperature value, the moisture content
as independent variables and the biogas production value as the dependent variable.

Table 7 presents the OLS model result, while R-squared indicates 73.4% of the variabil-
ity in the biogas production, which was explained by the environment parameters explored
in the regression model. This implies that the model had a relatively good fit and could
effectively predict the biogas production process.

Table 7. OLS Multiple Regression Model Results.

Dep.
Variable Gaz-value R-squared 0.734

Model OLS Adj. R-squared: 0.734
Method Least Squares F-statistic: 2066

Coef std err T P > |t| [0.025, 0.975]
Const −0.3942 0.000 42.463 0.040 −0.376

Ph 0.6021 0.000 19.186 0.021 0.002
Temp_in 0.843 0.000 25.460 0.012 0.005

Temp_out 0.526 0.000 17.903 0.032 0.003
Moisture 0.0129 0.000 20.974 0.040 0.003
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3.2. Correlation Analysis

The relationship between biogas production (y-variable) and environmental parame-
ters (x-variables) was calculated by the Pearson correlation coefficient r. The relationship
between environmental variables and biogas yields was constructed using the Seaborn
heatmap Python data visualization library, which revealed the correlation between temper-
ature, moisture, pH, and biogas yield.

Figure 7 presents how the inter-variables correlation matrix was constructed. The
value of r fell within the range of −1 to +1. When r > 0, it indicated a positive correlation
between the two variables, meaning that as one variable increased, the other variable
tended to increase as well. Conversely, when r < 0, it indicated a negative correlation,
whereas when one variable increased, the other variable tended to decrease, and the larger
the absolute value of r, the stronger the correlation. It was important to note that this
correlation did not imply causation. When r = 0, it indicated no linear correlation between
the two variables.
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The Pearson correlation result showed that the indoor temperature and pH had a
strong correlation of 0.77 and −0.6, while the outdoor temperature and moisture presented
a moderate correlation of 0.46 and 0.3, respectively.

As presented in Figure 8, throughout the experiment, the matplotlib python library
was imported to create graphs representing the correlation between variables. According
to its constraints, the premise of the correlation analysis was that the distribution of
environmental parameters conformed to a normal distribution. Figure 8a–d provides
information regarding our findings.
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In Figure 8a, a correlation between the biogas yield and indoor temperature indicated
an indoor temperature range between 37 and 39 ◦C, which was induced to a maximum
production of about 0.10 dm3. In Figure 8b, the correlation between the biogas yield and
outdoor temperature showed the maximum outdoor temperature of (23–24) ◦C, which
resulted in a maximum biogas generation of about 0.10 dm3. In Figure 8c, the correlation
between the biogas yield and pH showed a maximum biogas production of 0.10 dm3

for a pH range (6–9). In Figure 8d, a correlation between the biogas yield and moisture
indicated a moisture range of 85–86, which presented the maximum biogas production.
These results indicate that the environmental parameters had a high impact on biogas
production. Moreover, the temperature increased both outdoors and inside during the
daytime while it decreased at night. Thus, it could be concluded that the daytime period
also had a significant impact on biogas prediction.

4. Discussion

The main aim of this research was to contribute to the Rwanda biogas industry by
designing and implementing a testable solution for the biogas community to collect and
manage the data and Biogas functionality statuses. This research paper implemented an
approach for an IoT-based framework to gather multivariate time-series data of biogas
digester environmental parameters. The prototyping was conducted in a home environ-
ment with a series of activities, such as data acquisitions using one designed sensor node
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(with five mounted sensors to capture environmental parameters). Each sensor node was
assigned to a unique identifier and as well as assigning it to a specific biogas owner. This
setup helped contribute to mapping Biogas owners in Rwanda and could help the decision
makers to know in real-time the status of the biogas setup in general. The backend config-
uration of the proposed framework was made in such a way that apart from the biogas
owner receiving notifications, all data from different deployed sensor nodes owned could
be controlled and managed under a secure and authenticated user interface.

The developed IoT framework comprised a Raspberry Pi sensor kit and is equipped
with several sensors, such as an indoor and outdoor temperature sensor, pH sensor, mois-
ture sensor, and actuators, which are shown in Figure 4 and explained in Tables 2 and 3.
These data were then uploaded to a central gateway database using the MQTT protocol, as
depicted in Figure 2. The MQTT protocol was configured to allow real-time communication
at a low bandwidth. The platform was designed in the publish-subscribe paradigm, and
the parameters sent were considered topics, while the time series data sent were messages.
As disputed in Figure 5, the edge node was configured as the MQTT-client publisher to the
MQTT broker. The edge node published data to the MQTT broker. The Mongo database
was configured as an MQTT-client subscriber. The messages captured from the edge node
were gathered to the Mongo server database, as presented in Figure 5 and, in this research,
an unstructured database management system called MongoDB was adopted. From a
web perspective, the Laravel PHP framework was explored to develop the back-end web
services which read data from the database to display them to the web interface, as shown
in Figure 6. The system setup was placed in the production environment and tested for a
period of 30 days.

Further, the collected data were subsequently analyzed by a statical and supervised
machine learning model to analyze the effect of the environmental parameters, including
indoor temperature, outdoor temperature, Ph, and moisture, on biogas production. The
data sets acquired from the IoT platform were analyzed using both the Pearson correlation
coefficient and the multiple linear regression OSL model with a Python programming
environment. Through the multiple linear regression analysis, the performance of the model
was evaluated using the R-squared metric. Therefore, the OLS model result presented
an R-squared value of 0.734, indicating that approximately 73.4% of the variability in
biogas production presented a good fit and could effectively predict the biogas production
process, as shown in Table 6. From Pearson’s correlation perspective, the variables were
correlated in a way that provided insight, while the indoor temperature and pH presented a
strong correlation with a correlation coefficient of 0.78 and −0.6, respectively. The outdoor
temperature presented a moderate correlation of 0.46, as shown in Figure 7.

While implementing the abovementioned architecture, the following were found as
limitations: a lack of benchmarks for sensor calibrations, the need for industrial sensors for
precise accuracy, and sensor power harvesting during prototype deployment.

The future research direction is to figure out the best model for gas production fore-
casting after a comparative analysis of various machine learning techniques using the
correlated data presented in this paper. Furthermore, the best model should integrate into
the real system. The next step is to investigate different mechanisms for supporting energy
harvesting, as most biogas deployment is conducted outdoors. The framework should be
stressed to ensure it can support multi-concurrent high volumes of data.
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