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Abstract: Generative artificial intelligence (AI) has emerged as a powerful technology with numerous
applications in various domains. There is a need to identify the requirements and evaluation metrics
for generative AI models designed for specific tasks. The purpose of the research aims to investigate
the fundamental aspects of generative AI systems, including their requirements, models, input–
output formats, and evaluation metrics. The study addresses key research questions and presents
comprehensive insights to guide researchers, developers, and practitioners in the field. Firstly, the
requirements necessary for implementing generative AI systems are examined and categorized
into three distinct categories: hardware, software, and user experience. Furthermore, the study
explores the different types of generative AI models described in the literature by presenting a
taxonomy based on architectural characteristics, such as variational autoencoders (VAEs), generative
adversarial networks (GANs), diffusion models, transformers, language models, normalizing flow
models, and hybrid models. A comprehensive classification of input and output formats used in
generative AI systems is also provided. Moreover, the research proposes a classification system
based on output types and discusses commonly used evaluation metrics in generative AI. The
findings contribute to advancements in the field, enabling researchers, developers, and practitioners
to effectively implement and evaluate generative AI models for various applications. The significance
of the research lies in understanding that generative AI system requirements are crucial for effective
planning, design, and optimal performance. A taxonomy of models aids in selecting suitable options
and driving advancements. Classifying input–output formats enables leveraging diverse formats
for customized systems, while evaluation metrics establish standardized methods to assess model
quality and performance.

Keywords: generative AI survey; AIGC; AIGC models; ChatGPT; GPT-3; GPT-4; generative AI
models; generative adversarial networks; transformers; user experience

1. Introduction

Generative artificial intelligence (AI) has emerged as a prominent field of study, revo-
lutionizing various domains, such as computer vision, natural language processing, and
creative arts. This research aims to delve into the fundamental aspects of generative AI,
including requirements, models, generative types, and evaluation metrics, to gain a com-
prehensive understanding of this evolving discipline [1]. The field of generative AI focuses
on developing algorithms and models capable of generating synthetic data that closely
resemble real-world data. The ability to generate realistic and novel data has immense
implications across multiple industries, including entertainment, healthcare, finance, etc.
Generative AI has opened up new avenues for applications such as image synthesis, text
generation, music composition, and even human-like chatbots [2].

The increasing availability of large-scale datasets, coupled with advancements in
deep learning techniques, has propelled the rapid development of generative AI. The

Future Internet 2023, 15, 260. https://doi.org/10.3390/fi15080260 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15080260
https://doi.org/10.3390/fi15080260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2434-736X
https://doi.org/10.3390/fi15080260
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15080260?type=check_update&version=3


Future Internet 2023, 15, 260 2 of 60

ability to generate data that mimics real-world characteristics has the potential to address
various challenges, including data augmentation, anomaly detection, and creative content
generation. By understanding the requirements, models, generative types, and evaluation
metrics within generative AI, researchers, and practitioners can make informed decisions
when designing and implementing generative systems. Recent statistics highlight the
growing interest and impact of generative AI. Precedence Research has reported that the
worldwide market for generative AI was worth USD 10.79 billion in 2022. It is projected
to reach approximately USD 118.06 billion by 2032, with a compound annual growth rate
(CAGR) of 27.02% during the period from 2023 to 2032 [3]. This surge in market demand
reflects the recognition of generative AI as a powerful tool with immense potential for
various industries.

Generative AI encompasses a wide range of applications, and two famous examples
that have made significant contributions to the field are StyleGAN and OpenAI’s GPT.
StyleGAN [4], developed by NVIDIA, has revolutionized image generation by producing
highly realistic and diverse images. It employs a style-based approach, manipulating
specific visual attributes and enabling artists to explore new dimensions of creativity in
digital art. On the other hand, OpenAI’s GPT series [5], with GPT-3 as its flagship model, has
reshaped natural language processing. GPT-3’s massive scale and transformer architecture
enable it to generate human-like text with impressive fluency and coherence, making strides
in tasks such as question answering, essay writing, and conversational responses. These
examples exemplify the remarkable potential of generative AI in transforming creative
industries, content generation, and human–machine interaction, paving the way for further
advancements in image synthesis, text generation, and beyond.

Generative AI represents an integral part of the evolving landscape of Web 3.0, char-
acterized by advancements in technology and user experiences. Table 1 compares the
attributes of Web 1.0, Web 2.0, and Web 3.0 and provides a comprehensive overview of the
evolution of the web, highlighting the significant changes in user interaction, content cre-
ation, technology, data management, communication, innovation, data access, computation
resources, storage capacity, and examples from Web 1.0 to Web 3.0.

Table 1. Comparison of Web 1.0, Web 2.0, and Web 3.0.

Attribute Web 1.0 Web 2.0 Web 3.0

Time line 1990s to 2002 2002 to 2022 2022 to 2042

User Interaction Static websites with limited
user interactivity.

Dynamic websites with en-
hanced user interactivity.

Intelligent and personalized user
experiences.

Content Creation

Professional generated content
(PGC), mainly generated by de-
velopers and content creators
in the static websites.

User-generated content (UGC)
became prominent in dynamic
and interactive websites (blog-
ging, social media).

Context-aware and intelligent
content creation. User-generated
and machine-generated content
(AI-generated content (AIGC),
smart devices).

Technology
Server-side processing using
HTML, basic scripting, limited
multimedia.

Client-side scripting with
rich internet applications
(JavaScript, Flash, AJAX).

Advanced technologies (AI, ML,
NLP, blockchain, IoT).

Data Management Centralized data storage and
limited data sharing.

Decentralized data sharing and
collaboration.

Distributed and interoperable
data storage and sharing.
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Table 1. Cont.

Attribute Web 1.0 Web 2.0 Web 3.0

Communication Basic email and discussion fo-
rums.

Social media platforms and in-
stant messaging.

Advanced semantic communica-
tion and real-time collaboration.
Seamless communication across
platforms and devices.

Innovation Limited innovation, focus on
information.

Rapid innovation and collabo-
ration.

Emphasis on AI, automation,
and emerging technologies.

Computation
resources

Limited computational and
processing power on user de-
vices. Focus on server-side
computation.

Increased computational
power on user devices. Focus
on client-side computing.

Distributed computation and
edge computing.

Storage capacity Limited storage capacity on
servers.

Increased cloud storage and
scalable data storage solutions.

Expanded storage capacity. Dis-
tributed and scalable storage so-
lutions.

Data access Passive data consumption. Active participation and data
sharing.

Intelligent data access and per-
sonalized recommendations.

Examples Early websites, static informa-
tional pages.

Social media platforms (Face-
book, Twitter), blogging plat-
forms.

Virtual collaborative assis-
tants, AI-powered applications,
blockchain platforms.

1.1. Research Purpose

The purpose of the research is to comprehensively analyze the requirements, models,
generative types, and evaluation metrics in generative AI. By exploring the existing litera-
ture and synthesizing research findings, this study aims to contribute valuable insights to
the field and provide guidance for researchers, practitioners, and enthusiasts. It investi-
gates the fundamental aspects of generative AI systems, including requirements, models,
input–output formats, and evaluation metrics. Categorizing implementation requirements
into hardware, software, and user experience, the research presents a taxonomy of gener-
ative AI models based on architectural characteristics and explores various model types.
Additionally, it proposes a classification system for input and output formats and discusses
commonly used evaluation metrics. The ultimate goal is to advance the field by facilitating
effective implementation and evaluation of generative AI models for diverse applications.

1.2. Research Questions

The motivation for this research stems from the growing importance of generative AI
systems and the need for a deeper understanding of their fundamental aspects. By investi-
gating the requirements necessary for implementing generative AI systems, exploring the
different types of generative AI models, identifying specific input and output formats, and
discussing commonly used evaluation metrics, we aim to provide researchers, developers,
and practitioners with comprehensive insights and guidance in the field. The goal is to
enhance the implementation, selection, customization, and evaluation of generative AI
models for various applications, ultimately fostering advancements in generative AI.

RQ1 What are the requirements necessary for implementing generative AI systems?

Ans: To address this question, we present three distinct categories of requirements for
AIGC: hardware, software, and user experience requirements.

RQ2 What are the different types of generative AI models described in the literature?

Ans: To explore this, we present a taxonomy of AIGC models based on their architec-
ture, including VAEs, GANs, diffusion models, transformers, language models,
normalizing flow models, and hybrid models.
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RQ3 What specific input and output formats are used for different prescribed tasks in
generative AI systems?

Ans: We provide a comprehensive classification of input and output formats for AIGC
tasks, along with specific tasks and the corresponding models used in the literature,
presented in a tabular format.

RQ4 What evaluation metrics are commonly employed to validate the output generated
by generative AI models?

Ans: We propose a classification system based on the output types of generative AI and
discuss commonly used evaluation metrics in the field.

1.3. Contributions and Research Significance

The research questions and corresponding answers presented in this study have sig-
nificant implications for generative AI. Firstly, by investigating the requirements necessary
for implementing generative AI systems, encompassing hardware, software, and user expe-
rience considerations, this research provides valuable insights for researchers, developers,
and practitioners. Understanding these requirements is essential for effective planning and
designing generative AI systems, ensuring their successful implementation and optimal
performance. Additionally, exploring different types of generative AI models described
in the literature contributes to a comprehensive understanding of the field. By presenting
a taxonomy of models based on their architectural characteristics, such as VAEs, GANs,
diffusion models, transformers, language models, normalizing flow models, and hybrid
models, this research guides researchers and practitioners in selecting appropriate models
for specific applications. This knowledge fosters advancements in generative AI by pro-
moting informed decision-making and facilitating the development of more sophisticated
and tailored models.

Moreover, this study delves into the specific input and output formats used for differ-
ent prescribed tasks in generative AI systems. The comprehensive classification of these
formats, along with the associated tasks and models utilized in the literature, is a valuable
resource for researchers and practitioners. It enables them to understand and leverage the
diverse input and output formats available, promoting the development of effective and
customized generative AI systems. Furthermore, the proposal of a classification system
based on output types and the discussion of commonly used evaluation metrics contribute
to the establishment of robust evaluation frameworks. These frameworks enhance the
credibility and applicability of generative AI models by providing standardized methods
for assessing their quality and performance. In summary, this research offers valuable
insights into generative AI systems’ requirements, models, input–output formats, and eval-
uation metrics. These findings contribute to advancements in the field, guiding researchers,
developers, and practitioners in effectively implementing and evaluating generative AI
models for various applications.

1.4. Organization of the Paper/Reading Map

The structure of the paper is given in Figure 1.
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2. Methodology

To conduct our research, we conducted an extensive literature search across multiple
scholarly databases, including Google Scholar, Semantic Scholar, ACM Digital Library,
and IEEE Xplore. Our search was based on a carefully crafted search string ”(“Generative
AI” OR “AIGC” OR “Generative Adversarial Networks” OR “GANs” OR “Generative
Models”) AND (“survey” OR “review” OR “overview” OR “summary” OR “literature
review”)“ designed to capture relevant studies pertaining to our research questions. We
meticulously reviewed the search results and included studies that addressed our research
inquiries directly. As part of our inclusion criteria, we focused on papers published
in English, ensuring consistency in language and accessibility. We also took measures
to eliminate duplicate papers, carefully screened the abstracts and conclusions of the
selected papers, and evaluated their suitability based on qualitative or quantitative analysis,
surveys, or review papers. Additionally, we identified valuable secondary references
through survey papers to augment our research findings. Subsequently, we extracted and
synthesized pertinent data attributes aligned with our research questions, enabling us to
present comprehensive and insightful results.

The search process results are as follows: The publication years range from 2014 to
the present, with 90% of the papers published from 2017 to the present. The year-wise
publication count is given in Table A1. This indicates that more relevant papers have been
published in recent times. We have extracted data from 122 full-text papers, which consist
of peer-reviewed publications in conferences and journals and accepted articles archived
in the arXiv database. Among these articles, 49% are from conference proceedings, while
51% are from journals and archives. The distribution of the publication type is given in
Table A2. Notably, we found 15 papers at the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), followed by ten papers from the International Conference
on Machine Learning and eight papers published in the Advances in Neural Information
Processing Systems and seven papers in IEEE International Conference on Computer
Vision (ICCV). The remaining papers are in the following order: European Conference
on Computer Vision, International Conference on Multimedia, International Conference
on Learning Representations (ICLR), International Conference on Neural Information
Processing Systems, Conference on Empirical Methods in Natural Language Processing,
etc. The other venues are listed in Table A3.

Additionally, we identified 29 survey or literature review papers apart from the
aforementioned papers. We have separated the survey papers and analyzed them based
on our research questions, comparing their contributions with our own in this paper. We
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have labeled the contributions as L, M, H, or NA, representing low, medium, high, and not
applicable, respectively. We observed that the majority of the surveys did not explicitly
focus on the requirements and evaluation metrics of AIGC. We summarized the important
survey papers in Table 2 and compared them with our paper.

The table provides a comprehensive overview of various papers and their contribu-
tions to the field of generative AI. It includes papers published between 2017 and 2023, as
well as the contributions of each paper in terms of AIGC requirements taxonomy, AIGC
models, AIGC input–output classification, and AIGC evaluation metric classification. Most
papers reviewed (labeled with “L”) focus on different aspects of AIGC, such as the applica-
tions of GANs across various domains and the progress made in computer vision using
GANs. Some papers (labeled with “M” or “H”) provide more in-depth analyses of AIGC
models and their variants, particularly in the fields of drug discovery, material science,
and speech synthesis. A few papers (labeled with “NA”) either do not contribute signifi-
cantly to the specified categories or focus on broader opportunities and impacts of AIGC in
business, education, and society. Our paper, labeled “this paper”, is distinguished by its
comprehensive coverage of all four areas of AIGC: AIGC requirement categorization, AIGC
models, input–output classification, and evaluation metrics. It highlights the significant
contributions made by the authors in these areas.

Table 2. Summary of important surveys on AIGC (L—Low, M—Medium, H—High, NA—Not
Applicable).
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[6] 2017 L M M NA A review of generative adversarial networks (GANs) and their applications
across various domains.

[7] 2019 L M M M This highlights the background, evaluation metrics, and training processes of
GANs.

[8] 2019 NA M M L A review of GANs, including comparisons, performance evaluations, and their
applications in computer vision (CV).

[9] 2020 NA M M L A review of GANs, their training processes, evaluation indices, and applications
in CV and NLP.

[10] 2020 NA L L NA Overview of GAN architecture, along with the state of the art in the security
domain.

[11] 2020 L H L M Presented overview of generative AI model classifications.

[12] 2020 NA L L NA Focuses on the application of GANs in architecture and urban design.

[13] 2020 L M M NA A review of the progress made with GANs and their applications in computer
vision (CV).

[14] 2021 L L M NA This highlights the various applications of GANs and their impact across differ-
ent domains.

[15] 2021 L M L L Focusing on the application of GANs in finance research.

[16] 2021 L H H L A survey of GANs and their variants across various research fields.
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[17] 2021 L L L L An overview of GANs in the field of digital pathology.

[18] 2021 L L L M A survey on GANs for NLP tasks, including available datasets and evaluation
metrics.

[19] 2021 L H L M Focuses on AIGC models for drug discovery.

[20] 2022 L M L M An overview of the main enhancements, variations of GAN models, and their
evaluation metrics.

[21] 2022 L M L NA A survey on generative AI models used in drug discovery.

[22] 2023 L L L NA A comprehensive survey on the underlying technology and applications of
text-to-3D conversion.

[1] 2023 H H H L An overview of the history, components, recent advances, and challenges in
AI-guided combinatorial chemistry.

[23] 2023 NA NA NA NA Focuses on the opportunities that AIGC presents in business, education, and
society.

[24] 2023 NA L NA L Generative AI models in the domain of computer-aided drug design.

[25] 2023 L M H NA Focusing on applications that involve input–output classification.

[26] 2023 L M H L Focusing on applications that involve input–output classification.

[27] 2023 L H L L Progress of AIGC models, their challenges, and applications in material science.

[28] 2023 L L L NA A review of ChatGPT’s role across various research fields.

[29] 2023 L M M M Focuses on AIGC models in molecule, protein, and material science.

[30] 2023 L M L NA Focuses on ChatGPT, its underlying architecture, and its applications across
various domains.

[31] 2023 L L M M A survey on recent progress of AIGC models in speech synthesis.

[32] 2023 M L M M A review of text-to-image diffusion models.

[2] 2023 M H M L A review of AIGC models across various research fields.

This paper 2023 H H H H
Our paper focuses on all four areas and contributes significant results such as
AIGC requirements categorization, AIGC models, input–output classification,
and evaluation metrics.

3. Results
3.1. AIGC Requirement Categories

This section begins explaining the implementation phases of generative AI models,
such as variational autoencoders (VAEs), generative adversarial networks (GANs), and
transformers, have emerged as powerful tools for generating synthetic data samples.
However, the process of building generative AI models requires various stages that must be
addressed in a systematic way to obtain the required results. While the exact terminologies
and steps may vary depending on the specific approach and context, as illustrated in
Figure 2, the common phases involved in generative AI are problem definition, data
collection and preprocessing, model selection, model training, model evaluation, model
fine-tuning, deployment, and monitoring and maintenance.
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Figure 2. Implementation phases of Generative AI.
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Figure 2. Implementation phases of generative AI.

The initial phase revolves around clearly defining the problem that the generative
AI model aims to address. This encompasses identifying the desired outcomes, data re-
quirements, and any constraints or limitations, thus establishing a solid foundation for
subsequent stages. Accurate problem definition facilitates targeted data collection and
effective model selection, streamlining the overall implementation process. The subsequent
phase focuses on data collection, which entails gathering a large and representative dataset
that encapsulates the patterns and characteristics that the generative model intends to learn
using appropriate devices for capturing data, such as web scraping tools [33–35], micro-
phones, cameras [36], or sensors. There are various datasets from researchers to facilitate
research and benchmarking for various types of data: images—MSCOCO [37], Flickr [38];
text—Colossal Clean Crawled Corpus (C4) [39]; or audio—FSD50K [40], AudioCaps [41].
Data should be diverse and comprehensive to capture the underlying patterns effectively.
Following data collection, the model selection phase begins, where the most suitable gener-
ative model architecture is chosen. This phase involves considering popular options such
as VAEs, GANs, transformers, or diffusion models. The selection of an appropriate model
architecture aligns with the problem requirements and paves the way for subsequent steps.

Once the generative model architecture is determined, the model training phase
commences. This stage involves training the selected model using the collected or available
dataset. Through this process, the model learns the underlying patterns and statistical
relationships within the data. Training generative models frequently necessitates substantial
computing resources, particularly for large-scale datasets and sophisticated models. To
expedite training, high-performance hardware like graphics processing units (GPUs) [42] or
tensor processing units (TPUs) [43] are typically employed. The specific training algorithm
varies depending on the chosen model, with GANs, for instance, training a generator
network to produce realistic samples while concurrently training a discriminator network to
differentiate between real and generated samples [44]. Hyperparameter tuning constitutes
a significant aspect of the model training phase. Various hyperparameters, including
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learning rate, batch size, network architecture, and regularization techniques, influence the
behavior and performance of the generative model [45]. Fine-tuning these hyperparameters
is crucial for optimizing the model’s convergence and overall performance [33]. Once the
model training is completed, the subsequent phase involves evaluating and validating its
performance. Evaluation metrics are tailored to the specific task or domain. In the case of
image generation, metrics such as inception score, Frechet inception distance (FID) [46],
or visual inspection can be utilized to assess the quality and diversity of the generated
samples. Post-processing and refinement may be necessary in certain cases to enhance
the quality or adhere to specific constraints of the generated outputs. Techniques such as
image smoothing, text correction, or style transfer can be employed in this phase to refine
the generated samples based on domain-specific requirements. Upon successful training
and validation, the generative model is ready for deployment to generate new samples.
This phase involves providing an input to the model, such as a random noise vector or a
partial input and obtaining an output that aligns with the distribution of the training data.
Multiple samples can be generated to explore the variety and creativity exhibited by the
generative model.

The rest explores the essential requirements for generative AI, focusing on hardware,
software, and user aspects. The categories of AIGC requirments are shown in Table 3.
When it comes to hardware, the collection of data for generative AI tasks involves lever-
aging cameras, microphones, sensors, and existing datasets curated by researchers for
specific purposes. For the training, fine-tuning, and hyperparameter optimization stages,
powerful hardware configurations like Tesla V100 16 GB, RTX 2080Ti, NVIDIA RTX 3090
with 24 GB, and TPUs are commonly employed. However, for smaller-scale models, a
GTX 1060 6 GB of DDR5 can suffice. Sample generation, which is an integral part of the
generative AI process, can be achieved using more basic configurations like a CPU with an
i7 3.4 GHz clock speed and a GPU such as the GTX970. On the software side, various tools
and frameworks play a crucial role in different phases of generative AI. Data collection
and preprocessing rely on frameworks like web scraping frameworks, Pandas, Numpy,
scikit-image, torch-audio, torchtext, and RDKit. Additionally, specialized tools for data
acquisition, audio recording, and motion capture are employed. To train generative models
effectively, deep learning frameworks, such as TensorFlow, PyTorch, scikit-learn, and SciPy,
provide comprehensive support for various model architectures and optimization algo-
rithms. These frameworks are also instrumental in evaluating and validating the models.
Furthermore, post-processing and model refinement can be facilitated using libraries like
OpenCV-Python and NLTK. By understanding and fulfilling these hardware and software
requirements, researchers and practitioners are well-equipped to delve into generative AI
research and development. These requirements lay the foundation for creating sophisti-
cated and high-quality generative models, enabling advancements in this exciting field of
artificial intelligence.

User experience requirements for generative AI models described in Table 3 are critical
in ensuring user satisfaction and successful outcomes. High-quality and realistic outputs
are expected, along with customization and control options to align the generated con-
tent with user preferences. Diversity and novelty in outputs, as well as performance and
efficiency, are important considerations. Interactivity and responsiveness to user input,
along with ethical considerations, such as fairness and data privacy, are significant require-
ments. Seamless integration with existing systems and compatibility with programming
languages are also valued for easy adoption. By addressing these requirements, developers
and researchers can create generative AI models that meet user expectations and deliver
enhanced experiences.
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Table 3. AIGC requirement categories.

Category Description

Hardware requirements

Data can be collected using cameras [36], microphones, sensors and can use datasets that are released
by researchers for specific tasks [37–39]. To train, fine-tune and optimize hyperparameters—Tesla
V100 16 GB [47], RTX 2080Ti [48], NVIDIA RTX 2080Ti, NVIDIA GeForce RTX 3090 with 24 GB [49],
TPU [50], etc., are generally used, while GTX 1060 6 GB of DDR5 [51] can also be used to train a
small-scale model. Sample generation can be performed on basic configuration like CPU—i7 3.4 GHz
and GPU—GTX970 [52] or the configuration required by the generative model.

Software requirements

For data collection and preprocessing, tools such as Web scraping frameworks [33–35], Pan-
das [48,52,53], Numpy [53–55], scikit-image [48,55,56], torch-audio, torchtext [48], RDKit [57], data
acquisition tools, audio recording software, motion capture software. To train the models, deep learn-
ing frameworks like TensorFlow [52,58,59], PyTorch [60–62], scikit-learn [52,60,63], SciPy [53,63] are
used, which provide support for various generative model architectures and optimization algorithms.
PyTorch [64], TensorFlow [65], scikit-learn [60]: these libraries are also used to evaluate and vali-
date the model. For post-processing and refinement of models, libraries like opencv_python [55,66],
NLTK [59,67] are used.

User-experience
requirements

Key considerations for user aspects are high quality, accuracy [68] and realistic outputs [69], cus-
tomization and control, diversity [70] and novelty, performance and efficiency, interactivity and
responsiveness to user input, ethics [71] and data privacy [72,73], and seamless integration with
existing systems.

3.2. Classification of Generative AI Models

Generative AI Model Architecture: This is the model’s basic structure or design. It in-
cludes how its layers or neural networks and components are arranged and organized. The
model’s architecture determines how it processes and generates information, which makes
it a critical aspect of its functionality and suitable for specific tasks. Table 4 describes the
architecture components and training methods that are used in the generative AI models.

The classification of generative models based on architecture provides insights into
the specific components and training methods that define each model as shown in Figure 3.
These architectural choices have significant implications for how the models generate new
data points and learn from the available data. By understanding these distinctions, re-
searchers and practitioners can choose the most suitable generative model for their specific
task or explore hybrid approaches that combine different models to leverage their respective
strengths. Variational autoencoders (VAEs) have an encoder–decoder architecture and use
variational inference for training. They learn compressed representations of input data and
generate new samples by sampling from the learned latent space. Generative adversarial
networks (GANs) consist of a generator and a discriminator. They are trained adversarially,
with the generator generating synthetic samples to fool the discriminator. GANs excel at
generating realistic and diverse data. Diffusion models involve a noising step followed
by a denoising step. They iteratively refine noisy inputs to generate high-quality samples.
Training involves learning the dynamics of the diffusion process. Transformers employ an
encoder–decoder architecture and utilize self-attention mechanisms for capturing global
dependencies. They are commonly used in tasks like machine translation and generate
coherent sequences through supervised training. Language models, often based on recur-
rent neural networks (RNNs), generate sequences by predicting the next token. They are
trained through supervised learning and excel at generating natural language sequences.
Normalizing flow models use coupling layers to transform data while preserving den-
sity. They learn complex distributions by transforming a simple base distribution, trained
via maximum-likelihood estimation. Hybrid models combine different architectures and
training methods to leverage their respective strengths. They offer flexibility and tailored
generative capabilities by integrating elements from multiple models.
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Table 4. Architecture components and training methods used in generative AI models.

Model Architecture Components Training Method

Variational Autoen-
coders Encoder–Decoder Variational Inference [19]

Generative Adversar-
ial Networks Generator–Discriminator Adversarial [44]

Diffusion Models Noising (Forward)–Denoising Iterative Refinement [31]

Transformers Encoder–Decoder Supervised [74]

Language Models Recurrent Neural Networks Supervised [75]

Normalizing Flow
Models Coupling Layers Maximum-Likelihood Esti-

mation [76]

Hybrid Models Combination of Different Models Varied
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3.2.1. Variational Autoencoders (VAE)

A variational autoencoder (VAE) is a type of autoencoder that combines variational
inference with an encoder–decoder architecture. Autoencoders consist of an encoder
network that maps high-dimensional data to a low-dimensional representation and a
decoder network that reconstructs the original input from the representation [19]. However,
traditional autoencoders lack the ability to generate new data points.

In Figure 4, in a VAE, the encoder network maps the input data (x) to the parameters of
a probability distribution in a latent space (z) using input layer and hidden layer composed
of neural network units, such as dense or convolutional layers. This distribution is often
modeled as a multivariate Gaussian with mean and covariance parameters [27] achieved in
mean, variance layers. Samples are drawn from this latent space distribution in sampling
layer, generated by the encoder, to produce new data points using the decoder network (y)
with hidden and output layers. By sampling from the approximate posterior distribution
in the latent space, VAEs can generate diverse outputs resembling the training data.
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Neural networks, such as fully connected networks or convolutional neural networks
(CNNs), are commonly used as encoders and decoders in VAEs. The specific architecture



Future Internet 2023, 15, 260 12 of 60

depends on the data and its complexity. For images or grid-like data, CNNs or decon-
volutional neural networks (also known as convolutional transpose networks) are often
employed as decoders. Training a VAE involves optimizing the model parameters by
minimizing a loss function comprising a reconstruction loss and a regularization term. The
reconstruction loss measures the discrepancy between the input data and the reconstructed
output, while the regularization term computes the Kullback–Leibler (KL) divergence
between the approximate posterior distribution and a chosen prior distribution in the latent
space. This term promotes smoothness and regularization. The training process of a VAE
includes selecting the network architecture, defining the loss function, and iterating through
batches of input data. The encoder processes the data, latent space points are sampled, and
the decoder reconstructs the input. The total loss, combining the reconstruction loss and
regularization term, is computed, and gradients are used to update the model parameters
through backpropagation.

While VAEs offer generative modeling and capture complex latent representations,
they may suffer from issues such as blurry reconstructions and challenges in evaluating
the quality of generated samples. Researchers have proposed various improvements to
VAEs to address these concerns, such as vector-quantized variational autoencoder (VQ-
VAE) [77], which introduces a discrete latent space by quantizing encoder outputs, leading
to a more structured and interpretable latent representation; recurrent variational autoen-
coder (RVAE) [78] to sequential data by incorporating recurrent architectures, allowing for
sequence generation and anomaly detection; constrained graph variational autoencoder
(CGVAE) [79] models graph-structured data using graph neural networks, enabling gen-
eration while preserving structural properties; crystal diffusion variational autoencoders
(CDVAE) [80], generating crystal structures in materials science, combining VAE with a
diffusion process to learn a continuous representation of crystal structures; junction tree
variational autoencoder (JT-VAE) [57], leveraging junction trees, a type of graphical model,
to capture complex dependencies between variables in structured domains like natural
language processing or bioinformatics.

3.2.2. Normalizing Flow Models

Normalizing flow models are deterministic and invertible transformations between
the raw data space and the latent space [21]. Unlike other generative models such as
GANs or VAEs, which introduce latent variables and transform them to generate new
content, normalizing flow models directly solve the mapping transformation between two
distributions by manipulating the Jacobian determinant [27]. In Figure 5, normalizing flow
applies a sequence of invertible transformations to a simple probability distribution (z) to
model more complex probability distributions using an affine coupling layer in the encoder
(flow). The decoding (inverse) function is designed to be the exact inverse of the encoding
function using same affine coupling layers and quick to calculate, giving normalizing flows
the property of tractability [29].
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Coupling layers play a crucial role in normalizing flow models. They are used to
perform reversible transformations on the input data and latent variables. Affine coupling
transformations, a specific type of coupling layer, are commonly used in normalizing flows.
These transformations model complex relationships between variables while maintaining
invertibility. By using element-wise multiplication and addition, the Jacobian determi-
nant can be efficiently computed. In a coupling layer, the input data are split into fixed
and transformed parts. The fixed part is typically passed through unchanged, while the
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transformed part undergoes a transformation based on a function of the fixed part. This
approach allows the model to focus on modeling complex relationships while preserving
certain aspects of the input.

The design of an invertible function with expressive structures and efficient com-
putation of the Jacobian determinant is a challenging task in normalizing flows. Affine
coupling transformations address these challenges by providing a flexible and efficient way
to model complex relationships and compute the Jacobian determinant [76]. By applying a
sequence of invertible transformations, normalizing flows can model complex probability
distributions. These transformations are designed to be reversible, allowing for tractable
likelihood computation. The encoder–decoder functions in normalizing flows are exact
inverses of each other, enabling efficient calculations and maintaining tractability.

Normalizing flows offer the advantage of providing an exact likelihood evaluation
and efficient sampling from complex probability distributions, enabling flexible generative
modeling. However, a drawback of normalizing flows is the computational expense associ-
ated with training deep architectures, particularly for large-scale datasets. Additionally,
achieving satisfactory performance may necessitate a significant amount of data during
the training process. MoFlow, a flow-based graph generative model to learn invertible
mappings between molecular graphs and their latent representations [76]. In MoFlow,
each component flow in the mixture is responsible for capturing different aspects of the
data distribution. By combining these flows, MoFlow can better model diverse samples
from complex data distributions. The mixture of flows can be learned using a gating
mechanism that assigns weights or probabilities to each component flow, allowing the
model to dynamically select the most appropriate flow for each input sample.

3.2.3. Generative Adversarial Networks (GAN)

Generative adversarial networks or GANs were first introduced by Ian Goodfellow
in 2014 [44]. The GAN is based on the minimax two-person zero-sum game, in which
one player profits only when the other suffers an equal loss. The two players in GAN are
the generator and the discriminator. The generator’s purpose is to trick the discriminator,
while the discriminator’s goal is to identify whether a sample is from a true distribution.
The discriminator’s output is a probability that the input sample is a true sample. A higher
probability suggests that the sample is drawn from real-world data. In contrast, the closer
the probability is to zero, the more probable the sample is a fake. When the probability
approaches one-half infinity, the optimal answer is reached because the discriminator finds
it difficult to check fake samples [7].

Typically, generator (G) and discriminator (D) are implemented using deep neural net-
works, working as latent function representations. The architecture of the GAN, illustrated
in Figure 6, involves the G learning the data distribution from real samples and mapping
it to a new space (generated samples) using dense/convolutional layers accompanied
by its corresponding probability distribution. The primary objective of the GAN is to
ensure that this probability distribution closely resembles the distribution of the training
samples. The D receives input data, which can be either real data (x) from the training set
or generated data produced by the generator. The discriminator then outputs a probability
using dense/convolutional layers or scalar value that indicates whether the input is likely
to come from the real data distribution.

GAN (generative adversarial network) training faces several challenges, including
gradient disappearance, difficulty in training, and poor diversity. These problems arise
from the loss function used in GANs, which involves measuring and minimizing the
distance between the real data distribution (Pr) and the generated data distribution (Pg).

During training, the discriminator aims to minimize cross-entropy by differentiat-
ing between real and generated samples. The optimal discriminator (D) takes the form
given below.

D(x) = Pr(x)/(Pr(x) + Pg(x))
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On the other hand, the generator (G) seeks to minimize a generator-specific loss
function that includes an independent item to ensure diversity.

The loss function for the generator can be written as,

V(G) = KL(Pg||Pr)− 2JSD(Pr||Pg)

where KL is the Kullback–Leibler divergence and JSD is the Jensen–Shannon divergence.
Minimizing the JS divergence helps the generated samples resemble real ones. However,
if there is little or no overlap between Pr and Pg, the JS divergence becomes a constant,
leading to gradient vanishing and disappearance [8].
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Additionally, training GANs can be challenging because the feedback from the dis-
criminator can be close to zero when it is trained optimally, slowing down convergence.
Moreover, determining when the discriminator is properly trained is difficult since there is
no indicator for it.

Another problem is the poor diversity in the generated samples. The generator loss
function V(G) can be reformulated to address this issue. Minimizing this loss function is
equivalent to minimizing the KL divergence and the JSD, leading to more diverse generated
samples. Several new models have been introduced to address these limitations of the
original GAN, including issues like gradient disappearance, unstable training, and poor
diversity. These new GAN models aim to enhance stability and improve the quality of the
generated outputs.

Conditional generative adversarial networks (CGANs) have emerged as a solution to
enhance the control and convergence speed of GANs in complex or large-scale datasets.
By incorporating conditional variables, such as category labels, textual descriptions, or
specific generated targets, CGANs provide guidance to the data generation process. This
allows for supervised learning, targeted generation, and the ability to generate images with
specific categories or labels. Moreover, CGANs can utilize image features as condition to
generate corresponding word vectors, enabling effective cross-modal generation illustrated
in Figure 7.

Some of the GANs that incorporate this technique are conditional generative adver-
sarial networks (CGAN) [81], CGAN with Pix2Pix framework [82], conditional tabular
GAN (CTGAN) [83], conditional generative adversarial networks with text (TAC-GAN,
TAGAN) [67,84].

Wasserstein generative adversarial networks (WGANs) offer a novel approach to address
the challenges faced by traditional GANs. By introducing the Wasserstein distance as
a metric, WGANs provide a more stable training process and better gradient flow. The
discriminator in WGANs, known as the “critic”, assigns scores representing the distance
between the real and fake data distributions [20]. This distance is measured using the
Wasserstein distance instead of the Jensen–Shannon divergence or Kullback–Leibler diver-
gence used in other generative models. WGANs mitigate the issue of mode collapse, where
GANs fail to capture the full diversity of the data, by effectively learning the underlying
data distribution, even for complex and high-dimensional datasets [85]. The generator and
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discriminator in WGANs are trained to minimize the Wasserstein distance, encouraging
the generator to generate samples that closely resemble real data. This enables WGANs to
produce more diverse and realistic outputs.
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WGANs have found applications in various domains, such as image synthesis, text
generation, and data augmentation. Their effectiveness in addressing mode collapse and
providing a more reliable training process has made them a popular choice for researchers
and practitioners working with generative models.

Deep convolutional generative adversarial networks (DCGANs) are a variant of GANs that
leverage deep convolutional neural networks (CNNs) to enhance the quality of generated
samples, particularly in the domain of image synthesis. DCGANs have proven to be
highly effective in generating realistic and high-resolution images [86]. DCGANs utilize
convolutional layers in both the generator and discriminator networks, allowing them
to capture spatial dependencies and patterns in the data. DCGANs introduce several
key design principles, including the use of convolutional and transposed convolutional
layers, batch normalization, and ReLU activation functions. These principles contribute to
the stability of the training process, mitigate issues like mode collapse and allow for the
generation of diverse and high-quality samples.

The benefits of DCGANs extend beyond image synthesis, with applications in areas
such as image-to-image translation, style transfer, and data augmentation. The combination
of deep convolutional architectures and adversarial training has propelled DCGANs as a go-
to choice for generating visually appealing and realistic images in the field of deep learning.

Generative adversarial networks (GANs) have revolutionized various domains of com-
puter vision and machine learning. They can be classified into different categories based on
their specific tasks and applications. Image-to-image translation GANs focus on translating
images between domains, with subcategories such as CycleGAN [87], DiscoGAN [88], and
DTN [89]. Super-resolution GANs [90] enhance the resolution of low-resolution images,
including SRGAN and VSRResFeatGAN [91]. Text-to-image GANs generate images from
textual descriptions, exemplified by AttnGAN [92] and StackGAN [93]. Tabular data GANs
generate synthetic tabular data, with examples like CTGAN [83] and TGAN [94]. Defense
and security GANs address security-related applications, including defense against adver-
sarial attacks and steganography, such as defense GANs [95] and SSGAN [96]. Style-based
GANs capture and manipulate artistic styles, including StyleGAN [97] and StyleCLIP [98].
Other GAN types encompass diverse applications like BigGAN [43] for high-resolution
images, ExGANs [99] for variation generation, and SegAN [100] for semantic segmentation
and various other GANs and are listed below. These categories demonstrate the versatility
and advancement of GANs in various domains, enabling tasks such as image translation,
super-resolution, text-to-image synthesis, data generation, security applications, style ma-
nipulation, and more. GANs continue to drive innovation and push the boundaries of
generative models in the field of artificial intelligence.
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3.2.4. Diffusion Models

Diffusion models are a type of generative model that operates by progressively intro-
ducing noise into data until it conforms to a desired distribution. The main idea behind
diffusion models is to learn the process of reversing this diffusion, enabling the generation
of valid samples [31]. In Figure 8 the forward pass of a diffusion model, Gaussian noise
is iteratively added to the data in a series of steps. This noise corrupts the original data,
gradually degrading its quality. As the noise level increases with each step, the images
become increasingly distorted or destroyed. The objective of the diffusion model is to learn
the dynamics of this diffusion process. By observing the corrupted data and the corre-
sponding noise levels, the model learns to estimate the conditional probability distribution
that describes the relationship between the corrupted data and the noise levels. Once the
diffusion process is learned, the model can then perform the reverse pass, starting from
the corrupted data and progressively removing the noise in each step [32]. This process of
denoising leads to the generation of valid and realistic samples that resemble the original
data distribution.
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There are three sub-types that differ in their implementation of the forward and
backward diffusion pass. These sub-types are denoising diffusion probabilistic models
(DDPMs), score-based generative models (SGMs), and stochastic differential equations
(SDEs) [29].

Denoising Diffusion Probabilistic Models (DDPMs): DDPMs, also known as denoising
score-matching models, incorporate a two-step process for diffusion [101]. They apply
Markov chains to progressively corrupt data with Gaussian noise and then reverse the for-
ward diffusion process by learning Markov transition kernels. DDPMs focus on modeling
the diffusion process and its associated reversibility.

Score-based Generative Models (SGMs): SGMs, also referred to as score-matching models,
work directly with the gradient of the log density (score function) of the data [32]. They
perturb the data with noise at multiple scales and jointly estimate the score function of all
noisy data distributions using a neural network conditioned on different noise levels. This
decoupling of training and inference steps enables flexible sampling.

Stochastic Differential Equations (SDEs): SDEs generalize diffusion models into continu-
ous settings. They formulate noise perturbations and denoising processes as solutions to
stochastic differential equations [1]. By leveraging the probabilistic flow of these equations,
the reverse generation process can be modeled. Probability flow ordinary differential
equations (ODEs) can also be utilized to represent the reverse process.
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Diffusion models employ neural network architectures to capture the complex depen-
dencies and patterns in the data. These architectures can consist of various layers, such as
convolutional layers for image data or recurrent layers for sequential data. The network
is trained to learn the conditional probability distribution that describes the relationship
between the corrupted data and the noise levels. The training objective of diffusion models
is typically based on maximum-likelihood estimation or other probabilistic frameworks.
The model parameters are optimized to minimize the discrepancy between the generated
samples and the original data distribution. Various techniques such as gradient descent
and backpropagation are employed to train the model effectively.

Diffusion models, such as the deep diffusion generative models (DDGM), have gained
prominence as strong generative models in recent years. They take a novel technique to
modeling complicated data distributions by diffusing a given input iteratively towards
a target distribution. However, to address specific difficulties or increase performance
in specific scenarios, variations in diffusion models are necessary. The latent diffusion
model (LDM) [102] is a variant of the diffusion model that operates in latent space. It
is a generative model that aims to learn the underlying data distribution by applying a
diffusion process to the latent variables instead of the observed data. The latent diffusion
model can develop more meaningful representations and capture the underlying structure
of the data distribution by acting in latent space [103]. It enables the efficient and effective
generation of high-quality samples with desired attributes. The latent diffusion model has
been used to produce varied and realistic samples in a variety of fields, including image
generation [49], text generation, video generation [104], and audio synthesis.

The geometry complete diffusion model (GCDM) is an extension of the diffusion
model that incorporates geometric constraints and priors into the diffusion process [105].
It leverages the underlying geometric structure of the data to guide the diffusion process,
resulting in improved generation quality and better preservation of geometric properties.
The GCDM takes into account geometric relationships such as distances, angles, and shape
characteristics, allowing for more precise and controlled generation of samples.

The video diffusion model (VDM) is a specific type of diffusion model designed for
generating videos. It extends the diffusion process to the temporal dimension, allowing for
the generation of coherent and dynamic sequences of frames [106]. The VDM progressively
corrupts the video frames with noise perturbations and then learns to denoise and generate
realistic video sequences. It captures the temporal dependencies and dynamics of the data
distribution, enabling the generation of videos with smooth transitions and realistic motion.

3.2.5. Language Models

Language models (LMs) have undergone a significant transformation in recent years,
evolving from their traditional role of generating or evaluating fluent natural text to
becoming powerful tools for text understanding. This shift has been achieved through the
utilization of language modeling as a pre-training task for feature extractors, where the
hidden vectors learned during language modeling are leveraged in downstream language
understanding systems [75]. LMs have proven instrumental in a wide range of applications,
enabling tasks such as answering factoid questions, addressing commonsense queries,
and extracting factual knowledge about entity relations. At its core, a language model
is a computational framework that aims to understand and generate human-like text. It
operates based on the fundamental principle of probabilistic prediction, where it learns
patterns and dependencies in sequences of words to estimate the likelihood of a particular
word given the preceding context. By capturing statistical regularities in language, LMs can
generate coherent and contextually relevant text. This is achieved by training the model
on vast amounts of text data, allowing it to learn the distribution of words, phrases, and
syntactic structures in each language [107].

The components of a language model consist of the training data, the architecture of
the model itself, and the inference mechanism used for generating text. The training data
serve as the foundation for learning the underlying patterns and probabilities in language.
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The architecture of the model encompasses various neural network architectures, such as
recurrent neural networks (RNNs), transformers, or a combination of both, which enable
the model to capture long-range dependencies and contextual information. The inference
mechanism involves utilizing the trained model to generate text based on input prompts
or predicting missing words in each context. In Figure 9, the RNN architecture, the input
sequence X is processed step by step, where X(t) represents the input at each time step.
The goal is to predict an output sequence y. At each time step, the RNN takes the current
input X(t) and the previous hidden state h(t−1) as inputs. The hidden state h(t) represents
the network’s memory and is computed using a set of learnable parameters and activation
functions. In some cases, cell state is used alongside the hidden state, as seen in long
short-term memory (LSTM) and gated recurrent unit (GRU) variants. The cell state acts as
a long-term memory component. The hidden state h(t) is then used to generate the output
sequence y(t) [19], which can be used for tasks like sequence-to-sequence [108] predictions.
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Language models are used for a variety of tasks, which are supported by different
types of language models such as the visual language model (VLM) [109], which combines
textual and visual information to understand and generate language in the context of visual
data. By leveraging visual input, such as images or videos, VLMs can accurately interpret
the content and generate captions, answer questions, and perform other language-related
tasks. A collaborative language model (CLM) [34] is developed through the collective effort
of multiple individuals or organizations. The collaborative nature of CLMs incorporates
diverse perspectives and insights to enhance the quality and reliability of their language
generation capabilities. By leveraging the collective wisdom of contributors and subject
matter experts.The large language model (LLM) [107] represents language models that
have been trained on extensive textual data and possess many parameters. With billions
of parameters, LLMs, like GPT-3, demonstrate the ability to generate sophisticated and
human-like text across a wide range of topics and writing styles. These language model
variants play crucial roles in natural language processing and have the potential to enhance
various applications and systems reliant on human-like text generation.

3.2.6. Transformers

The transformer model has revolutionized the field of natural language processing
(NLP) by replacing traditional recurrent neural networks (RNNs) with a self-attention
mechanism. This model has achieved state-of-the-art performance on various language
tasks while being computationally efficient and highly parallelizable. The core component
of the transformer model is the self-attention mechanism, which allows the model to focus
on different parts of the input sequence simultaneously when making predictions. Unlike
RNNs that process sequential information step by step, the transformer considers the
entire input sequence at once, effectively capturing dependencies between tokens [74].
Transformer architecture consists of an encoder and a decoder, both comprising multiple
layers of self-attention and feed-forward neural networks. The encoder processes the input
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sequence, while the decoder generates the output sequence. The self-attention mechanism
in the transformer enables the model to selectively attend to relevant parts of the input
sequence, facilitating the capture of long-range dependencies and improving translation
quality, among other tasks.

The attention module in the transformer adopts a multi-head design. The self-attention
is formulated as a scaled dot-product [2], where the input queries (Q), keys (K), and values
(V) are combined to calculate the attention weights. The scaling factor of

√
dk is applied to

normalize the dot-product scores. The resulting attention weights are then multiplied with
the values and summed up to produce the final output.

Attention(Q, K, V) =softmax(QKT/
√

dk)V

The transformer model employs multiple layers of self-attention and fully connected
point-wise layers in both the encoder and decoder components illustrated in Figure 10. This
architecture allows the model to effectively capture and process the complex relationships
and dependencies within the input and output sequences.
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Transformers vary in their architectures, specific network designs, and training objec-
tives depending on the application and input data.

BERT (Bidirectional Encoder Representations from Transformers): BERT consists of a multi-
layer bidirectional transformer encoder. It employs a masked language modeling (MLM)
objective during pre-training. It randomly masks words in the input text and trains the
model to predict the masked words based on their context [110]. BERT also uses a next
sentence prediction (NSP) task, where it learns to predict if two sentences are consecutive
in each document. BERT is pre-trained on a large corpus of text, such as Wikipedia and
Book Corpus. It utilizes unsupervised learning and large-scale transformer architectures to
capture general language representations. After pre-training, BERT can be fine-tuned on
specific downstream tasks using supervised learning with task-specific datasets.

GPT (Generative Pre-trained Transformer): GPT employs a multi-layer transformer
decoder. GPT is trained using an autoregressive language modeling objective [111]. It
predicts the next word in a sequence based on the previous context, enabling the generation
of fluent and contextually relevant text. GPT is pre-trained on a large corpus of text, such
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as web pages and books. It learns to generate text by conditioning on the preceding context.
Fine-tuning of GPT can be performed on specific tasks by providing task-specific prompts
or additional training data.

T5 (Text-to-Text Transfer Transformer): T5 employs a transformer architecture like BERT
but follows a text-to-text framework [112]. It can handle various NLP tasks using a unified
approach. T5 is trained using a text-to-text format, where both input and output are text
strings. It leverages a combination of unsupervised and supervised learning objectives for
pre-training and fine-tuning.

The field of transformers has witnessed remarkable progress, leading to the develop-
ment of several influential models for various natural language processing (NLP) tasks.
One prominent model is the adaptive text-to-speech (AdaSpeech) [113] system, which
focuses on generating highly realistic and natural-sounding synthesized speech. It employs
advanced techniques to overcome limitations in traditional text-to-speech systems, enabling
more expressive and dynamic speech synthesis.

For code-related tasks, researchers have introduced specialized transformer models
such as code understanding BERT (CuBERT) [110], CodeBERT [114], CODEGEN [50], and
CodeT5 [115]. CuBERT is specifically designed for code comprehension, leveraging the
power of transformers to understand and analyze source code. CodeBERT, on the other
hand, performs code-related tasks like code generation, bug detection, and code summariza-
tion. CODEGEN focuses on generating code snippets given natural language descriptions,
facilitating the automation of programming tasks. CodeT5, inspired by the T5 architecture,
excels in various code-related tasks, including code summarization, translation, and gener-
ation. The feed-forward transformer (FFT) [42] model is a versatile transformer architecture
that has demonstrated exceptional performance across multiple NLP tasks. It leverages a
feed-forward neural network to process and transform input sequences, enabling effective
modeling of complex language patterns and semantic relationships. The GPT language
model (Codex) [116], based on the GPT-3 architecture, has gained significant attention for
its ability to generate coherent and contextually relevant text. It excels in tasks such as
text completion, question answering, and text generation. InstructGPT (GPT-3) [111] is
another powerful language model that can understand and generate human-like text based
on specific prompts. It has been extensively used in various conversational AI applications,
virtual assistants, and creative writing assistance. Grapher [117] is a transformer model
designed to process and understand graphical data. It leverages graph neural networks
and self-attention mechanisms to capture dependencies and relationships within structured
data, enabling tasks such as graph classification, node-level prediction, and link prediction.
Language models for dialog applications (LaMDA) [33] are transformer-based models
specifically tailored for conversational tasks. They enhance dialogue understanding and
generation by capturing context, nuances, and conversational dynamics. LaMDA models
have shown promise in improving conversational agents, chatbots, and virtual assistants.
In the realm of multimodal tasks that involve both text and visual information, transformer-
based models have also made significant contributions. MotionCLIP [118] focuses on
understanding and generating textual descriptions of videos, bridging the gap between
language and visual understanding. Muse explores the connection between text and image,
enabling tasks such as text-based image retrieval and image captioning. The pre-trained
language model (PLM)/visual GPT [65] is a multimodal model that combines text and vi-
sual information to generate coherent and contextually relevant captions for images. Other
notable transformer models include T5X [119], text-to-text transfer transformer (T5) [39],
TFix [45], w2v-BERT (Word2Vec and BERT) [120], and WT5 (Why, T5?) [121]. T5X extends
the T5 architecture to handle even more complex NLP tasks and demonstrates superior
performance in tasks such as machine translation and text summarization. TFix focuses
on addressing issues related to fairness, transparency, and explainability in transformer
models. w2v-BERT combines Word2Vec and BERT to enhance the representation of word
semantics within the transformer framework. WT5 focuses on training text-to-text models
to explain their predictions. It builds upon the architecture of the text-to-text transfer
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transformer (T5) model. The primary objective of WT5 is to enhance the interpretabil-
ity and explainability of the T5 model by providing insights into the reasoning behind
its predictions.

3.2.7. Hybrid Models

Hybrid generative AI models are models that combine multiple generative AI tech-
niques or architectures to leverage their respective strengths and produce improved results.
These models aim to overcome limitations or enhance the capabilities of individual genera-
tive models by integrating different approaches.

Adversarial autoencoder (AAE): AAE is a type of generative model that combines ele-
ments of both autoencoders and generative adversarial networks (GANs). It is designed to
learn a compact latent representation of input data while generating realistic samples from
that latent space. The autoencoder is integrated with a GAN framework in an adversarial
autoencoder. The autoencoder acts as a generator network, taking in random noise and
creating samples in the latent space. Instead of attempting to discriminate between actual
and false samples, the discriminator network seeks to distinguish between samples from
the true latent distribution and samples produced by the autoencoder in Figure 11.
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An AAE’s training consists of two major stages, the reconstruction stage where the
autoencoder is trained to correctly reconstruct the input data. It reduces the reconstruction
loss between the input and output, which encourages the autoencoder to develop a mean-
ingful representation. Coming to the second stage which is the adversarial stage, where the
discriminator is trained to differentiate samples derived from the actual latent distribution
from samples produced by the autoencoder. The generator (autoencoder) seeks to produce
samples that deceive the discriminator. This adversarial training pushes the autoencoder to
generate realistic latent space samples. The AAE may learn a compact latent representation
that captures the main features of the input data while generating realistic samples from
that latent space by combining the reconstruction and adversarial phases. Adversarial
training prevents mode collapse and makes the generator explore its entire latent space.
Adversarial autoencoders have been employed in a wide range of applications, including
image generation [122], anomaly detection, and data synthesis.

PixelCNN: PixelCNN is a type of generative model that belongs to the family of
autoregressive models and is specifically tailored for generating images pixel by pixel. It
utilizes convolutional layers to capture spatial dependencies within the image. PixelCNN
models the conditional probability distribution of each pixel given its preceding context. By
modeling this conditional distribution, PixelCNN can generate images that exhibit realistic
textures and local coherence.

During training, PixelCNN is typically trained using maximum-likelihood estimation.
The model takes an image as input and is trained to maximize the likelihood of generating
that image. PixelCNN employs a process called autoregression for generating new images.
It starts with an empty canvas and generates the pixels one by one, conditioning each
prediction on the previously generated pixels. This autoregressive process allows the
model to capture complex dependencies and generate coherent images. PixelCNN has
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demonstrated success in tasks such as image completion, super-resolution, and image
synthesis [123].

Variational Autoencoder with Generative Adversarial Networks (VAE-GAN): This hybrid
model combines the generative capabilities of variational autoencoders (VAEs) and gen-
erative adversarial networks (GANs). The VAE component helps encode and decode
input data, while the GAN component enhances the realism and diversity of the generated
samples. Introspective adversarial networks [124] and Mol-CycleGAN [125] are examples
of this combination. In introspective adversarial networks, there are other techniques to
improve its performance, such as multiscale dilated convolution blocks and orthogonal
regularization. These techniques help the model to capture long-range dependencies in
the image, prevent overfitting, and generate images that are more realistic and coherent.
Mol-CycleGAN extends the CycleGAN framework to molecular embeddings in the latent
space of JT-VAE utilizes the latent space of JT-VAE (junction tree variational autoencoder)
as the embedding representation. The latent space is created by a neural network during
the training process. The advantage of using the latent space embedding is that the distance
between molecules can be defined directly in this space, enabling the calculation of the loss
function. VAE-GANs have been successfully applied in various domains, including image
synthesis, text generation, and music composition.

Generative Adversarial Networks (GAN) with Dense Convolutional Neural Networks (DenseNet)
or Residual Neural Networks (ResNet): Dense convolutional neural networks (DenseNet) are
known for their dense connections, which facilitate feature reuse and enhance the flow of gra-
dients throughout the network. DenseNet architectures have shown remarkable performance
in image classification tasks by capturing intricate patterns and representations in the data.
When combined with generative adversarial networks (GANs), DenseNet can contribute to
the generator component of the GAN framework. By utilizing DenseNet as the generator, the
hybrid model benefits from its powerful feature learning capabilities and the ability to capture
complex patterns and details in the data. ResNet is also used in similar way but there is a slight
difference between them ResNet’s skip connections enable training of very deep networks,
while DenseNet’s dense connectivity promotes parameter efficiency and better information
flow. This combination of models is done in CycleGAN [54], PGGAN [126]. CycleGAN is a
powerful framework for unsupervised image translation by leveraging the concept of cycle
consistency and utilizing architectures such as ResNet and PatchGAN to achieve impressive
results in various image-to-image translation tasks. The PGGAN discriminator, formed by
combining PatchGAN and G-GAN, provides fine-grained evaluation of local image patches
and incorporates gradient penalty regularization, enhancing the training stability and diversity
of generated samples in the PGGAN framework.

Generative Adversarial Networks (GAN) with Recurrent Neural Networks (RNN) or Convolu-
tional Neural Networks (CNN): Combining RNNs or CNNs with GANs, it becomes possible
to generate sequences that possess both coherence and realism. The RNN component pro-
vides the ability to model sequential dependencies, ensuring that the generated sequences
flow naturally and exhibit contextual understanding. The GAN component, on the other
hand, improves the diversity and quality of the generated sequences by leveraging the
adversarial training process. In the RTT-GAN [62], the generator of the GAN employs a
hierarchical structure and attention mechanisms to retain contextual states at various levels
and a hierarchical structure and attention mechanisms to retain contextual states at various
levels. The hierarchy is formed by a paragraph-level recurrent neural network (RNN),
a sentence-level RNN, and a word-level RNN, along with two attention modules. The
paragraph RNN encodes the current paragraph state by considering preceding sentences.
The spatial–visual attention module selectively focuses on semantic regions, guided by the
current paragraph state, to generate the visual representation of the sentence. Consequently,
the sentence RNN can encode a topic vector for the newly generated sentence. The dis-
criminator LSTM RNN takes the sentence embeddings of all preceding sentences as inputs.
It computes the topic smoothness value of the current constructed paragraph description
at each recurrent step, assessing the coherence of topics across the generated sentences.
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With these multi-level assessments, the model can generate long yet realistic descriptions,
maintaining both sentence-level plausibility and topic coherence. In the CNN-GAN model,
a convolutional encoder–decoder network is utilized for generating new content by jointly
training it with adversarial networks. This training setup aims to ensure coherence between
the generated pixels and the existing ones. These CNN-based methods have demonstrated
the ability to generate realistic and plausible content in highly structured images, such as
faces, objects, and scenes [127].

Generative Adversarial Networks (GAN) with Denoising Diffusion Probabilistic Models
(DDPM) and Transformers: Combination DDPMs, GANs, and transformers can create a
hybrid generative AI model with enhanced capabilities. This combination allows for
the generation of diverse and high-quality samples while leveraging the strengths of
each component. DiffGAN-TTS [128] and ProDiff [53] implement this combination of
models. DiffGAN-TTS is a novel text-to-speech (TTS) model that achieves high-fidelity
and efficient speech synthesis. It takes inspiration from the denoising diffusion GAN
model and models the denoising distribution using an expressive acoustic generator.
This generator is trained adversarially to match the true denoising distribution, ensuring
high-quality output spectrograms. DiffGAN-TTS ability to allow large denoising steps
during inference. This reduces the number of denoising steps required and accelerates the
sampling process. To further enhance sampling efficiency, DiffGAN-TTS incorporates an
active shallow diffusion mechanism. ProDiff utilizes generator-based parameterization,
where the denoising model directly predicts clean data using a neural network [53]. This
approach has shown advantages in accelerating sampling from complex distributions. By
directly predicting clean data, ProDiff avoids the need to estimate gradients and achieves
faster synthesis.

Transformer with Recurrent Neural Network (RNN): The combination of transformers and
RNNs can leverage the strengths of both architectures, allowing for improved modeling
of sequential data with long-term dependencies and global context understanding. This
combination is useful for tasks such as speech recognition, time series forecasting, and
video processing, where both local temporal dependencies and global context are crucial for
accurate predictions. MolT5 [58] implements three baseline models for the tasks of molecule
captioning and molecule generation. The first baseline is a four-layer GRU recurrent neural
network with a bidirectional encoder. This model leverages the sequential nature of the
data and captures contextual information from both past and future. The second baseline
is based on the transformer architecture, consisting of six encoder and decoder layers.
Transformers utilize self-attention mechanisms to capture global dependencies and have
been successful in various sequence-to-sequence tasks. The third baseline is based on the
T5 model, a pre-trained sequence-to-sequence model. Three T5 checkpoints, namely small,
base, and large, are fine-tuned for molecule captioning and molecule generation. T5 models
have shown strong performance in natural language processing tasks.

Transformer with Graph Convolutional Network (GCN): For tasks that require graph-
structured data, this hybrid model combines the strength of transformers and GCNs.
Transformers excel at sequence-to-sequence tasks and have demonstrated success in natural
language processing and image processing. GCNs, on the other hand, are especially
intended to handle graph-structured data and capture node relationships. This hybrid
model can effectively capture both the sequential dependencies of the data and the graph-
based relationships by combining transformers and GCNs, enabling enhanced modeling
and representation learning in graph-based tasks such as node classification, link prediction,
graph generation and molecule structure generation [60].

Transformer with Long Short-Term Memory (LSTM): The transformer architecture with
long short-term memory (LSTM) is a type of recurrent neural network known for its ability
to capture long-term dependencies in sequential data. Transformers are powerful models
for sequence processing, leveraging self-attention mechanisms to capture dependencies
across the sequence. The GTR-LSTM [129] encoder provides a graph-based approach to
encoding triples, considering the structural relationships between entities in a knowledge
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graph. By incorporating attention mechanisms and entity masking, the model aims to
generate coherent and meaningful output sequences based on the input graph.

Vision Transformers with Residual Neural Networks (ResNet): Vision transformers leverage
the self-attention mechanism of transformers to capture long-range dependencies and en-
able effective modeling of image data. The combination of ResNet and vision transformers
can benefit from both the local feature extraction capabilities of ResNet and the global
context understanding of vision transformers, resulting in improved image understanding
and representation [130].

Diffusion probabilistic models with Contrastive Language-Image Pretraining (CLIP): Dif-
fusion modeling is a powerful technique for modeling complex data distributions and
generating high-quality samples. CLIP, on the other hand, is a state-of-the-art method
for learning visual representations from images and corresponding textual descriptions.
DiffusionCLIP [131] combines the power of diffusion modeling and the guidance of CLIP
to enable precise and controlled image manipulation. It leverages pretrained diffusion
models and the CLIP loss to fine-tune the diffusion model and generate samples that align
with a target textual description, which opens new possibilities for image generation and
manipulation tasks.

Convolutional Neural Network (CNN) with Bidirectional Encoder Representations from
Transformers (BERT): CLAP (contrastive learning for audio and text pairing) [47] is a model
that jointly trains an audio encoder and a text encoder to learn the similarity or dissimilarity
between audio and text pairs. The goal is to enable zero-shot classification by computing
embeddings for audio and text and using cosine similarity to measure their similarity. The
model takes audio and text pairs as input, which are separately processed by the audio
encoder and text encoder. The encoders extract meaningful representations from the audio
and text inputs. These representations are then projected into a joint multimodal space
using linear projections.

Convolutional Sequence-to-Sequence Learning (ConvS2S): This is a neural network archi-
tecture that was introduced for sequence-to-sequence tasks, such as machine translation
or speech recognition. It leverages convolutional neural networks (CNNs) to process in-
put sequences and generate output sequences, providing an alternative to the commonly
used recurrent neural networks (RNNs) Unlike RNN-based models that rely on sequential
processing, ConvS2S [132] applies parallel convolutions across the input sequence. This
enables more efficient computation and allows for better utilization of parallel processing
capabilities, leading to faster training and inference times. The use of convolutions also
helps capture local dependencies in the input sequence, which can be beneficial for tasks
where context is primarily determined by nearby elements. The architecture of ConvS2S
typically consists of an encoder and a decoder. The encoder is composed of several layers
of 1D convolutional filters followed by non-linear activation functions. These filters capture
different patterns and features in the input sequence, allowing for effective representa-
tion learning. The decoder, on the other hand, employs similar convolutional layers but
with additional techniques like attention mechanisms to generate the output sequence.
Unlike RNN-based models that rely on sequential processing, ConvS2S applies parallel
convolutions across the input sequence. This enables more efficient computation and
allows for better utilization of parallel processing capabilities, leading to faster training
and inference times. The use of convolutions also helps capture local dependencies in the
input sequence, which can be beneficial for tasks where context is primarily determined
by nearby elements. The architecture of ConvS2S typically consists of an encoder and a
decoder. The encoder is composed of several layers of 1D convolutional filters followed by
non-linear activation functions. These filters capture different patterns and features in the
input sequence, allowing for effective representation learning. The decoder, on the other
hand, employs similar convolutional layers but with additional techniques like attention
mechanisms to generate the output sequence.
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3.3. AIGC Input–Output Classification

The field of AI content generation encompasses a wide array of aspects, leading to
the development of numerous methods. These methods can be categorized into different
groups based on the nature of the input and output involved. In this section, we will
explore various techniques that enable the generation of AI-driven content by transforming
different types of input into desired output. The classification of the input–output types of
AIGC is given in Table 5.

Table 5. Generative AI Models for Various Input–Output Transformations.

Input Output Prescribed Task Technique/ Technology/ Model Ref.

Image

3D Image Text-guided 3D object generation: generating 3D objects based on
textual descriptions DREAMFUSION [133]

Image Blind motion deblurring of a single photograph
DeblurGAN [61]

DeblurGAN-v2 [56]

Image Generate highly realistic and diverse synthetic images StyleGAN [4]

Image Blending two Images Gaussian-Poisson Generative Adversarial Network (GP-GAN) [134]

Image Image compositing or image blending Geometrically and Color Consistent GANs (GCC-GANs) [64]

Image Filling absent pixels in an image or image inpainting

Exemplar GANs (ExGANs) [99]

Contextual Attention Generative Adversarial Networks (CA-
Generative Adversarial Networks (GAN)) [127]

PGGAN [126]

Image Face aging: generating images that depict a hypothetical future
appearance of a person.

Age-cGAN [135]

Conditional Adversarial Autoencoder (CAAE) [122]

Identity-Preserved Conditional Generative Adversarial Networks
(IPCGANs) [136]

Image Image editing Introspective Adversarial Network (IAN) [124]

Image Medical image analysis: segmenting objects or regions in an image SegAN [100]

Image Converting low-resolution images to high resolution Multi-Level Densely Connected Super-Resolution Network (mD-
CSRN) [137]

Image Synthesizing a photorealistic frontal view from a single face image Two-Pathway Generative Adversarial Network [138]

Image To increase the resolution of an image Super Resolution GAN (SRGAN) [90]

Image Generates high-quality face samples at a resolution of 128 × 128
pixels Boundary Equilibrium GAN (BEGAN) [139]

Image To increase the resolution of an image better than SRGAN Enhanced Super Resolution GAN (SRGAN) [140]

Image To convert the image content from one domain to another Conditional Generative Adversarial Networks (CGAN) [81]

Image Style transfer, image-to-image translation, domain adaptation,
data augmentation cycle generative adversarial networks (CycleGAN) [87]

Image Style transfer, image synthesis, image-to-image translation, and
domain adaptation

Discover Cross-Domain Relations with Generative Adversarial
Networks (DiscoGAN) [88]

Image Method for training generative neural networks for efficient tex-
ture synthesis Markovian Generative Adversarial Networks (MGANs) [141]

Image
Specifically designed for spatial data and related tasks such as
image generation, editing, manipulation, data augmentation, and
style transfer

Spatial Generative Adversarial Networks (Spatial GAN) [142]

Image
Creating tileable textures for 3D models, generating repeating
backgrounds or surfaces for digital art or design, or synthesizing
periodic visual elements for games or virtual environments

Periodic Spatial Generative Adversarial Networks (Spatial GAN) [143]

Image To generate high-quality, high-resolution, and diverse synthetic
images that resemble real-world images Big Generative Adversarial Networks (BigGAN) [43]

Image Cyber intrusion and malware detection Defense-Generative Adversarial Networks [95]

Image Generating images in a target domain from a different source
domain Domain Transfer Network (DTN) [89]

Text Generate textual descriptions for given images Recurrent Topic-Transition Generative Adversarial Network (RTT-
Generative Adversarial Networks (GAN)) [62]

Text Image-to-text generation or image captioning Show and Tell: Neural Image Captioning [59]

Text Generating handwritten characters in a target font style or creating
new fonts or handwritten font generation DenseNet Cycle Generative Adversarial Networks (GAN) [54]

Text Answers questions based on image input Visual Language Model - Flamingo [109]
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Table 5. Cont.

Input Output Prescribed Task Technique/ Technology/ Model Ref.

Text

3D Image Generate 3D images using textual descriptions Magic3D [103]

3D
Animated
Avatar

Generate text-driven 3D avatar with animations AvatarCLIP [66]

3D Faces Generate personalized, animatable 3D faces using text guidance DreamFace [102]

3D Human
Avatar

Generate 3D human avatars with identities and artistic styles using a text
prompt AvatarCraft [55]

3D Human
Motion Generate 3D motion using text descriptions MotionCLIP [118]

Animated
Character Generate animated characters from text Progressive Structure-conditional GANs (PSGAN) [144]

Audio Generate audio using text w2v-BERT (Word2Vec and BERT) [120]

Music Generate music from lyrics Jukebox [145]

Code
Generate valid programming code using natural language descriptions

CodeBERT [114]

CODEGEN [50]

CodeT5 [115]

Codex [116]

It assists in code completion, bug detection, and code summarization Code Understanding BERT (CuBERT) [110]

Generate competition-level code Pre-trained Transformer-Based Language Model - Alphacode [35]

Knowledge
graph Generate a knowledge graph (KG) using textual inputs Grapher [117]

Image

Generate images using text Text Conditioned Auxiliary Classifier Generative Adversarial Network
(TAC-GAN) [84]

Generate Steganographic images to hide secret information
Steganographic Generative Adversarial Networks model (SGAN) [146]

Secure Steganography Based on Generative Adversarial Networks (SS-
GAN) [96]

Manipulate/edit images using textual descriptions Text-Adaptive Generative Adversarial Network (TAGAN) [67]

Generate images based on textual instructions

Denoising Diffusion Probabilistic Models (DDPM) [101]

Guided Language to Image Diffusion for Generation (GLIDE) [147]

Imagen [148]

Attentional Generative Adversarial Networks (AttnGAN) [92]

CogView [77]

Auxiliary Classifier GANs (AC-GAN) [149]

Stacked Generative Adversarial Networks (StackGAN) [93]

alignDRAW (Deep Recurrent Attention Writer) [78]

Deep Convolutional Generative Adversarial Networks (DCGAN) [86]

Muse [150]

Text Conditioned Auxiliary Classifier GAN (TAC-GAN) [67]

Image Generate more complex images using captions Generative Adversarial CLIPs (GALIP) [151]

Image Generate original, realistic images and art using a text prompt Contrastive Language Image Pre-training (CLIP) [130]

Molecule Text-based de novo molecule generation, molecule captioning MolT5 (Molecular T5) [58]

Molecule
Structure Generate or retrieve molecular structures using textual description Text2Mol [60]

Speech

Synthesize custom voice speech using text Adaptive Text to Speech (AdaSpeech) [113]

Convert text to human-like speech

Denoising Diffusion Model for Text-to-Speech (Diff-TTS) [63]

Grad-TTS [152]

ProDiff [53]

DiffGenerative Adversarial Networks (GAN)-TTS [128]

Pixel Convolutional Neural Network - Wavenet [123]

Generate speech using text Feed-Forward Transformer (FFT) [42]

Generate high-quality, synthetic musical audio clips Generative Adversarial Networks Synth (GANSynth) [153]

Text To translate text from one language to another

Text-to-Text Transfer Transformer (T5) [39]

Convolutional Sequence to Sequence Learning (ConvS2S) [132]

Sequence to Sequence (Seq2Seq) [108]

Text Generate handwritten characters in a target/new font style using text GlyphGAN [154]

Text Generate accurate and meaningful corrections for code issues TFix [45]

Text Explains the given input statements WT5 (Why, T5?) [121]

Text Perform tasks like translation, question answering, classification, and
summarization using input texts Text-To-Text Transformer (T5) [39]

Text Generate or crack passwords PassGAN [155]

Text Chat with users, answer follow-up questions, challenge incorrect
premises, and reject inappropriate requests InstructGPT (GPT-3) [111]

Text Operate as a conversational AI system to chat with users and answer
follow-up questions Language Models for Dialog Applications (LaMDA) [33]
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Table 5. Cont.

Input Output Prescribed Task Technique/ Technology/ Model Ref.

Text Write drafts, add suggestions, propose edits and provide explanations
for its actions PEER (Plan, Edit, Explain, Repeat) [34]

Text Password cracking Improved Wasserstein GAN (IWGAN) [85]

Text Predict future markets using historical data

GAN-FD [156]

Stochastic Time-series Generative Adversarial Network (ST-GAN) [157]

Multiple Time-series Generative Adversarial Networks (MTSGAN) [158]

Video Generate text-guided videos

MAKE-A-VIDEO [159]

IMAGEN VIDEO [160]

Tune-A-Video [104]

2D Structure
Molecule

3D
Structure
Molecule

Generating 3D molecular structure Geometry Complete Diffusion Model (GCDM) [105]

3D Image 3D Image
Performing inpainting on 3D images Point Encoder GAN [161]

Generation of realistic human poses GAN-Poser [51]

Audio Text Generating captions for audio Contrastive Language-Audio Pretraining (CLAP) [47]

Chemical
Properties

Molecule Designing molecules/drugs with desired properties Mol-Cycle Generative Adversarial Networks (GAN) [125]

Molecular
Graphs Creating molecular graphs or designing molecule graphs Junction Tree Variational Autoencoder (JT-VAE) [57]

Molecular
Graphs Designing molecule graphs from chemical properties MoFlow [76]

Data Text Generating natural language from structured data Text-To-Text Transformer (T5) [112]

Gesture Text Gesture recognition DCGAN (Deep Convolutional Generative Adversarial Network) with
CNN (Convolutional Neural Network) [36]

Graphs
Molecule
Structure Molecule generation Constrained Graph Variational Autoencoder (CGVAE) [79]

Graph Generates the periodic structure of materials Crystal Diffusion Variational Autoencoders (CDVAE) [80]

Image+Text Image

A text-guided image manipulation method LDEdit [49]

Generating steganographic images (hiding messages in an image) SteganoGAN [162]

Performing text-driven image manipulation/editing Style Contrastive Language-Image Pre-training (StyleCLIP) [98]

Describing and editing the given image based on the text prompt Pre-trained Language Model (PLM) - Visual GPT [65]

Knowledge Graph Text Converting knowledge graph-based RDF triples to text GTR-Long Short-Term Memory (LSTM) [129]

Music Text Generating captions for music audio MusCaps [48]

Road Network Road Net-
work Synthesizing road networks StreetGAN [97]

Speech Speech Speech enhancement SEcGAN [82]

Tabular Data Tabular
Data

Synthesize fake tables that are statistically similar to the original table Table-GAN [52]

Generate a synthetic dataset that is statistically similar to the original
data Tabular GAN (TGAN) [94]

Generate synthetic data for tabular datasets Conditional Tabular GAN (CTGAN) [83]

Text+Image
Image

Performing text-based realistic image synthesis/generation Semantic Image Synthesis via Adversarial Learning (SISGAN) [163]

Text-based image manipulation
DIFFEDIT [164]

DiffusionCLIP [131]

Video Generating video from text prompt and input image PHENAKI [119]

Text+Shape 3D Avatar Generating 3D avatars guided by text and shape DreamAvatar [165]

Video Video Converting low-resolution videos to higher-resolution videos VSRResFeatGAN [91]

Video+Text Video Editing videos based on text input and animating images based on input
(image+text) Video Diffusion Model (VDM) - Dreamix [106]

3.3.1. Text to Text

In the field of natural language processing, the ability to transform text into various
textual outputs has been revolutionized by generative AI techniques. This section explores
the field of text-to-text generation, where diverse tasks are accomplished by leveraging ad-
vanced models. Table 5 provides a comprehensive overview of the wide range of tasks that
can be achieved using text-to-text generation approaches. At the core of these techniques
lies the process initiated by the user input or ’prompt’. This input is processed through
an encoder, which not only interprets the text but also converts it into a series of ’hidden
states’. The decoder then takes these hidden states and performs further processing to
generate a response that is contextually relevant to the user’s prompt. The response can
vary depending on the task: translation, answering questions, suggesting code corrections,
or generating text in different fonts, the possibilities are vast. ChatGPT is an impressive
text-to-text technique that enhances the GPT-3 [5] architecture to engage in dynamic conver-
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sations. In addition to ChatGPT, other influential models like T5 [39], ConvS2S [132], and
Seq2Seq [108] have made significant contributions in the field. These models excel in tasks
such as language translation. InstructGPT [111] specializes in handling follow-up questions,
challenging incorrect assumptions, and rejecting inappropriate requests, while TFix [45]
assists in code corrections and suggests meaningful improvements. The underlying process
of text-to-text generation encompasses both transformer-based architectures and models
that harness the power of generative adversarial networks (GANs). For example, models
like PassGAN [155] employ GANs to generate or crack passwords, and GlyphGAN [154]
utilizes GANs to create handwritten characters in different font styles based on text input.
This fusion of transformer-based approaches and GAN-based models expands the horizons
of text-to-text generation, unlocking exciting possibilities in natural language processing.

3.3.2. Text to Image

Text-to-image techniques have evolved significantly, enabling the generation of images
from textual descriptions. Previously, image captioning, an image-to-text approach, was
more prevalent. However, with the emergence of notable applications like DALL-E [166]
and Midjourney, along with other existing models, text-to-image synthesis has gained
prominence. Figure 12 was generated from DALL-E with a given prompt and Figure 13
was generated by Midjourney. Various architectures, such as GAN, diffusion, VAE, and
transformers, are employed to facilitate text-to-image generation. In order to provide a
comprehensive overview of the field, Table 5 presents prescribed tasks and various tech-
niques/models utilized in text-to-image synthesis. Among the diffusion-based models,
GLIDE [147] and Imagen [148] have gained popularity for their impressive results. Stack-
GAN [93] has introduced a two-stage image generation process using GAN, involving
Stage-I GAN and Stage-II GAN, which enables the generation of high-quality images.
AttnGAN [92] is another prominent technique that employs multi-stage refinement, signifi-
cantly improving the quality of the generated images. Additionally, novel approaches like
SGAN [146] and SSGAN [96] have proven helpful in the domain of stenography. Figure 14
was obtained from Imagen for the given prompt “Sprouts in the shape of text ‘Imagen‘
coming out of a fairytale book”.
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Figure 12. Prompt is "An
astronaut dance party on
the surface of Mars".
(Image was obtained
from DALL-E.)

Figure 13. Prompt is
"Sprouts in the shape of
text ’Imagen’ coming out
of a fairytale book".
(Image was obtained
from Imagen.)

Figure 14. Prompt is "3D
oil painting tulip".
(Image was obtained
from Midjourney.)

3.3.3. Text-to-Audio/Speech: 955

Text-to-Speech (TTS) and Text-to-Audio techniques both involve converting text into 956

human-like speech and generating music with various vocal styles, respectively. TTS is 957

commonly used in applications such as voice assistants, voice navigation systems, and 958

audiobooks. One notable approach in this field is AdaSpeech [? ], which is an efficient 959

custom voice synthesis technique. It utilizes two acoustic encoders: one for extracting 960

the sequence of phonemes and another for extracting utterance-level information. By 961

incorporating conditional layer normalization in the mel-spectrogram decoder, AdaSpeech 962

[? ] enhances the quality of the synthesized voice. Several diffusion-based models, such 963

as Diff-TTS [? ], Grad-TTS [? ], and ProDiff [? ], have been developed to achieve more 964

human-like speech synthesis using Diffusion techniques. Additionally, a hybrid model 965

called DiffGAN-TTS [? ] combines both Diffusion and GAN architecture to further enhance 966

the quality of speech synthesis. Another interesting technique is GANSynth [? ], which 967

focuses on generating high-quality musical clips from text. Jukebox [? ], on the other hand, 968

is a VQ-VAE based model that can generate music from lyrics, thereby accomplishing 969

the Lyrics-to-Singing (LTS) task. In the domain of audio classification, Microsoft’s CLAP 970

[? ] is a notable pioneer. It utilizes audio and text encoders to classify audio samples, 971

such as identifying sounds like audience claps, bird sounds, and other environmental 972

audio cues. This technique can be considered an example of Audio-to-Text conversion. 973

Additionally, there are techniques like MusCaps [? ], which aid in captioning music by 974

genre, and SecGAN [? ], a speech enhancement technique that uses conditional GAN to 975

achieve Speech-to-Speech conversion. These techniques showcase the versatility and broad 976

range of applications within the realm of audio and speech processing. 977

3.3.4. Text-to-Code and Code-to-Text: 978

In the world of software development, the task of manually writing or replicating code 979

patterns can be a time-consuming process. However, there is an innovative solution known 980

as Text-to-Code and Code-to-Text, which offers significant benefits. Text-to-Code enables 981

us to generate entire source code for specific business problems, resolve issues within 982

existing code by providing suggestions for corrections, while Code-to-Text empowers us 983

to generate documentations for the code. Moreover, these cutting-edge advancements 984

leverage generative AI techniques, allowing us to effortlessly complete simple functions. 985

Notably, GitHub has recently launched GitHub Copilot, which utilizes Open AI Codex [? ]. 986

It allows for tasks such as generating repetitive code patterns or even entire functions by 987

simply providing natural language comments in the editor. Another noteworthy model 988

is CodeBERT [? ], which is based on a bimodal transformer [? ] technique. CodeBERT 989

supports natural language (NL) to programming language (PL) applications, enabling 990

tasks such as code search, code documentation (code-to-text), and code review. Addition- 991

ally, CodeBERT [? ] has been further pretrained for CodeReviewer [? ], CodeExecutor [? 992

Figure 12. Prompt is “An astronaut dance party on the surface of Mars”. (Image was obtained from
DALL-E.)
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3.3.3. Text to Audio/Speech

Text-to-speech (TTS) and text-to-audio techniques both involve converting text into
human-like speech and generating music with various vocal styles, respectively. TTS is
commonly used in applications such as voice assistants, voice navigation systems, and
audiobooks. One notable approach in this field is AdaSpeech [113], which is an efficient
custom voice synthesis technique. It utilizes two acoustic encoders: one for extracting the
sequence of phonemes and another for extracting utterance-level information. By incorpo-
rating conditional layer normalization in the mel-spectrogram decoder, AdaSpeech [113]
enhances the quality of the synthesized voice. Several diffusion-based models, such as
Diff-TTS [63], Grad-TTS [152], and ProDiff [53], have been developed to achieve more
human-like speech synthesis using diffusion techniques. Additionally, a hybrid model
called DiffGAN-TTS [128] combines both diffusion and GAN architecture to further en-
hance the quality of speech synthesis. Another interesting technique is GANSynth [153],
which focuses on generating high-quality musical clips from text. Jukebox [145], on the
other hand, is a VQ-VAE based model that can generate music from lyrics, thereby accom-
plishing the lyrics-to-singing (LTS) task. In the domain of audio classification, Microsoft’s
CLAP [47] is a notable pioneer. It utilizes audio and text encoders to classify audio samples,
such as identifying sounds like audience claps, bird sounds, and other environmental
audio cues. This technique can be considered an example of audio-to-text conversion.
Additionally, there are techniques like MusCaps [48], which aid in captioning music by
genre, and SecGAN [82], a speech enhancement technique that uses conditional GAN to
achieve speech-to-speech conversion. These techniques showcase the versatility and broad
range of applications within the realm of audio and speech processing.

3.3.4. Text to Code and Code to Text

In the world of software development, the task of manually writing or replicating
code patterns can be a time-consuming process. However, there is an innovative solu-
tion known as text to code and code to text, which offers significant benefits. Text to
code enables us to generate entire source code for specific business problems, resolve
issues within existing code by providing suggestions for corrections, while code to text
empowers us to generate documentations for the code. Moreover, these cutting-edge ad-
vancements leverage generative AI techniques, allowing us to effortlessly complete simple
functions. Notably, GitHub has recently launched GitHub Copilot, which utilizes Open
AI Codex [116]. It allows for tasks such as generating repetitive code patterns or even
entire functions by simply providing natural language comments in the editor. Figure 15
demonstrates the generation of source code using the textual prompt. Another notewor-
thy model is CodeBERT [114], which is based on a bimodal transformer [1] technique.
CodeBERT supports natural-language (NL)-to-programming-language (PL) applications,
enabling tasks such as code search, code documentation (code to text), and code review.
Additionally, CodeBERT [114] has been further pretrained for CodeReviewer [167], CodeEx-
ecutor [168](for tracking execution traces), GraphCodeBERT [169] (for code refinement and
translation between programming languages), and UniXcoder [170] (for code generation
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tasks). CODEGEN [50] is an autoregressive-transformer-based large language model (LLM)
that specializes in program synthesis based on input and expected output or even natural
language descriptions. CodeT5 [115], on the other hand, is a pre-trained encoder–decoder
transformer model capable of tasks such as code understanding, code generation, and
converting source code between programming languages. Additionally, AlphaCode [35],
another encoder–decoder transformer-based model, excels in understanding algorithms
and generating competition-level source code for given problem statements. This model
has been effectively evaluated on the Codeforces platform.
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3.3.5. Image to Text

The content of an image can be described using AIGC techniques, which leverages the
power of computer vision and natural language processing. One notable model in this field
is the Show and Tell: Neural Image Caption (NIC) [59] developed by the Google research
team, which serves as the foundation for image captioning applications.

The architecture process of NIC [59] involves the utilization of convolutional neural
networks (CNN) and long short-term memory (LSTM), a type of recurrent neural network
(RNN). The CNN acts as an encoder, extracting visual features from the image. These
features capture the salient information necessary for generating meaningful captions. The
extracted features are then passed on to the LSTM, which functions as a decoder. The LSTM
generates a sequence of words or a description based on the visual features obtained from
the CNN.

Subsequently, attention mechanisms were introduced to further improve image cap-
tioning. One such model is the recurrent topic-transition GAN (RTT-GAN) [62], which
enhances the caption generation process by incorporating attention-based techniques. The
architecture of RTT-GAN [62] includes a generator and two discriminators. The generator
recurrently produces sentences using semantic regions, allowing it to focus on different
aspects of the image and generate more contextually relevant captions. The two discrim-
inators assess the quality of the sentences generated by the generator, ensuring that the
captions are accurate and coherent.

Another noteworthy model within the realm of visual attention is show, attend and
tell [171]. This model also incorporates an visual attention mechanism, specifically the
soft attention mechanism. It allows the model to dynamically focus on different regions
of the image while generating captions. By attending to relevant image regions, the
model can generate more accurate and detailed descriptions. VisualGPT [65] based on pre-
trained language model (PLM) which employs an encoder–decoder attention mechanism
to generate a suitable caption for an given image.

Overall, these models demonstrate the advancements in image-to-text generation
by combining the power of computer vision, natural language processing, and attention
mechanisms.
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3.3.6. Approaches for Visual Content Generation

Visual content generation techniques have evolved significantly in recent years, offer-
ing diverse approaches for creating compelling visual media. This section explores three
key methods: text to video, text+video to video, and video to video. These techniques
enable the generation of visual content based on text descriptions, combined text and video
inputs, and existing video data, respectively. By referring to Table 5, which outlines model
names and their associated tasks, we can obtain a comprehensive understanding of the
diverse potential and progress within the field of visual content generation.

Image to Image

In the realm of image processing and synthesis, image-to-image techniques offer a wide
array of tasks and models that empower us to manipulate and transform images in diverse
ways, including the synthesis of highly realistic images. One such powerful technique in
generating highly realistic and diverse synthetic images is StyleGAN [4]. Its architecture
includes a generator network that produces synthetic images based on a learned mapping
from a latent space to the image space. An intriguing aspect of StyleGAN [4] is the
introduction of adaptive instance normalization, which grants control over different aspects
of the image’s style and appearance. Consequently, this approach leads to the generation
of highly realistic and visually diverse synthetic images.

Another task within image-to-image techniques is image editing, which allows for
precise modifications to images. The Neural Photo Editor with Introspective Adversarial
Network [124], a hybrid model combining the power of generative adversarial networks
(GANs) and variational autoencoders (VAEs), enables us to edit various aspects of an
image, such as color or even hair color in a portrait. This model’s architecture leverages the
strengths of GANs and VAEs.
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Figure 16. Deblurring the images using DeblurGAN-v2 (DeblurGAN-v2 model downloaded from
https://github.com/VITA-Group/DeblurGANv2, (accessed on 25 July 2023) and used our image).

Image deblurring aims to enhance the clarity and sharpness of blurred images. Models
like DeblurGAN [61], which is based on conditional GANs, and DeblurGAN-v2 [56], a
conditional GAN with a double-scale discriminator, effectively address this challenge.
Figure 16 demonstrates the deblurring task on images using DeblurGAN-v2. Style transfer
is another fascinating task within image-to-image techniques, enabling the application of
artistic styles to images. Models like CycleGAN [87] leverage the power of adversarial
training and cyclical consistency loss to learn mappings between different visual domains.
This allows for the translation of images between domains while preserving important style
characteristics, opening up new possibilities for creative expression. Image compositing
or blending involves the seamless combination of two images. Geometrically and color
consistent GANs (GCC-GANs) [64] specialize in this task. The architecture of GCC-GANs
includes four sub-networks: a transformation network, a refinement network, a discrimina-
tor network, and a segmentation network. The transformation and refinement networks
work together to generate the composited image, while the discriminator and segmentation
networks play a crucial role in increasing the realism of the blended image by leveraging
geometric and color consistency constraints. By incorporating these sub-networks, GCC-
GANs [64] ensure visually appealing and realistic image blending. To fill absent pixels in

https://github.com/VITA-Group/DeblurGANv2
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an image or perform image inpainting, Exemplar GANs (ExGANs) [99] come into play. By
leveraging exemplar-based techniques, ExGANs [99] effectively fill in the missing areas,
resulting in visually plausible and coherent images.

For face aging, there are models like Age-cGAN [135], conditional adversarial autoen-
coders (CAAE) [122], and identity-preserved conditional generative adversarial networks
(IPCGANs) [136]. Age-cGAN [135] employs an architecture that includes a generator
network responsible for generating aged faces based on input images and a discriminator
network that provides feedback on the realism and age progression of the generated faces.
IPCGANs [136] also adopt a similar architecture, with a focus on preserving the identity of
the person while generating the hypothetical future appearance. By incorporating condi-
tional inputs and adversarial training, these models generate realistic and convincing aged
face images.

Furthermore, image segmentation plays a vital role in various domains, particularly
in medical image analysis. SegAN [100], a model combining GANs and convolutional
neural networks (CNNs), excels in accurately segmenting objects or regions within medical
images. By leveraging its generator network for producing segmentation maps and discrim-
inator network for feedback, SegAN contributes to advancements in medical imaging and
diagnosis. Boundary equilibrium GAN (BEGAN) [139] focuses on generating high-quality
face samples at a resolution of 128 × 128 pixels. It employs an architecture that achieves
equilibrium between generator and discriminator networks, enabling stable training and
the synthesis of visually appealing facial images. To tackle the challenge of converting
low-resolution images to high-resolution, two powerful techniques come to the forefront:
the multi-level densely connected super-resolution network (mDCSRN) [137] and the su-
per resolution GAN (SRGAN). The mDCSRN takes a unique approach by employing a
densely connected architecture with skip connections. By progressively upsampling the
input image through multiple levels, it effectively enhances image details while ensuring
the preservation and propagation of important image features. On the other hand, SR-
GAN [90] adopts a different strategy by combining a generator network and a discriminator
network. The generator network utilizes deep residual blocks to extract and reconstruct
high-frequency image details, resulting in remarkable resolution enhancement. Lastly,
domain transfer networks (DTN) [89] specialize in generating images in a target domain
based on different source domains. These models facilitate the seamless translation of
visual content across domains, enabling applications such as style transfer, image synthesis,
and data augmentation.Exploring these image-to-image techniques not only unlocks new
possibilities for image manipulation and transformation but also drives advancements in
the field of computer vision. These models and tasks provide invaluable tools for tasks
such as image editing, deblurring, resolution enhancement, style transfer, domain transfer,
and image segmentation, ultimately contributing to the progress and innovation of image
processing and synthesis.

Text-to-Video

Text-to-image (T2I) models have achieved remarkable progress in generating visual
content based on text descriptions. Building upon this advancement, researchers have now
turned their attention to text-to-video (T2V) generation. In the early works of this field, one
notable technique that emerged was temporal GANs conditioning on captions (TGANs-C).
TGANs-C, based on generative adversarial networks (GANs), focused on generating video
sequences from textual descriptions. Expanding to TGANs-C [172], subsequent research
has led to the development of various diffusion-based models for text-to-video generation.
One such technique is “Make-A-Video” by Meta AI, which directly extends the diffusion-
based T2I advancements to T2V. This approach leverages paired text-image data to capture
the visual appearance and descriptions of the world, while utilizing unsupervised video
footage to understand motion dynamics. In the “Make-A-Video” [159] technique, the text
input undergoes processing using a decoder to create image embeddings. These generated
images are then interpolated to influence the frames per second in the resulting video.
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Spatiotemporal layers are employed to produce high-resolution video output. Another
noteworthy model in this domain is IMAGEN VIDEO [160], introduced by Google. It is a
diffusion-based model that goes beyond generating simple text-guided videos, enabling
the creation of text animations with diverse artistic styles. In IMAGEN VIDEO [160],
textual inputs are encoded into textual embeddings using the T5 text encoder. The video
diffusion model is then employed to generate a 16-frame video, which is further refined
using spatial super-resolution (SSR) and temporal super-resolution (TSR) techniques. Tune-
a-video [104], yet another diffusion-based model, utilizes a single text–video pair to train
the T2V generator, a technique known as one-shot video tuning. This model holds immense
potential for various applications, including object editing (e.g., replacing a zebra with a
horse in the provided video input), background change, and style transfer. PHENAKI [119]
is a video generation model that utilizes a bidirectional transformer architecture. By
leveraging textual descriptions as input, it has the capability to generate video sequences.
The model excels in generating videos that correspond to different time-varying text
prompts, allowing for dynamic and diverse output.

Text+Video to Video

Video-to-video generative AI techniques have opened up possibilities for object editing
in videos. One such technique is Dreamix [106], which is based on a video diffusion model.
Dreamix [106] takes natural language descriptions and videos as inputs. The process
begins by adding severe noise to the video and downscaling it to a low resolution. Then, a
video diffusion model (VDM) is applied, which preserves the style of the original video
while ensuring temporal consistency and fidelity in the output video. This framework has
been extended to support the animation of sequences of images into videos or even the
generation of animated videos from a single image.

Video to Video

Significant progress has been made in the field of video resolution enhancement,
addressing the challenge of converting low-resolution video into high-quality video. One
noteworthy approach, VSRResFeatGAN [91], leveraging the capabilities of generative
adversarial networks (GANs) and incorporating perceptual losses, VSRResFeatGAN [91]
exhibits potential in achieving remarkable video super-resolution outcomes. This model
seamlessly integrates adversarial training and perceptual loss functions, resulting in en-
hanced video quality.

Image+Text to Image

Image+text-to-image synthesis is an approach that builds upon the foundations of
image-to-text and text-to-image techniques. It offers a unique and compelling way to
manipulate and generate images by leveraging both visual and textual inputs. By com-
bining the power of an image and its accompanying textual description, this approach
enables the creation of new images that align with specific styles, concepts, or artistic
visions. LDEdit [49], which utilizes the latent diffusion model (LDM) to enable semantic
attribute manipulation and artistic style transfer. By utilizing a common shared latent
space between the input image and the target image, the LDM allows for the extraction of
latent representations using an encoder. These latent representations can be manipulated
and combined with textual prompts to achieve the desired image transformation using
forward diffusion and reverse diffusion. Additionally, a notable technique in the field
of image+text-to-image synthesis is StyleCLIP [98]. StyleCLIP [98] introduces a unique
architecture that combines style transfer and clip-based image generation. It leverages
a pre-trained neural network that maps textual prompts to images in a latent space. By
providing a text prompt, users can manipulate the style, content, or appearance of the
generated images. Figure 17 demonstrates image editing task with a textual prompt using
StyleCLIP. Another notable model in the field is DIFFEDIT [164], which operates on the
diffusion principle to manipulate images based on text queries. By applying noise to the
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input image and masking specific regions based on text queries, DIFFEDIT [164] utilizes
DDIM encoders to obtain the latent space. Using the diffusion model’s decoder, changes
can be applied to both the masked and non-masked regions, resulting in customized image
modifications.
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Additionally, DiffusionCLIP [131], another diffusion-based approach, has demon-
strated capabilities in image manipulation, even in zero-shot scenarios. By leveraging
forward and reverse DDIM processes, DiffusionCLIP [131] achieves better image trans-
formations. Another noteworthy technique, SISGAN (synthetic image synthesis using
conditional GAN) [163], incorporates conditioning both images and text. The encoder en-
codes the source image and accompanying text description, while the decoder synthesizes
the final image based on the combined feature representations. Lastly, SteganoGAN [162],
a GAN-based model, focuses on steganography, which involves hiding text within images.

3.3.7. Text-Driven 3D Content Generation

Generative AI models have revolutionized the field of image synthesis, allowing for
the generation of visually compelling 2D images based on textual descriptions. However,
the potential of these models extends beyond 2D images, as they can also be applied to
the domain of 3D content generation. In this section, we will discuss various text-to-3D
techniques.

Text to 3D Image

The field of text-to-3D-image generation has witnessed significant advancements
in recent years. One notable approach, DreamFusion [133], utilizes a diffusion-based
method to generate high-quality 3D images from textual descriptions. By employing a
pre-trained image diffusing model and score distillation sampling, DreamFusion [133]
achieves impressive results. However, challenges such as low-resolution image synthesis
and the slow optimization process of NeRF (neural radiance fields) have been identified.
To address these limitations, NVIDIA proposed a two-stage optimization framework called
Magic3D [167]. This framework incorporates both low-resolution and high-resolution
optimization steps, leading to the generation of detailed and high-resolution 3D images.

Text to 3D Animation

The synthesis of animated 3D images from textual descriptions has also gained signifi-
cant attention in the research community. One notable model, AvatarCLIP [66], leverages
the power of CLIP (contrastive language-image pre-training) to generate animated avatars
guided by text prompts. This two-step process involves generating a static avatar based on
the textual description and then animating it using motion guidance. Another approach,
known as DreamFace [102], focuses on generating animated 3D faces. It involves a three-
step process: geometric generation using ICT-FaceKit shape space, texture diffusion, and

https://replicate.com/orpatashnik/styleclip
https://replicate.com/orpatashnik/styleclip
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animatability empowerment. Textual descriptions are utilized to generate geometric details,
hair, face color, and other personalized features. Additionally, the generated faces are
further animated using a neural animation approach. Addressing the need for human
avatars in virtual reality (VR) and augmented reality (AR) applications, the AvatarCraft [55]
model offers a comprehensive solution. It involves a two-stage process: encoding a base
mesh and utilizing a text-conditioned diffusion model to generate the desired human avatar.
Furthermore, the avatar can be animated using the SMPL (skinned multi-person linear)
model, enabling realistic and customizable animations.

3.3.8. Text to Molecule or Molecular Structure

Generative AI techniques have expanded beyond visual content generation and are
now being applied to drug discovery as well. Text2Mol [60] combines multimodal molecule
retrieval by employing two submodels: a text encoder (SciBERT) and a molecule encoder
(MLP-GCN). These submodels work together to create an embedding space for efficient
retrieval of relevant molecules. Instead of retrieving information from existing molecules [1],
researchers proposed MolT5 (molecular T5) [58], a self-supervised framework designed
for molecule captioning and text-based de novo molecule generation. MolT5 utilizes a
transformer architecture and achieves its desired results by scaling the pretrained data.
Generative AI has pushed boundaries with the introduction of JT-VAE (junction tree
variational autoencoder) [57]. This approach allows for the generation of molecular graphs
with specific chemical properties. By leveraging the power of variational autoencoders
and junction trees, it was designed on two encoders and two decoders which are used to
decompose and encode the latent space and generate new moleulcar graphs. Furthermore,
MoFlow [76] presents another approach to molecular graph generation. This technique
focuses on modeling the underlying distribution of molecular graphs and employs flow-
based generative models to generate new molecules. The goal is to optimize the chemical
structure generation process and enhance the efficiency of drug discovery. In terms of
optimizing chemical structures, researchers have proposed Mol-CycleGAN [125]. This
model utilizes the CycleGAN architecture to perform cyclic transformations between two
domains: real and generated molecules. By leveraging the power of generative adversarial
networks, Mol-CycleGAN [125] aims to refine and optimize chemical structures, thereby
aiding in the drug discovery process.

3.3.9. Tabular Data to Tabular Data

Tabular GANs [94] have emerged as powerful generative AI models for working with
tabular data. These models excel in generating synthetic data that closely resembles the
underlying data distribution. TGANs, or tabular GANs [94], focus on generating realistic
tabular data by learning from the original data distribution. They utilize adversarial training
to optimize the generator and discriminator networks, resulting in generated samples that
closely match the statistical properties of the real data. On the other hand, a CTGAN, or
conditional tabular GAN [83], enhances the generation process by incorporating conditional
information. It allows for the generation of tabular data conditioned on specific attributes
or classes, enabling more targeted and controlled data synthesis. These tabular GAN
models have numerous applications, including data augmentation, privacy-preserving
data sharing, and generating synthetic datasets for training machine learning models in
scenarios where real data may be limited or sensitive. By leveraging the power of generative
AI, tabular GANs provide valuable tools for data scientists and researchers working with
tabular data.

3.3.10. Text to Knowledge Graph and Knowledge Graph to Text

Text-to-knowledge-graph and knowledge-graph-to-text are two tasks that bridge
the gap between natural language understanding and knowledge representation. Text
to knowledge graph involves transforming unstructured textual data into a structured
knowledge graph, capturing the semantic relationships and entities within the text. One
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technique used for this purpose is Grapher [117]. Grapher [117] consists of two stages.
In the first stage, it leverages the power of pre-trained language models (PLMs), such as
T5, to generate the nodes of the knowledge graph. PLMs have the ability to understand
and extract information from text, allowing them to identify and represent the entities
mentioned in the input text as nodes in the graph. In the second stage, Grapher [117]
focuses on generating the edges of the knowledge graph. This is performed using recurrent
neural network models like LSTM or GRU. These models take the generated nodes and
the original text as input and generate the edges that capture the relationships between
the nodes. The LSTM or GRU models are particularly effective in capturing long-range
dependencies and contextual information, which are crucial for accurately modeling the
relationships within the knowledge graph. On the other hand, in the knowledge-graph-
to-text task, the aim is to generate coherent and meaningful textual representations from
knowledge graphs. One approach for this task is the GTR-LSTM [129], which is a technique
for generating sentences from RDF data. It utilizes a triple encoder architecture consisting
of subject, predicate, and object encoders, which capture the semantic information of the
RDF triples.

3.3.11. Road Network to Road Network

StreetGAN [97] is a generative AI model designed to synthesize realistic road net-
works. It employs deep learning and generative adversarial networks (GANs) to generate
road layouts that closely resemble real-world road systems. By training on existing road
network data, StreetGAN [97] learns the underlying patterns and structures, enabling it
to create new synthetic road networks with similar statistical properties. The architecture
involves a generator network that produces road network layouts and a discriminator
network that distinguishes between real and synthetic road networks. Through iterative
training, StreetGAN [97] refines its generator to generate high-quality road networks. The
synthesized road networks have various applications, including simulation, testing traffic
management strategies, training machine learning algorithms, and aiding urban planning
and transportation development.

3.4. Classification of Evaluation Metrics for AIGC Models

Evaluating the performance of generative AI techniques has become increasingly
important as these models continue to advance in complexity and capability. With appli-
cations ranging from natural language processing to computer vision and creative arts,
assessing the quality and effectiveness of generative AI systems has become crucial for
ensuring their reliability and usefulness in various domains. In this section, we will discuss
various evaluation metrics.

Figure 18 represents categorization to have a clear understanding of different metrics
used to assess the effectiveness of generative AI models across various tasks. The abbre-
viations of the metrics are given in Table A4. The root node represents the output type
generated by the generative AI models for the given input. The intensities of the colors
in level 1 and level 2 represent the same subtree. Leaf nodes, which are white in color,
represent the metrics.



Future Internet 2023, 15, 260 37 of 60
Version July 26, 2023 submitted to Journal Not Specified 39 of ??

Figure 18. Evaluation metrics classification diagram for various output types.Figure 18. Evaluation metrics classification diagram for various output types.

3.4.1. Evaluation Metrics for Image Processing:

Inception Score (IS): The inception score (IS) is a widely used metric for evaluating
the quality of generated images in generative adversarial networks (GANs). It measures
both the diversity and realness of the generated images. The IS is calculated by utilizing
the inception model and computing the KL divergence between the conditional class
distribution of the generated samples and the marginal class distribution. In addition to IS,
several models mentioned earlier utilize this metric for assessing the quality of generated
images. These models include text-conditioned auxiliary classifier generative adversarial
network (TAC-GAN) [84], attentional generative adversarial networks (AttnGAN) [92],
CogView [77], and stacked generative adversarial networks (StackGAN) [93].

Structural Similarity Index (SSIM): The structural similarity index (SSIM) is a metric for
image quality assessment that considers changes in structural information as the primary
factor influencing visual quality. Unlike other methods that focus on the errors between
the original and compressed image, SSIM considers changes in structural information
as the main element affecting visual quality. This metric has found applications in vari-
ous image and video processing models, including DiffusionCLIP [131], mDCSRN [137],
alignDRAW [78], SRGAN [140], and VSRResFeatGAN [91]. These models utilize SSIM to
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assess the quality of reconstructed images or videos by comparing them to their respective
originals.

FID (Fréchet Inception Distance): The Fréchet inception distance (FID) is a metric used to
measure the similarity between two sets of images. It is often used to assess the quality of
images generated by generative adversarial networks (GANs), comparing the distribution
of generated images to the distribution of real images. The lower the FID, the closer
the two distributions, and therefore the better the GAN model. The FID is based on the
Fréchet distance between two multivariate Gaussian distributions. Given the two Gaussian
distributions of real data (with mean µ1 and covariance Σ1) and generated data (with
mean µ2 and covariance Σ2). Various image-related task models, such as DDPM [101],
BigGAN [43], and Muse [150], as well as video-generation models, like PHENAKI [119],
have utilized FID as a metric for their respective evaluations.

Zero-Shot FID (Fréchet Inception Distance): Zero-shot FID (Fréchet inception distance) is
a modified version of the FID metric that extends its application to evaluate the quality of
images generated in a zero-shot setting. In the zero-shot scenario, the generated images
do not belong to any predefined training classes or categories. Instead, they are produced
based on textual descriptions or other forms of input that are distinct from the training data.
This metric has been applied in various image synthesis techniques, including GLIDE [147]
for image synthesis and IMAGEN Video [160] for video generation.

Multi-Scale Structural Similarity Index Measure (MS-SSIM): The multi-scale structural
similarity index measure (MS-SSIM) is a method for comparing the similarity between two
images. It is an extension of the structural similarity index measure (SSIM), a popular metric
for image quality assessment that is based on the degradation of structural information.
While SSIM operates on a single scale, MS-SSIM evaluates similarity at multiple scales,
which can provide a more robust and comprehensive measurement. This can be particularly
helpful when dealing with images that have variations in size, resolution, or viewing
conditions. The end result is a single value ranging from −1 to 1, with 1 indicating perfect
similarity, 0 meaning no similarity, and negative values suggesting inverse similarity.
Several image synthesis models, including TAC-GAN [84], have utilized MS-SSIM as a
means to evaluate the quality of synthesized images.

Accuracy: Accuracy is a metric commonly used in machine learning and classification
tasks. It measures the correctness of predictions or classifications made by a model. It is
calculated as the ratio of the number of correct predictions to the total number of predictions.
Accuracy is often expressed as a percentage. In the context of image-related tasks, accuracy
is a commonly used metric to assess the performance of models, such as domain transfer
network (DTN) [89] and TGAN [67], for tasks like image classification, image segmentation,
or object detection.

F1 Score: The F1 score is a measure of a model’s accuracy that takes into account
both precision and recall. It is commonly used in machine learning and statistical analysis
to evaluate the performance of classification models, particularly in imbalanced datasets
where one class may dominate the others. The F1 score is calculated as the harmonic mean
of precision and recall: F1 score = 2 * (precision * recall)/(precision + recall).

Learned Perceptual Image Patch Similarity (LPIPS): Traditional metrics like SSIM and
PSNR were effective at measuring numerical image similarity, but they are not aligned
with human visual perception. To improve this, LPIPS was introduced to better model
human visual perception. DiffusionCLIP [131] and DIFFEDIT [164] are two models we
discussed in our paper, and we have chosen one of their metrics as LPIPS to evaluate
images manipulated by textual prompts.

MAE (Mean Absolute Error): Mean absolute error (MAE) is generally used for regression
tasks, but it can also be used as a loss function for image reconstruction, like manipulation
of images or editing images. One such model, called DiffusionCLIP [131], uses MAE to
evaluate reconstructed image quality. A lower MAE indicates a better reconstruction of
the image.
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Directional CLIP Similarity (Sdir): This metric is used for evaluating the performance of
text-driven image manipulation changes among the two images in a CLIP space. A higher
Sdir score indicates the two images were more consistent, and text-based edit instructions
have been successfully carried out by the model; DiffusionCLIP [131] is one such model
that uses Sdir as one of its evaluation metrics.

L2 Error: L2 error in the context of image manipulation is used as a component of the
loss function to measure the difference between the generated image and the target image
so that the generated image to be closed as possible to the target image in the pixel space.

Dice: It is also known as the dice similarity coefficient and is used for evaluation
of segmentation by generative AI models. One such model, called SegAN [100], which
is useful in medical applications to segment the X-ray scans of patients, is now used
to evaluate these segmentations. The dice score is 1 for perfect segmentation and 0 for
completely non-overlapping masks.

Precision: In the context of image segmentation, precision is the proportion of true
positive pixels, which indicates whether the pixels were identified as belonging to a certain
class out of all pixels that were identified as belonging to that particular class. A higher
precision indicates fewer false positives.

Sensitivity: Is also known as recall or true positive rate, which measures the proportion
of true positive pixels to actual positive pixels. SegAN [100] used sensitivity as one of the
metrics to evaluate the segmentation performed by the model.

PSNR (Peak Signal-to-Noise Ratio): PSNR is one of the metrics used to measure the
quality between the original image and the deblurred image. In the context of image
deblurring, DeblurGAN [61] and DeblurGAN-v2 [56] use PSNR as one of their metrics to
evaluate the image reconstruction quality.

Normalized Root Mean Square Error (NRMSE): The normalized root mean square error
(NRMSE) is a performance metric used to evaluate the accuracy of predictive models,
particularly when numerical outputs are involved. It is essentially the root mean square
error (RMSE) adjusted for scale, which makes it useful for comparing datasets. NRMSE is
computed as the ratio of RMSE to the dispersion of actual data values, which is typically
expressed as a percentage. A lower NRMSE indicates that the model’s predictions are
closer to the actual values. mDCSRN [137] used this metric to evaluate the high-resolution
image generated by the model.

Mean Opinion Score (MOS): The mean opinion score (MOS) is a subjective metric often
used in image processing tasks like deblurring or resolution enhancement. It gauges the
quality of an image based on human perception. Scores are assigned by a group of human
evaluators on a predefined scale, such as 1 to 5, with ’bad’ to ’excellent’ quality. SRGAN [90]
uses this metric as one of the evaluation metrics to evaluate the generated image HR Image.

Fully Convolutional Network Score (FCN-Score): The FCN-Score is an evaluation metric
used to assess the quality of samples generated by models such as GANs like CGAN [81].
Leveraging the fully convolutional network (FCN) architecture, it extracts features from
real and generated images and measures the differences in their distributions. Lower
FCN-Scores suggest that the generated images closely resemble the real ones, signifying a
well-performing model, while higher scores indicate a deviation from the real data, pointing
to a less effective model.

Realism Score: The realism score is a standard for evaluating the quality of images after
they have undergone modifications such as inpainting or blending. GP-GAN [134] is one
such model that uses this metric to evaluate its output images. This scoring system evalu-
ates how closely these altered images mimic their unmodified, natural counterparts. So,
when an image scores highly on the realism score, the modifications have been integrated
so seamlessly that it becomes nearly impossible to distinguish the final result from the
original image.

Human perceptual metric: Human perceptual metrics are key in image processing and
computer vision, offering a benchmark that aligns closely with human visual perception.
These metrics quantify an image’s quality or distinct features or visual result based on the
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human perceptual understanding of colors, shapes, patterns, and intricate details. Models
like GCC-GAN’s [64], LDEdit [49], and TAGAN [67] use the human perceptual metric as
one of their evaluation metrics.

3.4.2. Evaluation Metrics for NLP Tasks

F1 Score: It is a measure of a test’s accuracy that considers both precision (the number
of correct positive results divided by the number of all positive results) and recall (the
number of correct positive results divided by the number of positive results that should
have been returned). The F1 score is the harmonic mean of precision and recall. The
formula is F1 = 2 * (precision * recall)/(precision + recall). The T5 Model [39] used the F1
score as one of the evaluation metrics for the translation tasks.

BLEU (Bilingual Evaluation Understudy):This is a metric for evaluating the similarity
between a generated sentence and a reference sentence. A perfect match yields a score
of 1.0. It is widely used not only in machine translation tasks but also in text generation
applications. Various language translation and image captioning AI models, including
T5 [39], ConvS2S [132], Seq2Seq [108], MusCaps [48], “Show and Tell: Neural Image
Captioning” [59], WT5 [121] and RTT-GAN [62], have incorporated BLEU as one of their
key evaluation metrics.

Recall: Also known as sensitivity or true positive rate (TPR), it is the fraction of the
total amount of relevant instances that were actually retrieved. It can be thought of as the
ability of a model to find all the relevant cases within a dataset. For image captioning tasks,
generative AI models like MusCaps [48] use recall as one of their evaluation metrics.

METEOR (Metric for Evaluation of Translation with Explicit Ordering): It is an evalua-
tion technique designed specifically for machine translation. This method calculates the
harmonic mean of unigram precision and recall, where recall carries more weight than pre-
cision. What sets METEOR apart from other evaluation metrics is its inclusion of additional
features like stemming and synonym matching in addition to the traditional exact word
matching. Conversational AI models like GPT-3 and T5 [112] and image captioning models
like MusCaps [48], GTR-LSTM [129], and Show and Tell: Neural Image Captioning [59]
have used METEOR as their evaluation metrics.

CIDEr (Consensus-based Image Description Evaluation): It is a metric designed to evaluate
the quality of image descriptions generated by models like RTT-GAN [62] and MusCaps [48]
that capture the consensus among human references.

Median Rank: The median rank is a frequently employed metric in retrieval tasks. In
such tasks, a system receives a query and retrieves a list of items ranked according to their
relevance. The rank of the first item that is deemed relevant is recorded, and the median of
these ranks across a collection of queries is then calculated to determine the Median Rank.

EM-Diff (Exact Match Difference): EM-Diff is an evaluation metric commonly used
in conversational AI tasks, particularly in question-answering systems. It measures the
difference between the exact match scores of two systems on a given dataset. The exact
match score represents the proportion of responses that exactly match the ground-truth
answers. EM-Diff provides insights into the improvement or degradation of the exact
match performance between different models. Conversational AI models like PEER [34]
use EM-Diff as one of their evaluation metrics.

BLEURT (Bilingual Evaluation Understudy for Natural Language Understanding in Trans-
lation): BLEURT is an evaluation metric specifically designed for assessing the quality
of machine translation systems, question-answering models like InstructGPT [111]. It
measures the similarity between human-generated reference translations and machine-
generated translations. BLEURT is trained using a combination of deep learning techniques
and is capable of providing a continuous score that represents the quality of translations. A
higher BLEURT score indicates better translation quality.

Root Mean Squared Relative Error (RMSRE): RMSRE is an evaluation metric used to
measure the accuracy of predictions or forecasts for models like GAN-FD [156]. It is
a variant of the root mean squared error (RMSE) that takes into account the relative
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difference between predicted and actual values. The RMSRE calculates the square root
of the average of the squared relative errors between the predicted and actual values. It
provides an indication of the average percentage error in the predictions, with a lower
RMSRE indicating better accuracy.

Content Accuracy: Content accuracy measures the degree to which the generated
handwritten characters match the content or shape of the target font style or new font
which are generated by models like DenseNet CycleGAN [54]. It assesses the ability of the
model to capture the fundamental structure and characteristics of the characters accurately.

Style Discrepancy: Style discrepancy evaluates the difference or dissimilarity between
the generated handwritten characters and the target font style or new font in terms of
style variations. It measures the ability of the model to capture the specific stylistic details,
variations, and nuances of the font style. DenseNet CycleGAN [54] has used this to evaluate
the generated font.

Recognition Accuracy: Recognition accuracy assesses the ability of the generated hand-
written characters to be recognized correctly by optical character recognition (OCR) systems
or other recognition models. It measures how well the models like GlyphGAN [154] gener-
ate characters that resemble the original symbols and can be accurately identified.

Diversity: Diversity measures the range and variation of the generated handwritten
characters. It assesses the model’s ability to produce distinct and diverse characters within
the target font style or new font, avoiding repetitions or excessive similarities.

3.4.3. Performance Metrics for Code Generation Models

CodeBLEU: CodeBLEU is a metric specifically designed to evaluate the quality of
machine-generated code in code generation tasks, particularly in the context of natural
language description-to-code generation. It extends the BLEU metric, commonly used
in machine translation tasks, to measure the similarity between the generated code and
the reference code. Notably, models such as CodeBERT [114] and CodeT5 [115] have
utilized the CodeBLEU metric to assess how closely the generated code aligns with the
reference code.

Exact Match (EM): Exact match is a binary metric commonly used in code generation
tasks to determine whether the generated code perfectly matches the desired output or
reference code. It provides a measure of accuracy by evaluating if the generated code is an
exact match. CodeT5 [115] models, for example, often employ the exact match metric to
assess the level of accuracy in generating code that aligns precisely with the reference code.

Pass@metric: Pass@metric is a widely used performance evaluation metric in code
generation tasks, particularly for evaluating language models or systems that generate
code based on natural language descriptions. The metric measures the percentage of
generated code that successfully passes a given set of evaluation tests or test cases. It
provides insights into the system’s ability to produce functionally correct code that meets
the desired specifications. Models like GPT language model (Codex) [116] and pre-trained
transformer-based language models like Alphacode [35] have been evaluated using the
Pass@metric to assess the success rate of the generated code.

Multi-Turn Programming Benchmark (MTPB): MTPB is an evaluation benchmark em-
ployed to assess the performance of code generation systems like CODEGEN [50], specifi-
cally in multi-turn programming scenarios. This benchmark involves multiple interactions
between a human and the code generation system, where the human provides natural lan-
guage descriptions, queries, or instructions, and the system generates code accordingly. The
quality of the generated code is evaluated based on correctness, efficiency, and adherence
to the specified requirements.

3.4.4. Evaluation Metrics for Various Graph Generation Models

Validity Metric: The validity metric is a crucial evaluation measure in graph generation
systems. It assesses the extent to which the generated graphs comply with the rules and
constraints of a particular domain. For instance, in the context of generating molecular
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graphs or designing molecule graphs, validity ensures that the generated structures adhere
to the chemical bonding rules and other molecular properties. The junction tree variational
autoencoder (JT-VAE) [57] model is an example of a graph generation model that utilizes
the validity metric. By leveraging a junction tree representation and variational autoencoder
framework, the JT-VAE [57] aims to generate molecular graphs that are structurally valid
and consistent within the chemical context it operates in.

Reconstruction Accuracy: Reconstruction accuracy is a significant evaluation metric that
measures how faithfully the generated graphs reproduce the original input or reference
graphs. It assesses the ability of the graph generation system to capture the essential
features and characteristics of the input data. The JT-VAE [57] model, mentioned earlier,
not only focuses on generating valid molecular graphs but also places emphasis on accurate
reconstruction of the input molecular structures. By striving to capture the molecular
features and properties as accurately as possible, the JT-VAE [57] aims to achieve high
reconstruction accuracy.

N.U.V (Novel, Unique, and Valid Molecules): The N.U.V metric evaluates the novelty,
uniqueness, and validity of generated molecules. It measures the degree to which the gen-
erated molecular structures are novel (different from existing molecules in a given dataset),
unique (not redundant or similar to other generated molecules), and valid (adhering to
the chemical rules and constraints). The MoFlow [76] model is an example of a graph
generation system that incorporates the N.U.V metric in its evaluation criteria. MoFlow [76]
focuses on generating molecular graphs based on chemical properties and aims to produce
molecules that are both novel and unique while also maintaining validity in accordance
with the underlying chemical knowledge.

3.4.5. Evaluation Metrics in Molecular Structure Generation

MRR (Mean Reciprocal Rank): Mean reciprocal rank (MRR) is an evaluation metric
employed in the context of generating or retrieving molecular structures from textual
descriptions. It measures the average reciprocal rank of the correct answer among a set
of possible answers. This metric is commonly used in the Text2Mol [60] technique, which
focuses on generating or retrieving molecular structures based on textual descriptions. By
utilizing MRR, the Text2Mol [60] technique can assess how well the generated structures
align with the given textual descriptions, ultimately ranking the correct molecular structure
higher among the generated options.

QED (Quantitative Estimate of Drug-Likeness): Quantitative estimate of drug-likeness
(QED) is an evaluation metric extensively used in molecular graph generation and design,
particularly in the domain of molecular design and drug discovery. QED provides a
quantitative measure of the drug-likeness of a generated molecule, indicating its potential
to be developed into a safe and effective drug. The CGVAE [79] technique, employed in
molecular design and drug discovery tasks, incorporates QED as an evaluation metric. The
technique leverages QED to assess the drug-likeness of generated molecules, considering
various molecular properties such as stability, solubility, and bioactivity. Higher QED
values indicate a higher likelihood of a molecule being considered drug-like, facilitating
the prioritization of molecules with greater potential.

FCD (Fréchet ChemNet Distance): Fréchet ChemNet distance (FCD) is an evaluation
metric commonly utilized in text-based de novo molecule generation and molecule caption-
ing tasks. FCD quantifies the similarity between the distributions of molecular structures
generated by a model and a reference distribution, typically a dataset of known molecules.
The MolT5 (Molecular T5) [58] technique, known for text-based de novo molecule genera-
tion and molecule captioning, incorporates FCD as an evaluation metric. By leveraging
FCD, the MolT5 [58] technique can assess the similarity of generated molecules with the
reference distribution in terms of chemical features and properties. A lower FCD value in-
dicates a higher similarity between the generated molecules and the reference distribution,
indicating better quality and alignment with the desired chemical characteristics.
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3.4.6. Evaluation Metrics for 3D Generation and Animation Techniques

Matching Distance Ratio (MDR): Matching distance ratio is an evaluation metric used
in the context of inpainting 3D images. It quantifies the quality of the generated inpainted
regions by calculating the ratio of points that are accurately matched between the generated
and ground-truth images. The point encoder GAN [161] model, employed for inpainting
3D images, utilizes the matching distance ratio as an evaluation metric to assess the
effectiveness and accuracy of the inpainted regions. A higher matching distance ratio
indicates a higher level of accuracy in matching the points between the generated and
ground truth images, indicating a better quality of inpainted regions.

MPJPE (Mean per Joint Positioning Error): MPJPE, or mean per joint positioning error, is
an evaluation metric commonly used in the context of generating realistic human poses.
It measures the average positional error between the joints of the generated pose and the
ground-truth pose. GAN-Poser [51], a model for generating realistic human poses, employs
MPJPE as an evaluation metric to assess the accuracy and realism of the generated poses.
A lower MPJPE value indicates a higher level of pose accuracy and alignment with the
ground truth.

Chamfer Distance: Chamfer distance is an evaluation metric utilized in text-guided 3D
object generation tasks. It quantifies the dissimilarity between the generated 3D objects and
the target objects based on their point cloud representations. The DREAMFUSION [133]
model employs Chamfer distance as an evaluation metric to measure the dissimilarity
between the generated 3D objects and the target objects described in textual descriptions.
A lower Chamfer distance value indicates a higher level of similarity and alignment with
the desired object.

Regression Ratio: Regression ratio is an evaluation metric used in the context of inpaint-
ing 3D images. It quantifies the accuracy of the generated inpainted regions by calculating
the ratio of accurately regressed points. The point encoder GAN [161], a model for inpaint-
ing 3D images, utilizes regression ratio as an evaluation metric to assess the accuracy and
quality of the generated inpainted regions. A higher regression ratio indicates a higher
level of accuracy and fidelity in regressing the missing parts of the 3D images.

KID (Kernel Inception Distance): Kernel inception distance (KID) is an evaluation
metric employed in the context of generating personalized animatable 3D faces based
on text guidance. It measures the distance between the feature representations of the
generated faces and the real faces using a pre-trained kernelized inception network. The
DreamFace [102] model utilizes KID as an evaluation metric to assess the similarity and
realism of the generated 3D faces.

3.4.7. Evaluation Metrics for Synthetic Data Generation in Tabular Datasets

DCR (Distance to the Closest Record): DCR, or distance to the closest record, is an
evaluation metric used in the context of synthesizing fake tables that are statistically similar
to the original table. It measures the distance between the generated synthetic records and
the closest corresponding records in the original table. The table-GAN [52] model employs
DCR as an evaluation metric to assess the similarity and proximity of the generated records
to the original data.

Macro-F1: Macro-F1 is an evaluation metric that assesses the performance and sim-
ilarity of generated synthetic datasets to the original data. It calculates the F1 score for
each class or label in the dataset and then takes the average across all classes. The Tabular
GAN (TGAN) [94] model utilizes macro-F1 as an evaluation metric to assess the overall
performance and similarity of the generated synthetic dataset to the original data.

Mean Relative Error (MRE): Mean relative error (MRE) is an evaluation metric employed
in synthesizing synthetic data for tabular datasets tasks. It quantifies the average relative
error between the generated synthetic data and the original data, taking into account
the magnitude of the errors. The table-GAN [52] model utilizes MRE as an one of its
evaluation metric to assess the accuracy and similarity of the generated synthetic data to
the original dataset.
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3.4.8. Evaluation Metrics for Speech and Audio Generation Techniques

RTF (Real-Time Factor): RTF, or real-time factor, is an evaluation metric used in speech
synthesis tasks to measure the efficiency of the synthesis process. It quantifies the speed at
which speech is synthesized in real-time. The Grad-TTS [152] model incorporates RTF as an
evaluation metric to assess the efficiency and speed of the text-to-speech synthesis process.

PESQ (Perceptual Evaluation of Speech Quality): PESQ, or perceptual evaluation of speech
quality, is an evaluation metric commonly used in speech enhancement tasks. It quantifies
the perceived quality of enhanced speech signals by comparing them to the original, clean
speech signals. The conditional generative adversarial networks (CGAN) [82] model with
the Pix2Pix framework utilizes PESQ as an evaluation metric to assess the improvement in
speech quality achieved through the speech enhancement process, and also ProDiff [53]
utilizes this metric to evaluate the generated speech. A higher PESQ score indicates a
higher level of perceived speech quality and fidelity.

STOI (Short-Time Objective Intelligibility): STOI, or short-time objective intelligibility, is
an evaluation metric used to measure the intelligibility of speech signals. It assesses the
degree to which speech can be understood by comparing the enhanced speech signals to
the original, clean speech signals. The CGAN [82] model with the Pix2Pix framework also
employs STOI as an evaluation metric to evaluate the improvement in speech intelligibility
achieved through speech enhancement.

Error Rate: Error rate is an evaluation metric commonly used in speech synthesis tasks,
specifically in the generation of speech from text. It measures the accuracy of the generated
speech by comparing it to the desired or target speech. The feed-forward transformer
(FFT) [42] model utilizes the error rate as an evaluation metric to assess the accuracy and
fidelity of the synthesized speech.

4. Discussion
4.1. AIGC Requirements

The hardware requirements for the generative AI aspect plays a vital role in data
collection, model training, and sample generation. The findings highlight the diverse
options available for hardware, including cameras, microphones, sensors, and existing
datasets for data collection. For model training and optimization, powerful hardware
configurations like Tesla V100 16 GB [47] and RTX 2080Ti [49] are commonly used, while
smaller-scale models can be trained on more modest configurations. Sample generation
can be achieved even on basic hardware setups. Regarding software requirements, various
tools and frameworks are essential for different phases of generative AI. Web scraping
frameworks [33–35], Pandas [48,52,53], Numpy [54], and torch-audio [48] are used for
data collection and preprocessing. Deep learning frameworks such as PyTorch [64] and
TensorFlow [65] provide support for model training and evaluation, while libraries like
opencv Python [55,66], NLTK [59,67] aid in post-processing and model refinement.

Generative AI models must meet diverse user experience requirements to ensure
user satisfaction. Users expect high-quality and realistic outputs [69], customizable and
controllable generative processes, diverse [70] and novel results, efficient performance,
interactive capabilities, ethical considerations [71], data privacy and security [72,73], and
seamless integration with existing systems. By addressing these requirements, developers
can create generative AI models that deliver exceptional user experiences.

4.2. AIGC Models

Variational autoencoders (VAEs) provide a strong framework for learning compressed
representations of incoming data and creating new samples. Their benefits include the
capacity to capture data uncertainty, provide a continuous latent space for interpolation,
and provide efficient data representation [19]. However, as compared to other models,
VAEs may have limits in generating extremely realistic and varied samples, resulting in
fuzzy or less detailed outputs. VAEs are especially useful in sectors where data structure
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and uncertainty are important, such as image generation [77], data compression, and
anomaly detection.

Generative adversarial networks (GANs) are excellent at producing realistic and
varied samples, making them excellent for tasks requiring high visual quality. GANs
provide versatility in data generation across domains. GANs, on the other hand, can be
difficult to train and keep stable, requiring precise hyperparameter adjustment. Mode
collapse, in which the generator fails to capture the whole data distribution, can also occur.
Despite these problems, GANs are nevertheless quite effective in image synthesis [90,92,93],
image-to-image translation [87–89], and providing synthetic training data [83,94] for deep
learning models.

Diffusion Models are well-known for producing high-quality samples with fine fea-
tures and realistic textures. They provide more control over sample quality by modifying
the number of diffusion steps, and they are less prone to mode collapse than GANs.
Training diffusion models, on the other hand, may be computationally expensive, and
tuning hyperparameters is critical for their success. Diffusion Models excel in sectors
requiring high-resolution image generation [49], creative image stylization, video gener-
ation [104,106], and image inpainting, where the emphasis is on delivering aesthetically
stunning and detailed outputs.

Transformers, with their self-attention mechanism, efficiently capture long-term depen-
dencies and have revolutionized natural language processing tasks. By creating coherent
and contextually appropriate sequences, they excel at tasks like machine translation [45,110],
text generation [39,116], and sentiment analysis [111,121]. However, because of memory
limits, transformers can struggle with very lengthy sequences, and training large-scale
models can be computationally costly. Transformers excel in sectors where comprehending
global context and producing high-quality language sequences are essential.

Language models, which are frequently built on RNNs, have the benefit of produc-
ing cohesive and contextually appropriate sequences. They extract grammar, semantics,
and style from training data, which makes them useful for applications like text genera-
tion [107], chatbots [33], and language understanding [108] . Language models, on the other
hand, might be subject to training data biases and may output language that reflects such
prejudices. Long sequences can also result in a lack of cohesion and meaningful context.
Language models are useful in areas where creating natural language sequences is critical,
such as conversation systems [34], text generation [107], and language modeling [109].

Normalizing flow models provide a versatile framework for producing samples and
modeling complicated distributions. They are very good at density estimation and enable
accurate likelihood calculation [21]. Normalizing flow models, on the other hand, can be
computationally costly, especially when dealing with a high number of coupling layers or
complicated data distributions. They discover efficiency in disciplines including generative
modeling, density estimation, and simulation-based inference, where correct modeling of
complicated data distributions is critical [76].

Hybrid models incorporating numerous deep learning architectures have been created
to leverage on the strengths of distinct models in various areas. The combination of varia-
tional autoencoder and generative adversarial networks (VAE-GAN) gives the capacity to
encode and decode data while creating different samples for image generation [122], image
editing [124] and generating graphs [125] . GANs with dense convolutional neural network
(DenseNet) or residual neural network (ResNet) designs have extensive feature learning
capabilities and have demonstrated outstanding performance in image-to-image transla-
tion [54,126]. Combining GANs with recurrent neural networks (RNNs) or convolutional
neural networks (CNNs) delivers coherent and realistic outputs for sequence generating
challenges [127]. GANs paired with denoising diffusion probabilistic models (DDPM) and
transformers provide sample generation with both diversity and quality [53]. Transformers
in conjunction with RNNs allow for successful sequential data modeling, but transformers
in conjunction with graph convolutional networks (GCNs) capture both sequential and
graph-based interactions [58,60]. Vision transformers in conjunction with ResNet improve
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image comprehension [130], while diffusion probabilistic models in conjunction with con-
trastive language-image pretraining (CLIP) allow for controlled image editing [131]. In
sequence-to-sequence challenges, convolutional sequence-to-sequence learning (ConvS2S)
blends CNNs and local dependency capture [132]. These hybrid models address the con-
straints and problems of separate designs, but efficiency, computing resources, training
stability, and optimization must all be taken into consideration.

4.3. Input–Output Formats for Prescribed Tasks

The capabilities of text-to-text generative AI models encompass a wide range of tasks.
These models excel in multilingual communication by enabling accurate translation of
text from one language to another [39,108,132]. They also offer a unique tool for design
and personalization, allowing the generation of handwritten characters in various font
styles based on text input [154]. In the domain of programming, these models contribute
to code quality and efficiency by providing precise and meaningful corrections for code
issues [45]. Additionally, they possess the ability to offer insights and clarifications by
explaining given input statements [121]. Leveraging input texts, these models demonstrate
exceptional performance in tasks such as translation, question answering, classification,
and summarization [39]. While these models provide valuable functionality, caution must
be exercised to prevent misuse, such as generating or cracking passwords [155], empha-
sizing the need for responsible use and ethical considerations. Furthermore, these models
function as conversational AI systems, engaging in interactive conversations, answering
follow-up questions, challenging incorrect assumptions, and rejecting inappropriate re-
quests [111]. They also streamline the writing process by generating drafts, suggesting
edits, and providing explanations for their actions, thus assisting with various writing
tasks [34]. Lastly, by leveraging historical data, these models contribute to market analysis
and forecasting, enabling the prediction of future market trends [156–158].

A wide range of tasks can be accomplished in the areas of text-to-speech/audio,
speech-to-speech, music-to-text, and audio-to-text generation. These tasks include generat-
ing audio from text using techniques such as w2v-BERT [120] and music from text using
Jukebox (vector quantized variational autoencode, VQ-VAE) [145]. Speech synthesis meth-
ods like adaptive text to speech (AdaSpeech) [113] allow for the customization of voices and
the conversion of text into human-like speech. Notable approaches like denoising diffusion
model for text to speech (Diff-TTS) [63], Grad-TTS [152], ProDiff [53], DiffGenerative adver-
sarial networks (GAN)-TTS [128], and pixel convolutional neural network (Wavenet [123])
offer advancements in text to human-like speech synthesis. Additionally, generative AI
models can generate robotic voice speech from text using methods like feed-forward trans-
former (FFT). Within the domain of music/audio, techniques such as generative adversarial
networks synth (GANSynth) [153] enable the creation of high-quality, synthetic musical
audio clips. Speech enhancement techniques, such as conditional generative adversarial
networks (CGAN) with the Pix2Pix framework [82], can be employed to improve speech
quality. Furthermore, there are models like MusCaps [48] for generating captions for music
audio and contrastive language-audio pretraining (CLAP) for generating captions for au-
dio [47]. These diverse tasks demonstrate the vast potential and versatility of generative AI
models in various audio and speech-related applications.

It is essential to address the range of tasks that generative AI models can accomplish
in the field of code generation. These tasks include generating valid programming code
using natural language descriptions, which can be achieved through models such as Code-
BERT [114], CODEGEN [50], CodeT5 [115], and GPT language model (Codex) [116]. These
models excel in converting natural language descriptions into executable code. Addi-
tionally, the Alphacode [35] model is specifically designed to generate competition-level
code, demonstrating its capability to produce high-quality code solutions. Furthermore,
models like code-understanding BERT (CuBERT) [110] contribute to code completion, bug
detection, and code summarization, providing valuable assistance to developers in under-
standing and optimizing their code. The diverse functionalities of generative AI models in
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the domain of code generation highlight their potential in automating programming tasks
and enhancing code development processes.

Generative AI models offer a wide range of capabilities in the domain of image-
to-image tasks. These tasks include blind motion deblurring of a single photograph,
achieved through models like DeblurGAN [61] and DeblurGAN-v2 [56]. Generative models
such as StyleGAN [4] can generate highly realistic and diverse synthetic images. Image
blending can be accomplished using Gaussian-Poisson generative adversarial network (GP-
GAN [134]), while image compositing and blending can be achieved with geometrically
and color consistent GANs (GCC-GANs) [64]. Models like exemplar GANs (ExGANs) [99],
contextual attention generative adversarial networks (CA-GAN) [127], and PGGAN [126]
excel in image inpainting or filling absent pixels. For face-related tasks, models like Age-
cGAN [135], Conditional Adversarial Autoencoder (CAAE) [122], and identity-preserved
conditional generative adversarial networks (IPCGANs) [136] are used for face aging and
image editing. Other tasks include medical image analysis with SegAN; image super-
resolution using mDCSRN [137] and SRGAN [90]; domain transfer using CGAN [81],
CycleGAN [87], and DiscoGAN [88]; efficient texture synthesis with Markovian generative
adversarial networks (MGANs) [141]; and cyber intrusion and malware detection using
defense-generative adversarial networks [95]. These tasks demonstrate the versatility and
effectiveness of generative AI models in various image-to-image applications.

As discussed in Table 5, generative AI models have shown significant advancements
in image-to-text tasks, offering a wide range of applications in real-world scenarios. The
recurrent topic-transition generative adversarial network (RTT-GAN) [62] has proven effec-
tive in generating textual descriptions for images, which can find practical use in content
analysis, image indexing, and automated report generation. The “Show and Tell: Neural
image captioning” [59] model provides a valuable solution for image-to-text generation
and captioning, enabling applications such as automatic image description for visually
appealing presentations or enriching image-based search results with descriptive metadata.
The DenseNet CycleGenerative adversarial networks (GAN) [54] demonstrate the ability
to generate handwritten characters in specific font styles, presenting opportunities for
personalized and creative content creation in areas like artistic designs, branding materials,
or customized digital assets. Moreover, the visual language model Flamingo [109], with its
question-answering capabilities based on image input, holds promise for visual assistance
systems, interactive image-based tutorials, or intelligent image search engines. These
applications highlight the versatility and benefits of generative AI models in enhancing
creativity, accessibility, and user experiences across various domains.

Generative AI models have significantly expanded the possibilities of video-to-video
tasks. With models like MAKE-A-VIDEO [159], IMAGEN [160], and Tune-A-Video [104],
users can now create text-guided videos that cater to their specific needs. These advance-
ments open up avenues for personalized storytelling, dynamic marketing campaigns, and
interactive educational content. Additionally, VSRResFeatGAN [91] offers a solution for
enhancing video resolution, which has practical applications in industries such as video
generation, surveillance, and online meetings where clear visuals are essential. Another
noteworthy model, the video diffusion model (VDM) Dreamix [106], introduces exciting
features like video editing based on text input and animated image-text combinations.
These capabilities enable users to unleash their creativity and find applications in various
industries like advertising, entertainment, and communication.

Image+text-to-image synthesis with generative AI models offers a range of power-
ful capabilities. These include text-guided image manipulation through methods like
LDEdit [49] and StyleCLIP [98], text-based image synthesis with SISGAN [163], and
diffusion-based approaches like DIFFEDIT [164] and DiffusionCLIP [131]. Additionally,
there are tasks that involve combining images and text for specific purposes. SteganoGAN
focuses on generating steganographic images, where messages can be hidden within
the image itself. This technique can be useful for secure communication or embedding
information in visual content. These techniques enable users to perform tasks such as
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text-driven image editing, steganography, realistic image synthesis, and text-based image
manipulation.

Generative AI models have demonstrated their capabilities in various tasks related to
molecule generation and design. Text-based approaches like MolT5 [58] and Text2Mol [60]
allow for the de novo generation of molecules and the retrieval of molecular structures
using textual descriptions. These techniques offer several advantages, including acceler-
ated molecule design, molecule captioning, and efficient exploration of chemical space.
Furthermore, methods such as Mol-CycleGAN [125], JT-VAE [57], and MoFlow [76] enable
the design of molecules with desired properties by leveraging chemical properties and
molecular graphs. These advancements have promising applications in the fields of drug
discovery.

Generative AI models have made significant strides in the field of 3D content gener-
ation based on textual input. These models demonstrate the ability to generate various
forms of 3D content guided by text descriptions. Magic3D [103] allows for the detailed
synthesis of 3D images, leveraging textual descriptions as input. AvatarCLIP [66] focuses
on text-driven 3D avatars with animations, enabling dynamic and interactive virtual char-
acters. DreamFace [102] takes text guidance to create personalized and animatable 3D faces,
offering a high degree of customization. AvatarCraft [55] goes a step further by generating
3D human avatars with specific identities and artistic styles based on text prompts. Motion-
CLIP [118] explores the generation of 3D motion using text descriptions, allowing for the
creation of animated sequences. Progressive structure-conditional GANs (PSGAN) [144]
specialize in generating animated characters from text, facilitating the development of
diverse and engaging virtual personas. DREAMFUSION [133] stands out in text-guided
3D object generation, providing the ability to generate 3D objects based on textual descrip-
tions. DreamAvatar [165] combines text and shape information to generate 3D avatars with
customizable features. These advancements not only enable applications such as 3D image
inpainting using the point encoder GAN [161], but also offer the generation of realistic
human poses using GAN-Poser [51], opening up new possibilities in virtual environments.

Generative AI models, including table-GAN [52], TGAN [94], and CTGAN [83], pro-
vide the ability to create synthetic tabular datasets that closely resemble the original data.
These models offer valuable resources for tasks such as data augmentation, algorithm
testing, and privacy preservation. By leveraging these generative models, researchers and
practitioners can generate datasets with similar statistical properties as the original data,
which can be used for training machine learning models, conducting simulations, and
performing various data-driven analyses. This empowers the exploration and development
of novel solutions in fields that rely on tabular data, fostering advancements in machine
learning, data science, and decision-making processes.

In the broader context of generative AI techniques, our discussion encompasses vari-
ous aspects, including the transformation of unstructured text into structured knowledge
graphs through approaches like Grapher [117] for text-to-knowledge-graph conversion.
Additionally, we explore the conversion of knowledge graphs, represented as RDF triples,
into coherent text using techniques such as GTR-LSTM [129] for knowledge-graph-to-text
conversion.

4.4. Evaluation Metrics

In evaluating the performance of models across various tasks, a combination of qual-
itative and quantitative metrics is utilized. Quantitative metrics provide objective and
numerical measures to assess different aspects of model performance. In image-based tasks
like text-based image synthesis or generation, metrics such as inception score (IS), Frechet
inception distance (FID), PSNR, and SSIM quantify the quality, fidelity, and similarity of
generated images. Text-based tasks, such as language translation, rely on metrics like BLEU,
accuracy, and F1 score to measure the accuracy, fluency, and alignment of translations.
Speech-related tasks, like text-to-speech synthesis, utilize metrics such as MOS, PESQ,
and RTF to evaluate the quality, intelligibility, and real-time performance of synthesized
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speech. For code generation and understanding tasks, metrics like BLEU, CodeBLEW,
pass@k, and code evaluation benchmarks quantitatively assess the correctness, similarity,
and performance of generated code. Additionally, qualitative metrics play a crucial role by
capturing subjective assessments and human judgments. These metrics involve human
evaluation, expert reviews, and user feedback to evaluate factors such as visual appeal,
coherence, naturalness, readability, and user satisfaction. By considering both quantitative
and qualitative metrics, a comprehensive evaluation approach is achieved, ensuring that the
models perform effectively and meet both objective standards and subjective expectations
across a wide range of tasks.

4.5. Challenges and Implementation Issues

There are several challenges in the implementation of AIGC. Addressing these chal-
lenges requires continuous research, collaboration, and interdisciplinary efforts. Re-
searchers, developers, policymakers, and users need to work together to develop improved
techniques, frameworks, and guidelines that advance the capabilities and responsible
deployment of AIGC.

• Training data requirements: Generative AI models require large and diverse datasets
to learn the underlying patterns and generate meaningful outputs. However, acquiring
and curating such datasets can be challenging. It may involve manually collecting
or generating a vast amount of data that accurately represent the target domain. The
quality of the data is crucial, as the model’s performance heavily relies on the richness
and diversity of the training data [32].

• Computational resources: Training and deploying generative AI models can be com-
putationally intensive. Large-scale models with millions or billions of parameters and
complex tasks may require significant computational power, specialized hardware
like GPUs or TPUs, and ample storage resources. The high computational require-
ments can limit the accessibility and affordability of generative AI for individuals or
organizations with limited resources. Developing more efficient model architectures
and optimization techniques, as well as leveraging cloud computing resources, can
help address this challenge [30].

• Mode collapse: Mode collapse occurs when a generative model fails to capture the full
diversity of the training data and instead generates repetitive or limited variations. For
example, an image generation model may consistently produce images of a specific
object, ignoring other possible objects in the training data [32]. Overcoming mode
collapse is a significant challenge in generative AI research. Techniques such as
improving model architectures, optimizing loss functions, or using ensemble methods
are explored to encourage the model to generate a broader range of outputs.

• Interpretability and transparency: Many generative AI models, particularly deep
neural networks, are often considered black boxes, meaning their decision-making
processes are not easily interpretable by humans. This lack of interpretability and
transparency can hinder trust, especially in critical domains where explanations
and justifications are required [69]. Researchers are actively exploring techniques
to enhance the interpretability of generative models, such as visualization methods,
attention mechanisms, or generating explanations alongside the outputs, to provide
insights into the model’s inner workings.

• Evaluation and feedback: Evaluating the quality and creativity of generative outputs
is a complex task. Traditional evaluation metrics may not fully capture the desired
characteristics of generated content, such as novelty, coherence, or semantic relevance.
Developing reliable evaluation metrics specific to generative AI is an ongoing research
area. Additionally, obtaining meaningful feedback from users or experts is crucial
to improve the models iteratively [69]. Collecting feedback at scale and effectively
incorporating it into the training process is challenging but necessary for model
refinement.
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• Generalization and adaptation: Generative models may struggle to generalize well to
unseen or domain-shifted data. They may be sensitive to changes in input distribution
or fail to capture the underlying patterns in new contexts. Adapting generative models
to new domains or ensuring their reliable performance across different datasets and
scenarios is an ongoing challenge. Techniques such as transfer learning, domain adap-
tation, or fine-tuning on specific target data are explored to improve generalization
and adaptation capabilities.

• Ethical considerations: Generative AI technologies raise ethical concerns, particularly
when they can be misused for malicious purposes. For instance, deepfake technology
can create highly realistic but fabricated content, leading to potential misinformation or
harm. Ensuring responsible and ethical use of generative models requires establishing
guidelines, regulations, and safeguards. This includes implementing techniques for
detecting and mitigating the misuse of generative AI, promoting transparency and
accountability, and addressing potential biases in the generated outputs [23,173].

5. Conclusions and Future Work

In this study, we have explored the requirements, models, input–output formats,
and evaluation metrics relevant to generative AI systems. By addressing the research
questions, we have provided valuable insights and a comprehensive understanding of
these aspects. We identified three distinct categories of requirements—hardware, software,
and user experience—for implementing generative AI systems. This knowledge is cru-
cial for researchers, developers, and practitioners in effectively planning and designing
such systems. Additionally, we presented a taxonomy of generative AI models based
on their architecture, including popular models such as VAEs, GANs, diffusion models,
transformers, language models, normalizing flow models, and hybrid models. This tax-
onomy serves as a guide for selecting appropriate models based on specific application
requirements, fostering advancements in the field. Furthermore, we classified the input and
output formats used in generative AI systems, providing a comprehensive and organized
overview. This classification, along with the associated tasks and models, offers researchers
and practitioners a valuable resource for developing customized generative AI systems
for various applications. Moreover, we proposed a classification system based on output
types and discussed commonly used evaluation metrics. This contribution enables the
establishment of robust evaluation frameworks for generative AI models, enhancing their
credibility and facilitating comparative analyses.

Moving forward, there are several avenues for future research in the field of generative
AI. Firstly, it would be valuable to investigate further the interplay between the identified
requirements and the performance of generative AI systems. Understanding how different
hardware, software, and user experience factors impact system outcomes can lead to more
optimized and efficient implementations. Additionally, as the field continues to evolve,
it is important to continually update and expand the taxonomy of generative AI models.
New model architectures and variations emerge regularly, and incorporating them into
the taxonomy would provide a comprehensive and up-to-date overview. Furthermore,
exploring additional input and output formats for generative AI tasks can contribute to a
more comprehensive understanding of system capabilities and limitations. Investigating
novel formats and their suitability for specific tasks can open up new possibilities for
generative AI applications. Lastly, expanding the evaluation metrics and developing
standardized benchmarks can advance the field by providing more rigorous and consistent
means of assessing the quality and performance of generative AI models. This would
facilitate fair comparisons between different approaches and promote further advancements
in the field.
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Appendix A

Table A1. Number of papers published per year.

Year Published Number of Papers

2014 2

2015 1

2016 7

2017 19

2018 22

2019 13

2020 12

2021 12

2022 26

2023 8

Total 122

Table A2. Numerical overview of different paper types.

Paper Type Number of Papers

Conferences 60

Journals 14

Archives 48

Total 122

Table A3. Number of papers published at various venues.

Publication Venue Number
of Papers Reference Code

arXiv 48

[33,34,43,49,50,55,58,63,69,78,80,82,84,
89,94,102,104–106,111–117,119–121,123,
124,126,128,133,139,142,143,145,147,150,
153,157,159,160,162,164,165,167]

IEEE/CVF Conference on Computer Vision and Pattern Recognition 15 [4,59,61,64,65,81,90,92,99,103,122,127,
131,136,151]

International Conference on Machine Learning 10 [45,57,70,86,88,110,130,132,149,152]

Advances in Neural Information Processing Systems 8 [42,67,77,79,83,101,109,148]

IEEE/CVF International Conference on Computer Vision 7 [56,62,87,93,98,138,163]

European Conference on Computer Vision 4 [118,140,141,144]

International Conference on Multimedia 2 [53,134]

Conference on Empirical Methods in Natural Language Processing 1 [60]

International Conference on Learning Representations 1 [95]

International Conference on Neural Information Processing Systems 1 [108]

International Conference on Image Processing 1 [135]

Winter Conference on Applications of Computer Vision 1 [54]

ACM Transactions on Graphics 1 [66]
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Table A3. Cont.

Publication Venue Number
of Papers Reference Code

International Conference on Acoustics, Speech and Signal Processing 1 [47]

IEEE Access 1 [36]

Mathematical Problems in Engineering 1 [156]

Neural Computing and Applications 1 [51]

Knowledge-Based Systems 1 [154]

Annual Meeting of the Association for Computational Linguistics 1 [129]

Sensors 1 [85]

International Conference on Knowledge Discovery & Data Mining 1 [76]

Journal of Cheminformatics 1 [125]

Medical Image Computing and Computer Assisted Intervention 1 [137]

Information 1 [158]

International Joint Conference on Neural Networks 1 [48]

Applied Cryptography and Network Security 1 [155]

Neurocomputing 1 [161]

American Association for the Advancement of Science 1 [35]

Advances in Multimedia Information Processing 1 [96]

Neuroinformatics 1 [100]

International Conference on Machine Vision 1 [146]

International Conference in Central Europe on Computer Graphics, Visualization
and Computer Vision 1 [97]

International Conference on Very Large Data Bases 1 [52]

The Journal of Machine Learning Research 1 [39]

IEEE Transactions on Image Processing 1 [91]

Appendix B

Table A4. Abbreviations of Evaluation Metrics Used in Generative AI Techniques.

Metric Abbreviation

IS Inception Score

FID Fréchet Inception Distance

MS-SSIM Multi-Scale Structural Similarity Index Measure

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index

LPIPS Learned Perceptual Image Patch Similarity

CS-FID Class-Conditional Fréchet Inception Distance

MAE Mean Absolute Error

Sdir Directional CLIP Similarity

MOS Mean Opinion Score

NRMSE Normalized Root Mean Square Error
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Table A4. Cont.

Metric Abbreviation

BLEU Bilingual Evaluation Understudy

METOR Metric for Evaluation of Translation with Explicit Ordering

CIDEr Consensus-based Image Description Evaluation

MAE Mean Absolute Error

RMSE Root Mean Square Error

RMSRE Root Mean Squared Relative Error

BLEURT Bilingual Evaluation Understudy for Natural Language Understanding
in Translation

EM Exact Match

MTPB Multi-Turn Programming Benchmark

MDR Matching Distance Ratio

MPJPE Mean per Joint Positioning Error

KID Kernel Inception Distance

RTF Real-Time Factor

STOI Short-Time Objective Intelligibility

PESQ Perceptual Evaluation of Speech Quality

N.U.V Novel, Unique, and Valid Molecules

FVD Fréchet Video Distance

FCD Fréchet ChemNet Distance

MRR Mean Reciprocal Rank

QED Quantitative Estimate of Drug-Likeness

DCR Distance to the Closest Record

MRE Mean Relative Error

References
1. Cao, Y.; Li, S.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A comprehensive survey of ai-generated content (aigc): A history of

generative ai from gan to chatgpt. arXiv 2023, arXiv:2303.04226.
2. Zhang, C.; Zhang, C.; Zheng, S.; Qiao, Y.; Li, C.; Zhang, M.; Dam, S.; Myaet Thwal, C.; Tun, Y.L.; Huy, L.; et al. A Complete Survey

on Generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need? arXiv 2023, arXiv:2303.11717. [CrossRef].
3. Generative AI Market Size to Hit around USD 118.06 Bn by 2032. 2023. Available online: https://www.globenewswire.com/en/

news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/ (accessed
on 29 June 2023).

4. Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4401–4410.

5. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.

6. Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.Y. Generative adversarial networks: Introduction and outlook. IEEE/CAA
J. Autom. Sin. 2017, 4, 588–598. [CrossRef]

7. Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE
Access 2019, 7, 36322–36333. [CrossRef]

8. Cao, Y.J.; Jia, L.L.; Chen, Y.X.; Lin, N.; Yang, C.; Zhang, B.; Liu, Z.; Li, X.X.; Dai, H.H. Recent Advances of Generative Adversarial
Networks in Computer Vision. IEEE Access 2019, 7, 14985–15006. [CrossRef]

9. Cheng, J.; Yang, Y.; Tang, X.; Xiong, N.; Zhang, Y.; Lei, F. Generative Adversarial Networks: A Literature Review. KSII Trans.
Internet Inf. Syst. 2020, 14, 4625–4647.

10. Dutta, I.K.; Ghosh, B.; Carlson, A.; Totaro, M.; Bayoumi, M. Generative adversarial networks in security: A survey. In Proceedings
of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York,
NY, USA, 28–31 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 0399–0405.

https://doi.org/10.13140/RG.2.2.29980.16001
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
https://www.globenewswire.com/en/news-release/2023/05/15/2668369/0/en/Generative-AI-Market-Size-to-Hit-Around-USD-118-06-Bn-By-2032.html/
http://doi.org/10.1109/JAS.2017.7510583
http://dx.doi.org/10.1109/ACCESS.2019.2905015
http://dx.doi.org/10.1109/ACCESS.2018.2886814


Future Internet 2023, 15, 260 54 of 60

11. Harshvardhan, G.; Gourisaria, M.K.; Pandey, M.; Rautaray, S.S. A comprehensive survey and analysis of generative models in
machine learning. Comput. Sci. Rev. 2020, 38, 100285.

12. Miao, Y.; Koenig, R.; Knecht, K. The Development of Optimization Methods in Generative Urban Design: A Review. In
Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design (SimAUD 2020), Vienna, Austria,
25–27 May 2020.

13. Jin, L.; Tan, F.; Jiang, S.; Köker, R. Generative Adversarial Network Technologies and Applications in Computer Vision. Intell.
Neurosci. 2020, 2020, 1459107. [CrossRef]

14. Aggarwal, A.; Mittal, M.; Battineni, G. Generative adversarial network: An overview of theory and applications. Int. J. Inf.
Manag. Data Insights 2021, 1, 100004. [CrossRef]

15. Eckerli, F.; Osterrieder, J. Generative adversarial networks in finance: An overview. arXiv 2021, arXiv:2106.06364.
16. Jabbar, A.; Li, X.; Omar, B. A survey on generative adversarial networks: Variants, applications, and training. ACM Comput. Surv.

(CSUR) 2021, 54, 157. [CrossRef]
17. Jose, L.; Liu, S.; Russo, C.; Nadort, A.; Ieva, A.D. Generative Adversarial Networks in Digital Pathology and Histopathological

Image Processing: A Review. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609288/ (accessed on 25
July 2023).

18. de Rosa, G.H.; Papa, J.P. A survey on text generation using generative adversarial networks. Pattern Recognit. 2021, 119, 108098.
[CrossRef]

19. Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.; Jiang, H.; Qiao, N.; Zheng, M. Generative models for De Novo drug
design. J. Med. Chem. 2021, 64, 14011–14027. [CrossRef] [PubMed]

20. Aldausari, N.; Sowmya, A.; Marcus, N.; Mohammadi, G. Video generative adversarial networks: A review. ACM Comput. Surv.
(CSUR) 2022, 55, 30. [CrossRef]

21. Zeng, X.; Wang, F.; Luo, Y.; Kang, S.-g.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Feixiong, C. Deep
generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [CrossRef]

22. Li, C.; Zhang, C.; Waghwase, A.; Lee, L.H.; Rameau, F.; Yang, Y.; Bae, S.H.; Hong, C.S. Generative AI meets 3D: A Survey on
Text-to-3D in AIGC Era. arXiv 2023, arXiv:2305.06131.

23. Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.;
et al. “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative
conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [CrossRef]
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