
Citation: Bhurtel, M.; Rawat, D.B.

Unveiling the Landscape of

Operating System Vulnerabilities.

Future Internet 2023, 15, 248. https://

doi.org/10.3390/fi15070248

Received: 15 June 2023

Revised: 20 July 2023

Accepted: 20 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Unveiling the Landscape of Operating System Vulnerabilities
Manish Bhurtel and Danda B. Rawat *

Department of Electrical Engineering and Computer Science, Howard University, Washington, DC 20059, USA;
manish.bhurtel@bison.howard.edu
* Correspondence: danda.rawat@howard.edu

Abstract: Operating systems play a crucial role in computer systems, serving as the fundamental
infrastructure that supports a wide range of applications and services. However, they are also prime
targets for malicious actors seeking to exploit vulnerabilities and compromise system security. This
is a crucial area that requires active research; however, OS vulnerabilities have not been actively
studied in recent years. Therefore, we conduct a comprehensive analysis of OS vulnerabilities, aiming
to enhance the understanding of their trends, severity, and common weaknesses. Our research
methodology encompasses data preparation, sampling of vulnerable OS categories and versions,
and an in-depth analysis of trends, severity levels, and types of OS vulnerabilities. We scrape the
high-level data from reliable and recognized sources to generate two refined OS vulnerability datasets:
one for OS categories and another for OS versions. Our study reveals the susceptibility of popular
operating systems such as Windows, Windows Server, Debian Linux, and Mac OS. Specifically,
Windows 10 , Windows 11, Android (v11.0, v12.0, v13.0), Windows Server 2012, Debian Linux (v10.0,
v11.0), Fedora 37, and HarmonyOS 2, are identified as the most vulnerable OS versions in recent
years (2021–2022). Notably, these vulnerabilities exhibit a high severity, with maximum CVSS scores
falling into the 7–8 and 9–10 range. Common vulnerability types, including CWE-119, CWE-20,
CWE-200, and CWE-787, are prevalent in these OSs and require specific attention from OS vendors.
The findings on trends, severity, and types of OS vulnerabilities from this research will serve as a
valuable resource for vendors, security professionals, and end-users, empowering them to enhance
OS security measures, prioritize vulnerability management efforts, and make informed decisions to
mitigate risks associated with these vulnerabilities.

Keywords: operating system; vulnerabilities; security; CVE; NVD

1. Introduction

An operating system (OS) is the backbone of a computer system, serving as the
interface between users, applications, and hardware components to communicate and func-
tion seamlessly. All the activities, ranging from simple mouse click events and keyboard
keystrokes to complex applications like graphics design or gaming, are controlled and
governed by the OS. However, OSs are prone to security vulnerabilities that pose significant
challenges, potentially leading to system breaches, data leaks, and unauthorized access.
For instance, a recent security vulnerability [1] published by Microsoft on 14 February
2023 shows the Denial of Service (DoS) vulnerability in many of its products, including
Windows 10, Windows 11, Windows Server 2022, etc., with the overall base severity score
of 7.5/10. Such vulnerabilities can help attackers to exploit OSs and conduct malicious
activities, for instance, the Google security research team reported the DoS vulnerability
being exploited by the attackers in the Ubuntu Linux OS [2]. To protect the vulnerabilities
from being exploited, OS vendors often release security updates and patches to secure their
OS from being exploited. Despite the security fixes and strong protection by the corre-
sponding vendors, thousands of OS vulnerabilities are reported each year [3]. Therefore, it
is quite important to understand the vulnerabilities and their trends, severity, and types.

Future Internet 2023, 15, 248. https://doi.org/10.3390/fi15070248 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070248
https://doi.org/10.3390/fi15070248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0699-4889
https://orcid.org/0000-0003-3638-3464
https://doi.org/10.3390/fi15070248
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070248?type=check_update&version=1


Future Internet 2023, 15, 248 2 of 21

Understanding the landscape of OS vulnerabilities is crucial from multiple perspec-
tives. Firstly, it enables OS vendors to identify and address vulnerabilities within their
products, thereby enhancing the security and resilience of their OSs. This research aims to
provide OS vendors with valuable insights into the specific vulnerabilities and common
weakness patterns prevalent in various OS categories and versions. Secondly, this research
serves as a valuable resource for end-users. By comprehending the vulnerabilities present
in popular OSs, end-users can adopt appropriate security measures to protect their systems
and personal data. Understanding the types and severity of vulnerabilities empowers end-
users to make informed decisions when it comes to OS selection, security configurations,
and best practices. Additionally, this research contributes to the broader field of cyber-
security. By studying OS vulnerabilities, researchers can gain insights into the evolving
threat landscape and develop effective strategies to counter emerging risks. It provides
an opportunity to identify trends, patterns, and common vulnerability types, which can
inform the development of robust security frameworks and defensive mechanisms.

In this paper, we first collect entire Common Vulnerabilities and Exposure (CVE) IDs
from CVE Mitre. We clean the dataset based on different CVE statuses (reserved, rejected,
disputed, etc.). Next, we scrape the data for each CVE ID from the National Vulnerability
Database (NVD) website. Specifically, we collect data points such as product type, product
name, product versions, vendor name, CVSS scores, and CWE ID. We then extract only those
data related to OS vulnerabilities, finally creating two refined datasets, namely OS_CAT
and OS_VER, specifically tailored to our research objectives. Using this dataset, we sample
highly vulnerable OS categories within the time range from 1999 to 2022. Additionally, we
identify highly vulnerable OS versions within the recent years of 2021 and 2022, providing
insights into the current state of vulnerabilities in these OS versions. Following the sampling
process, we conducted an in-depth analysis of the collected data. We study the trends in
OS vulnerabilities, examining how vulnerabilities have evolved over time. We also assess
the severity of vulnerabilities based on the widely adopted Common Vulnerability Scoring
System (CVSS) scores. Furthermore, we analyze the types of vulnerabilities present in
the OSs based on the Common Weakness Enumeration (CWE) system. By employing this
rigorous methodology, we aim to provide comprehensive insights into OS vulnerabilities,
their trends, severity, and common weakness patterns.

The main contributions of this paper are summarized below:

• We collect high-quality vulnerability data from the NVD and prepare two precise
datasets, one for OS categories and another for OS versions.

• We identify the top 10 OS categories based on the all-time high vulnerability count
(1999–2022). Furthermore, we identify the top 10 highly vulnerable OS versions in
recent years (2021–2022).

• We conduct a comprehensive year-wise examination of reported vulnerabilities in our
sampled OSs, spanning the period from 1999 to 2022.

• We also evaluate the severity of the identified vulnerabilities for both OS categories
and OS versions using CVSS scores.

• We investigate the types of vulnerabilities mostly observed in both OS categories and
OS versions.

We organize the rest of the paper as follows. In Section 2, we discuss the concepts and
definitions associated with this study, followed by Section 3 where we present the literature
of works related to OS security and vulnerability assessments. In Section 4, we discuss the
research methodology with three broad subsections. Section 5 illustrates findings which are
further divided into four broad subsections. The limitations of the research and the future
works are discussed in Section 6. Finally, Section 7 summarizes and concludes the paper.

2. Background

This section describes the background definitions and concepts utilized in this study.



Future Internet 2023, 15, 248 3 of 21

2.1. Common Platform Enumeration (CPE)

This is the standard approach used to recognize various classes of applications, OSs,
and hardware devices among various computing assets [4]. In our study, we collect the
CPE 2.3 configurations from the NVD. Given a computing product, CPE 2.3 provides the
complete categorization of that product based on the following syntax:

cpe : 2.3 : category : vendor_name : product_name : version : edition : update : ...

where the category will be either ‘a’ for application, ‘h’ for hardware, or ‘o’ for OS,
and lower-level product information that is not provided is marked as ‘∗’. For instance,
the CPE configuration for Android 10.3 is as follows:

cpe : 2.3 : o : google : android : 10.3 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗

Table 1 shows two representative entries with segregation of the CPE configuration
into vendor name, OS name, and version. According to CPE, a product is termed to be
under the OS class, then it needs to be an intermediary either between user and hardware
or between applications and hardware [4,5]. Therefore, OS kernels or firmware also fall
under the OS category in the CPE2.3 configuration. However, we filter out the OS kernels
and firmware in our study and select only actual OSs.

Table 1. Examples of categorization of OSs in CPE configuration.

Vendor OS Name Version CVE ID CPE Configuration

Google Android 12.0 CVE-2022-30713 cpe : 2.3 : o : google : android : 12.0 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗
Debian Debian Linux 10.0 CVE-2022-22577 cpe : 2.3 : o : debian : debian_linux : 10.0 : ∗ : ∗ : ∗ : ∗

2.2. Common Vulnerability Scoring System (CVSS)

This provides an open framework to assess computing vulnerabilities by providing
standard CVSS scores. A CVSS score for the given vulnerability is calculated as follows [6]:

CVSS_score = f (Base Metrics, [Temporal Metrics, Environmental Metrics])

where base metrics represent the intrinsic characteristics of the vulnerability, temporal
metrics represent the characteristics of the vulnerability that change over time, and envi-
ronmental metrics refer to characteristics with respect to the user environment. The latter
two metrics are optional.

The CVSS utilizes a numerical score ranging from 0 to 10 to assess the severity of
vulnerabilities. A CVSS score of 0 represents a benign vulnerability with minimal or
no potential for exploitation, while a score of 10 indicates the highest likelihood of being
exploited. The CVSS scores are provided by the National Institute of Science and Technology
(NIST) and the Common Naming Authority (CNA) based on the severity of the reported
vulnerability. Originally, the Common Vulnerability Scoring System (CVSS) version 2.0
was prevalent for assessing the severity of vulnerabilities. However, since June 2019, CVSS
version 3 (CVSSv3) has become the widely adopted standard for scoring vulnerability
severity. Thus, in our study, we extract four CVSS scores altogether viz. CVSSv2-NIST,
CVSSv2-CNA, CVSSv3-NIST, and CVSSv3-CNA [6].

2.3. Common Weakness Enumeration (CWE)

CWE incorporates the list of software and hardware weakness types developed by the
community of major OS vendors, commercial information security tool vendors, academia,
government agencies, and research institutions. Each classified vulnerability is assigned
a CWE ID that provides the definition of vulnerability. CWE is an effective method to
understand what types of vulnerabilities are more likely to occur [7]. CWE incorporates the
list of software and hardware weakness types developed by the community of major OS



Future Internet 2023, 15, 248 4 of 21

vendors, commercial information security tool vendors, academia, government agencies,
and research institutions. On a high level, CWE categorizes the weaknesses in two main
views as follows:

• CWE-699: This incorporates the weaknesses encountered by developers and those
with familiarity with vulnerability taxonomy.

• CWE-1000: This incorporates the research concepts where the research academic
researchers create a framework to classify the weaknesses.

Any newly discovered or classified vulnerability has a unique CWE identified (CWE-
ID) and falls under either of these two categories. In our study, we extract the lower-level
CWE IDs such that we can extract the more specific vulnerability type.

3. Related Work

Prevailing vulnerabilities in OSs have opened up a wide research scope. In the litera-
ture, multiple works have been performed on OS vulnerability assessment. Vander et al.
in [8] have discussed different types of cyberattacks that OS categories can face. The paper
compiles various charts with respect to cyberattacks from multiple sources. Similarly,
Kocaman et al. [9] presented a method to compare the CVE record with the OS’s package
with the intent of identifying the openness status of the OS. Similarly, the authors of [10]
leveraged CVE and CWE definitions to present the attack dynamics by producing multiple
visualizations. This work is different from our paper since they create the tool to generate
attack graphs, whereas our work is mainly focused on studying the potential attack types
based on CWE-IDs. The other similar research includes individual vulnerability assess-
ments, i.e., studies specific to Windows [11], Linux [12], Android [13], etc. The specific
study does not provide the big picture of OS security or where the specific OS stands in
the vulnerabilities study. Performing a comparative vulnerability assessment of the OSs
utilized by end-users is of significant importance when considering OS security. Kalu-
arachchilage et al. proposed the quantitative analysis of the vulnerability risk of OSs [14].
This research has provided good statistical grounds; however, it lacks the study of trends
and types of vulnerabilities and real-world exploits. Furthermore, the above research
works do not discuss the trends and severity of the OS versions over a range of years that
play a crucial role in understanding the OS vulnerability landscape. On the other hand,
the authors of [15] have used a similar sampling strategy of considering CVE entries to
select the top 10 vulnerable IoT device categories. Our work employs a similar sampling
mechanism; however, it is related to the OS landscape.

The most recent similar research was conducted in 2016 by Gorbenko et al., where
they explored the vulnerabilities in enterprise OSs up until 2016 [3]. The same authors
discussed intrusion-tolerant architectures with vulnerabilities until 2017 [16]. The literature
lacks the study of OS vulnerability assessments in terms of trends, severity, and types in
recent years (2017–present). Additionally, our research has found that this time range is the
prime years when the vulnerabilities are mostly seen in OSs. This indicates a large research
gap and the need for in-depth research on the study of OS vulnerabilities. Addressing this
research gap, our paper presents the most recent and up-to-date research on overall OS
vulnerability assessments.

4. Research Methodology

Our research focuses on the assessment of different OS vulnerabilities. Different stages
of our research are explained in the subsections below.

4.1. Data Collection and Processing

Data collection is a crucial part of our research methodology. The overall data analysis
consists of precise numbers, and therefore the data need to be authentic and reliable.



Future Internet 2023, 15, 248 5 of 21

4.1.1. Data Sources: CVE Mitre and NVD

We collected the CVE IDs for the data extraction from Common Vulnerabilities and
Exposure (CVE) Mitre. In CVE Mitre, each vulnerability report is thoroughly studied
by the security team and provided with a CVE ID, i.e., every vulnerability report has
a unique CVE ID. All these CVE IDs along with their description are updated daily by
the CVE Mitre Corporation, and the overall data are maintained on their official website
https://www.cve.org/Downloads accessed on 28 June 2023. Since the data are updated
regularly, it is quite important to note the exact timestamp of the collected data. We
downloaded a total of 274073 unique CVE entries as a single CSV file from CVE Mitre
on 28 June 2023 22:32:46:334345 timestamp. This research was conducted in early 2023,
so we did not have enough data for 2023; hence, we retained only those data within the
range of 1999 to 2022. At the time of the download, there was a total of 278,146 CVE
entries, and after excluding 20673 CVE entries for the year 2023, we were left with a total of
257,473 data entries consisting of CVE IDs and their corresponding description until 2022. We
downloaded the CVE Mitre data only to collect the CVE IDs, since these do not provide the
required information. Therefore, the next challenging task was to leverage the collected CVE
IDs to scrape further valuable information from the National Vulnerability Database (NVD).

The National Vulnerability Database (NVD) https://nvd.nist.gov accessed on 29 June
2023, is a platform recognized by the US government and therefore is authentic and reliable.
The NVD provides complete reported details about the CVE ID. We used the CVE entries
from CVE Mitre and prepared a Python script using the BeautifulSoup library to scrape
the corresponding details of the entire CVE entries according to Algorithm 1. We collected
product type, product name, vendor name, vulnerable versions, CWE IDs, and CVSS scores.
Each CVE entry may change over time, and therefore we also recorded the timestamp at
the time of individual data scraping from the NVD. The entire web scraping was conducted
in 2 days starting from 29 June 2023 to 30 June 2023.

4.1.2. Data Scraping Method

Algorithm 1 shows the method of data scraping from the NVD website using the CVE
IDs collected from CVE Mitre. An example of main_url for CVE-2019-15222 is as follows:
https://nvd.nist.gov/vuln/detail/CVE-2019-15222 accessed on 28 June 2023.

Information about any CVE ID can be extracted by placing the CVE ID at the end of
the main_url. We used requests, BeautifulSoup, and pandas libraries to perform the data
scraping and cleaning. In each step, different attributes of “id”, “class”, etc., were used to
scrape the corresponding data. For instance, the CVSS scores lie in the “div” block with the
attribute of “id” = “vulnCvssPanel”. The function get_warning_text checks for the warning
status name with attribute “data-testid” = “vuln-warning-status-name”. The warning texts can
be rejected, awaiting_analysis, undergoing_analysis, deferred, etc., based on the provided status.
In a similar manner, we created the get_cvss_scores method to extract the CVSSv3-NIST,
CVSSv3-CNA, CVSSv2-NIST, and CVSSv2-CNA. The function get_cwe collects the CWE ID
if present in the main_url. Finally, the product_type, product_name, vendor, and corresponding
versions are extracted using get_all_products_data method. We created this method by
extracting the CPE2.3 records present in the main_url and splitting the required products’
data. Each extraction was followed by the timestamp since the data may change over time.
There were 278,146 CVE entries to scrape; therefore, we leveraged Python’s multiprocessing
library to run the scraping algorithm in parallel.

https://www.cve.org/Downloads
https://nvd.nist.gov
https://nvd.nist.gov/vuln/detail/CVE-2019-15222


Future Internet 2023, 15, 248 6 of 21

Algorithm 1 Data Collection Pseudocode

Function scrape-data-from-nvd(nvd_base_url, cve_ids)
Input: nvd_base_url and cve_ids
Output: Dataframe containing product’s type, name, vendor, versions, CVSS
scores, CWE ID and scraping timestamp

requests← object of python requests library
nvd_base_url← “https://nvd.nist.gov/vuln/detail/” (accessed on 1 June
2023)

foreach cve_id ∈ cve_ids do
main_url← nvd_base_url + cve_id
response← requests.get(main_url)
timestamp← record the timestamp using datetime library
page_data← BeautifulSoup(response.content, “html.parser”)
warning_text← get_warning_text(“data-testid”:
“vuln-warning-status-name”)

if warning_text then
Save the cve_id in corresponding warning_text CSV file
continue

end
table← page_data.find(“table”, attrs=“id”: “vulnDetailTableView”)
div← table.find(“div”, attrs=“class”: “row”)
div← div.find(“div”, attrs=“class”: “col-lg-9 col-md-7 col-sm-12”)
cvss_div← div.find(“div”, attrs=“id”: “vulnCvssPanel”)
cvss_scores = get_cvss_scores(cvss_div)
div← div.find(“div”, attrs=“class”: “row col-sm-12”)
cwe_div← div.find(“div”, attrs=“id”: “vulnTechnicalDetailsDiv”)
cwe_id← get_cwe(cwe_div)
all_prod_div← find the next div block with empty “id” and “class”
attributes

has_prod, all_products_details← get_all_products_data(cve_id,
all_prod_div)

if has_prod then
Append all_products_details (type, name, vendor, versions), cvss_scores,

cwe_id, timestamp into the dataframe
end
else

Append the cve_id to no_products_found dataframe
end

end
return dataframe with values product_type, product_name, vendor_name,
product_versions, cvss_scores, cwe_id, timestamp

end

4.1.3. Data Decomposition

All CVE entries may not be good CVE entries; therefore, we segregated the collected
data into multiple categories based on the CVE and NVD statuses https://nvd.nist.gov/
vuln/vulnerability-status accessed on 28 June 2023. Figure 1 shows the number of good
CVE entries and different other categories of CVE entries that do not provide useful
information explained below.

https://nvd.nist.gov/vuln/detail/
https://nvd.nist.gov/vuln/vulnerability-status
https://nvd.nist.gov/vuln/vulnerability-status


Future Internet 2023, 15, 248 7 of 21

Figure 1. Decomposition of unique CVE entries reported within the year range 1999–2022.

Reserved

This is the category of CVE records that has been reserved for utilization by a CVE
Numbering Authority (CNA) or security researchers. The details of such reserved CVE
records are not published and analyzed by NVD. In our collected data, we found 48,413 re-
served CVE entries and removed them from our collected data pool since we could not
extract any information from them.

Rejected

A CVE Record is classified as “REJECT” when it is not accepted as a valid CVE Record.
This rejection may occur due to reasons such as the withdrawal of the original request,
incorrect assignment, or other administrative factors. We found 12,647 CVE records in the
“REJECT” status and removed them from our data pool.

Disputed

When there is a disagreement between two parties regarding the classification of a
specific issue as a vulnerability, then the CVE record assigned to that issue is “DISPUTED”.
We found 1016 disputed CVE records at the time of our data collection and excluded those
records from the analysis.

Modified

When a CVE record is updated in the source, then it is termed as “MODIFIED” in the
NVD. Any modified CVE record with at least one valid and vulnerable CPE configuration
is included in our analysis since they were vulnerable at some point in time. However,
we found 120 modified CVE IDs without a single valid CPE configuration which are thus
excluded from our analysis.

Deferred

If the analysis of the CVE record is deferred by the NVD due to resources or other con-
cerns, then the CVE record is given a “DEFERRED” status, where we observed 111 deferred
CVE entries which we excluded from our analysis.



Future Internet 2023, 15, 248 8 of 21

Awaiting Analysis

During the time of the data extraction, 34 CVE records were in the “Awaiting Analysis”
status. These data did not have complete information; thus, we excluded those CVE records.

Undergoing Analysis

During the time of data extraction, 16 CVE records were in the “Undergoing Analysis”
status. These data did not have complete information; thus, we excluded those CVE records.

Undergoing Reanalysis

During the time of the data extraction, seven CVE records were in the “Undergoing
Reanalysis” status. Those data also did not have complete information, thus, we excluded
those CVE records.

Received

These are the CVE records just received for analysis. We found five such CVE records
and removed them from our data pool.

Unsupported (when assigned)

If the product associated with a CVE entry is no longer supported by the vendors,
then the CVE record is referred to as an end-of-life (EOL) product and tagged with an
“Unsupported when assigned” tag. In our case, we found only one CVE entry (CVE-2022-
48311) that had this status.

No Product Details

In our scraped data, we found that six CVE IDs (CVE-1999-0261, CVE-1999-0635,
CVE-2000-0288, CVE-2000-0889, CVE-2001-0291, and CVE-2003-0565) did not have any
Common Platform Enumeration (CPE) configuration or product details during the time of
data scraping.

Non-Vulnerable

There were some CVE IDs where all the CPE configurations were non-vulnerable.
For instance, CVE-2004-1510 contains all non-vulnerable CPE configurations as of the
scraped timestamp. We found 394 such entries and excluded these as well from our analysis.

Good CVE Entries

After removing all the above-mentioned incomplete and inconsistent CVE records
from our data pool, we finally ended up with 194703 useful and good CVE entries. We
marked a CVE entry as a good CVE entry if it at least had a valid and vulnerable CPE
configuration. We use these 194703 data for our further analysis.

4.1.4. Operating System Data

The vulnerabilities associated with a CVE entry can impact multiple applications,
hardware, or OSs. Therefore, we prepared a Python script to segregate the CVE entries
into OSs, hardware, applications, and the common CVE entries among them as shown by
Figure 2. To segregate the product types, first, we applied the Pandas “groupby” function
to group the dataframe into OS, hardware, and applications using the column “Product
Type”. Next, we applied the “isin” method provided by Pandas library to check whether
the CVE IDs of the OSs lie in the CVE ID pool of hardware or applications. Thus, if the
CVE ID lies in all three categories, then it is kept at the intersection of three sets, as shown
by 145 records in Figure 2. Similarly, if there is no common category, then it is the OS-only
CVE record, i.e., 38,110 in the Venn diagram. Out of our 194,703 good CVE entries, we
found 54,549 (28.01%) unique CVE entries associated with OSs where 38,110 impacted only
the OS, 559 impacted the OS and hardware, 15,735 impacted the OS and applications, and
145 impacted all three of them.



Future Internet 2023, 15, 248 9 of 21

Figure 2. Segregation of good CVE entries as OSs, hardware, and applications.

4.2. Sampling of Vulnerable OSs and Vendors

We utilized a dataset consisting of 54,549 unique Common Vulnerabilities and Expo-
sure (CVE) entries to prepare further in-depth datasets and conduct our analysis. From this
dataset, we sampled the top 10 vulnerable OS categories and their respective OS versions.
It is important to note that each CVE entry can encompass multiple affected OSs, resulting
in a significant increase in the number of data points for OS categories and versions. Table 2
presents two illustrative examples, emphasizing the presence of multiple affected OS cate-
gories and versions within a single CVE record. For instance, in the case of CVE-2021-44142,
a total of 23 unique vulnerable products were observed, of which 18 products belong
to unique OS categories. Additionally, when examining the versions of these products,
40 unique vulnerable versions were observed, with 35 of them belonging to unique OS
versions. Similarly, CVE-2021-26884 encompasses a total of six unique affected products,
all of which belong to unique OS categories. Moreover, there are 16 unique vulnerable
versions of these products and all 16 entries correspond to unique OS versions.

Table 2. Examples showing the CVE records with multiple vulnerabilities count (#) in OS categories
and OS versions.

CVE ID #Unique Vuln OS Categories #Unique Vuln OS Versions

CVE-2021-44142 18/23 35/40
CVE-2021-26884 6/6 16/16

Leveraging this knowledge, we created two datasets, one for the OS category and
another for OS versions. First, we created the OS category vulnerability dataset, entitled
OS_CAT, where we aggregated all the OS versions’ data falling under the same OS category
as a single entry. Next, we created the OS version vulnerability dataset, entitled OS_VER by
taking all the vulnerable OS versions as the independent entries. For example, for CVE-2021-
44142 in Table 2, we take the data from 18 unique OS categories with all versions aggregated
together in our OS_CAT dataset, while we take the data from 35 unique OS versions in our
OS_VER dataset. Finally, our OS_CAT dataset contained 310,429 total data points and the
OS_VER dataset contained 465,084 data points as indicated in Table 3. We used the OS_CAT
dataset for the analysis of OS categories, while the OS_VER dataset was used for the analysis
of specific OS versions. This comprehensive approach allowed us to account for the diverse
range of OS categories and versions affected by the vulnerabilities identified in the CVE
dataset. Based on our datasets, we had 1526 unique OS categories, 19,331 unique OS
versions, and 426 unique vendors. Finally, we extract the top 10 vulnerable OS categories,



Future Internet 2023, 15, 248 10 of 21

the top 10 vulnerable OS versions under each category, and the top 10 vendors with highly
vulnerable OS categories.

Table 3. OS vulnerability datasets derived using 54549 unique CVE IDs associated with OSs.

Dataset Name Number of Data Points Description

OS_CAT 310,429 Versions aggregated together
OS_VER 465,084 Versions taken independently

4.3. Analysis of Vulnerabilities Trends, Severity, and Types

Following the data preparation and sampling of OS categories and versions, we
proceeded with a temporal analysis of the selected OS categories and recent OS versions.
To conduct this analysis, we leveraged the temporal information encoded within the
CVE IDs. The year component of the CVE ID format, represented as CVE-YYYY-XXXXX,
indicates the disclosure year of the vulnerability. We grouped the top 10 vulnerable OS
categories based on the year indicated in their respective CVE IDs. By doing so, we
obtained the number of vulnerabilities reported for each product from 1999 up to 2022.
This analysis allows us to understand the trends in vulnerability reports over the years,
providing valuable insights into the frequency and distribution of vulnerabilities within
each category. Furthermore, examining the trend in vulnerability reports year by year
contributes to a better understanding of the evolving landscape of vulnerabilities in the
selected OS categories.

Furthermore, it is also evident that not all OS categories with specific versions are
necessarily supported by their respective vendors. Hence, we took an additional step to
extract the top 10 OSs with specific versions that are confirmed to be supported by the
vendors. This selection was made within the recent timeframe of 2021–2022, ensuring that
the readers gain insight into the prevailing vulnerabilities that are relevant and applicable
in the present time.

On the other hand, we also performed a severity analysis of the vulnerabilities dis-
covered in the top 10 OS categories based on CVSS scores. As discussed in Section 2, we
scraped four different CVSS scores based on the availability such that we will have at least
one CVSS score for each product. Finally, we computed a single CVSS score by taking the
maximum of all four CVSS scores for each product as follows:

CVSS_score = max(CVSSv2_NIST, CVSSv2_CNA, CVSSv3_NIST, CVSSv3_CNA)

After extraction of the CVSS score, we grouped the score into one of ten categories.
The CVSS score is a continuous number and thus it will be difficult to generate comparative
bar plots. Furthermore, creating the line plots may generate a disoriented graph that may
not produce valuable insights. Therefore, we prepare the 10 discrete groups of CVSS scores
viz. 0–1, 1–2, 2–3, ..., 9–10 classes. All groups include the lower bound and exclude the
upper bound except for the CVSS group 9–10, which includes both lower and upper bounds.

We expand our methodology by unfolding the types of vulnerabilities based on the
CWE ID. We scraped the reported CWE IDs associated with each data point. We leveraged
this CWE ID to rank the top 10 vulnerability types based on the number of times the
vulnerability type is observed within the CVE record. It is quite important to understand
the year-wise vulnerability types such that the end-users can understand and take necessary
precautions about the prevailing vulnerability types. Next, we analyzed the year-wise
vulnerability count for each of our top 10 CWE IDs. Then, we compared the vulnerability
counts of the CWE IDs common to our top 10 vulnerable OS categories as well as the
top 10 vulnerable OS versions in recent years. This comparison provides insights into the
vulnerability patterns between the broader range of vulnerable OS categories and the more
recent OS versions with specific releases.



Future Internet 2023, 15, 248 11 of 21

5. Findings and Discussion
5.1. Sampling of Vulnerable OS Categories, OS Versions, and Vendors

Figure 3 presents a comparative bar chart depicting the highly vulnerable OS cate-
gories using our OS_CAT dataset with 310,429 distinct data points. The chart reveals that
the top 10 vulnerable OSs consist of a diverse range of OS types encompassing desktop,
mobile, server, and TV OSs. The OS categories Debian Linux, Ubuntu Linux, Fedora,
and openSUSE have significant numbers of vulnerabilities, highlighting the importance
of proactive security practices in the Linux ecosystem. The OSs in the Windows family,
i.e., Windows and Windows Server, have 4646 and 3942 vulnerability entries, respectively.
The Apple OSs, namely macOS, iPhone OS, and tvOS, also fall in the top 10 list. The OS
categories Android and iPhone OS demonstrate vulnerabilities in mobile OSs. With the
increasing use of mobile devices, it is crucial to address these vulnerabilities promptly
through regular updates and user awareness.

Figure 3. Top 10 highly vulnerable OS categories based on all-time (1999–2022) vulnerability reports
of OS categories using the OS_CAT dataset with 310,429 data points.

In addition, Figure 4 showcases the number of vulnerabilities reported for specific
OS versions under corresponding OS categories, as highlighted by the respective colors,
utilizing our OS_VER dataset with 465,084 data points. Surprisingly, Debian Linux 9 and
Android 10 have comparatively low vulnerability counts, contrasting their top vulnerable
respective OS categories in Figure 3. The chart shows that the top vulnerable OS versions
are Windows 10 and Windows Server 2008. The higher number of vulnerabilities in
popular desktop OSs like Windows and macOS, as well as mobile OSs like Android and
iOS, suggests that attackers may focus their efforts on these widely used platforms due to
the potential impact and larger user base.



Future Internet 2023, 15, 248 12 of 21

Figure 4. Top 10 highly vulnerable OS versions under corresponding OS categories based on all-time
vulnerability reports of OS versions using the OS_VER dataset with 465,084 data points.

Similarly, Figure 5 shows the top 10 vendors with a high number of vulnerable
products. We found that Redhat topped our ranking, with a total of 11,498 reported
vulnerabilities, followed by Apple with 10,885 reported vulnerabilities. The presence of
a diverse range of vendors, including Redhat, Apple, Microsoft, Debian, Google, Fedora
Project, Canonical, openSUSE Project, Cisco, and Huawei, among the top 10 with vulnerable
products highlights the need for comprehensive vulnerability management across various
vendor ecosystems. The inclusion of vendors like Redhat, Debian, Fedora Project, and
openSUSE Project in the top 10 underscores the importance of addressing vulnerabilities
in open-source software. The collaborative nature of open-source projects requires active
community involvement to identify and remediate security vulnerabilities promptly.

5.2. Year-Wise Vulnerability Results and Pattern Analysis

After sampling the top highly vulnerable OS categories, we studied the evolution
of vulnerabilities during the period of 1999–2022. Figure 6 shows the stacked bar chart
demonstrating the year-wise pattern for our top 10 vulnerable OS categories with the
number of reported vulnerabilities. The following are some important and interesting
observations from in Figure 6:

• For the listed top 10 OS categories, the growth in vulnerabilities over the years
1999–2022 indicates an Exponential Distribution pattern. From another perspective,
we can observe that the highest number of vulnerabilities was reported in 2020, after
which the increasing trend was broken and the graph tends to show a downward
slope until 2022. This shift can be interpreted as the commencement of the second half
of a Gaussian Distribution, with the data from 2020 serving as the mean value.

• In 2017, the number of vulnerability reports impacting Fedora was notably small, with
only 42 reports. However, in the subsequent years until 2022, there was a significant
increase in the number of vulnerability reports affecting Fedora. This indicates a
considerable growth trend in the vulnerabilities associated with the Fedora OS and its
versions during that period.



Future Internet 2023, 15, 248 13 of 21

• Debian Linux shows an increasing trend until 2018 and a decreasing trend was seen
in recent years, starting in 2020. Android exhibits a slow increment in vulnerability
reports across each year, with a total of 1266 reported vulnerabilities in 2022.

• Ubuntu Linux had the highest number of vulnerabilities in 2018. However, after 2018,
it exhibited remarkable resilience and stability, as reflected in the significantly reduced
vulnerability reports. Specifically, in 2022, Ubuntu Linux encountered a mere nine
vulnerability reports. Similarly, openSUSE also experienced an upward trend in
vulnerability reports until 2020. However, in recent years, there has been a substantial
decrease in the number of vulnerability reports. Specifically, in 2021, there were
only six reported vulnerabilities for openSUSE, and in 2022, the number was further
reduced to just two entries. This remarkable improvement underscores the efforts
made by Ubuntu Linux and openSUSE to bolster the security and reliability of the
Linux distribution.

• The Apple OSs, including Mac OS, iPhone OS, and tvOS, consistently demonstrate
a relatively low number of vulnerability reports compared to other OS categories.
However, the consistency in vulnerability reports each year does not necessarily imply
a decline in vulnerabilities. Instead, it suggests that the vulnerability landscape for
these Apple OSs remains relatively stable, with a consistent number of vulnerabilities
being identified and reported annually. It highlights the need for ongoing security
measures and regular updates to address and mitigate these vulnerabilities effectively,
despite the consistent number of reports.

Figure 5. Top 10 vendors with the highest number of vulnerable OSs based on all-time vulnerability
reports of OS categories using the OS_CAT dataset within the timeframe of 1999–2022.



Future Internet 2023, 15, 248 14 of 21

Figure 6. Year-wise vulnerability count of top 10 OS categories using the OS_CAT dataset based on
the vulnerability frequencies over the years 1999–2022.

Continuing the analysis, Table 4 presents the vulnerabilities of the top 10 unique
OS versions during the recent period from 2021 to 2022. Notably, all these OS versions
remain actively supported by their respective vendors. The analysis reveals that in recent
years, Windows 10 stands out as the most highly vulnerable OS, with a substantial num-
ber of 8659 vulnerability reports. This highlights the challenges faced in maintaining the
security of Windows 10 and the need for robust security measures to mitigate potential
risks. Following Windows 10, the next vulnerable OS is another product from the Win-
dows family, namely Windows 11, with 1293 vulnerability reports in recent years. This
indicates that even with the release of a newer version, Windows 11 was not immune
to vulnerabilities, emphasizing the ongoing importance of maintaining strong security
practices. Additionally, the list includes three highly vulnerable versions of Android (11,
12, and 13). This suggests that despite efforts to enhance the security of Android with each
subsequent version, vulnerabilities still persist, indicating the need for continuous updates
and security measures for Android devices. Similarly, two highly vulnerable versions of
Debian Linux (10 and 11) are identified. Furthermore, Windows Server 2012 and Fedora
37 appear on the list with 753 and 333 vulnerability reports, respectively. Interestingly,
the mobile-IoT OS, namely HarmonyOS 2, is also observed in the top 10 list of vulnerable
OSs in recent times, with 323 vulnerability reports. All these observations raise a critical
concern that even in recent years, widely used OSs belonging to various usage categories
(desktop, server, mobile, and IoT) continue to exhibit a high level of vulnerability. Despite
ongoing vendor support, these OS versions remain susceptible to security risks. Address-
ing these vulnerabilities becomes imperative to safeguard systems and enhance overall
OS security.



Future Internet 2023, 15, 248 15 of 21

Table 4. Vulnerability count (#) of OS versions that are still maintained by their respective vendors,
during 2021–2022, using our OS_VER dataset.

Rank Operating System Vendor Release Date #Vulnerabilities

1 Windows 10 Microsoft 29 July 2015 8659
2 Windows 11 Microsoft 5 October 2021 1293
3 Android 11 Google 8 September 2020 1283
4 Debian Linux 10 Debian 6 July 2019 1206
5 Android 12 Google 4 October 2021 1148
6 Debian Linux 11 Debian 14 August 2021 871
7 Windows Server 2012 Microsoft 25 November 2013 753
8 Fedora 37 Fedora Project 15 November 2022 333
9 Android 13 Google 15 August 2022 328

10 HarmonyOS 2 Huawei 2 June 2021 323

5.3. Severity Analysis Results

We demonstrate the CVSS score analysis as a stacked bar chart for all the 10 OS
categories under study, as shown in Figure 7. This chart is based on the CVSS score
reported in our OS_CAT dataset. All the OS categories contain the majority of the CVSS
scores above 4. The quite critical observation is that all our top 10 vulnerable OS categories
have the majority of vulnerabilities with CVSS scores in the ranges 7–8 and 9–10. This
indicates a heightened level of severity and underscores the urgent need for proactive
measures to address these vulnerabilities and enhance the security of these OSs. It is
crucial to prioritize the identification and patching of vulnerabilities within these score
ranges to mitigate potential risks and safeguard the integrity and functionality of these
vulnerable systems.

Continuing this analysis, Figure 8 depicts the CVSS scores for our top 10 most recent
vulnerable OSs with specific versions. We present the following observations and pattern
analysis from the figure:

Figure 7. CVSS scores for the top 10 OS categories using our OS_CAT dataset.



Future Internet 2023, 15, 248 16 of 21

Figure 8. CVSS scores for our top 10 highly vulnerable OS versions in recent years (2021–2022) using
our OS_VER dataset.

• For Windows 10, 5046 vulnerability reports indicate CVSS scores between 7 and 8,
and 1169 vulnerability reports indicate CVSS scores between 9 and 10. Similarly,
for Windows 11, 759 vulnerability reports correspond to CVSS group 7–8, and 192 vul-
nerability reports correspond to CVSS group 9–10.

• For Android 11 and 12, the majority of CVSS scores lie in groups 5–6 and 7–8. The same
pattern is also seen in Android 13; however, the amount is quite lower in number as
compared to these two versions.

• Debian Linux 10 and 11 exhibit a similar pattern of CVSS groups, with group 7–8
being the maximum.

• All the top 10 OS versions have the majority of CVSS scores above 5. This indicates
the critical potential for exploitation and greater security risks in recent times.

• HarmonyOS 2 has most of its vulnerability reports incorporating 7–8 CVSS scores.

5.4. Types of Vulnerabilities Findings

As we discussed different vulnerability statistics, in this section, we highlight the types
of vulnerabilities in terms of CWE IDs. Table 5 shows the ranking of the top 10 vulnerability
types seen in overall OSs. We used a dataset consisting of 54,549 unique CVE entries such
that a single CWE is associated with a single CVE record. These CWEs are the critical
weaknesses that can allow attackers to cause critical and serious damage. Different attack
types that the attackers can cause under our top 10 CWE IDs are explained below:



Future Internet 2023, 15, 248 17 of 21

Table 5. Top 10 vulnerability types across all OSs with their CWE IDs, overall count, and description.

CWE ID Count Description

CWE-787 3945 Out-of-bounds Write
CWE-119 3802 Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-20 3365 Improper Input Validation
CWE-200 2199 Exposure of Sensitive Information to an Unauthorized Actor
CWE-125 2105 Out-of-bounds Read
CWE-79 1707 Cross-site Scripting
CWE-416 1568 Use After Free
CWE-264 1508 Permissions, Privileges, and Access Controls
CWE-78 1208 OS Command Injection
CWE-120 1107 Classic Buffer Overflow

CWE-787

Under this vulnerability, the attacker can write to out-of-bound memory locations,
causing code execution, unexpected results, and even data corruption.

CWE-119

This weakness allows the attackers to execute arbitrary code, alter the control flow,
access critical information, and can also cause a system failure.

CWE-20

This is the case of improper input validation and allows the attackers to inject malicious
input into the program, causing system failure.

CWE-200

This is the case of confidentiality reveal or information exposure, allowing unautho-
rized actors to get deeper sensitive information.

CWE-125

Under this vulnerability, the attacker can read from out-of-bound memory locations
that may reveal the sensitive information of the program or user.

CWE-79

This weakness allows the attackers to execute malicious content from the victim’s
browser or inject malicious content into administrative log messages and web pages.
After injecting such malicious content, the attacker can perform multiple malicious activities
like transferring private information, etc.

CWE-416

This vulnerability allows the attackers to reference the memory address when it is
already freed. This may cause program failure or data corruption.

CWE-264

Under this weakness, the attacker can gain access control, permissions, and privileges
of the program, allowing the attacker to perform malicious activities and also causing
system failure.

CWE-78

This vulnerability enables potential attackers to execute hazardous commands directly
within the OS.

CWE-120

This is the case of buffer overflow, where attackers can exploit the system by deliber-
ately inputting more data into a program or system than it can handle.



Future Internet 2023, 15, 248 18 of 21

Figure 9 shows the year-wise count of each vulnerability type in our top 10 list. We
present the following observations from the figure:

Figure 9. Year-wise observation of the top 10 vulnerability types (CWE IDs).

• There is no significant occurrence of CWE-787 until 2017 (200 instances), but rapid
growth is seen in CWE-787 starting in 2018 with the all-time high among all vulner-
ability types in 2022 (1155 instances). This trend serves as an indicator that OSs are
encountering an increasing prevalence of out-of-bounds write vulnerabilities every
year, and requires immediate attention to this vulnerability type.

• CWE-119 was seen maximize at 774 in 2017; however, by 2022, this figure decreased
to a mere 78 instances. This indicates that the OSs are made to be robust, with proper
restriction of operations within the bounds of the memory buffer.

• CWE-200 was at its maximum in 2017 (548 instances); however, the figure reduced
greatly, with only 55 instances observed in 2022. This indicates that OSs have become
alert and strict about the exposure of sensitive information to unauthorized parties.

• The highest number of instances of CWE-264, totaling 453, was recorded in 2016.
Surprisingly, this vulnerability exhibited a sharp decline in subsequent years, with no
observations reported from 2020 to 2022. This reduction in reported CWE-264 indicates
enhancement of security measures and stricter access controls, or in other words, we
can say the potential vulnerabilities regarding Permissions, Privileges, and Access
Controls have been adequately addressed.

• The rest of the vulnerability types exhibit consistent observations each year.

We expanded our analysis by identifying the common vulnerability types observed
in our top 10 vulnerable OS categories. The findings reveal four common vulnerabili-
ties: CWE-119, CWE-787, CWE-20, and CWE-200. Table 6 presents the count of these
vulnerability types for each OS category in our top 10 list. It is noteworthy that these
four vulnerabilities consistently impacted these OSs from the early 2000s to 2022, as shown
by Figure 9. Furthermore, Table 7 demonstrates the most observed CWE weaknesses in
our top 10 vulnerable OS versions in recent years, i.e., 2021–2022. We can observe that
Windows 10 and Windows 11 are highly vulnerable to CWE-269. The CWE-269 refers to
“Improper Privilege Management”, i.e., the product does not assign, check, or track the priv-
ileges for the actor. Furthermore, CWE-787 is mostly prevalent in Android versions 11 and
12 and Debian Linux versions 10 and 11 in recent years. Similarly, Windows Server 2012,



Future Internet 2023, 15, 248 19 of 21

Fedora 37, Android 13, and HarmonyOS 2 mostly exhibit CWE-200, CWE-416, CWE-862,
and CWE-125, respectively.

Table 6. Common vulnerability types observed in our top 10 vulnerable OS categories.

Count of Vulnerability Types

OS Names CWE-119 CWE-787 CWE-20 CWE-200

Debian Linux 515 768 434 233
Android 371 744 367 321
Windows 205 75 266 325

Fedora 156 441 154 89
Ubuntu Linux 366 269 201 135

Windows Server 142 76 257 306
Mac OS 696 334 233 188

openSUSE 291 216 147 88
Iphone OS 757 297 200 205

tvOS 403 242 75 48

Table 7. Mostly observed CWE ID along with their maximum counts in our top 10 vulnerable OS
versions in recent years (2021–2022).

OS Versions Mostly Observed CWE Count

Windows 10 CWE-269 2043
Windows 11 CWE-269 225
Android 11 CWE-787 258

Debian Linux 10 CWE-787 373
Android 12 CWE-787 192

Debian Linux 11 CWE-787 130
Windows Server 2012 CWE-200 226

Fedora 37 CWE-416 59
Android 13 CWE-862 44

HarmonyOS 2 CWE-125 38

These findings highlight the common vulnerability types observed across our
top 10 vulnerable OS versions. By identifying these vulnerabilities, users and organi-
zations can better understand the prevailing security risks and take appropriate measures
to mitigate them. It is highly recommended that the corresponding vendors closely monitor
the potential occurrence of these vulnerabilities.

6. Limitations and Future Work

Our work is focused on the analysis of OS vulnerabilities as a whole and does not
distinguish between desktop OSs, mobile, IoT OSs, etc. In the future, we can make multiple
domain-based OS categories and apply a similar research methodology to study the most
vulnerable OSs, trends, and types in each of the categories. This will help the end-users
of different OSs in different domains to choose the appropriate OS and adopt necessary
precautions against the prevailing vulnerabilities.

Our paper presented the study of OS vulnerabilities from different perspectives.
However, our paper lacks a study of the real-world exploitation of these OSs. We can
extend this work to find the actual exploits of these vulnerabilities based on various
sources, e.g., entries in Exploit-DB (Exploit-DB is the platform that records new exploits
and verifies whether an actual exploit has occurred or not.) or Packetstorm (Packetstorm is
the platform that reveals different real-world exploits).

7. Conclusions

In conclusion, this paper presents an extensive study of OS vulnerabilities, lever-
aging high-quality data from the NVD and employing a robust research methodology



Future Internet 2023, 15, 248 20 of 21

that involves creating two precise datasets, namely OS_CAT and OS_VER; sampling of
vulnerable OSs; and an analysis of trends, severity, and types of vulnerabilities. A detailed
analysis reveals that popular OSs such as Debian Linux, Android, Windows, and Fedora,
among others, are highly susceptible to vulnerabilities. Most importantly, Windows 10,
Windows 11, Android (v11.0, v12.0, v13.0), Windows Server 2012, Debian Linux (v10.0,
v11.0), Fedora 37, and HarmonyOS 2 emerge as highly vulnerable OS versions that are
still active and supported by vendors. From the vendor’s perspective, Redhat exhibits the
highest number of reported vulnerabilities. Our study reveals that the top 10 OS categories
and versions consistently face highly severe vulnerabilities, with maximum CVSS scores of
7–8 and 9–10. The study also reveals that the highly vulnerable OSs commonly experience
four common vulnerability types viz. CWE-119, CWE-20, CWE-200, and CWE-787. On the
other hand, the Linux distributions Ubuntu Linux and openSUSE have demonstrated to be
the most secure OS versions in recent years, with only nine and two vulnerability reports,
respectively, in 2022.

Based on these findings, it is highly recommended that OS vendors of all 10 OS cate-
gories focus on addressing these common weaknesses. The vulnerabilities represented by
CWE-119, CWE-787, CWE-20, and CWE-200 are still prevalent in recent years (2021–2022).
Furthermore, specific security measures should be implemented to mitigate CWE-269
(improper privilege management) in Windows 10 and Windows 11. For Android, attention
should be given to addressing CWE-787 and CWE-862 (missing authorization) vulnera-
bilities. Debian Linux should strengthen its security measures to combat CWE-787, while
Fedora 37 should focus on improving security measures related to CWE-416 (use after
free). Additionally, HarmonyOS 2 should take steps to address vulnerabilities associated
with CWE-125 (out-of-bounds read). These vulnerabilities are of significant concern as
they largely fall into the CVSS score groups of 7–8 and 9–10, indicating a high severity.
Finally, we also recommend that end-users of these OSs stay informed about the latest
trends, severity levels, and types of vulnerabilities that can affect their OSs.

By shedding light on these findings, this research contributes to a better understanding
of the OS vulnerability landscape, promoting the enhancement of OS security measures
and vulnerability risk mitigation. The recommendations provided to OS vendors based on
these findings aim to improve the security posture of their OSs, reduce the potential for
exploitation, and enhance overall system resilience in the face of evolving security threats.

Author Contributions: Conceptualization, D.B.R.; methodology, M.B. and D.B.R.; validation, M.B.
and D.B.R.; investigation, M.B.; resources, D.B.R; data curation, M.B.; writing—original draft, M.B.;
writing—review & editing, D.B.R.; Visualization, M.B.; Supervision, D.B.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the DoD Center of Excellence in AI and Machine
Learning (CoE-AIML) at Howard University under Contract W911NF-20-2-0277 with the U.S. Army
Research Laboratory, NSF grant #1828811 and DHS Grant 2017-ST-062-000003. However, any opinion,
finding, and conclusions or recommendations expressed in this document are those of the authors
and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the funding agencies.

Data Availability Statement: Data in this paper will be shared upon request made to the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Microsoft. Windows Secure Channel Denial of Service Vulnerability. 2023. Available online: https://msrc.microsoft.com/update-

guide/en-US/vulnerability/CVE-2023-21813 (accessed on 1 June 2023).
2. Research, G.S. Linux (Ubuntu)–Other Users Coredumps Can Be Read via Setgid Directory and killpriv Bypass. 2018. Available

online: https://www.exploit-db.com/exploits/45033 (accessed on 1 June 2023).
3. Gorbenko, A.; Romanovsky, A.; Tarasyuk, O.; Biloborodov, O. Experience report: Study of vulnerabilities of enterprise operating

systems. In Proceedings of the 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), Toulouse,
France, 23–26 October 2017; IEEE: New York, NY, USA, 2017; pp. 205–215.

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21813
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2023-21813
https://www.exploit-db.com/exploits/45033


Future Internet 2023, 15, 248 21 of 21

4. Cheikes, B.A.; Waltermire, D.; Kent, K.A.; Waltermire, D. Common Platform Enumeration: Naming Specification Version 2.3;
US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. Available online:
https://csrc.nist.gov/publications/detail/nistir/7695/final (accessed on 2 June 2023).

5. Peterson, J.L.; Silberschatz, A. Operating System Concepts; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1985.
6. Mell, P.; Scarfone, K.; Romanosky, S. The Common Vulnerability Scoring System (CVSS) and Its Applicability to Federal Agency Systems;

US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2007. Available online:
https://csrc.nist.gov/publications/detail/nistir/7435/final (accessed on 5 June 2023).

7. Christey, S.; Kenderdine, J.; Mazella, J.; Miles, B. Common Weakness Enumeration; Mitre Corporation: McLean, VA, USA, 2013.
Available online: https://cwe.mitre.org/documents/views/view-evolution.html (accessed on 5 June 2023).

8. Vander-Pallen, M.A.; Addai, P.; Isteefanos, S.; Mohd, T.K. Survey on types of cyber attacks on operating system vulnerabilities
since 2018 onwards. In Proceedings of the 2022 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 6–9 June 2022; IEEE:
New York, NY, USA, 2022; pp. 1–7.

9. Kocaman, Y.; Gonen, S.; Baricskan, M.A.; Karacayilmaz, G.; Yilmaz, E.N. A novel approach to continuous CVE analysis on
enterprise operating systems for system vulnerability assessment. Int. J. Inf. Technol. 2022, 14, 1433–1443. [CrossRef]

10. Sonmez, F.O.; Hankin, C.; Malacaria, P. Attack Dynamics: An Automatic Attack Graph Generation Framework Based on System
Topology, CAPEC, CWE, and CVE Databases. Comput. Secur. 2022, 123, 102938.

11. Sharma, G.; Kumar, A.; Sharma, V. Windows operating system vulnerabilities. Int. J. Comput. Corp. Res. 2011, 1
12. Niu, S.; Mo, J.; Zhang, Z.; Lv, Z. Overview of linux vulnerabilities. In Proceedings of the 2nd International Conference on Soft

Computing in Information Communication Technology, Taipei, Taiwan, 31 May–1 June 2014; Atlantis Press: Dordrecht, The
Netherlands, 2014; pp. 225–228.

13. Shewale, H.; Patil, S.; Deshmukh, V.; Singh, P. Analysis of android vulnerabilities and modern exploitation techniques. ICTACT J.
Commun. Technol. 2014, 5, 863–867. [CrossRef]

14. Kaluarachchilage, P.K.H.; Attanayake, C.; Rajasooriya, S.; Tsokos, C.P. An analytical approach to assess and compare the
vulnerability risk of operating systems. Int. J. Comput. Netw. Inf. Secur. 2020, 12, 1. [CrossRef]

15. Siwakoti, Y.R.; Bhurtel, M.; Rawat, D.B.; Oest, A.; Johnson, R. Advances in IoT Security: Vulnerabilities, Enabled Criminal
Services, Attacks and Countermeasures. IEEE Internet Things J. 2023, 10, 11224–11239. [CrossRef]

16. Gorbenko, A.; Romanovsky, A.; Tarasyuk, O.; Biloborodov, O. From analyzing operating system vulnerabilities to designing
multiversion intrusion-tolerant architectures. IEEE Trans. Reliab. 2019, 69, 22–39. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://csrc.nist.gov/publications/detail/nistir/7695/final
https://csrc.nist.gov/publications/detail/nistir/7435/final
https://cwe.mitre.org/documents/views/view-evolution.html
http://doi.org/10.1007/s41870-021-00840-6
http://dx.doi.org/10.21917/ijct.2014.0122
http://dx.doi.org/10.5815/ijcnis.2020.02.01
http://dx.doi.org/10.1109/JIOT.2023.3252594
http://dx.doi.org/10.1109/TR.2019.2897248

	Introduction
	Background
	Common Platform Enumeration (CPE)
	Common Vulnerability Scoring System (CVSS)
	Common Weakness Enumeration (CWE)

	Related Work
	Research Methodology
	Data Collection and Processing
	Data Sources: CVE Mitre and NVD
	Data Scraping Method
	Data Decomposition
	Operating System Data

	Sampling of Vulnerable OSs and Vendors
	Analysis of Vulnerabilities Trends, Severity, and Types

	Findings and Discussion
	Sampling of Vulnerable OS Categories, OS Versions, and Vendors
	Year-Wise Vulnerability Results and Pattern Analysis
	Severity Analysis Results
	Types of Vulnerabilities Findings

	Limitations and Future Work
	Conclusions
	References

