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Abstract: The smart environmental management system proposed in this work offers a new approach
to environmental monitoring by utilizing data from IoT stations and MODIS satellite imagery. The
system is designed to be deployed in vast regions, such as the Mekong Delta, with low building
and operating costs, making it a cost-effective solution for environmental monitoring. The system
leverages telemetry data collected by IoT stations in combination with MODIS MOD09GA, MOD11A1,
and MCD19A2 daily image products to develop computational models that calculate the values land
surface temperature (LST), 2.5 and 10 (µm) particulate matter mass concentrations (PM2.5 and PM10)
in areas without IoT stations. The MOD09GA product provides land surface spectral reflectance from
visible to shortwave infrared wavelengths to determine land cover types. The MOD11A1 product
provides thermal infrared emission from the land surface to compute LST. The MCD19A2 product
provides aerosol optical depth values to detect the presence of atmospheric aerosols, e.g., PM2.5
and PM10. The collected data, including remote sensing images and telemetry sensor data, are
preprocessed to eliminate redundancy and stored in cloud storage services for further processing.
This allows for automatic retrieval and computation of the data by the smart data processing engine,
which is designed to process various data types including images and videos from cameras and
drones. The calculated values are then made available through a graphic user interface (GUI) that
can be accessed through both desktop and mobile devices. The GUI provides real-time visualization
of the monitoring values, as well as alerts to administrators based on predetermined rules and values
of the data. This allows administrators to easily monitor the system, configure the system by setting
alerting rules or calibrating the ground stations, and take appropriate action in response to alerts.
Experimental results from the implementation of the system in Dong Thap Province in the Mekong
Delta show that the linear regression models for PM2.5 and PM10 estimations from MCD19A2
AOD values have correlation coefficients of 0.81 and 0.68, and RMSEs of 4.11 and 5.74 µg/m3,
respectively. Computed LST values from MOD09GA and MOD11A1 reflectance and emission data
have a correlation coefficient of 0.82 with ground measurements of air temperature. These errors
are comparable to other models reported in similar regions in the literature, demonstrating the
effectiveness and accuracy of the proposed system.

Keywords: IoT stations; remote sensing images; smart environmental management

1. Introduction

Systems for environmental monitoring play a crucial role in assessing and understand-
ing the state of our natural surroundings. These systems employ a combination of sensors,
data collection instruments, and advanced technologies to monitor various environmental
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parameters such as air quality, water quality, noise levels, and biodiversity [1]. By con-
tinuously gathering and analyzing data, these systems provide valuable insights into the
health of ecosystems, the impact of human activities, and the effectiveness of conservation
efforts. Environmental monitoring systems enable scientists, policymakers, and stakehold-
ers to make informed decisions, develop mitigation strategies, and track changes over time.
With the advancements in technology, including remote sensing, Internet of Things (IoT),
and machine learning, these systems are becoming increasingly sophisticated, allowing for
more accurate and timely environmental assessments.

Air pollutants, such as 2.5 and 10 (µm) particulate matter (PM10, PM2.5), sulphur
dioxide (SO2), carbon monoxide (CO), ground-level ozone (O3), hydrocarbons (HC), volatile
organic compounds (VOC), and nitrogen oxides (NOx) [2], contribute to the presence of
particulate matter (PM) in the air. Various methods are employed to monitor PM levels,
including ground measurements, such as comprehensive emission inventory modeling to
determine emission source distribution [3] or the gravimetric method that calculates daily
particulate pollutant levels based on handheld devices measuring PM10 and PM2.5 along
main roads in urban areas [4].

In 1975, Griggs discovered that satellite data can be used to determine atmospheric
aerosol optical depth (AOD) values by analyzing the scattering and absorption of shortwave
radiation in the atmosphere [5]. As a result, optical satellite imagery in the visible, near-
infrared, and short-wave infrared portions of the electromagnetic spectrum has emerged as
a promising data source for estimating the mass concentration of air pollutants.

To estimate PM10 and PM2.5 levels, several methods have been employed based
on the relationship between measurements at ground stations by specialized equipment
and AOD values extracted by complex computational models from images captured by
satellites. The used computation models include regression with two or more variables,
machine learning, and the surface aerosol concentration approach. Up to now, regression
models have shown high efficiency in estimating PM concentrations from daily AOD at
a 1000 × 1000 m spatial resolution at local and regional levels. Engel-Cox et al., in 2004,
determined the regional sources of air pollution events, the intensity of the events, and their
motion using imagery and statistical analysis [6]. AOD data from Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor on the Terra satellite were used in combination
with ground PM measurements from 1 April to 30 September 2002 in the United States to
determine their correlation. As a result, correlations of MODIS AOD with ground PM were
better in the eastern and Midwest portion of the United States, but poorer in the western.
In 2014, Mamun et al. analyzed seasonal variations in aerosol concentration in Bangladesh
during the period 2002–2011, using MODIS AOD data products [7]. Linear regression
models were used to determine seasonal trends in AOD. The results indicated that seasonal
variations show maximum AOD values during the pre-monsoon season while minimum
AOD during post-monsoon, and a decadal decreasing trend in AOD is found during mon-
soon season while all other seasons show increasing trends. The authors used a hybrid
single particle Lagrangian integrated trajectory (HYSPLIT) model, a computer model that is
used to compute air parcel trajectories to determine how far and in what direction a parcel
of air will travel, to generate a backward trajectory in order to identify the origins of air
pollutants. As a result, Bangladesh is mainly affected by the pollutants and desert dust of
India combined with sea salt particles blown from the Arabian Sea. Recently, experimental
models of PM2.5 and PM10 estimation were proposed using ground-based PM measure-
ments and AOD values derived from MODIS data products [8–15]. The authors explored
different regression models between ground-level PM mass concentration and AOD in
different environmental regions. Mostly linear regression models presented a better fit than
others based on their correlation coefficient. In addition to MODIS AOD, AOD derived
from other optical satellite images was exploited to estimate PM mass concentrations with
higher spatial resolution but lower temporal resolution [16–20]. For example, Landsat and
ASTER short-wavelength images are, respectively, at 30 m and 15 m pixel sizes, but have
both 16-day and revisiting periods. Green et al. conducted a study in 2009, where they
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compared the aerosol optical depth (AOD) derived from the GOES satellite and the MODIS
Terra satellite with ground-based measurements of AOD from the Aerosol Robotic Network
(AERONET) and the mass concentration of PM2.5 from ground-based measurements by
the Interagency Monitoring of Protected Visual Environments at Bondville, Illinois [21].
Utilizing local experimental models based on linear regression, the researchers found that
the correlation between AOD and PM2.5 mass concentration was strongest during autumn
and weakest during winter.

This paper introduces our smart environmental management system of ground-level
sensors, and satellite image-derived land surface temperature and particulate matter con-
centrations for the Mekong Delta. We deploy multiple IoT stations in the system for ground
measurement of various values, including land surface temperature (LST), PM10, PM2.5,
CO2, moisture, etc. Based on the telemetry data, we build computational models for ex-
tracting values of LST, PM10, and PM2.5 from MODIS images so that values for these
parameters in the entire Mekong Delta area can be calculated. The combination of telemetry
data and remote sensing images helps improve data quality and reduces building and
operating costs.

The main contributions of our paper consist of three aspects as follows: (1) We propose
an architecture for smart environmental management based on two sources of data: teleme-
try data and remote sensing images; (2) We build regression models for estimating PM10
and PM2.5 and apply an experimental model for extracting LST from MODIS images for
the Mekong Delta areas; (3) We deploy and test the proposed system with five IoT stations
whose data can be provided for other studies.

The rest of the paper is organized as follows. First, we present our system in Section 2.
We then introduce materials and methods for extracting data from remote sensing images
in Section 3. Section 4 discusses our computational models for extracting the above values
from remote sensing images. We test and report our experiments in Section 5. Finally,
Section 6 concludes our paper.

2. System Overview

Figure 1 illustrates of IoTs and MODIS images based smart environmental manage-
ment system for Mekong Delta. The proposed system architecture includes four main
components: (1) Data collection; (2) Cloud storage; (3) Smart data processing; (4) Visualiza-
tion and management.

Figure 1. The overview of the IoT and MODIS images for smart environmental management.
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The data collection component plays a critical role in the proposed smart environmen-
tal management system. This component is responsible for automatically acquiring remote
sensing images from relevant providers, such as MODIS images from NASA (National
Aeronautics and Space Administration (NASA), as well as telemetry data from IoT-based
measurement ground stations. While the primary focus of this work is to manage PM10,
PM2.5, and Land Surface Temperature (LST) values, the IoT-based architecture is designed
to integrate multiple sensors, cameras, and drones for additional monitoring purposes.

The connection between the remote sensing images and the system uses traditional
internet connectivity, such as wireless or cable, while the connection with the ground
stations uses 3G/4G networks due to the wide coverage area. Ground stations offer precise
measurements of PM10, PM2.5, and LST values; however, building and operating these
stations are more expensive compared to extracting these values from remote sensing
images. This is the primary reason for combining satellite images and ground station
measurements in the proposed system. The key requirement for data communication is
to overcome data loss. In this system, we buffer telemetry data at the stations when they
cannot be sent to the cloud. They will be resent to the cloud when the communication
networks become available. Due to the reliability of 3G/4G networks, our communication
is almost real-time available.

The collected data, including remote sensing images and raw telemetry sensor data,
undergo preprocessing to eliminate redundancy and are then forwarded to cloud storage
services for long-term storage. Raw data, instead of processed data, are stored in the cloud
for further study. The Smart Data Processing engine then automatically retrieves and
processes the data, including PM10, PM2.5, and LST values from telemetry data and remote
sensing images. The engine is designed to process various data types, including images
and videos from cameras and drones, providing versatility to the system.

A Graphic User Interface (GUI) is built for both desktop and mobile devices to visualize
data in real time. The GUI also provides alert notifications to administrators based on rules
and values of data. Through the GUI, administrators can configure the system by setting
alerting rules or calibrating the ground stations. This feature provides a convenient and
efficient way to manage the system and ensure that it is working optimally at all times.

In conclusion, the data collection component of the proposed smart environmental
management system provides a robust and versatile way to gather data from remote
sensing images and IoT-based ground stations. The preprocessing and storage of raw
data in the cloud, combined with the Smart Data Processing engine, ensures that the
system can efficiently process and extract meaningful information from the collected data.
The GUI provides a convenient and accessible way for administrators to monitor the system,
configure it, and receive alert notifications, ensuring that the system is working optimally
at all times.

3. Materials and Methods

In this section, we present details of the method and materials used for estimating
values of PM10, PM2.5, and LST from remote sensing images and telemetry data.

3.1. Study Area

Figure 2 shows the distribution of the ground stations in the Dong Thap Province.
In this study, the Tram Chim National Park located in Dong Thap Province was selected
as the site for the deployment and testing of the proposed system. This choice was made
because the area represents all the vital attributes of the Mekong Delta region. Tram Chim
National Park, situated in Dong Thap Muoi in Dong Thap Province, Vietnam, is one of
the few remaining wetlands in the threatened Plain of Reed’s ecosystem. This park holds
exceptional biodiversity and tourism value, being home to over 230 bird species and 130 fish
species, including the endangered Sarus Crane that is listed on the IUCN Red List. Tram
Chim has been designated as a Ramsar site of international significance under the Ramsar
Convention, emphasizing its importance to the global community.
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Figure 2. Study area in Dong Thap province.

However, despite its significance, the current environmental management and research
efforts at Tram Chim are hampered by the lack of sufficient and consistent survey data.
This is due to the challenges of accessing remote sites and the frequent flooding that
occurs in the area. The absence of adequate data collection hinders the efforts to preserve
and protect the park’s valuable ecosystem and wildlife. In light of this, the proposed
smart environmental management system aims to overcome these challenges by utilizing
innovative data collection and processing techniques.

In our system, we deploy five IoT stations in the national park area for collecting
multiple telemetry parameters, as mentioned in Section 2. However, only PM10, PM2.5,
and land surface temperature values are used for this work.

3.2. Ground Measurement Stations

Figure 3 displays the sensor station architecture of our proposed system. As shown in
the figure, the power supply for the IoT stations is provided by solar panels, considering
the park’s natural conditions. The data communication between the stations and the data
collection module on the cloud is facilitated through the use of a 3G/4G network. Each
station collects a variety of parameters, including temperature, moisture, CO2, and particu-
late matter (PM10 and PM2.5), among others, through the use of sensors. It is important to
note that the list of sensors used can be customized and modified according to the system’s
specific requirements.

Figure 4 presents a visual representation of the actual deployment of an IoT sensor
station in the study area. For deploying in the Mekong Delta area where the water level
may change from 0 m to 2 m every year, we store the sensors and control board inside a
waterproof 20 cm × 30 cm box. The box is placed on the top of a 2 m concrete column.
The large scale of the Mekong Delta requires a comprehensive and efficient approach to
data collection for the smart environmental management system. Hence, deploying a
combination of IoT stations and using remote sensing images is critical to ensuring the
quality of data collected and reducing the building and operating costs of the system.

Integrating IoT stations and remote sensing images enhances the coverage and accu-
racy of data collection, allowing for a more comprehensive and reliable representation of
the state of the environment. The use of IoT stations ensures that real-time data can be
collected and processed. At the same time, the remote sensing images provide a broader
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perspective of the study area, allowing for the detection of patterns and trends. The combi-
nation of these two approaches enables the smart environmental management system to be
a cost-effective and efficient solution for monitoring the environment in the Mekong Delta.

Figure 3. The architecture of the sensors-based ground measurement station.

Figure 4. The deployment of a sensors station in the Mekong Delta area.

3.3. MODIS Data Products

The Terra satellite, launched by NASA in December 1999 [22], is equipped with five
instruments, including the Moderate Resolution Imaging Spectroradiometer (MODIS).
The primary objective of the Terra mission is to observe various aspects of the Earth’s
atmosphere, ocean, land, snow and ice, and energy budget. Orbiting the Earth in a
circular sun-synchronous polar orbit, the Terra satellite completes one orbit every 99 min
and it crosses the Equator at 10:30 a.m. The MODIS sensor covers a range from visible,
near-infrared, shortwave-infrared short-wavelengths to thermal infrared long-wavelengths,
traveling from north to south on the daylight side of the planet. The MODIS sensor captures
a wide range of wavelengths, from blue to thermal infrared, utilizing 36 bands. The spatial
resolutions for bands 1–2, bands 3–7, and bands 8–36 are 250 m, 500 m, and 1000 m,
respectively, as shown in Table 1 [23].
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Table 1. The MODIS sensor’s spectral bands and primary use [23].

Band Bandwidth (nm) Spectral Domain Spatial Resolution (m) Primary Use

1 620–670 Visible 250
Land/Cloud/Aerosol Boundaries

2 841–876 Near Infrared 250

3 459–479 Visible 500

Land/Cloud/Aerosol Properties

4 545–565 Visible 500

5 1230–1250 Shortwave Infrared 500

6 1628–1652 Shortwave Infrared 500

7 2105–2155 Visible 1000

8 405–420 Visible 1000

Ocean color/Phytoplankton/
Biogeochemistry

9 438–448 Visible 1000

10 483–493 Visible 1000

11 526–536 Visible 1000

12 546–556 Visible 1000

13 662–672 Visible 1000

14 673–683 Visible 1000

15 743–753 Visible 1000

16 862–877 Near Infrared 1000

17 890–920 Near Infrared 1000

Atmospheric Water Vapor18 931–941 Near Infrared 1000

19 915–965 Near Infrared 1000

20 3660–3840 Thermal Infrared 1000

Surface/Cloud temperature
21 3929–3989 Thermal Infrared 1000

22 3929–3989 Thermal Infrared 1000

23 4020–4080 Thermal Infrared 1000

24 4433–4498 Thermal Infrared 1000
Atmospheric Temperature

25 4482–4549 Thermal Infrared 1000

26 1360–1390 Shortwave Infrared 1000

Cirrus Clouds/Water Vapor27 6535–6895 Thermal Infrared 1000

28 7175–7475 Thermal Infrared 1000

29 8400–8700 Thermal Infrared 1000 Cloud Properties

30 9580–9880 Thermal Infrared 1000 Ozone

31 10,780–11,280 Thermal Infrared 1000
Surface/Cloud Temperature

32 11,770–12,270 Thermal Infrared 1000

33 13,185–13,485 Thermal Infrared 1000

Cloud Top Altitude
34 13,485–13,785 Thermal Infrared 1000

35 13,785–14,085 Thermal Infrared 1000

36 14,085–14,385 Thermal Infrared 1000

In addition to the level-1 raw radiance data, the level-2 and level-3 MODIS data consist
of various products related to the atmosphere, land, cryosphere, and ocean [24]. Since
2000, MODIS data products have been made available at different temporal resolutions,
including daily, 8-day, 16-day, monthly, quarterly, and yearly. It is important to note that all
MODIS data products are accessible free of charge.
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For this study, the primary data utilized are daytime Land Surface Temperature
(LST) derived from the MOD09GA and MOD11A1 land products, as well as PM mass
concentration estimated from the MCD19A2 atmosphere product. These products can be
obtained from the USGS Earth Data website [25] or retrieved through the use of Google
Earth Engine [26]. To cover the whole Dong Thap Province, we need one scene at the
horizontal-vertical location of ‘h28-v08’ on the global grid, and its acquisition time is
at 10:30 a.m., correspondingly, as depicted in Figure 5. The images in the hierarchical
data format (HDF) of earth observing systems are georeferenced to the sinusoidal datum.
Subsequently, the image dataset is converted to the WGS84 geographic coordinate system
from the Sinusoidal datum and saved in the Geo-tiff format. Finally, the images are clipped,
ensuring they remain within the boundaries of Dong Thap Province.

(a) blue band (b) green band AOD

Figure 5. The MODIS MCD19A2 product. The yellow box shows the study area Dong Thap Province.

3.3.1. MOD09GA Product

The MOD09GA product offers an estimation of the surface spectral reflectance for
MODIS bands 1 to 7 at a resolution of 500 m. This estimation takes into account atmospheric
conditions, including gases, aerosols, and Rayleigh scattering [27]. Additionally, it includes
observation and quality layers consisting of ten 1 km observation bands and geolocation
flags. The reflectance layers obtained from the MOD09GA product serve as the foundational
data for numerous MODIS land products. This product is used to determine the vegetative
cover of land surface from red and near-infrared reflectance factors, corresponding to
MODIS band 1 (0.65 µm) and band 2 (0.86 µm) images. For example, the Normalized
Difference Vegetation Index (NDVI) is one of the vegetation indices to quantify vegetation
by measuring the difference between near-infrared (which vegetation strongly reflects) and
red light (which vegetation absorbs). NDVI is computed following Equation (1), where
ρRed and ρNIR are red and near-infrared reflectance factors, respectively. NDVI ranges from
−1 to +1. A negative NDVI value is highly likely water while an NDVI value close to +1
presents a high possibility of dense green leaves. But when NDVI is close to zero, there are
likely no green leaves and it could even be a built-up area.

NVDI =
ρNIR − ρRed
ρNIR + ρRed

(1)

3.3.2. MOD11A1 Product

The MOD11A1 product offers daily measurements of land-surface temperature (LST),
emissivity values, and corresponding quality indicator layers at a resolution of 1 km [28]. In
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areas above 30 degrees latitude, certain pixels may contain multiple observations that meet
the criteria for clear-sky conditions. In such cases, the pixel value is calculated as the average
of all qualifying observations. LST can be computed from the brightness temperature Tb
in combination with the global atmospheric correction model, e.g., LST images of the
MOD11A1 product in the level-3 data processing directly derived from the MODIS Band
31 and 32 thermal emissive data. The brightness temperature is a measurement of the
radiance of emission traveling upward from the top of the atmosphere to the satellite,
in Kelvin scale temperature unit (K). The brightness temperature Tb detected by a thermal
sensor is determined by Planck’s Equation (2), where Lλ (W/m2.sr.m) is the spectral
radiation, h = 6.62 × 10−34 (J.s) is Planck’s constant, c = 3 × 108 (m/s) is the speed of light,
k = 1.38 × 10−23 (J/K) is Boltzmann’s constant, and λ (µm) is the central wavelength. K1
and K2 (W/m2.sr.m) are calibration coefficients, for band 31: K1 = 730.01, K2 = 1305.84,
and band 32: K1 = 474.99, K2 = 1198.29 [29].

Tb =
hc
kλ

ln( 2πhc2λ−5

Lλ
+ 1)

=
K2

ln(K1
Lλ

+ 1)
(2)

Additionally, LST can be estimated from the emissivity values in combination with
the vegetative cover using an experimental model, which is presented in Section 4.1—LST
computation.

3.3.3. MCD19A2 Product

The MCD19A2 product, derived using the Multi-Angle Implementation of Atmo-
spheric Correction MAIAC algorithm, is a level-2 dataset that offers gridded aerosol optical
thickness (AOT) measurements over land surfaces [30]. The radiance measured by the
satellite sensor for each pixel on the Earth’s surface results from a combination of surface
reflection and scattering caused by atmospheric gases and particles. This allows for the
estimation of aerosol optical depth (AOD) by considering factors such as derived surface re-
flectivity, aerosol characteristics (e.g., single scattering albedo and phase function), and the
angular distribution of scattered light, which is primarily influenced by particle size [21].
The MODIS sensor is specifically designed for aerosol retrievals and utilizes data from
seven bands spanning wavelengths from 0.47 to 2.13 µm. In addition to AOD, these bands
provide some information about aerosol particle size. The MAIAC algorithm takes into
account surface reflectivity, assumed aerosol and atmospheric properties, and assigns an
aerosol type based on seasonally and spatially varying aerosol characteristics derived from
ground AERONET-based measurements conducted at various sites. The AOD products are
derived by aggregating the observed mean radiance over a 10 km2 area, which is formed
from 400 subpixels at a resolution of 500 m, excluding the brightest 50% and darkest 20%
of pixels. Currently, the retrieval of AOT is limited to altitudes below 4.2 km. These AOT
data serve as inputs for estimating the mass concentrations of PM2.5 and PM10 using a
regression method.

4. Data Processing

This section is dedicated to the introduction of our computational models that are
developed for extracting values of Land Surface Temperature (LST), PM10, and PM2.5
from the combination of remote sensing images and telemetry data collected from IoT
stations. The models are designed to take advantage of the data sources available and
provide a way to extract the relevant environmental variables of interest in an automated
and efficient manner. The telemetry data from IoT stations provide ground-level mea-
surements of various environmental parameters, while remote sensing images provide a
broader view of the area of interest and help to fill in any gaps in the ground-level data.
The computational models leverage both types of data and use them to generate the desired
outputs. The results of these models can be used in various applications, such as real-time
monitoring, alert notifications, and visualization. By using these models, we can achieve a
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better understanding of the environmental conditions in the study area and make informed
decisions about how best to manage it.

4.1. LST Computation

The daily daytime LST image in the level-3 data processing used in the study can
be extracted directly from the MOD11A1 product. However, these LST images usually
contain many no-data pixels because the temperature value is estimated using the compu-
tational model based on global environmental characteristics and ground measurements
by NASA [30]. Therefore, in this study, we apply the algorithm of LST computation from
emissive data of two thermal bands developed by Price in 1984 [31]. The authors exploited
the Advanced Very High-Resolution Radiometer (AVHRR) on the NOAA 7 satellite im-
ages at two 10.8 and 11.9 µm bands at 1 km spatial resolution to estimate LST, following
Equations (3)–(6). Additionally, the atmospheric correction of radiation from the Earth’s
surface was found. The algorithm was proposed based on an analysis of AVHRR images
on July 1981 and a comparison of the radiative transfer theoretical model, sea surface tem-
perature from satellite data, and ground meteorological measurements. Price’s algorithm
was confirmed by Vazquez et al. in 1997 [32]. We use AVHRR images corresponding to a
flat homogeneous region characterized by the presence of natural grassland with patches
of bare soil, and allowing for seasonal changes in surface emissivity due to changes in vege-
tative cover using NDVI. Then, they developed different algorithms to estimate LST based
on exploring atmospheric effects and the land emissivity effect on surface temperature.
The algorithms were tested by ground LST measurements. The results indicated that the
LST strongly depends on errors in land surface emissivity.

LST(K) = T31 + 1.8 × (T31 − T32) + 48 × (1 − ε)− 75∆ε (3)

ε =
ε31 + ε32

2
(4)

∆ε = ε31 − ε32 (5)

LST(C) = LST(K)− 273.15 (6)

Here, we use the two MODIS thermal images of bands 31 and 32, corresponding to the
two AVHRR thermal images to compute LST (K), following Equations (3)–(6). T31 and T32
(K) are the brightness temperatures obtained from band 31 and 32 images, respectively. T31
and T32 (K) are computed following Equation (2). ε31 and epsilon32 are the coefficients of
land surface emissivity in band 31, and band 32, respectively. epsilon31 and ε32 are estimated
from sensor-based measurements and NASA’s global computational model. ε is an average
coefficient of bands 31 and 32. ∆ε is a difference of land surface emissivity between bands
31 and 32. Moreover, coefficients of land surface emissivity can be calculated from NDVI,
using the experimental model proposed by Cihlar et al. in 1997 [33]. Accordingly, ε31 and
∆ε are calculated following Equations (7) and (8), respectively, where NDVI is computed
following Equation (1). Figure 6 shows LST (°C) derived from the data on 9 June 2022.

ε31 = 0.9897 + 0.029 × ln(NDVI) (7)

∆ε = 0.01019 + 0.01344 × ln(NDVI) (8)
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(a) Extracted directly from the MOD11A1 product (b) computed from emissive radiance and NDVI

Figure 6. The LST images on 9 June 2022 in the Dong Thap province.

4.2. PM2.5 and PM10 Mass Concentration Estimation

The satellite instrument detects radiance from the mixture of surface reflection and
atmospheric scattering caused by elements in the air, like gases and particles. We make
certain assumptions to estimate aerosol optical depth (AOD), including the exploitation of
derived surface reflectivity and aerosol attributes like phase procedure or single scattering
albedo, influenced by the angular distribution of scattered light and primarily determined
by particle size [34]. The MODIS instrument is specifically designed to retrieve aerosol prop-
erties and utilizes data from seven different wavelengths spanning from 0.47 to 2.13 µm.
This range of wavelengths provides valuable information about both the size of aerosol
particles and AOD. The MODIS algorithm considers surface reflectivity and makes as-
sumptions regarding specific aerosol and atmospheric properties. The AOD products are
obtained by analyzing the average radiance observed within a 10 km² area derived from
400 pixels with 500 m per pixel resolution. We excluded 50% and 20% of the brightest and
darkest pixels from the analysis, respectively.

The potential of using AOD, extracted from satellite images, for estimating values of
PM mass concentrations at the ground level is currently under investigation. This study
examined the relationship between the values of PM mass concentration at the ground
level and AODblue and AODgreen values (MODIS blue and green bands) using the linear
regression technique with multiple variables. The analysis period spanned from 1 May
to 31 October 2022. However, it should be noted that the availability of the MODIS AOD
product was limited to certain days within this timeframe. Furthermore, due to partial
image coverage, some areas of the study region had no data pixels due to cloud cover
or unfavorable weather conditions. To derive the daily average PM2.5 and PM10 mass
concentrations for each ground station, measurements were taken from 10:00 to 11:00 a.m.
The associating AOD values of MODIS blue and green bands were also extracted. Therefore,
57 observations were gathered as data for the model, depicted in Figure 7 and described
in Table 2.

Table 2. Details of observations from 1 May to 31 October 2022.

Variable N Max Min Mean StdEv

PM2.5 (µg/m3) 69 30 10 15.19 5.40

PM10 (µg/m3) 69 31 10 15.58 5.29

AODblue 69 976 95 367.38 172.07

AODgreen 69 709 65 258.54 125.5
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(a) PM2.5 and AODblue (b) PM2.5 and AODgreen

(c) PM10 and AODblue (d) PM10 and AODgreen

Figure 7. Relationships between ground-level mass concentration measurements and AOD values.

The dataset’s multivariable linear regression reveals a relatively low correlation be-
tween values of PM mass concentrations at ground level and AOD values of MODIS blue
and green bands. Specifically, the PM2.5 regression model exhibits a correlation coefficient
of 0.700 and a root mean square error (RMSE) of 4.474 µg/m³, while the PM10 model
demonstrates a correlation coefficient of 0.492 and an RMSE of 6.093 µg/m³, likely due to
the presence of certain anomalies. To address this issue, an analysis using the RANSAC
algorithm has been conducted to eliminate these anomalies [35]. Consequently, the dataset
for the PM2.5 and PM10 regression models consists of 53 and 48 observations, respectively,
as depicted in Table 3. As a result, the multivariable linear regression models for ground-
level PM measurements and MODIS AODblue and AODgreen values exhibit stronger
correlations and are represented by Equations (9) and (10). The PM2.5 regression model
displays a correlation coefficient of 0.806 and an RMSE of 4.110 µg/m³, while the PM10
model exhibits a correlation coefficient of 0.676 and an RMSE of 5.741 µg/m³.

PM2.5 = 11.749 − 0.283 × AODblue + 0.412 × AODgreen (9)

PM10 = 10.782 − 0.037 × AODblue + 0.065 × AODgreen (10)

Table 3. Details of filtered observations.

Variable N Max Min Mean StdEv

PM2.5 (µg/m3) 51 28 10 14.00 3.95

AODblue 51 976 95 356.71 175.71

AODgreen 51 709 65 250.71 128.21

PM10 (µg/m3) 44 21 10 13.64 2.62

AODblue 44 976 95 348.64 177.16

AODgreen 44 709 65 245.09 129.47
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Based on the regression models, the PM2.5 and PM10 mass concentrations in the
whole Dong Thap Province were estimated, as illustrated in Figure 8.

(a) PM2.5 (b) PM10

Figure 8. The spatial distribution of the estimated mass concentrations of PM2.5 and PM10 on 9 June
2022 in the Dong Thap Province.

5. Experiments

In this section, we present our experiments with the proposed computational models
and compare the estimated results with telemetry data from ground IoT stations.

5.1. Correlation between LST and Air Temperature Values

The LST values were derived from the MOD11A1 products and the air temperature
measurements from the ground stations from 1 May to 31 December 2021. Due to cloud
coverage and bad weather conditions, the LST observations were limited in the study area
during the observed period while the Tair observations were average from 10:00 to 11:00
a.m., corresponding to the MODIS Terra acquisition time. After filtering, these observations
are described in Table 4 and Figure 9. The correlation between LST and Tair observations is
presented as Equation (11), using the linear regression with the correlation coefficient of
0.816. Moreover, it also presents the coefficient of determination of 0.668 and the RMSE of
3.697 °C.

Tair = 8.418 + 0.816 × LST (11)

Figure 9. Relationships between the LST and Tair observations from 1 May to 31 December 2022.
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Table 4. The observations of LST and Tair from 1 May to 31 December 2022.

Variable N Max Min Mean StdEv

LST (°C) 36 32.75 24.03 27.40 2.047

Tair (°C) 36 34.39 25.6 31.38 2.499

5.2. Validation of PM2.5 and PM10 Mass Concentration Models

The dataset for validation on the PM2.5 and PM10 models was collected from 1 Novem-
ber to 31 December 2022. However, due to bad weather conditions, the observations are lim-
ited as presented in Tables 5 and 6. These values are substituted into Equations (9) and (10)
to determine errors (differences) between the ground-level mass concentration measure-
ments and their correspondingly estimated values of PM2.5 and PM10, respectively. As a
result, RMSE values of the PM2.5 and PM10 models are 4.47 (µg/m3) and 6.09 (µg/m3),
respectively. They are approximate to the two models’ RMSE values.

Table 5. The observations of PM2.5 from 1 November to 31 December 2022.

Date (m/d/y) AODblue AODgreen
PM2.5 Est. PM2.5 Error

(µg/m3)

12/15/2022 307 215 21 13.448 7.552

12/15/2022 141 97 15 11.81 3.19

12/16/2022 185 127 12 11.718 0.282

12/16/2022 302 211 16 13.215 2.785

12/19/2022 346 242 14 13.535 0.465

12/19/2022 256 178 11 12.637 −1.637

12/20/2022 220 152 20 12.113 7.887

Table 6. The observations of PM10 from 1 November to 31 December 2022.

Date (m/d/y) AOBblue AODgreen
PM10 Est. PM10 Error

(µg/m3)

12/15/2022 307 215 27 13.398 13.602

12/15/2022 141 97 15 11.87 3.13

12/16/2022 185 127 12 12.192 −0.192

12/16/2022 302 211 11 13.323 −2.323

12/19/2022 346 242 12 13.71 −1.71

12/19/2022 256 178 12 12.88 −0.88

12/20/2022 220 152 20 13.389 6.611

6. Conclusions

In recent years, environmental management has become an important issue, especially
in regions that are rich in biodiversity and natural resources, such as the Mekong Delta.
To effectively manage these areas, a smart environmental management system is needed to
collect real-time data and provide monitoring and alerts to help protect the environment.
This paper presents a smart environmental management system that automatically collects
data from Internet of Things (IoT) stations and remote sensing images. The proposed
system is designed to be deployed in large areas, such as the Mekong Delta, with low
building and operating costs. The system uses telemetry data from IoT stations and remote
sensing images to extract values of Land Surface Temperature (LST), PM10, and PM2.5 for
areas without IoT stations. These two data sources are automatically collected and stored
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in a cloud storage service for smart data processing. After processing, the monitoring
values, alert notifications, and real-time visualizations are displayed on both a website and
a mobile application for managers to access. In the Dong Thap Province in the Mekong
Delta, experimental results show that the estimated values from our system achieve Root
Mean Square Error (RMSE) values of 3.679 °C for land surface temperature, 4.47 µg/m3

for PM2.5, and 6.09 µg/m3 for PM10. These errors are comparable to other models for
other areas reported in the literature, demonstrating the effectiveness of our proposed
system. In conclusion, our proposed smart environmental management system provides an
effective solution for collecting and processing data from large areas, such as the Mekong
Delta. Furthermore, the system utilizes IoT stations and remote sensing images to provide
real-time monitoring and alerts, making it a valuable tool for environmental management
in this region.
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