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Abstract: The global satellite navigation signal works well in open areas outdoors. However, due
to its weakness, it is challenging to position continuously and reliably indoors. In this paper, we
developed a hybrid system that combines radio signals and acoustic signals to achieve decimeter-
level positioning indoors. Specifically, acoustic transmitters are synchronized with different codes.
At the same time, our decoding scheme only requires a simple cross-correlation operation without
time-frequency analysis. Secondly, acoustic signals will be reflected by glass, walls and other obstacles
in the indoor environment. Time difference of arrival (TDOA) measurement accuracy is seriously
affected. We developed a robust first path detection algorithm to obtain reliable TDOA measurement
values. Finally, we combine the maximum likelihood (ML) algorithm with the proposed TDOA
measurement method to obtain the location of the smartphone. We carried out static positioning
experiments for smartphones in two scenes. The experimental results show that the average position-
ing error of the system is less than 0.5 m. Our system has the following advantages: (1) smartphone
access. (2) an unlimited number of users. (3) easily deployed acoustic nodes. (4) decimeter-level
positioning accuracy.

Keywords: acoustic signal; TDOA estimation; ML; indoor positioning

1. Introduction

Indoor positioning technology is the basis for emergency safety, crowd monitoring,
precision marketing, entertainment and life, and human social needs [1]. At present,
global navigation satellite systems (GNSS) can provide accurate positioning in open areas
outdoors. However, mobile devices can hardly receive the GNSS signal because of the
shelter of buildings. So it is unable to form effective indoor positioning by using the GNSS
signal [2]. Common indoor positioning technologies include Wi-Fi [3] positioning technol-
ogy, ultra-wide band (UWB) [4] positioning technology, optical positioning technology,
and geomagnetic positioning technology [5,6]. These indoor positioning technologies have
their own advantages and disadvantages, which are summarized as follows:

Wi-Fi positioning technology is mainly based on received signal strength (RSS), and
fingerprint is established through signal strength characteristics [7]. This method is affected
by the complex indoor topological environment. In recent years, Wi-Fi round trip time
(RTT) has attracted the attention of scholars. In Wi-Fi RTT [8] positioning technology, the
user can obtain distance information by calculating round trip time information between
the mobile phone and the router. Mobile devices can be located through the trilateral
positioning method. When using Wi-Fi RTT, mobile phone manufacturers need to provide
the underlying information of Wi-Fi signals to users. However, Wi-Fi signals are vulnerable
to indoor multipath [9]. Wi-Fi RTT positioning technology [10] has the following application
limitations: the capacity of users is limited, and personal information security cannot be
guaranteed. At present, only a few mobile phones support Wi-Fi RTT. The same frequency
interference problem exists in Wi-Fi positioning technology [11]. A arrow band pulse
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signal is the signal source [12] in ultra-wide-band (UWB) positioning technology. The
positioning process of the UWB positioning technology is as follows: (1) estimating the
arrival time of the signal. (2) Calculating the distance information. (3) Using the triangle
positioning method to obtain the location information. However, the cost of the UWB
module is high, and it is difficult to promote UWB positioning technology in mobile phone
manufacturers. There are more metal structures, cables and wires in special scenes such
as underground mine tunnels and underground cable tunnels [13], which means that
the UWB positioning technology with an electromagnetic wave as the carrier faces the
problems of metal shielding effect and complex channel environment [14]. So there are
certain application limitations in the UWB positioning technology.

Visible light positioning technology can roughly include three categories [15,16]: The
first is to determine the receiver position by using the intersection positioning method.
Such a method can be implemented by obtaining one of information on optical signal
strength [16], time of arrival (TOA), time difference of arrival (TDOA [17]) and angle of
arrival (AOA [18]). The second is the fingerprint database method [19]. In the offline phase,
the optical fingerprint database is established by measuring basic information (such as
optical intensity information). In the online phase, the optical intensity at the test point is
matched with the fingerprint database to determine the location of the test point. The third
is the proximity method [20]. The optical node grid needs to be established in the proximity
method. When the optical receiver collects the coding information of a specific optical
node, it is considered that the optical receiver and the optical node are in the same position.
These three types of methods are affected by other indoor light sources and occlusion [21].
At the same time, the propagation distance of visible light sources is limited. In a word, the
effect of optical positioning technology is not particularly outstanding.

In geomagnetic positioning technology [22], magnetic field strength can be used as
a fingerprint feature. Mobile devices can be located by matching the indoor magnetic
field characteristics without the help of other devices [23]. In geomagnetic positioning
technology, the disadvantage is that it is necessary to collect data in advance to establish a
magnetic field strength distribution map. If the map is large, it will take a long time to match
with a certain probability of matching failure (depending on the efficiency and complexity
of the algorithm) [24]. In addition, the magnetic field strength is also time-varying [6], and
is also vulnerable to the impact of environmental topology [6].

Based on the above analysis, Wi-Fi, UWB, visible light, geomagnetic and other posi-
tioning technologies have certain limitations in actual indoor scenes. In ordinary Wi-Fi
fingerprint positioning technology, there are problems such as poor positioning accuracy
and stability. In Wi-Fi RTT technology, the information on underlying hardware and soft-
ware needs to be provided by the mobile phone supplier. At the same time, it is difficult
to eliminate multipath at the communication level. In UWB technology, high positioning
accuracy is easy to achieve. However, its cost will also increase. In most smartphones, the
UWB module is not integrated inside the smartphones. At the same time, poor position-
ing accuracy will occur in some electromagnetic interference scenarios. For visible light
positioning technology, there is a significant computational requirement on the mobile
phone end. Poor real-time performance and vulnerability to environmental lighting are
still the main problems that have limitations on practical applications. In geomagnetic
positioning technology, the establishment of a fingerprint database is very time-consuming
and laborious. At the same time, positioning performance is unstable over time. In a word,
decimeter-level positioning accuracy and mass mobile phone access are still the core issues
of indoor positioning.

Researchers are now investigating the possibility of using acoustic signals for indoor
positioning [25–28]. In the article [29], an actual linear frequency modulation (LFM) signal
was applied as the positioning source (LFM signal is also called chirp signal). In the system,
chirp acoustic signals are emitted by smartphones, which limits the capacity of smartphone
users. In the article [30], the author estimated the TOA of the chirp signal. However, the
authors did not achieve positioning for smartphones. In the article [31], the author uses
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indoor acoustic fingerprints to achieve room-level positioning and differentiation. However,
the actual application is greatly affected by environmental noise because of lacking an
acoustic base. In the article [32], a chirp signal increasing linearly in frequency is used to
code the one. Chirp signal decreasing linearly is used to code the zero. When the acoustic
node information is decoded, it is considered that the smartphone and the acoustic node
are in the same area. However, the system cannot obtain TDOA information. So, decimeter-
level positioning cannot be achieved. In the article [33], the author proposed a transmission
scheme of time division multiple access (TDMA) plus frequency division multiple access
(FDMA). However, the number of acoustic nodes in this scheme is limited because of
hardware conditions. It is difficult to deploy acoustic nodes in practical applications. In the
article [34–38], the authors use a microphone array module to locate the target. However,
the system is suitable for robot platforms and is not suitable for users in daily life. In the
article [39], the authors apply the measurements of TDOA as a fingerprint to locate the
sound source. The capacity of users is limited in such systems. At the same time, the TDOA
fingerprint positioning method requires collecting fingerprint information in advance,
which is time-consuming and laborious. In the article [40], laser signals are utilized to
approximately synchronize the acoustic base station with the mobile phone. However, the
laser signal is affected by sight distance conditions, and the practical application of this
system is not reliable.

In this paper, a smartphone indoor positioning system based on acoustic TDOA mea-
surement is presented, and its performance is evaluated by static positioning experiments.
At the system level, our system has the following advantages: it is able to achieve decimeter
positioning accuracy and it is easy deployment. Moreover, it is suitable for smartphone
applications. At the methodological level, we have made the following improvements:
(1) in TDOA estimation, we adopt a robust method to extract the first path, which is based
on the idea of multi-threshold grouping. Compared with the cross-correlation method [41],
our method significantly improves the accuracy of TDOA estimation. (2) In the static
positioning experiment, we find that the maximum likelihood (ML) positioning method is
more reliable for acoustic positioning systems. Thus, we combine the ML algorithm with
the proposed TDOA measurements to obtain the location of the smartphone.

The paper is organized as follows: The second section introduces the acoustic posi-
tioning system. In the third section, the design of the acoustic signal, the TDOA detection
method of the signal, and the positioning simulation of the actual scene are introduced.
According to the actual simulation results, the ML method is determined as the positioning
algorithm in this paper. The fourth section summarizes the experiment and results. The
fifth section summarizes this article.

2. Basic Acoustic Positioning System

The acoustic positioning system is composed of a wireless scheduler, acoustic nodes
as the signal transmitters and a smartphone as the signal receiver with the localization
to be estimated. The wireless scheduler is mainly used to synchronize all acoustic nodes
on a unified time axis. The acoustic nodes mainly transmit signals, and the microphone
in the smartphone receives the signals transmitted by the acoustic nodes. The hardware
architecture of the acoustic node and scheduler is shown in Figures 1 and 2. The acoustic
node is composed of a wireless receiver, FPGA, analog-to-digital converter and speaker.
The scheduler is mainly composed of FPGA, wireless transmitter, and key module. When
the wireless receiver module receives the signaling sent by the scheduler, the FPGA in
the acoustic node starts the interrupt arbitration mechanism to drive the speaker to send
the signal. The benefits of our system are the following: (1) the acoustic nodes can be
easily synchronized within 0.5 milli-second level with the low-cost wireless scheduler.
Such synchronization is supportive to achieve the positioning of sub-meter accuracy in
the acoustic positioning system. (2) As the acoustic signals are in essence transmitted
by broadcasting, there is no limit on the capacity of the receivers, which is beneficial for
massive amount of users in large-scale positioning scenarios.
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To describe the hardware in more detail, the DAC module is used to convert the digital
signal to the output of the analog acoustic signals and drive the speaker into vibrations
of the membrane, which are transmitted through the medium of air. The key module is
reserved to start or stop the system. The FPGA in the acoustic node has two functions:
(1) storing the signal without losing data. (2) controlling and managing different modules.

3. Robust TDOA Measurement Method
3.1. Signal Design

It has been noted that the chirp signal has good autocorrelation characteristics, which
can improve ranging resolution and reception sensitivity. In the meanwhile, the chirp signal
can resist a certain degree of multipath fading, and multiple reflected acoustic signals can
be distinguished with an appropriate signal processing model. Therefore, we choose the
chirp signal as the signal emitted by the acoustic node. chirp signal is defined as follows:

s(t) = Aej(2π( f0t+ fc− f0
2 t2)), 0 ≤ t ≤ T (1)

where f0 is the starting frequency and fc is the cut-off frequency. A is the amplitude of the
signal. T is the duration of the chirp signal. Let’s make k = fc − f0. If k > 0, the chirp signal
is up-chirp. If k < 0, the chirp signal is down-chirp. In order to distinguish four acoustic
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nodes, we design four chirp signals with different frequency bands. In order to reduce
the impact of environmental noise, all acoustic nodes transmit signals with frequencies
above 15 kHz. The frequency of the signal transmitted by acoustic node 1 is 16–15 kHz.
The frequency of the signal transmitted by acoustic node 2 is 16.5–17.5 kHz. The frequency
of the signal transmitted by acoustic node 3 is 19–18 kHz. The frequency of the signal
transmitted by acoustic node 4 is 19.5–20.5 kHz.

Figure 3 shows the time-frequency distribution of signals corresponding to each
acoustic node. We design chirp signals according to the following principles: (1) up-chirp
and down-chirp are distributed in adjacent frequency bands. For example, if s1 is up-chirp,
s2 should be down-chirp. If s1 is down-chirp, s2 should be up-chirp. (2) Adjacent coding
frequency band interval 500 Hz. (3) The time length of each signal is 10ms to avoid complex
calculations. It should be noted that the encoding method in Figure 3 is advantageous for
decoding. We only use cross-correlation to detect the received signals. In order to illustrate
the effect on decoding by using cross-correlation functions, Figure 4 shows the sequentially
received signals defined as s(t), which include s1, s2, s3 and s4.
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Figure 4. Schematic diagram of combined signal.

We use different prior signals (s1, s2, s3, and s4) to correlate with the received signal
s(t). After cross-correlation, the signals can be decoded and the time delay of the signals
can be estimated as well, which is shown in Figure 5.

In practice, acoustic nodes transmit signals in turn to avoid signal aliasing. All acoustic
nodes in this paper can be scheduled by the scheduler for scheduling time. In this paper,
the scheduler transmits a wireless trigger signal every two seconds and when the acoustic
nodes receive the trigger signal, acoustic nodes transmit chirp signals in turn every 200 ms.
The specific scheduling diagram is shown in Figure 6.
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3.2. Robust TDOA Measurement

TOA and TDOA of signals are important parameters of trilateration in indoor posi-
tioning. TOA of an acoustic signal refers to the time from the signal sent by the acoustic
node to the signal received by the microphone receiver. At present, TOA-based acoustic
positioning systems require time synchronization between transmitting nodes and receivers.
If TOA can be converted into distance information, the target can be located by the trilateral
positioning method. TDOA is the difference in time taken between acoustic signals sent
from different sources to the target. TDOA measurement does not require synchroniza-
tion between acoustic nodes and receivers, only synchronization between acoustic nodes.
Therefore, the microphone inside the smartphone can act as a receiver. Similarly, the TDOA
can be converted into the distance difference, and then the distance difference is used to
realize the target position estimation. The measurement accuracy of TOA and TDOA is
the key to ensuring positioning accuracy. However, the signal is reflected by the wall and
ground (i.e., multipath effect), and the accuracy of TOA and TDOA estimation is affected in
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practical applications. Therefore, reliable TDOA estimation is also an important work. As
shown in Figure 7, the maximum peak obtained by the correlation operation lags behind
the first path due to the influence of the multipath effect. Identifying reflected signals and
direct signals is also the key to determining positioning accuracy. Since TDOA does not
need the clock synchronization between the mobile phone and the acoustic node, we can
use TDOA information to achieve indoor positioning for smartphones.
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The benefits of the TDOA positioning system have been described previously. For
four acoustic nodes, we can obtain four TOAs. So we can obtain three TDOAs by the
following formula:

TDOAj = TOA1 − TOAj+1 − 0.2s·j j = 1, 2, 3 (2)

According to the above formula, we can know the precondition for obtaining TDOA
is to obtain the TOA of the signal. As mentioned above, acoustic signals will be reflected
by glass, walls and other obstacles in the environment. Distinguishing reflected signals
and direct signals is one of our research works. Based on the multipath problem, we have
developed a reliable TOA detection method. The TOA detection process of the acoustic
signal is as follows:

In order to obtain the TOA of the corresponding signal emitted by the acoustic node,
we follow the process shown in Figure 8. The effective acoustic data segment contains the
corresponding signals of all acoustic nodes, and the length of the effective acoustic segment
is 2 s. The whole process is divided into three steps, as shown in Figure 8 below.

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

nals sent from different sources to the target. TDOA measurement does not require syn-
chronization between acoustic nodes and receivers, only synchronization between acous-
tic nodes. Therefore, the microphone inside the smartphone can act as a receiver. Simi-
larly, the TDOA can be converted into the distance difference, and then the distance dif-
ference is used to realize the target position estimation. The measurement accuracy of 
TOA and TDOA is the key to ensuring positioning accuracy. However, the signal is re-
flected by the wall and ground (i.e., multipath effect), and the accuracy of TOA and TDOA 
estimation is affected in practical applications. Therefore, reliable TDOA estimation is also 
an important work. As shown in Figure 7, the maximum peak obtained by the correlation 
operation lags behind the first path due to the influence of the multipath effect. Identifying 
reflected signals and direct signals is also the key to determining positioning accuracy. 
Since TDOA does not need the clock synchronization between the mobile phone and the 
acoustic node, we can use TDOA information to achieve indoor positioning for 
smartphones. 

 
Figure 7. Multipath effects of chirp signal. 

The benefits of the TDOA positioning system have been described previously. For 
four acoustic nodes, we can obtain four TOAs. So we can obtain three TDOAs by the fol-
lowing formula: 𝑇𝐷𝑂𝐴 = 𝑇𝑂𝐴 − 𝑇𝑂𝐴 − 0.2s ∙ 𝑗  𝑗 = 1,2,3 (2) 

According to the above formula, we can know the precondition for obtaining TDOA 
is to obtain the TOA of the signal. As mentioned above, acoustic signals will be reflected 
by glass, walls and other obstacles in the environment. Distinguishing reflected signals 
and direct signals is one of our research works. Based on the multipath problem, we have 
developed a reliable TOA detection method. The TOA detection process of the acoustic 
signal is as follows: 

In order to obtain the TOA of the corresponding signal emitted by the acoustic node, 
we follow the process shown in Figure 8. The effective acoustic data segment contains the 
corresponding signals of all acoustic nodes, and the length of the effective acoustic seg-
ment is 2 s. The whole process is divided into three steps, as shown in Figure 8 below. 

rough 
extraction of 

signals 

First path 
extractionpreprocessing

Effective 
acoustic data 

segment

Step1 Step2 Step3Input

 

500 1000 1500 2000 2500 3000 3500
Samples

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 Noise region
Strong multipath region
Attenuation region

First path

Maximum peak

Figure 8. TOA detection process of acoustic signal.

In step 1, we set four band-pass filters to remove environmental noise and other noise
from other acoustic nodes. The four band-pass filters are of finite impulse response type,
which is recorded as FIR1, FIR2, FIR3 and FIR4. The band pass range of FIR1 is 15–16 kHz.
The band pass range of FIR2 is 16.5–17.5 kHz. The band pass range of FIR3 is 18–19 kHz.
The band pass range of FIR4 is 19.5–20.5 kHz. When an effective acoustic segment passes
through four filters, four filtered signals are obtained. Four filtered signals are recorded as
F1, F2, F3, and F4, respectively.
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In step 2, we use the cross-correlation operation to decode the signal and then extract
the signal. The cross-correlation calculation formula is as follows:

Ri(t) = abs
(

F−1[F[sd(t)]F∗[y(t)]]
)

(3)

where Ri(t) is the absolute value of cross correlation result, sd(t) is a prior template sig-
nal, y(t) is the received signal, F and F−1 are Fourier transform and its inverse trans-
form, respectively, and F∗ is the complex conjugate of F. After the signal is decoded,
the signal can be extracted. Rough extraction of the signal is as follows (Algorithm 1):

Algorithm 1. Rough extraction of signal

Input: Filtered signal.
Output: Rough extraction of signal.
1: Cross-correlation between filtered signal and different prior signals
2: Based on the step 1, different cross-correlation maximum values are obtained
3: TR is the maximum value among all maximum values in step 2.
4: Decoding decision

if TR corresponds to the signal that needs to be roughly extracted
(1) Find the time tp

max corresponding to TR.
(2) Rough extraction of signal in the time period (tq

max − 40 ms, tq
max + 40 ms).

else
(1) Find the time tp

max corresponding to TR.
(2) Assigning acoustic data to 0 in the time period (tq

max − 40 ms, tq
max + 40 ms).

(3) return to step 1.
end if

5: Return: Rough extraction of signal.

In the third step, we use the signal extracted in the second step to perform cross-
correlation operations with the prior signal. We obtain the correlation function Ri(t)
through cross-correlation operation. We develop the stable first path extraction method
base on Ri(t). The information of the first path can be converted into TOA information.
The first path extraction algorithm is as follows (Algorithm 2):

Algorithm 2. First path extraction

Input: Ri.
Output: TOA.
1: Set threshold q (q ∈ [0.3 : δ : 1], δ is the step size)
2: Set δ = 0.01.
3: ρ = max(Ri).
4: Find indexi(n) = argmin(Ri ≥ q(n)∗ρ), n = 1, 2 . . . 71.
5: Group decision:

(1) Set variable GD = 1, GD represents the number of the group.
(2) for n = 1:70

inteval(n) = indexi(n + 1)− indexi(n);
end for
for n = 1:69

if inteval(n) < 0.5 ms
indexi(n) Belongs to group GD;

else
GD = GD + 1;
indexi(n + 1) Belongs to group GD;

end if
end for

(3) Find the proportion of indexi in each group, the proportion is σi(n), n = 1,2 . . . GD.
(4) Find VB = argmin(σi(n) ≥ 10%), n = 1,2 . . . GD.
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Algorithm 2. Cont.

6: Find TOA: In Group VB, find the first element indexVB
i (1)/Fs as TOA. (Fs refers to the

sampling rate of signal, which is set to 48 kHz in this article.)
7: Return: TOA.

When we obtain four TOAs, we can obtain three TDOAs by Formula (2). Since there
are a few abnormal values in the TOA detection process, then TDOA measurement can
also be affected. TDOA measurement is the precondition of smartphone positioning, so
robust TDOA measurement is very necessary. We have carried out optimization processing
to overcome TDOA abnormal measurement. The algorithm is as follows (Algorithm 3):

Algorithm 3. Robust TDOA measurement

Input: TOA1 TOA2 TOA3 TOA4.
Output: TDOA1 TDOA2 TDOA3.
1: TDOA calculation

for j = 1:3
TDOAj = TOA1 − TOAj+1 − j ∗ 200 ms.

end for
2: Set ε. (ε is the upper limit of abnormality, ε is set to 40 ms.)
3: Exception elimination

for j = 1:3
if abs(TDOAj(1)) > ε

TDOAj(1) = min(abs(TDOA1(1)) abs(TDOA2(1)) abs(TDOA3(1))).
end if
for n = 1:99

if TDOAj(n + 1) > ε

TDOAj(n + 1) = TDOAj(n).
end if

end for
end for

4: Return: TDOA1 TDOA2 TDOA3.

In the entire process mentioned above, we can obtain robust TDOA measurements.
When the speed of sound is known, we can convert TDOA into distance difference. By
using three or more effective TDOA observations, a smartphone can locate its own position.

3.3. Static Robust Positioning Algorithm Base on TODA

Figure 9 represents the fundamental mathematical model utilized in this article. Si
represents the acoustic node i. R represents the internal microphone of smartphone. TDOA
needs to be converted into distance difference for positioning. The formula is as follows:

∆di = d1 − di+1 = TDOAi·c i = 1, 2, 3 (4)

where c is the speed of sound, c is 340 m/s at 15 centigrade. ∆di is the distance difference.
d1 is the distance from the smartphone to the reference node. In this paper, acoustic node
1 is the reference node. Suppose r(x, y) is the actual coordinate of the smartphone, and
si(xi, yi) is the coordinate of the acoustic node. di is the distance from the smartphone to
the acoustic node i. The di is calculated as follows:

di =

√
(x− xi)

2 + (y− yi)
2 i = 1, 2, 3, 4 (5)

Substitute Formula (5) into Formula (4) to obtain Formula (6):

∆di =

√
(x− x1)

2 + (y− y1)
2 −

√
(x− xi+1)

2 + (y− yi+1)
2 i = 1, 2, 3 (6)
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By assuming that all the anchor positions are known, pi is the actual measured distance
difference, which is related to TDOA measurement. Although we have optimized the TDOA
detection algorithm, we cannot completely eliminate the TDOA measurement error. So pi
also include errors.

ni = pi − ∆di i = 1, 2, 3 (7)

where ni is the measurement error. In order to establish the relationship between the
measured distance difference pi and the smartphone position r(x, y), we substitute (5)
into (6) to obtain three equations. So, the least squares condition is usually considered to
estimate position R(x′, y′).

R = argmin
3

∑
i=1

(pi − ∆di)
2 (8)

It is easy to see that the problem of solving Formula (8) is a nonlinear problem. In order
to observe the performance of positioning algorithms, we carried out a static positioning
simulation. We choose two commonly positioned algorithms as the comparison: the Chan
method and the ML method. Chan method is a linear estimator that can convert nonlinear
problems into linear problems. ML method is a nonlinear estimator, which directly solves
optimization problems. These two methods are representative.

We simulate and analyze these two positioning methods to obtain a robust positioning
algorithm for two scenes. The first scene is 4.8 m × 4.8 m in size. The second scene is
6.4 m × 7.9 m in size. We set the standard deviation of noise to 1. The distribution of
acoustic nodes and test points is shown in Figure 10. In scenario 1, the coordinates of the
four acoustic nodes are (0.0 m, 0.0 m), (4.8 m, 0.0 m), (4.8 m, 4.8 m), (0.0 m. 4.8 m). We select
the test points A (2.4 m, 2.4 m) in scenario 1. In the simulation of scenario 2, the coordinates
of the four acoustic nodes are (0.0 m. 0.0 m), (0.0 m, 6.4 m), (7.9 m, 6.4 m), (7.9 m, 0.0 m).
We select the test points B (2.4 m, 4 m) in scenario 2. Simulating 100 times at each test point
(A and B). The positioning results of point A and point B are as shown below:
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Figure 10. Comparison of CHAN method and ML method: (a) positioning result of point A by
using Chan method and ML method; (b) positioning result of point B by using Chan method and
ML method.
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From Figure 10, it can be seen that the positioning accuracy of the Chan method is
lower than that of the ML method under the condition that the standard deviation of the
noise is 1. Therefore, the Chan method is not used at last. Under the condition that the
standard deviation of the noise is set as 1, we make statistics on the positioning results
of point A in scenario 1 and B in scenario 2. As shown in Figure 11, we obtained the
positioning results by using the ML algorithm.

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

We simulate and analyze these two positioning methods to obtain a robust position-
ing algorithm for two scenes. The first scene is 4.8 m × 4.8 m in size. The second scene is 
6.4 m × 7.9 m in size. We set the standard deviation of noise to 1. The distribution of acous-
tic nodes and test points is shown in Figure 10. In scenario 1, the coordinates of the four 
acoustic nodes are (0.0 m, 0.0 m), (4.8 m, 0.0 m), (4.8 m, 4.8 m), (0.0 m. 4.8 m). We select the 
test points A (2.4 m, 2.4 m) in scenario 1. In the simulation of scenario 2, the coordinates 
of the four acoustic nodes are (0.0 m. 0.0 m), (0.0 m, 6.4 m), (7.9 m, 6.4 m), (7.9 m, 0.0 m). 
We select the test points B (2.4 m, 4 m) in scenario 2. Simulating 100 times at each test point 
(A and B). The positioning results of point A and point B are as shown below: 

  

(a) (b) 

Figure 10. Comparison of CHAN method and ML method: (a) positioning result of point A by using 
Chan method and ML method; (b) positioning result of point B by using Chan method and ML 
method. 

From Figure 10, it can be seen that the positioning accuracy of the Chan method is 
lower than that of the ML method under the condition that the standard deviation of the 
noise is 1. Therefore, the Chan method is not used at last. Under the condition that the 
standard deviation of the noise is set as 1, we make statistics on the positioning results of 
point A in scenario 1 and B in scenario 2. As shown in Figure 11, we obtained the position-
ing results by using the ML algorithm. 

  
(a) (b) 

Figure 11. Positioning results of point A and point B (using ML method): (a) Positioning results of 
different elements of test point A; (b) Positioning results of different elements of test point B. 

From Figure 11, it can be seen that the positioning result is affected by Gaussian noise. 
The ML localization method exhibits high stability with the standard deviation of noise 
being set as 1. In order to illustrate the problem, we use the ML method to conduct a 

0 1 2 3 4
x(m)

0

1

2

3

4

Acoustic nodes
Chan
ML
True value point

0 2 4 6 8
x(m)

0

1

2

3

4

5

6 Acoustic nodes
Chan
ML
True value point

1

2

3

4

20 40 60 80 100
Samples

1.5
2

2.5
3

3.5

1

2

3

20 40 60 80 100
Samples

3

3.5

4

4.5

Figure 11. Positioning results of point A and point B (using ML method): (a) Positioning results of
different elements of test point A; (b) Positioning results of different elements of test point B.

From Figure 11, it can be seen that the positioning result is affected by Gaussian noise.
The ML localization method exhibits high stability with the standard deviation of noise
being set as 1. In order to illustrate the problem, we use the ML method to conduct a
positioning simulation for 5 test points in scenario 1. The cumulative distribution function
(CDF) diagram is as follows:

From Figure 12, static positioning results are relatively stable by using the ML method.
So, we chose ML in the static positioning experiment. The positioning error formula used
in this article is as follows:

PE =

√
(x− x′)2 + (y− y′)2 (9)

where PE is the positioning error, (x, y) is the true position, and (x′, y′) is the estimation.
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In scenario 2, we divide the test point into five areas. In the experiment, the parame-
ters of the experimental signal are designed in advance, and the parameters are shown in 
Table 1: 
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Figure 12. Positioning simulation of scenario 1: (a) distribution of acoustic nodes and test points in
scenario 1; (b) the CDF diagram of scenario 1.

4. Experiments and Results
4.1. Experimental Parameters

In this paper, we chose two experimental scenarios. Scenario 1 is in the lounge on
the fourth floor of Luojia Laboratory, Wuhan University. Scenario 2 is in the lobby on the
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second floor of Luojia Laboratory, Wuhan University. The distribution of acoustic nodes
and test points in scenario 1 is shown in Figure 12a. The distribution of acoustic nodes and
test points in scenario 2 is shown in Figure 13.
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In scenario 2, we divide the test point into five areas. In the experiment, the parameters
of the experimental signal are designed in advance, and the parameters are shown in Table 1:

Table 1. Chirp signal parameters of different acoustic nodes.

Acoustic Node Frequency Range Signal Type Duration

node 1 15–16 kHz down 10 ms
node 2 16.5–17.5 kHz up 10 ms
node 3 18–19 kHz down 10 ms
node 4 19.5–20.5 kHz up 10 ms

In two experimental scenarios, the acoustic node deployment shape is rectangular. In
Scenario 1, the coordinates of the four acoustic nodes are (0.0 m, 0.0 m, 1.72 m), (0.0 m, 4.8
m, 1.72 m), (4.8 m, 0.0 m, 1.72 m) and (4.8 m, 4.8 m, 1.72 m). In scenario 1, the height of
the smartphone is the same as the height of the acoustic nodes. The purpose is to verify
the reliability of the algorithm in this paper. In scenario 2, the coordinates of the four
acoustic nodes are (0.0 m, 0.0 m, 1.72 m), (0.0 m, 6.4 m, 1.72 m), (7.9 m, 0.0 m, 1.72 m) and
(7.9 m, 6.4 m, 1.72 m). In Scenario 2, the height of the smartphone is 1.30 m. The process of
deploying acoustic nodes is as follows: First, we adjust the height of the acoustic nodes.
Then we use the plumb line to align the square acoustic nodes with the top of the square
floor tile. Similarly, we also use the plumb line to align the smartphone with the top of the
floor tile. The experimental diagram of scenario 2 is shown in the following Figure 14:
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4.2. Experimental Results and Analysis

In the experiment, we used a smartphone to record 5 min acoustic data at each test
point. The recorded data will be processed and analyzed with the MATLAB platform. The
length of time for each effective acoustic data segment is 2 s. In order to describe the results
of each processing stage more vividly, we choose test point C (0.8 m, 4 m) in scenario 1 as
an example. First, we set four different filters (FIR1, FIR2, FIR3 and FIR4) to filter the
effective acoustic data segment (This process corresponds to step 1 of Figure 8). We can
obtain four filtered signals by using four filters. Four filtered signals are obtained, which
are recorded as F1, F2, F3 and F4. In order to illustrate the effect of the four filters, we drew
the time-frequency diagram.

It can be seen from the above Figure 15, it is not practical by using time-frequency
characteristics to distinguish acoustic nodes (fuzzy time-frequency characteristics). It can
also be seen from the above Figure 15, it is not practical to use time-frequency characteristics
to obtain TDOA information (complex computation). So, we use prior template signals
to correlate with the filtered signal (s1 is cross-correlated with F1, s2 is cross-correlated
with F2, s3 is cross-correlated with F3, and s4 is cross-correlated with F4). The schematic
diagram of the cross-correlation operation is as follows:
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Figure 15. Time-frequency distribution after using different filters. (a) Time-frequency distribution of
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From Figure 16, it can be seen that the four signals can be decoded by simple cross-
correlation operation. In order to ensure the robustness of decoding, we implement the
decoding method by using algorithm 1 in this paper. Algorithm 1 includes not only
decoding but also signal extraction (This process corresponds to step 2 of Figure 8). After
P1, P2, P3 and P4 are extracted by using Algorithm 1, we use Algorithm 2 for TOA
estimation (this process corresponds to step 3 of Figure 8). In the experiment, we obtained
100 results for each test point. To make it easier to see the TDOAs measurement results at
test point C, we selected the first 10 TDOA measurement results to display as follows:
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From Figure 17, it can be seen that we can obtain three different TDOAs each time.
At test point C, the actual TDOAs are 8.7 ms, 13.3 ms, and 8.7 ms, respectively. We can
see that our TDOA measurement value is also close to the actual value. The three TDOAs
are different due to the different distances between the smartphone and the four acoustic
nodes.
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In order to further explain the improvement of TDOA measurement accuracy by
Algorithms 2 and 3, we use the average of absolute values of TDOA measurement error
(simply referred to as TDOA measurement average error) to explain. We assume that the
speed of sound propagation is 340 m/s. TDOA error of 1 ms corresponds to a distance

Figure 16. Cross-correlation operation between prior signals and filtered signals: (a) s1 is cross-
correlated with F1; (b) s2 is cross-correlated with F2; (c) s3 is cross-correlated with F3; (d) s4 is
cross-correlated with F4.

From Figure 17, it can be seen that we can obtain three different TDOAs each time. At
test point C, the actual TDOAs are 8.7 ms, 13.3 ms, and 8.7 ms, respectively. We can see
that our TDOA measurement value is also close to the actual value. The three TDOAs are
different due to the different distances between the smartphone and the four acoustic nodes.
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Figure 17. TDOAs measurement results for the first time to ten times at test point C.

In order to further explain the improvement of TDOA measurement accuracy by
Algorithms 2 and 3, we use the average of absolute values of TDOA measurement error
(simply referred to as TDOA measurement average error) to explain. We assume that the
speed of sound propagation is 340 m/s. TDOA error of 1 ms corresponds to a distance
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error of 34 cm. We draw the TDOA measurement average error histogram as shown in
Figures 18 and 19.
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Figure 18. TDOA measurement average error in scenario 1 (using cross-correlation).
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Figure 19. TDOA measurement average error in scenario 1 (using Algorithms 2 and 3).

From Figure 18, it can be seen that the TDOAs obtained using the cross-correlation
algorithm always have large errors. At test point 1, TDOA3 has a large average measure-
ment error. At test point 2, TDOA1 and TDOA2 have large average measurement errors. At
test point 3, TDOA1 has a large average measurement error. At test point 4, TDOA3 has a
large average measurement error. At test point 5, TDOA1 has a large average measurement
error. Therefore, TDOA1, TDOA2, and TDOA3 may all have large errors. When we use
the ML algorithm for positioning, divergence occurs (i.e., the positioning result tends to
infinity). Hence, stable and reliable TDOA measurements are a prerequisite for positioning.
In indoor spaces, there is a phenomenon where the strongest path lags behind the direct
path. This phenomenon is the essential reason for the large TDOA measurement errors
in Figure 18. We developed Algorithms 2 and 3 to improve the problem of large TDOA
measurement errors.

As can be seen from Figure 19, TDOAs measurement average error has significantly
decreased compared to Figure 18. In test point 1, the TDOA2 measurement average error
is the maximum value (0.6 ms). In test point 2, TDOA3 measurement average error is
the maximum value of (1.4 ms). In test point 3, TDOA3 measurement average error is
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the maximum value (1.2 ms). In test point 4, the TDOA1 measurement average error
is the maximum value (1.5 ms). In test point 5, the TDOA3 measurement average error
is the maximum value (0.56 ms). All TDOA measurement average errors are less than
1.6 ms (corresponding distance difference error is 54.4 cm), which provides a prerequisite
for achieving decimeter-level positioning in scenario 1. When we use the ML algorithm
for positioning, the results will be more stable. To further illustrate the better stability of
our TDOA measurement method, we will display the data in Figures 18 and 19 by using
a line chart.

As can be seen from Figure 20, the proposed method has better stability for TDOA
measurement. In Figure 20a, the measurement average error of TDOA1 varies between
0.2 ms and 1.6 ms, the measurement average error of TDOA2 varies between 0.2 ms and
1 ms, and the measurement average error of TDOA3 varies between 0 ms and 1.5 ms. In
Figure 20b, the measurement average error of TDOA1 varies between 0 ms and 23 ms, the
measurement average error of TDOA2 varies between 0 ms and 23 ms, and the measure-
ment average error of TDOA3 varies between 0 ms and 12 ms. So, it can be seen that the
proposed method shows good stability. At the same time, it can be seen that the proposed
method has a relatively low measurement error in all TDOA measurements. After we
obtain TDOAs, we perform the localization function by using the ML algorithm. We refer
to the floor tiles to obtain an approximate true value of the smartphone’s position. Then we
calculate the CDF with two methods (Proposed-ML and Cross-correlated-ML), as shown in
the following Figure 21.
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Figure 20. TDOA measurement average error in scenario 1: (a) TDOA measurement aver-
age error using the proposed algorithm; (b) TDOA measurement average error using the cross-
correlation algorithm.
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In Scene 1, we found that the results of using the cross-correlation-ML algorithm for
localization at testing points 2 and 4 tend toward infinity. Therefore, in Figure 22, we do not
show the localization results for testing points 2 and 4 when using the Cross-correlation-ML
method. By using the algorithm proposed in this paper, high-precision localization results
were obtained in the localization experiment in Scene 1. In Scene 1, each test point was
located 100 times. We used box plots to display the localization results obtained using the
proposed algorithm in Scene 1.
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ML algorithm).

As can be seen from Figure 22, the indoor acoustic positioning system was tested using
a Proposed-ML algorithm to increase its accuracy to the decimeter level in scenario 1. The
preparatory work involved coordinating the acoustic nodes and test points using computer
software and calibrating them with a plumb line. In scenario 1, five test points were used,
each with known coordinates. These test points were triggered every two seconds by the
scheduler, and each point was tested 100 times to increase randomness. The positioning
error was evaluated using Formula (9) given in the paper. To verify the accuracy of the
system further, data were collected at 20 different test points in scenario 2. Each test point
was tested 100 times, and the average positioning error of the 20 test points was shown in
Figure 23.
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According to Figure 23, the method proposed in this article is still applicable to
Scenario 2. In Region 1, the average positioning error of the test points is 0.36 m; in
Region 2, the average positioning error of the test points is 0.34 m; in Region 3, the average
positioning error of the test points is 0.32 m; in region 4, the average positioning error of
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the test points is 0.40 m; and in region 5, the average positioning error of the test points is
0.29 m. Therefore, sub-meter-level positioning accuracy can still be achieved in Scenario 2.
Our system and method provide a good solution for indoor positioning.

5. Conclusions

This article describes an intelligent smartphone positioning system based on acoustic
localization. The encoding scheme we designed is simple, and decoding only requires
simple cross-correlation operations. The signal frequency designed in this article is much
higher than the frequency of environmental noise. The accuracy and stability of TDOA
measurement are greatly affected by multipath effects. Traditional cross-correlation algo-
rithms cannot solve this problem. Based on cross-correlation algorithms, we developed
Algorithms 1–3. We not only decoded the acoustic node signals but also obtained stable
and high-precision TDOA measurement results. In terms of positioning algorithms, we
chose a reliable maximum likelihood algorithm as the basic positioning algorithm. Static
positioning experiments were conducted in two scenarios, achieving an average positioning
accuracy of decimeter level. In the future, we still need to solve the following problems:

(1) Large scene smartphone positioning: our acoustic nodes are easy to deploy, and we
have the ability to achieve positioning in large indoor spaces. However, there is a
problem of near-far effect in large indoor spaces. We plan to overcome this problem
using the normalization method.

(2) Dynamic positioning: acoustic signal is susceptible to Doppler effects. This issue is
something we need to address in the future. We plan to choose methods in the field of
communication, such as carrier frequency offset compensation.

(3) Switching between dynamic positioning and static positioning: When performing the
positioning function, the user may be in a stationary state or a moving state. In the
moving state, we can use an extended Kalman Filter to improve positioning accuracy.
We plan to use TOA information to detect movement distance and determine whether
it is stationary.

(4) Adaptive extraction of valid acoustic data segments: this article does not study the
adaptive extraction method. However, signals from acoustic nodes can be encoded
and decoded, which provides the possibility for adaptive extraction.

(5) Smartphone outside of the rectangle of four nodes: When the Smartphone is outside
the acoustic nodes, fingerprint positioning can be used. In addition, increasing the
number of acoustic nodes and using time-division, space-division, and code-division
technologies can also achieve localization.
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