
Citation: Tang, X.; Chen, F.; He, Y.

Intelligent Video Streaming at

Network Edge: An Attention-Based

Multiagent Reinforcement Learning

Solution. Future Internet 2023, 15, 234.

https://doi.org/10.3390/fi15070234

Academic Editor: Guan Gui

Received: 3 June 2023

Revised: 23 June 2023

Accepted: 27 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Intelligent Video Streaming at Network Edge: An
Attention-Based Multiagent Reinforcement Learning Solution
Xiangdong Tang, Fei Chen * and Yunlong He

College of Computer Science and Technology, Qingdao University, Qingdao 266071, China;
2020020680@qdu.edu.cn (X.T.); 2021020724@qdu.edu.cn (Y.H.)
* Correspondence: feic@qdu.edu.cn

Abstract: Video viewing is currently the primary form of entertainment for modern people due to the
rapid development of mobile devices and 5G networks. The combination of pervasive edge devices
and adaptive bitrate streaming technologies can lessen the effects of network changes, boosting user
quality of experience (QoE). Even while edge servers can offer near-end services to local users, it is
challenging to accommodate a high number of mobile users in a dynamic environment due to their
restricted capacity to maximize user long-term QoE. We are motivated to integrate user allocation
and bitrate adaptation into one optimization objective and propose a multiagent reinforcement
learning method combined with an attention mechanism to solve the problem of multiedge servers
cooperatively serving users. Through comparative experiments, we demonstrate the superiority of
our proposed solution in various network configurations. To tackle the edge user allocation problem,
we proposed a method called attention-based multiagent reinforcement learning (AMARL), which
optimized the problem in two directions, i.e., maximizing the QoE of users and minimizing the
number of leased edge servers. The performance of AMARL is proved by experiments.

Keywords: QoE; multiagent; reinforcement learning; edge computing

1. Introduction

The content delivery networks (CDNs) deployed on the edge server are committed to
satisfy as many user service requests as possible and improve user experience, especially
high-quality video services. Nowadays, due to the improvement in video resolution and
the increase in real-time interaction requirements, it is unrealistic to only upgrade the
backbone network. Therefore, new challenges are brought to the edge network servers
that provide nearby services and a video streaming system. Typically, the capacity or the
service area of each edge server is limited, and how to assign users to different servers is
called the EUA (edge user allocation) problem, which has been widely explored in recent
years [1]. It is modeled as a boxing problem, and an optimal approach is proposed based on
dictionary goal programming techniques [1], and adaptive services are provided for mobile
users with heterogeneous needs [2]. Furthermore, mobile video streaming typically occurs
in a nonstationary environment, including user movement, intermittent connection, user
onboarding, or leaving. Hence, it is a challenge to obtain an optimal bitrate in a real-world
implementation, especially when solving the problem of user allocation in overlapping
regions [3].

In large-scale video service systems, there are methods that use single-agent reinforce-
ment learning to solve the above two problems independently [4,5]. On the one hand,
the bitrate selection is highly dependent on the network connection between the edge
server and the user, and the service resource allocation is affected by the users’ quality of
experience (QoE). On the other hand, dynamic factors, such as the number, behavior, and
network status of users, lead to sudden changes in the optimal solution. Consequently, it is
inappropriate to address the two issues independently. Although the approaches taken

Future Internet 2023, 15, 234. https://doi.org/10.3390/fi15070234 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi15070234
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070234?type=check_update&version=1

Future Internet 2023, 15, 234 2 of 18

by these two solutions to server assignment and bitrate adaption vary, they both strive to
improve user QoE while utilizing the least amount of infrastructure resources or system
costs. These two issues are typically framed as combinatorial optimization problems and
resolved separately one after the other. However, these two issues are strongly interrelated,
and we are motivated to propose an end-to-end approach based on multiagent reinforce-
ment learning (MARL) that integrates the above two problems, which treats each edge
server as an agent for policy execution and improves the policy through feedback from
users’ experience, thereby continuously improving the quality of service of all edge servers.
To better realize the cooperative relationship between edge servers, we achieve information
sharing among edge servers by introducing an attention mechanism, then obtaining the
final service policy through centralized training and decentralized execution.

The main contributions of this article are summarized as follows:

• We model the problems of user allocation and bitrate selection as a decentralized
partially observable Markov decision process (Dec-POMDP).

• We propose an end-to-end approach based on multiagent reinforcement learning that
can simultaneously consider the edge user allocation and bitrate selection problems.

• We use the attention mechanism to achieve the information sharing among edge
servers, then obtain the final service policy through centralized training and decentral-
ized execution.

Therefore, an attention-based MARL (AMARL) is designed to tackle the EUA problem
and bitrate selection simultaneously under a dynamic environment. The remainder of the
article is organized as follows: The literature is explored in Section 2. The details of the
method are described in Section 3. The experiments are implemented in Section 4. Finally,
we conclude this paper in Section 5.

2. Related Work

In this section, we will introduce the related work from three aspects, namely, edge
user allocation, adaptive bitrate, and multiagent reinforcement learning. An overview of
related works is shown in Table 1.

2.1. Edge User Allocation

With the rapid increase in data traffic, CDN has been widely studied [6,7]. For
instance, in [8], the authors proposed an edge cache-based intelligent content delivery
solution to improve network performance in information-centric wireless networks. Edge
user allocation (EUA) was usually considered as one of the most critical problems in
sophisticated edge environments. The study was divided into two categories—static user
assignment and dynamic user assignment—according to whether the user’s location was
moving or not. In static user assignment, for example, this problem was modeled as a
variable-size vector boxing problem for utility efficiency [1] or QoE improvement [2]. The
authors proposed a decentralized game-theoretic method to select each user’s channel and
edge server while meeting their resource and data rate requirements [9]. In dynamic user
assignment, this problem was modeled as an online decision and evolutionary process
and proposed a mobile-aware and migration-supporting approach, called MobMig, for
assigning users in real time [10]. An online approach called OL-EUA was proposed for
solving dynamic EUA problems in NOMA-based MEC systems [11]. In [12], the authors
proposed a centralized training and distributed execution multiagent dueling double deep
Q network solution to maximize the total network data rate while minimizing the mobility-
induced handoffs. However, none of these methods considered the optimization of the
long-term QoE, while assigning users did not select the appropriate video bitrate to the
users at the same time.

2.2. Adaptive Bitrate

To enhance the user’s QoE, the adaptive bitrate algorithms should be taken into ac-
count, which can dynamically select different video bitrates for the next video segment

Future Internet 2023, 15, 234 3 of 18

playback according to either the network status [13,14] or buffer conditions [15,16]. For
the network state-based methods, Liu et al. proposed a novel rate-adaptive algorithm
for adaptive HTTP streaming based on segment fetch time (SFT) to detect bandwidth
changes [17], and further proposed the ratio of expected SFT as a new rate-adaptive metric
to quickly detect network congestion and idle network capacity [18]. For the buffer-based
methods, Huang et al. proposed an approach that began by using only the buffer, and then
asked when capacity estimation was needed [15]. BOLA was devised by using Lyapunov
optimization techniques to minimize rebuffering and maximize video quality [16]. How-
ever, both of the above two methods are highly dependent on the assumption of prediction
accuracy, which can be hardly competent in the sophisticated environment and heteroge-
neous user demand. In [19], the authors proposed a method based on a reinforcement
learning algorithm to select the bitrates of the region of interest adaptively for panoramic
videos. In [20], in order to optimize the QoE, the authors proposed a novel ABR algorithm
considering the user preference based on short trajectory segments.

Table 1. Overview of related works.

Papers Description Edge User
Allocation

Adaptive
Bitrate

Reinforcement
Learning

[17] Detecting bandwidth changes using smoothed HTTP throughput based
on the segment fetch time !

[18] Investigating rate adaptation for the serial segment fetching method and
the parallel segment fetching method in a content distribution network !

[14] Developing a set of techniques to trade off stability, fairness, and
efficiency in the video adaptive framework !

[13] Designing a video bitrate adaptive algorithm at the application layer !

[15] Proposing the video buffer to ease the need for capacity !

[1] Modeling the edge user allocation problem as a bin packing problem !

[2] Enabling flexible levels of QoE for app users !

[19] Selecting the bitrates of the region of interest adaptively
for panoramic videos ! !

[10] Considering the edge user allocation problem as an online
decision-making and evolvable process !

[20] Considering user preference based on short trajectory segments ! !

[16] Using Lyapunov optimization to minimize rebuffering and
maximize video quality !

[9] Investigating the EUA problem in a NOMA-based MEC system !

[11] Solving the dynamic EUA problem with mutual
interference between users !

[5] Predicting resource utilization of user requests for better user allocation ! !

[12] Maximizing the data rate of the total network and prioritizing the quality
of service for key users ! !

2.3. Multiagent Deep Reinforcement Learning

Deep reinforcement learning overcomes the limitations of reinforcement learning
and uses deep neural networks to approximate value functions, effectively improving the
learning speed and performance of reinforcement learning [21]. A reinforcement learning
algorithm has been widely used [22,23]. To address the worse performance in the multia-
gent environment, QMIX adopts the framework of centralized learning and distributed
execution, but the characteristic limits its applicability to cooperative scenarios [24]. As
a further improvement of the QMIX, QTRAN transforms the original joint action-value

Future Internet 2023, 15, 234 4 of 18

function into an easily factorizable one, with the same optimal actions [25]. MADDPG takes
into account the action policies of other agents and is able to successfully learn policies that
require complex multiagent coordination [26]. It uses centralized training and decentralized
execution to achieve remarkable results and can be applied to collaborative, competitive,
and mixed environments.

3. Problem Formulation and Model Design

In this section, we will introduce the problem formulation and the system model
design, and then analyze the computational complexity of our proposed algorithm. Table 2
lists the symbols used in this paper.

Table 2. Notation.

Notation Description

E = {e1, e2, · · · , ei} Finite set of edge servers ei, where i = 1, 2, · · · , m
Ui = {u1, u2, · · · , uj} Finite set of users uj under the coverage of the edge server ei

Ci The set of users set served by the edge server ei, Ci ⊆ Ui
Coni The maximum number of connections to the edge server ei
dij Geographic distance between the edge server ei and user uj

rtti(uj) The RTT value of the user uj with the corresponding server ei
thi(uj) Throughput rate of the user uj under the coverage of the edge server ei
bi(uj) The video resolution assigned to the user uj
lbi(uj) The last video resolution assigned to the user uj

ap(|ei|)
Decide whether to penalize the reward based on the number of user sets
assigned to the edge server ei

tp(thi(uj), bi(uj))
Decide whether to penalize the reward based on the thi(uj) and bi(uj) of
the user uj under the coverage of the edge server ei

QoE(uj) QoE of the user uj
EN Number of leased servers
Sij State information between the server ei and user uj
Si State vector of the server ei, consisting of the status Sij, j ∈ Ui and |Ci|
S A state matrix of all server states

Aij

The action of the server ei to the user uj, which is a 2-tuple where the first
element is the server index and the second element is the assigned
resolution bi(uj)

Ai Action vector between the server ei and its covered users Ui
Ri Reward for the edge server ei

3.1. Problem Formulation

As shown in Figure 1, there are distributed edge servers and mobile users in the edge
network video streaming system. Each end user has different trajectories under specific
modes of transportation, so the network connection status with adjacent edge nodes is
constantly changing. As mentioned earlier, every edge server with limited resources needs
to adapt to various requests online in real time, which is called the EUA problem. At the
same time, each mobile user also needs to choose an appropriate bitrate based on their
local network connection quality to ensure smooth playback, which is known as the bitrate
selection problem. Although these two problems aim to achieve different strategies, such
as server allocation or bitrate selection, their goals are similar, namely, to maximize users’
QoE with limited infrastructure resources or minimizing system costs.

Future Internet 2023, 15, 234 5 of 18

Edge Server

User

Edge Server

User

Figure 1. System overview.

Given a video streaming system with distributed edge servers and mobile users, their
interaction process is shown in Figure 2 under the AMARL framework. Let us denote
the set of edge servers as E = {e1, e2, · · · , ei}, the users set under the coverage of ei as
Ui = {u1, u2, · · · , uj}, the users set served by ei as Ci(Ci ⊂ Ui), and the maximum number
of connections to ei as Coni. Denote geographic distance, round-trip time (RTT), and
throughput rate between ei and uj as dij, rtti(uj), and thi(uj), respectively. bi(uj) and lbi(uj)
represent the current and last video bitrate assigned to uj. Then the users’ QoE can be
defined as

QoE(uj) = bw× bi(uj)− sw× |bi(uj)− lbi(uj)|+
tw× tp(thi(uj), bi(uj))− rw× rtti(uj).

(1)

State

Distance

RTT

Throughput

Bitrate

State

Distance

RTT

Throughput

Bitrate

State

Distance

RTT

Throughput

Bitrate

attention

mechanism
Critic 2

Actor 2

attention

mechanism
Critic 2

Actor 2

State

Distance

RTT

Throughput

Bitrate

State

Distance

RTT

Throughput

Bitrate

State

Distance

RTT

Throughput

Bitrate

Actor 1

Critic 1
attention

mechanism

attention

mechanism

Actor 1

Critic 1
attention

mechanism

Edge Server

User

Edge Server

User

Internal

External

Internal

External

Figure 2. An overview of the system structure.

Note that the absolute value of bi(uj)− lbi(uj) is used to reflect the smoothness of
the video bitrate change. Intuitively, if this value is too large, the user will feel that the
video playback is discontinuous. In addition, it is necessary to ensure that the throughput
thi(uj) between uj and ei can support the selected bitrate bi(uj), so the throughput penalty
function tp(·) is defined as

Future Internet 2023, 15, 234 6 of 18

tp(thi(uj), bi(uj)) =

{
thi(uj)− bi(uj), thi(uj) < bi(uj)

bi(uj), thi(uj) ≥ bi(uj)
(2)

Therefore, bw, sw, tw, and rw are used as the weights of bitrate, smoothness, through-
put, and RTT, respectively, in (1).

3.2. Model Design

A fully cooperative multiagent task can be described as a Dec-POMDP, which can
be denote as a tuple G = 〈S, A, P, r, Z, O, n, γ〉. s ∈ S denotes the true state of the en-
vironment. At each step, each agent m ∈ M = {1, ..., M} chooses an action am ∈ A,
and all actions form joint action a ∈ A = AM. P is the state transition function de-
pending on the environment. When all agents complete the decision, the environment
will transit from the state s to the next state s′ according to the state transition function
P(s′|s, a) : S× A× S→ [0, 1], and return the reward at the same time. All agents share
the same reward function r(s, a) : S × A → R. γ ∈ [0, 1) is the discount factor. For a
Dec-POMDP, the environment is partially observable for agents. Each agent obtains its
individual observation z ∈ Z according to observation function O(s, m) : S × M → Z.
Each agent has an action-observation history τm = (am,0, zm,1, ..., am,t−1, zm,t), on which it
conditions a stochastic policy πm(am|τm) ∈ [0, 1]. The joint policy π has a joint action-value
function Qπ(st, at) = Est+1 :∞,at+1 :∞[Rt|st, at], where Rt = ∑∞

i=0 γirt+i is the discounted
return. The goal of agents is to find a joint policy π to maximize the expected discounted
reward. In MARL, agents learn to make decisions by exploring the unknown environment
and using the feedback received from the environment. In this setting, the objective of each
agent is to maximize the shared reward.

Then the essential elements of a Dec-POMDP can be defined as follows:
State. In this scenario, due to the difference in factors, such as latency between each

user and each edge server, we define the state of a user uj under the coverage of a single
edge server ei as Sij, and each Sij is a 4-tuple as shown in (3).

Sij = (dij, rtti(uj), thi(uj), bi(uj)) (3)

Then the input state of the edge server ei is

Si = (Si1, Si2, · · · , Si|Ui |, |Ci|) (4)

In (4), we input not only the states of all users under the coverage of the edge server ei
into the neural network but also the number of remaining connections to ei. In AMARL,
the input to the actor network is the respective state Si of each agent, while in the critic
network, since the training is to be centralized, the input is the set of states S of each edge
server ei, defined as shown in (5):

S =

S11 S12 · · · S1|U1| |C1|
S21 S22 · · · S2|U2| |C2|

...
...

. . .
...

...
Sm1 Sm2 · · · Sm|Um | |Cm|

 (5)

Because of the presence of other agents, the prediction of a single actor is not a global
joint action. In order to reduce the impact of other agents on the current critic’s evaluation
of the actor’s prediction, a masked array is used to eliminate useless information in the
evaluation. The algorithm for state matrix construction is shown in Algorithm 1.

Future Internet 2023, 15, 234 7 of 18

Algorithm 1: State matrix construction algorithm.
Input: Edge server set E
Output: Current state S

1 for ei ∈ E do in parallel
2 Collect the all information of the user uj ∈ Ui that is covered by the edge

server ei;
3 for uj ∈ Ui do in parallel
4 Return the geographical distance dij from the server ei, communication

delay rtti(uj) , throughput thi(uj), current video resolution bi(uj);
5 end
6 Construct the state Sij of the current edge server ei and each user uj according

to (3);
7 Calculate the number of users served by the edge server ei, |Ci|;
8 Construct the current state vector according to (4);
9 end

10 Obtain the current state S of all servers according to (5);

Action. For each agent, the action is initially set to a list of binary groups, where each
element of the list is a binary group made up of the user index and the assigned video
bitrate. Denote the action of ei for uj as Aij. Further, Aij is a binary as shown in (6).

Aij = (i, bi(uj)) (6)

Thus, the action vector Ai predicted by the edge server ei is

Ai = (Ai1, Ai2, · · · , Ai|Ui |) (7)

However, it is a challenge to determine the actions because each agent will have
access to a list of all user behaviors, requiring several decisions to be made about each user
by various agents, which will certainly result in some conflict. Section 3.3 describes the
detailed solution.

Reward. In the EUA problem, the goal is to maximize the number of assigned users
and minimize the number of leased servers. However, if only the user’s QoE and the
number of leased servers are considered as the reward function, the capacity of each agent
will be ignored. Therefore, a penalty function is introduced to prevent the number of server
connections from exceeding their own capacity. Denote Ri as the reward of edge server ei
and EN as the number of leased servers; then

Ri = ∑
uj∈Ci

QoE(uj) + ap(ei)− EN (8)

Furthermore, in order to serve as many users as feasible within the coverage area, the
penalty function ap(·) is defined in accordance with the number of connections and the
number of users inside the coverage area as follows:

ap(ei) =

{
Coni − |Ci|, |Ci| > Coni

|Ci|, |Ci| ≤ Coni
(9)

Actor. For each UAV agent, there is an actor and a critic. The actor is the network
parameterized policy function µ(sj

i ; θµ); θµ is the parameter of the network. The action

of the agent can be obtained by the deterministic policy at = µ(sj
i ; θµ). After all agents

Future Internet 2023, 15, 234 8 of 18

complete the action selection, the joint action at can be obtained. The gradient can be
calculated as

∇θi J =
1
S ∑

j
∇θi µi(s

j
i)∇ai Q

ψ
i (S

j, aj
1, · · · , ai, · · · , aj

N)|ai=µi(s
j
i)

(10)

where i is the agent index, S is the batch size, µ is the actor policy, and Q is the critic evaluation.
Critic. In order to more accurately evaluate the action, each agent queries other agents

for information about its observations and actions and integrates it into the estimate of its
value function. To compute the Q-value function Qψ

i (s, a) for agenti, the critic receives the
states s = (s1, . . . , sN) and actions a = (a1, . . . , aN); i ∈ 1...N. Qψ

i (s, a) is a function of states
and actions of agenti and the contributions of other agents:

Qψ
i (s, a) = fi(gi(si, ai), xi) (11)

where fi is a two-layer MLP, while gi is a one-layer MLP embedding function. Denote the
contribution from other agents as xi, which is a weighted sum of each agent’s value:

xi = ∑
j 6=i

αjvj (12)

where the value, vj is the embedding of agentj. The attention weight αj considers the
correlation of agenti and agentj; that is, it is calculated according to the distance between
the two agents and the overlap rate of users in the service area. The details are shown in
Figure 3.

As shown in Figure 2, the critics of each agent can obtain the state and action informa-
tion of other agents extracted by the attention mechanism during training for an objective
action evaluation. After evaluation, each agent independently predicts the next action
based on the evaluation value.

Concatenate

Attention

Head

Attention

Head

Attention

Head

Attention

Head
...

1e ne...

ie

1x nx...

ix

MLPMLP MLPMLP,i is a (,)iQ s a

Figure 3. Calculating Qψ
i (s, a) for agenti. Each agent encodes its observations and actions, sends

them to the central attention mechanism, and receives a weighted sum of other agents’ encodings.

Future Internet 2023, 15, 234 9 of 18

3.3. Perform EUA and Bitrate Selection Simultaneously

As shown in Figure 4, in the middle of each time period, each agent acquires the users
receiving data within its own coverage area and obtains its state Si. The input states Si of
each agent are combined as the current set of states S , which is fed into each agent’s actor
network to obtain the predicted action Ai. To solve the action conflict problem between
different agents and optimize the user’s QoE, the action that brings the best QoE to the
user will be executed, after calculating the QoE under different actions. In this way, the set
of actions A and the set of rewards R for all agents are obtained, and the next state S ′ is
influenced by the current action and the next time period of user information. Additionally,
when an epoch ends, done = Ture is set and the rest of the time is set to False. The 5-tuple
[S , A, R,S ′, done] is stored in the experience pool for training. When there are enough
training data, training starts. The training process follows the principle of centralized
training and step-by-step execution; i.e., the actor predicts the data individually for each
agent with its own observed data, while the critic trains by taking the state S and action
set A of all agents as input to estimate the value. After training, we just need to test each
agent’s actor with the test set. The specific process is shown in Algorithm 2.

Algorithm 2: AMARL.
Input: Initialized model parameters Θ, edge server set E, the maximum value M

of the episode
Output: Actor network model for edge servers

1 Initialize the experience pool ReplayBuffer.
2 for episode = 1 to M do
3 for t=1 to T do
4 Execute Algorithm 1 to obtain the current state S ;

5 Each agent obtains the action Ai = µ(sj
i ; θµ) +Nt

6 Each edge server ei executes the action Ai according to the current strategy
to obtain a new state S ′, and calculates the reward Ri according to (8);

7 if S ′ = S then
8 done = True
9 else

10 done = False
11 end
12 Store [S , A, R,S ′, done] into ReplayBuffer.
13 S ← S ′;
14 for ei ∈ E do in parallel
15 Sample data sample j from ReplayBuffer;

16 Calculate the estimated value yj
i = Ri + γQψ

i (S , A) according to (11);
17 Based on this estimate, the parameters of the critic network are updated

by minimizing the loss value;
18 Update the parameters of the actor network Θi according to the loss

value and (10).
19 end
20 end
21 end

3.4. Computational Complexity Analysis

In this part, we analyzed the computation complexity of our proposed algorithm.
During the training phase, the computational complexity of the single agent algorithm is
mainly related to the number of layers of the deep neural network (DNN) used by each
agent and the number of neurons used in each layer [27]. In addition, our algorithm is a
multiagent algorithm; it is also necessary to consider the impact of the number of agents.

Future Internet 2023, 15, 234 10 of 18

Action

Agent Index

Bitrate Next State

Distance

RTT

Throughput

Bitrate

Next State

Distance

RTT

Throughput

Bitrate

Reward

User's QoE

Num of leased

servers

Penalty function

Reward

User's QoE

Num of leased

servers

Penalty function

[S,A,R,S'][S,A,R,S']

State

Distance

RTT

Throughput

Bitrate

UserUser UserUser UserUser

ActorActor

CriticCritic

Agent

ReplayBufferReplayBuffer

Other Agent

Information

Other Agent

Information

Figure 4. Process of the training.

In the training phase, the computational complexity for a single DNN to both forward
propagation and update in a single step is O(S(∑L

i=1 nini+1)), where S is the minibatch
size, L represents the number of layers, and ni denotes the number of neurons in the i-th
layer. Let Fa, Fc represent the computational complexity of the actor and critic of a single
agent, respectively. Fa, Fc can be calculated as

Fa = O(TMS(
La

∑
i=1

nini+1)), Fc = O(TMS(
Lc

∑
i=1

nini+1)) (13)

where T represents the number of steps in each episode, M represents the total number of
episodes, and La and Lc represent the number of layers of actor and critic, respectively. Let
N represent the number of agents. Then the computational complexity of our algorithm in
the training phase can be expressed as

Ctrain =
N

∑
1
(Fa + Fc) (14)

During the distributed execution phase, each agent only needs to use a trained actor
network to select action, so the computational complexity of our algorithm is

Cexecute =
N

∑
1
(O(

La

∑
i=1

nini+1)) (15)

4. Evaluation

In this section, we analyzed the influence of hyperparameters on convergence and
evaluated the algorithm performance.

4.1. Settings

Simple experiment. We will conduct experiments in a simulated environment; the
experimental data use the real data of the 4G/LTE dataset. We compare the adaptive
performance of our model with a simple experiment where throughput drops suddenly.

Future Internet 2023, 15, 234 11 of 18

On the server side, the system is Ubuntu 16.04 with the Apache HTTP server version 2.2.22.
On the client side, the system uses Windows 10, and the CPU is Intel(R) Core(TM) i5-8400.
For live connections, the server’s timeout is set to 100s, and the video stored on the server
is subdivided into simultaneous 2 s video clips. Additionally, there are six available bitrate
versions for each clip. They are 300, 750, 1200, 1850, 2850, and 4300 kbps, respectively. The
initial buffer delay is equal to 10 durations (20 s).

Complex experiment. The complex environment has three edge servers, and the
penalty function for the number of connections is distributed at set coordinates, from which
the data of each user are calculated. We designed three allocation strategies to compare
with our model:

• Greedy strategy. At each time slot, each user is assigned to the closest agent as long
as there are remaining connections on that edge server, and the streaming bitrate
transmitted is based on the Pensieve model.

• Random strategy. Each user is randomly assigned to an edge server, as long as there
are remaining connections on that edge server, and the streaming bitrate transmitted
is based on the Pensieve model.

• Step-by-step reinforcement learning. Reinforcement learning is used to implement
user assignment, and then a Pensieve model is used to select the bitrate of the
video stream.

Implementation Details. We have set the learning rate α = 0.0002, the discount factor
γ = 0.9, the experience pool size buffer_size = 10,000, and the batch size per training
batch_size = 16. For the calculation of QoE in (1), we set bw, sw, tw, and rw to be 1, 1,
1.5, and 0.01, respectively. Based on the Ornstein–Uhlenbeck process [28], a noise N is
introduced in order to add a bit of randomness and increase the learning coverage when
selecting actions. It starts with an exploration factor ε = 1 that decreases to a minimum of
0.01 at the end of the training, with a decay factor of 0.999, indicating that the noise has
less and less influence. Although it will increase the training time, the soft update factor
τ = 0.01, which will increase the stability of the training. The parameters are shown in
Table 3.

Table 3. Parameter values.

Parameter Value

Replay buffer capacity 1× 105

Optimizer Adam
Learning rate α 2× 10−4

Discount factor γ 0.9
Minibatch size N 16
Soft update constant ε 0.01
Number of training episodes 1000

4.2. Convergence Analysis

In this part, we analyzed the impact of different hyperparameter settings on conver-
gence performance to evaluate the convergence performance of our proposed algorithm.

We first evaluated the impact of different learning rate settings on convergence per-
formance. We evaluated the convergence performance under three settings, where the
learning rate is set to 2× 10−5, 2× 10−4, and 2× 10−3, respectively. The result is shown in
Figure 5. It can be seen that in the three learning rate settings, the rewards obtained by the
agent increases with the training, and can eventually converge. When the learning rate is
2× 10−4, it has the best convergence performance. Too small or too large learning rate will
lead to worse convergence performance.

Future Internet 2023, 15, 234 12 of 18

0 200 400 600 800 1000
Episode

1

2

3

4

5

6

R
ew

ar
d

Learning rate=2×10 5

Learning rate=2×10 4

Learning rate=2×10 3

Figure 5. Comparison of different learning rates.

The convergence performance of the algorithm is also affected by the minibatch
size. The minibatch size determines the number of samples used in gradient updates,
which directly affects the learning speed and stability of the algorithm. We compared
the convergence performance of our algorithm with minibatch sizes of 8, 16, and 32. The
result is shown in Figure 6. The algorithm can converge under all three minibatch sizes.
Compared with other settings, the algorithm can converge faster when the minibatch
size is 16. When the minibatch size is set to 8, the convergence speed of the algorithm is
slow. Because the number of samples is too small during a single update, the learning
speed decreases.

0 200 400 600 800 1000
Episode

1

2

3

4

5

6

R
ew

ar
d

Batch size=8
Batch size=16
Batch size=32

Figure 6. Comparison of different minibatch sizes.

The discount factor also affects the convergence performance of the algorithm. Figure 7
shows the convergence performance comparison of the algorithm under different discount
factor settings. It can be seen that the algorithm has the best convergence performance
when the discount factor is set to 0.9. A larger discount factor indicates that the agent places
more emphasis on long-term benefits. When the discount factor is set to 0.7 and 0.8, the

Future Internet 2023, 15, 234 13 of 18

agent’s emphasis on long-term benefits decreases and becomes more shortsighted, thus
affecting convergence performance.

0 200 400 600 800 1000
Episode

1

2

3

4

5

6

R
ew

ar
d

=0.7
=0.8
=0.9

Figure 7. Comparison of different discount factors.

4.3. Results of the Simple Experiment

Figure 8 shows that the throughput suddenly dropped from 4500 to 350 kbps at 30 s
and gives bitrates and caching behavior for all methods. When throughput drops, a rate-
based algorithm responds first and quickly drops to 350 kbps, so the buffer pool does not
consume much. Although AMARL responded quickly, the drop was smoother compared
with the rate-based algorithms and increased the smoothness of playback. However, the
buffer-based algorithm did not respond at the beginning. When the buffer pool drops
to the threshold, the buffer-based algorithm starts to adjust the video bitrate. The rate-
based method can reflect network changes rapidly, the changes are more drastic, and the
smoothness is very low compared with the proposed model. In contrast, buffer-based
methods try to keep the video bitrate high, but the buffer level drops quickly. Then the
client has to switch to the lowest video bitrate. Unlike other methods, our method considers
both the video bitrate and the smoothness of the change of the bitrate and has little influence
on the user experience.

Figure 8. Variation of the bitrate of different algorithms when the throughput drops suddenly.

Future Internet 2023, 15, 234 14 of 18

4.4. Dynamic Environment Complex Experiment

Given the dynamic user behavior and heterogeneous network conditions, we know
that multiagent solutions can achieve relatively stable results and stay near these results for
a long time. We compare the performance of multiagent deep deterministic policy gradient
(MADDPG) and AMARL models with added attention mechanisms in more complex
situations. MADDPG is an algorithm designed for multiagent, continuous behavior spaces.
The predecessor of MADDPG is DDPG. The purpose of the DDPG algorithm is to solve
the problem of reinforcement learning in the continuous behavior space. MADDPG is
improved on the basis of DDPG to make it suitable for cooperative task learning between
multiagents. The results are shown in Figure 9. The agents trained under AMARL can
effectively use all the information received, and can better adapt to complex and changeable
dynamic environments.

Figure 9. Convergence speed of AMARL and MADDPG.

Further, we also compare the average QoE and average bitrate of different methods.
Figure 10 shows the average QoE of users and the average bitrate of video streams for
four different methods. As can be seen from the figure, both AMARL and step-by-step
reinforcement learning can make the average bitrate of the video stream reach a higher
value, but the user QoE of AMARL is 70% higher than it. For both greedy and random
strategies, both indicators of AMARL are well above their values.

We also explored the performance under different numbers of users and edge servers.
Figures 11 and 12 show the trend of each parameter depending on the number of users
or agents. Figures 11a and 12a demonstrate that the model obtained by AMARL has
better performance in average user QoE compared with other methods. For the bitrate
allocation shown in Figures 11b and 12b, the effect of AMARL is weaker than that of the
Step-by-step reinforcement learning method, but in terms of the smoothness shown in
Figures 11c and 12c, the effect of AMARL is significantly better than that of the step-by-step
reinforcement learning method. This also reflects the importance of the adaptive bitrate
algorithm. It should be noted that from (1), the smaller the smoothness, the better the
user experience. In summary, our proposed model performs well in complex dynamic
environments and always maintains a relatively high bitrate. Moreover, the change in
bitrate is relatively smooth. Through experiments on Pensieve, it can be seen that although
the same parameters and dataset are used, the training results vary greatly, probably
because the input of Pensieve contains RTT, and the users selected by the greedy and
random strategies are different before each training; i.e., the selection of RTT is also different.
Table 4 shows a comparison of the number of servers used by different algorithms under

Future Internet 2023, 15, 234 15 of 18

different numbers of agents. It can be seen that our proposed algorithm uses the fewest
number of servers under different numbers of agents.

Figure 10. Experimental results of (A) AMARL, (B) step-by-step reinforcement learning, (C) greedy
strategy, and (D) random strategy.

3 4 5 6 7 8 9 10
Number of Agents

600

800

1000

1200

1400

Av
er

ag
e

Qo
E

3 4 5 6 7 8 9 10
Number of Agents

1750

2000

2250

2500

2750

3000

3250

Av
er

ag
e

Bi
tra

te
(k

bp
s)

(a) (b)

3 4 5 6 7 8 9 10
Number of Agents

200

400

600

800

1000

1200

1400

1600

1800

Av
er

ag
e

Sm
oo

th
ne

ss
(k

bp
s)

Step by step
Greedy strategy
Random strategy
AMARL

(c)

Figure 11. Parameter variation trend as the number of agents changes: (a) QoE, (b) bitrate, and (c) smoothness.

Future Internet 2023, 15, 234 16 of 18

5 10 15 20 25 30 35 40
Number of Users

400

600

800

1000

1200

1400

Av
er

ag
e

Qo
E

5 10 15 20 25 30 35 40
Number of Users

1500

2000

2500

3000

3500

Av
er

ag
e

Bi
tra

te
(k

bp
s)

(a) (b)

5 10 15 20 25 30 35 40
Number of Users

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e

Sm
oo

th
ne

ss
(k

bp
s)

Step by step
Greedy strategy
Random strategy
AMARL

(c)

Figure 12. Parameter variation trend as the number of users changes: (a) QoE, (b) bitrate, and (c) smoothness.

Table 4. Number of servers used.

Number of Agents 4 5 6 7 8 9

AMARL 3 3 4 4 5 5
Greedy strategy 3 4 5 6 6 7
Random strategy 4 5 6 7 7 8
Step by step 3 4 4 5 5 6

5. Conclusions

To tackle the EUA problem in a variety of environments, we propose an attention-
based multiagent reinforcement learning (AMARL) algorithm, which can well adapt to
the dynamic environment and learn in the unknown environment, and jointly consider
user allocation and bitrate selection in the reward function, to achieve the long-term
QoE guarantee of users, and we applied the attention mechanism to the critic to reflect
the influence of different agents. Then, we conducted experiments through scenario
simulations, and our experiments showed that our approach significantly outperformed
the Pensieve-based random and greedy policies. The algorithm could analyze the optimal
allocation scheme for edge servers in real time in complex and variable environments to
maximize the QoE for users. Our future direction is to realistically simulate the process of
video transmission from the edge server and to specify the edge server resources beyond the
simple number of connections. At the same time, we would also consider more influencing
factors, such as security and network dropouts.

Author Contributions: Conceptualization, X.T. and F.C.; methodology, X.T.; validation, Y.H.; writing—
original draft preparation, X.T. and Y.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded by National Natural Science Foundation of China (61602214).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this paper.

Future Internet 2023, 15, 234 17 of 18

Abbreviations

The following abbreviations are used in this manuscript:

QoE quality of experience
AMARL attention multiagent reinforcement learning
CDN content delivery network
EUA edge user allocation
Dec-POMDP decentralized partially observable Markov decision process
SFT segment fetch time
RTT round-trip time
DNN deep neural network
MADDPG multiagent deep deterministic policy gradient

References
1. Lai, P.; He, Q.; Abdelrazek, M.; Chen, F.; Hosking, J.; Grundy, J.; Yang, Y. Optimal edge user allocation in edge computing with

variable sized vector bin packing. In Proceedings of the Service-Oriented Computing: 16th International Conference, ICSOC
2018, Hangzhou, China, 12–15 November 2018 ; Springer: Berlin/Heidelberg, Germany, 2018; pp. 230–245._15. [CrossRef]

2. Lai, P.; He, Q.; Cui, G.; Xia, X.; Abdelrazek, M.; Chen, F.; Hosking, J.; Grundy, J.; Yang, Y. Edge user allocation with dynamic quality
of service. In Proceedings of the International Conference on Service-Oriented Computing, Toulouse, France, 28–31 October 2019;
Springer: Berlin/Heidelberg, Germany, 2019; pp. 86–101. [CrossRef]

3. Wu, C.; Peng, Q.; Xia, Y.; Ma, Y.; Zheng, W.; Xie, H.; Pang, S.; Li, F.; Fu, X.; Li, X.; et al. Online user allocation in mobile edge
computing environments: A decentralized reactive approach. J. Syst. Archit. 2021, 113, 101904. [CrossRef]

4. Mao, H.; Netravali, R.; Alizadeh, M. Neural adaptive video streaming with pensieve. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 197–210. [CrossRef]

5. Panda, S.P.; Banerjee, A.; Bhattacharya, A. User Allocation in Mobile Edge Computing: A Deep Reinforcement Learning Approach.
In Proceedings of the 2021 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA, 5–11 September 2021;
pp. 447–458. [CrossRef]

6. Nam, Y.; Chung, J.M. Cooperative content delivery for cost minimization in wireless networks. In Proceedings of the 2015
17th Asia-Pacific Network Operations and Management Symposium (APNOMS), Busan, Republic of Korea, 19–21 August 2015;
pp. 566–568. [CrossRef]

7. Arumaithurai, M.; Seedorf, J.; Paragliela, G.; Pilarski, M.; Niccolini, S. Evaluation of ALTO-enhanced request routing for CDN
interconnection. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary,
9–13 June 2013; pp. 3519–3524. [CrossRef]

8. Fang, C.; Yao, H.; Wang, Z.; Tu, Y.; Chen, Y. Edge Cache-based Intelligent Content Delivery in Information-Centric Wireless
Networks. In Proceedings of the 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN),
Shenzhen, China, 15–17 August 2018; pp. 236–237. [CrossRef]

9. Lai, P.; He, Q.; Cui, G.; Chen, F.; Grundy, J.; Abdelrazek, M.; Hosking, J.; Yang, Y. Cost-effective user allocation in 5g noma-based
mobile edge computing systems. IEEE Trans. Mob. Comput. 2021, 21, 4263–4278. [CrossRef]

10. Peng, Q.; Xia, Y.; Feng, Z.; Lee, J.; Wu, C.; Luo, X.; Zheng, W.; Pang, S.; Liu, H.; Qin, Y.; et al. Mobility-aware and migration-enabled
online edge user allocation in mobile edge computing. In Proceedings of the 2019 IEEE International Conference on Web Services
(ICWS), Milan, Italy, 8–13 July 2019; pp. 91–98. [CrossRef]

11. Cui, G.; He, Q.; Xia, X.; Chen, F.; Dong, F.; Jin, H.; Yang, Y. Ol-eua: Online user allocation for noma-based mobile edge computing.
IEEE Trans. Mob. Comput. 2021, 22, 2295–2306. [CrossRef]

12. Birabwa, D.J.; Ramotsoela, D.; Ventura, N. Multi-agent deep reinforcement learning for user association and resource allocation
in integrated terrestrial and non-terrestrial networks. Comput. Netw. 2023, 231, 109827. [CrossRef]

13. Li, Z.; Zhu, X.; Gahm, J.; Pan, R.; Hu, H.; Begen, A.C.; Oran, D. Probe and adapt: Rate adaptation for HTTP video streaming at
scale. IEEE J. Sel. Areas Commun. 2014, 32, 719–733. [CrossRef]

14. Jiang, J.; Sekar, V.; Zhang, H. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive.
In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, Roma, Italy,
6–9 December 2012; pp. 97–108. [CrossRef]

15. Huang, T.Y.; Johari, R.; McKeown, N.; Trunnell, M.; Watson, M. A buffer-based approach to rate adaptation: Evidence from a
large video streaming service. In Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014;
pp. 187–198. [CrossRef]

16. Spiteri, K.; Urgaonkar, R.; Sitaraman, R.K. BOLA: Near-optimal bitrate adaptation for online videos. IEEE/ACM Trans. Netw.
2020, 28, 1698–1711. [CrossRef]

17. Liu, C.; Bouazizi, I.; Gabbouj, M. Rate adaptation for adaptive HTTP streaming. In Proceedings of the Second Annual ACM
Conference on Multimedia Systems, Santa Clara, CA, USA, 23–25 February 2011; pp. 169–174. [CrossRef]

18. Liu, C.; Bouazizi, I.; Hannuksela, M.M.; Gabbouj, M. Rate adaptation for dynamic adaptive streaming over HTTP in content
distribution network. Signal Process. Image Commun. 2012, 27, 288–311. [CrossRef]

http://doi.org/10.1007/978-3-030-03596-9_15
http://dx.doi.org/10.1007/978-3-030-33702-5_8
http://dx.doi.org/10.1016/j.sysarc.2020.101904
http://dx.doi.org/10.1145/3098822.3098843
http://dx.doi.org/10.1109/ICWS53863.2021.00064
http://dx.doi.org/10.1109/APNOMS.2015.7275393
http://dx.doi.org/10.1109/ICC.2013.6655096
http://dx.doi.org/10.1109/HOTICN.2018.8606009
http://dx.doi.org/10.1109/TMC.2021.3077470
http://dx.doi.org/10.1109/ICWS.2019.00026
http://dx.doi.org/10.1109/TMC.2021.3112941
http://dx.doi.org/10.1016/j.comnet.2023.109827
http://dx.doi.org/10.1109/JSAC.2014.140405
http://dx.doi.org/10.1145/2413176.2413189
http://dx.doi.org/10.1145/2619239.2626296
http://dx.doi.org/10.1109/TNET.2020.2996964
http://dx.doi.org/10.1145/1943552.1943575
http://dx.doi.org/10.1016/j.image.2011.10.001

Future Internet 2023, 15, 234 18 of 18

19. Wu, X.; Li, X.; Tong, X.; Xie, R.; Song, L. Reinforcement Learning Based Adaptive Bitrate Algorithm for Transmitting
Panoramic Videos. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo,
Japan, 26–29 May 2019; pp. 1–5. [CrossRef]

20. Xiao, Q.; Ye, J.; Pang, C.; Ma, L.; Jiang, W. Adaptive Video Streaming via Deep Reinforcement Learning from User Trajectory
Preferences. In Proceedings of the 2020 IEEE 39th International Performance Computing and Communications Conference
(IPCCC), Austin, TX, USA, 6–8 November 2020; pp. 1–8. [CrossRef]

21. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

22. Nguyen, T.V.; Nguyen, N.P.; Kim, C.; Dao, N.N. Intelligent aerial video streaming: Achievements and challenges. J. Netw. Comput.
Appl. 2023, 211, 103564. [CrossRef]

23. Lakew, D.S.; Tran, A.T.; Dao, N.N.; Cho, S. Intelligent Offloading and Resource Allocation in Heterogeneous Aerial Access IoT
Networks. IEEE Internet Things J. 2023, 10, 5704–5718. [CrossRef]

24. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation for
deep multi-agent reinforcement learning. J. Mach. Learn. Res. 2020, 21, 1532–4435. [CrossRef]

25. Hostallero, W.J.K.D.E.; Son, K.; Kim, D.; Qtran, Y.Y. Learning to factorize with transformation for cooperative multi-agent
reinforcement learning. In Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine
Learning Research, PMLR, Singapore, 16–18 April 2019.

26. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive
environments. Adv. Neural Inf. Process. Syst. 2017, 30 , 1–12.

27. Nguyen, T.H.; Park, L. HAP-Assisted RSMA-Enabled Vehicular Edge Computing: A DRL-Based Optimization Framework.
Mathematics 2023, 11, 2376 . [CrossRef]

28. Uhlenbeck, G.E.; Ornstein, L.S. On the theory of the Brownian motion. Phys. Rev. 1930, 36, 823. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCAS.2019.8702736
http://dx.doi.org/10.1109/IPCCC50635.2020.9391533
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1016/j.jnca.2022.103564
http://dx.doi.org/10.1109/JIOT.2022.3161571
http://dx.doi.org/10.5555/3455716.3455894
http://dx.doi.org/10.3390/math11102376
http://dx.doi.org/10.1103/PhysRev.36.823

	Introduction
	Related Work
	Edge User Allocation
	Adaptive Bitrate
	Multiagent Deep Reinforcement Learning

	Problem Formulation and Model Design
	Problem Formulation
	Model Design
	Perform EUA and Bitrate Selection Simultaneously
	Computational Complexity Analysis

	Evaluation
	Settings
	Convergence Analysis
	Results of the Simple Experiment
	Dynamic Environment Complex Experiment

	Conclusions
	References

