
Citation: Pinna , A.; Lunesu, M.I.;

Orrù, S.; Tonelli, R. Investigation on

Self-Admitted Technical Debt in

Open-Source Blockchain Projects.

Future Internet 2023, 15, 232. https://

doi.org/10.3390/fi15070232

Academic Editors: Massimo Cafaro,

Italo Epicoco and Marco Pulimeno

Received: 2 June 2023

Revised: 24 June 2023

Accepted: 27 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Investigation on Self-Admitted Technical Debt in Open-Source
Blockchain Projects
Andrea Pinna * , Maria Ilaria Lunesu , Stefano Orrù and Roberto Tonelli

Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy;
ilaria.lunesu@unica.it (M.I.L.); ste_1795@hotmail.it (S.O.); roberto.tonelli@unica.it (R.T.)
* Correspondence: pinna.andrea@unica.it

Abstract: Technical debt refers to decisions made during the design and development of software that
postpone the resolution of technical problems or the enhancement of the software’s features to a later
date. If not properly managed, technical debt can put long-term software quality and maintainability
at risk. Self-admitted technical debt is defined as the addition of specific comments to source code
as a result of conscious and deliberate decisions to accumulate technical debt. In this paper, we
will look at the presence of self-admitted technical debt in open-source blockchain projects, which
are characterized by the use of a relatively novel technology and the need to generate trust. The
self-admitted technical debt was analyzed using NLP techniques for the classification of comments
extracted from the source code of ten projects chosen based on capitalization and popularity. The
analysis of self-admitted technical debt in blockchain projects was compared with the results of
previous non-blockchain open-source project analyses. The findings show that self-admitted design
technical debt outnumbers requirement technical debt in blockchain projects. The analysis discovered
that some projects had a low percentage of self-admitted technical debt in the comments but a high
percentage of source code files with debt. In addition, self-admitted technical debt is on average
more prevalent in blockchain projects and more equally distributed than in reference Java projects.
If not managed, the relatively high presence of detected technical debt in blockchain projects could
represent a threat to the needed trust between the blockchain system and the users. Blockchain
projects development teams could benefit from self-admitted technical debt detection for targeted
technical debt management.

Keywords: self-admitted technical debt; blockchain; NLP

1. Introduction

The idea of technical debt was conceived by Ward Cunningham in the 1990s. The idea
evolved into a theory that concerns the quality of software projects with reference to the
productivity of the development team [1]. In particular, code is of high quality if it can
maintain high productivity even when the development team or project goals change.
When developers deviate from this goal, taking shortcuts and delivering code that isn’t
quite right, technical debt builds up. As Thierry Coq et al. reported [2]:

Code that is not quite right may include many types of issues. These issues may
be related to architecture, structure, duplication, test coverage, comments and
documentation, potential bugs, complexity, code smells, coding practices, and
style. All these types of issues incur technical debt because they have a negative
impact on productivity.

Cunningham conceives of debt as an analogy to what happens in financial terms.
Getting a loan is positive because it allows us to do something immediately. However, we
will pay the interest until the debt is paid off. Similarly, accumulating technical debt allows
you to get to market quickly, but the accumulation of technical debt leads to a reduction in

Future Internet 2023, 15, 232. https://doi.org/10.3390/fi15070232 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070232
https://doi.org/10.3390/fi15070232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7530-0521
https://orcid.org/0000-0002-2552-4228
https://orcid.org/0000-0002-9090-7698
https://doi.org/10.3390/fi15070232
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070232?type=check_update&version=1

Future Internet 2023, 15, 232 2 of 20

productivity, due to coming across code that needs to be fixed, and an increase in costs since
code refactoring is required to pay off the debt [3]. The rate of accumulation of technical
debt may depend on the business strategy and the management of the process. Initiatives
with many competitors that aim for a short time-to-market can accumulate technical debt
to be able to get first to market and gain a competitive advantage. This is the scenario that
characterizes initiatives related to blockchain technology [4].

It is evident that developers are personally involved in the technical debt pileup [5,6].
However, developers pile up debt more or less consciously, depending on their experience.
The developer who realizes that the code he wrote is not quite right may have time to write
a comment for posterity to be taken into account in the next refactoring. This phenomenon
was initially referred to by Potdar and Shihab in 2014 as Self-Admitted Technical Debt
(SATD) [7], and it was proposed to take into account debt that is purposely introduced
(for example, by a temporary fix) and confessed by developers themselves. In ref. [8], the
relationship between SATD and software quality has been empirically investigated by using
data collected from five open-source projects. In particular, it has been looked at whether
files with SATD have more flaws than files without SATD, whether SATD changes cause
new flaws, and whether SATD-related changes tend to be more challenging. Currently, the
number of studies that propose automatic methods for detecting SATD is growing, not
only from comments but also from additional sources, such as commit messages and pull
requests, or by fusing different sources, is growing.

Blockchain technology, since the mid-2010s, has given rise to numerous software
projects. After the success of the Bitcoin system, thousands of systems based on blockchain
or other types of distributed ledger technology (DLT) were put on the market, many of
which were generated as forks or clones of previous projects. Considering only public
blockchains, today there are about a thousand blockchains hosting a native cryptocurrency.
One of the most striking phenomena was that of ICOs, where development teams competed
to offer investors the most convincing ideas [4]. Today, the monitored tokens in circulation
are over twenty thousand, and the total trading volume that revolves around blockchain
technology is in the order of tens of billions of dollars a day. Furthermore, in order to
convince investors and instill trust, blockchain projects are often open-source, which allows
researchers to study the code to highlight development patterns, recognize vulnerabilities,
and calculate statistics [9,10]. For the reason that this kind of system is intended to create
trust, understanding TD in blockchain systems is crucial. Blockchain systems would be
hard to maintain and thus unsustainable without proper TD management, undermining
the trust that users have in them. For this reason, it is of particular interest to evaluate the
presence of technical debt within software projects and to make a comparison with other
types of projects. In this paper, we focus on the SATD detection of open-source blockchain
projects and, in particular, on a selection of ten blockchain projects. The selected projects are
the most relevant among the open-source ones in terms of the capitalization of the related
cryptocurrency. The work reported in this paper was intended to answer the following two
research questions.

• RQ1. To what extent is SATD present in open-source blockchain software?
• RQ2. Is the presence of SATD in open-source blockchain projects statistically different

from other types of open-source projects?

To reach the goal of answering the research questions, we organized the work into
several subsequent phases. First of all, ten blockchain projects whose source code was
cloned were selected. For the extrapolation of the comments, a tool was created capable of
parsing all the languages used in the projects and recording the results in serialized form.
Furthermore, a technique for detecting the self-admitted technical debt was chosen among
those available, and in particular, a technique based on NLP described by Maldonado et al.
was used [11]. Subsequently, the comments were analyzed and classified. The results on
the presence of self-admitted technical debt were then analyzed and compared with those
of previous studies on non-blockchain projects.

Future Internet 2023, 15, 232 3 of 20

The remainder of this paper is structured as follows: Section 2 introduces SATD and
the state of the art on its detection in software projects and blockchain projects; Section 3
describes the process of detecting SATD in blockchain projects that characterizes this work,
including project selection, comment extraction, and classifier training phase. Section 4
reports the results of the classification of the comments and the results of the comparison
with the results of a reference study. Section 5 discusses the results obtained, and Section 6
draws conclusions.

2. Background

Cost cuts are a common practice in all industries, and software development is no
exception. Consequently, development teams are often forced to prioritize new functionali-
ties over internal product quality. It is precisely in these situations that technical debt is
introduced, intended as faults produced as a result of rapid or temporary remedies [7,8].
However, if effectively managed, TD can help the project achieve its goals sooner or more
cheaply [11]. While technical debt may have negative consequences for software quality, its
influence is not tied to flaws, but rather to making the system more difficult to alter in the
future [6,12]. For this reason, technical debt management is important both to guarantee
the quality of the software and, especially, its maintainability. Both factors are important
for the success of software projects and are especially important for blockchain-based
projects, given the characteristic need to build trust [13]. Specific tools, instruments, and
technologies applied to the software project help the development team to keep track of
technical debt accumulation, and to gain additional insight into the internal quality of
their software via an automatic indicator [11], and provide for effective TD removal by the
developers [8,14].

There are two basic methods for detecting TD: TD measurement on source code and
SATD detection [15]. Several works have been published on TD measurement [16–19],
where specific tools and technologies are claimed to be able to evaluate and detect technical
debt in source code lines and identify faulty design decisions or bad source code, by using
static code analysis, code smell detection, and other rule-based techniques. SATD detection
is an effective technique for TD detection that can be used alternatively or in a complemen-
tary manner to TD detection techniques based on source code analysis. In ref. [15], the
comparison between TD measurement and SATD detection is shown, highlighting that the
detection of SATD and TD measurement is aligned and coherent even if differences in some
values exist. Data reveal that the average discrepancy between the SATD detected and the
measured TD is 3% when measured with SonarQube and 4% when measured with Vector
Squore. For comparison, the average disparity between SonarQube and Vector Squore
measures is as high as 2%. In ref. [11], JDeodorant is used to compare SATD detection
results with TD measurement via code analysis. Three typologies of code smells are exam-
ined: Long Method, God Class, and Feature Envy. Results show that 69.7% of files bearing
SATD are also implicated in at least one of the three examined code smells. According
to the findings, utilizing code comments to identify technical debt is a supplementary
technique to utilizing code smells to detect technical debt. There is clearly overlap, but each
technique reveals unique examples of technical debt, so both approaches (measuring and
SATD detection) to identifying technical debt should be employed. While TD measurement
is a great and useful tool, it cannot be the only insight into accumulated debt [11]. The
studies related to the detection of the SATD, the techniques used, and the importance of
detecting the TD in blockchain projects will be detailed below

2.1. Self-Admitted Technical Debt

The quality of the software is an issue that needs to be addressed because it affects
the cost, reliability, and longevity of software products. Consequently, it is essential to
have tools and metrics to keep quality under control during the entire product life cycle.
When developers take shortcuts during software development, mostly for the sake of
expediency, it is called technical debt. Technical Debt (TD) is unfinished work or tempo-

Future Internet 2023, 15, 232 4 of 20

rary workarounds that can negatively impact software maintenance and overall quality.
Technical debt impacts the quality of applications by generating structural weaknesses
that translate into slowness and functional deficiencies at the development level. In the
context of Agile programming, the more the technical debt grows, the more time it takes to
compensate for errors, intervening at the syntax and refactoring levels.

By doing an exploratory investigation on source code comments that hint to instances
of TD, Potdar and Shihab (2014) [7] changed the course of their research. They discovered
that a significant portion of TD is explicitly admitted by developers via code comments.
This phenomenon was initially referred to by the authors as Self-Admitted Technical Debt
(SATD) which was proposed to take into account debt that is purposely introduced (for
example, by a temporary fix) and confessed by developers themselves. SATD refers to
technical debt incurred by developers themselves (for example, comments to indicate an
imperfect implementation that should be replaced or improved later). In brief, it refers
to when these shortcuts are explicitly admitted by developers, such as when they write a
TODO or Fixme comment. Potdar and Shihab’s exploratory study on TD focused primarily
on three aspects: the amount of SATD quantification, the motivations for SATD introduction,
and the actual removal percentage of SATD, as well as a deeper analysis of the comments
on the source code, focusing on SATD in software development in open-source software
projects. The study used data from four large open-source projects: Eclipse, Chromium
OS, Apache HTTP server, and ArgoUML. Given the importance of code comments for
programmers to communicate information about their code, and to be used to help improve
the quality of a codebase, it is important to track the status of TD in order to make informed
decisions about how to manage it.

Previous research has demonstrated that source code comments may effectively iden-
tify TD. The focus of earlier research has been on detecting SATD in issue trackers and
source code comments. In ref. [8], the relationship between SATD and software quality has
been empirically investigated by using data collected from five open-source projects. In par-
ticular, it has been looked at whether files with SATD have more flaws than files without
SATD, whether SATD changes cause new flaws, and whether SATD-related changes tend
to be more challenging. Currently, the number of studies that propose automatic methods
for detecting SATD from additional sources, such as commit messages and pull requests,
or by fusing different sources.

Several studies have focused on SATD detection and examined its impact on software
quality. However, preliminary findings indicate that not all SATD is bad, and some may
need to be removed while others may be acceptable, but SATD detection is a way of
detecting technical debt through code comments and to remove it [14]. In particular,
the median time for SATD to be removed is between 18 and 172 days. Developers mostly
use SATD to track future bugs and areas of the code that need improvement. They also
mostly remove SATD when they are fixing bugs or adding new features. These findings
contribute to the body of empirical evidence on SATD, particularly its removal [14]. After
a couple of years, Zampetti et al. in ref. [20], conducted an in-depth quantitative and
qualitative study of how SATD is addressed in five Java open-source projects and how to
reduce it. The results can be used to plan TD management, study patterns, and provide
recommendations to developers.

Focusing on the prioritization aspect, an interesting work is the study conducted by
Mensah et al. in ref. [12] where a prioritization scheme to minimize SATD in software de-
velopment to aid in decision-making before software release to minimize high maintenance
overheads is introduced. The scheme focuses on identifying, examining, and estimating
rework effort for prioritized tasks. The results showed that design debts are highly prone
to software bugs, requiring a rework effort of 10 to 25 commented LOC per SATD source
file to address the few vital tasks. Developers often try to pay back design and test debt
first, but system or infrastructure debt is often ignored. There are practices used to assist
in SATD management, such as maintaining a list of prioritized SATD, grouping related
technical debt items, and resolving development tasks jointly. However, determining the

Future Internet 2023, 15, 232 5 of 20

priorities of SATD and other works and convincing developers not to introduce SATD can
be challenging [12].

During the same time frame, in ref. [21], Sierra et al. published a survey about SATD
where they analyzed current approaches and techniques for detection, comprehension,
and repayment. It identifies open challenges, areas missing investigation, and potential
future research avenues. However, the majority of modern state-of-the-art methods use
pattern matching to recognize SATD remarks, achieving great accuracy but relatively
low recall. As a result, they could overlook several SATD remarks and lack sufficient
practicality [22].

Due to this, in ref. [6], a method for automatically identifying SATD that combines
source code comments, commit messages, pull requests, and issue tracking systems is sug-
gested and assessed. Li et al. [6] discuss technical debt, which is defined as the compromise
of maintainability and evolvability of software systems in the long term for the sake of
short-term goals. Technical debt can accumulate if not proactively managed, resulting in a
maintenance crisis.

While there has been a fair amount of work studying SATD management in Open
Source projects, SATD in industry is relatively unexplored. Li et al. in [23] discuss an
exploratory case study with an industrial partner aimed at understanding core charac-
teristics, developers’ attitudes, triggers for SATD introduction, relations between sources,
practices used, and challenges and tooling ideas for SATD management focusing on in-
dustrial context. The study, with the aim of understanding and improving the nature and
management process of self-admitted technical debt in practice from the point of view of
software engineers, analyzed self-admitted technical debt in source code comments, issue
tracking systems, and commit messages in the context of the embedded systems industry.

2.2. SATD Detection Strategies and Techniques

Detecting the SATD essentially requires parsing the comments and classifying them
based on the text content left by the developers. This operation can be performed manually
and consists of associating each comment with a label that determines its type (for example,
a specific category of SATD or the absence of SATD). However, manual classification is a
time-consuming and skilled operation that is actually the basis for the creation of datasets
used in classifier training. According to recent literature, two main techniques of Machine
Learning are currently used for automatic SATD detection: Natural Language Processing
(NLP)-based and Neural Network (NN)-based.

NLP techniques can be used to automatically identify the SATD within code comments
to speed up the SATD identification process, making it more efficient and accurate. NLP-
based classifiers use NLP features and a training dataset of labeled samples to build up
classification rules [24]. In ref. [11], the authors use a maximum entropy classifier (Stanford
Classifier) to classify the comments of the code, on the basis of a dataset they created
manually through the attribution of labels that represent the types of SATD they considered.
Through the use of NLP, authors obtain significantly more accurate results than searches
based on keywords or phrases. To improve the F1 score of training results, the authors in
ref. [25] use N-gram inverse document frequency (IDF) as a feature for the classification of
requirements and design SATD. In refs. [5,22], authors adopt text-mining, and, in particular,
use feature selection to improve performance in SATD detection.

Neural network-based techniques for SATD detection consist of using NN processes
for efficient extraction of information from text useful for SATD recognition. The use of
Convolutional Neural Networks (CNNs) for feature extraction from texts was initially
proposed by Kim [26]. CNNs for SATD detection find application in ref. [27] for creating
a trained CNN model that authors use for SATD pattern identification. In refs. [6,28],
the authors adopt an approach based on CNN for text via multitasking learning and focus
on the detection of the SATD from different sources, including source code comments,
and comments in commits, issues, and pull requests. Neural Networks based on Genera-
tive Adversarial Networks are used in ref. [29] to detect different typologies of SATD and,

Future Internet 2023, 15, 232 6 of 20

in particular, to solve the imbalance of sampled data (enhancing the features containing
few number data). In ref. [30], authors adopt a deep learning approach to recommend
how SATD should be removed, which involves the use of CNN for processing vectorized
comments and Recurrent Neural Networks for processing the whole source code. Auto-
matically Learning Patterns (Automatically Learning Patterns for Self-Admitted Technical
Debt Removal)

2.3. Technical Debt in Blockchain Projects

Blockchain technology is known for its characteristics that allow for the creation of
decentralized and distributed systems, based on the archiving of validated transactions
according to a specific consensus mechanism. Blockchain systems include on-chain compo-
nents (the blockchain itself and smart contracts) and also off-chain components, i.e., based
on traditional computing or archiving systems.

Studying TD in blockchain systems is of considerable importance because this type of
system is designed to generate trust. Without proper management of the TD, blockchain
systems would be difficult to maintain and therefore unsustainable, undermining the trust
that users place in them. The applications of the blockchain are not limited to cryptocur-
rencies given that the blockchain is considered one of the most innovative technologies
available to companies, and there are an increasing number of companies that have adopted
the blockchain in the most diverse sectors. Among these are the following [31]: food trace-
ability, finance and defi, right management, self-sovereign identity, and, more generally,
any web3 application.

The study of TD in blockchain projects has recently been undertaken from different
points of view. In particular, in [32] 2021 the authors focus on the on-chain component,
i.e., on smart contracts, and in particular on the need to assess the TD security. Previ-
ously, Ref. [33] proposed a taxonomy to better understand the Security TD in blockchain
projects and avoid risks. Both studies are conceived to increase the visibility of security
design issues. Recently, Yu et al. focused on SATD detection in blockchain projects. In par-
ticular, in [34], the authors focus on the use of NLP techniques and a maximum entropy
classifier for the identification of different types of SATD in a selection of blockchain
projects, while in ref. [35], a large-scale pre-trained model for NLP, and in particular BERT,
was used to identify the presence or absence of SATD in each comment of a selection of
blockchain projects.

3. SATD Detection in Blockchain Software Projects

The study of the SATD in the blockchain projects presented here is a process composed
of several phases. In order, the first phase involved creating a sample of ten blockchain
projects that would provide the code to examine. The second phase concerns the extraction
of comments from the source code through the creation of a multilingual extractor capable
of extracting the data in serialized form. The third phase concerns the choice of the detection
technique of the SATD from the comments based on its applicability to the extracted data.
Then the last two stages are about tracking and analyzing the results. A representative
schematic of the phases of this study is shown in Figure 1.

3.1. Selection of Open-Source Blockchain Projects

To conduct our study on self-admitted technical debt in blockchain projects, we
focused on the top ten open-source blockchain projects in terms of market capitalization
and relevance in terms of repository content. Projects that do not provide source code have
been rejected.

At the end of the selection, the following projects were chosen: Bitcoin, Ethereum,
USD Coin, Binance, Terra, Xrp, Polkadot, Cardano, Avalanche, and Solana. These projects
correspond to the cryptocurrencies among those with the highest capitalization and include
the most relevant projects in terms of repository content. For each project, we describe the
main features below.

Future Internet 2023, 15, 232 7 of 20

Figure 1. Representation of the execution phases of the study of the detection of the SATD in
blockchain projects.

3.1.1. Bitcoin

The introduction of Bitcoin in 2009 began a revolution in the world of digital assets by
allowing users to send and receive funds without the use of central intermediaries. Each
block in the bitcoin blockchain contains a set of transactions and an encryption that binds it
to the previous block. This structure gives rise to the term blockchain and is characterized
by being secure and immutable. Posted transactions cannot be edited or deleted later.
The verification of the transactions on the blockchain is carried out by all the nodes of the
network, and the registration of new transactions is entrusted to the miners, encouraged
through proof-of-work consensus by the possibility of earning Bitcoins. The block time is
about 10 min on average. Bitcoin is also the first cryptocurrency in terms of capitalization.

3.1.2. Ethereum

Ethereum is a blockchain designed for the development of decentralized applications
and is the most widely used blockchain 2.0, i.e., a blockchain that can be programmed
through the use of smart contracts and can be used in different scenarios. The blockchain is
public and permissionless, and it employs a consensus algorithm that was initially based
on Proof of Work and is now based on Proof of Stake, with an average block time of around
15 s. Ethereum has its own currency, Ether (ETH), which is the second cryptocurrency in
terms of capitalization and the first in terms of daily volume.

3.1.3. Xrp (Ripple)

Ripple is a peer-to-peer protocol created by Ripple Labs 53 in 2012 for the secure,
instantaneous, and low-cost global transfer of funds. Conceived to be used by banks
and financial institutions, it is defined by Ripple itself as “an infrastructure technology
for interbank transactions”. The native currency used in the protocol is the XRP token.
Major Ripple partnerships include Accenture, American Express, Deloitte, Santander, UBS,
and Unicredit. Ripple aims to solve some of the biggest problems facing banks and financial
institutions in globally transferring money, especially for cross-border payments.

3.1.4. USD Coin

USD Coin is the most popular of the cryptocurrencies that fall under the definition of
stablecoin, i.e., those cryptocurrencies designed to maintain a stable value over time based
on the value of other currencies or commodities such as USD, gold, etc. The value of USDC
is backed by collateral that equals the number of outstanding USDC, in this case, US dollars,
and the value of 1 USDC always equals the value of 1 US dollar. The USD coin project

Future Internet 2023, 15, 232 8 of 20

aims for full financial interoperability, and for this reason, the USD coin implementation
is available on several blockchain platforms, including Ethereum, Solana, and Avalanche.
The issuance of USDC is reserved for the Circle consortium.

3.1.5. Cardano

Cardano is a blockchain platform for executing smart contracts released in 2017 and
built through peer-reviewed research. It uses a proof-of-stake consensus protocol called
Ouroboros, and its blockchain is structured on different levels, each focused on particular
characteristics such as scalability or security. Cardano is part of the projects trying to solve
some intrinsic problems of the first generation of blockchains, such as the scalability and
speed of transactions. The focus is therefore on building a more sustainable and balanced
blockchain ecosystem.

3.1.6. Terra

Terra is a blockchain designed to provide a stable and scalable infrastructure for
payments and financial apps. It was designed to be used as a platform for e-commerce
financial applications and offers an efficient solution for low-cost peer-to-peer transactions.
Terra is also a decentralized and secure system that uses blockchain technology to ensure
the transparency and security of transactions. The native cryptocurrency is the stablecoin
of the same name, which is associated with a reserve asset cryptocurrency called Luna.

3.1.7. Polkadot

Polkadot is a multi-chain blockchain designed to provide an infrastructure for build-
ing different blockchains and interconnecting them. Polkadot was designed to overcome
the limitations of single blockchains, such as scalability and interoperability, by provid-
ing a flexible infrastructure for building many decentralized applications. The Polkadot
blockchain uses a relay chain system to connect to different blockchains, making them able
to exchange information and currencies with each other. This makes it possible to create an
interconnected ecosystem of different blockchains and applications, paving the way for
many new opportunities for blockchain technology. Additionally, Polkadot offers a secure
and scalable platform for developing new blockchain and decentralized technologies.

3.1.8. Avalanche

Avalanche is a blockchain platform launched in 2020 with the aim of ensuring scal-
ability and high performance with up to 6500 transactions per second. Conceived to be
a platform for decentralized applications, it stands out for guaranteeing predictable and
specific fees. The Avalanche network consists of three different blockchains: the X-Chain,
C-Chain, and P-Chain. In addition, the Avalanche platform allows developers to build
application-specific blockchains (called subnets). The consensus protocol is Proof of Stake.

3.1.9. Binance

Binance is a platform for financial services and cryptocurrency exchanges. In addition
to offering an exchange platform, Binance has also launched its own blockchain, known as
Binance Chain. Binance Chain was designed to provide a highly efficient and decentralized
solution for exchanging digital tokens. Originally known as Binanche chain, the system
is now called Build N Build chain (BNB chain) and is the blockchain used by Binance
services. This is composed of two blockchains, the Beacon chain for block validation and
governance and the Smart Chain, which is EVM-compatible and therefore capable of run
smart contracts.

3.1.10. Solana

Solana is an open-source blockchain platform that uses a consensus protocol called
Proof-of-History (PoH) to increase the speed and efficiency of transactions. Solana is

Future Internet 2023, 15, 232 9 of 20

designed to be a high-performance platform for building Apps (Decentralized Applications)
and DeFi (Decentralized Finance). The smart contract programming language is rust.

Table 1 summarizes the blockchain projects chosen for SATD analysis, with the related
programming languages used in the project and the links to the repositories

Table 1. The selected blockchain open-source projects, programming languages and the reposito-
ries URL.

Project Number of
Contributors Languages Link 3

Bitcoin 113 c++, python https://github.com/bitcoin

Ethereum 2095
go, c, javascript, c++,

solidity, python,
typescript

https://github.com/ethereum

Binance NA 1 java, javascript https://github.com/binance-exchange

USD coin 34 javascript, solidity,
typescript https://github.com/centrehq

Solana 343 2 rust, typescript, go,
cue, rust, python https://github.com/solana-labs

XRP
(Ripple) 152 c++, c , css, javascript https://github.com/ripple

Avalanche 113 javascript, go,
typescript, python https://github.com/ava-labs/

Cardano 238 haskell, markdown,
ruby, c, typescript https://github.com/input-output-hk

Terra 67 javascript, go, python,
typescript https://github.com/terra-money

Polkadot 697 rust https://github.com/paritytech
1 The number of contributors is not available for this project. 2 This number is net of the 5000 contributors registered
for getting the solana token. 3 Projects were downloaded on 1 April 2022. Last accessed on 10 June 2023.

3.2. Comment Extraction

This phase includes extracting the comments from the source files, serializing the
comments into csv files, and filtering the comments to remove sources of noise.

To extract comments, a copy of each project’s code was downloaded first. The fol-
lowing step was to extract the comments from the source code. In terms of the pro-
gramming languages used, each blockchain project turned out to be a diverse set. For
the reason that there are so many languages, a tool (available at github.com/StefanoOr/
RecuperoCommentiDeBitoTecnio, accessed on 10 June 2023)was developed by us for this
work that extrapolates the comments for any language in Table 1. The tool allows the
extraction of comments and their characterization in terms of length, number of lines,
position in the file.

The operation of the extractor is as follows:

1. Once the path of the folder containing the repository has been assigned, the program
recursively enters all the subdirectories, and whenever it finds a code file (recognized
through a list of extensions), the file is read, and the comments are extrapolated based
on the types of syntax of language comments.

2. Whenever a file with a specific extension is found, the program reads the file line by
line, and when it finds a comment based on the syntax of the language, it inserts the
comment into a structured list.

3. After reading the source file, the list contains all extracted comments, and for each
comment contains information about the line number, column number, and length of
the comment.

4. Once the previous operation is finished, a CSV file is created with the same name as
the source file, to which the “.csv” extension is added. It contains all the comments

https://github.com/bitcoin
https://github.com/ethereum
https://github.com/binance-exchange
https://github.com/centrehq
https://github.com/solana-labs
https://github.com/ripple
https://github.com/ava-labs/
https://github.com/input-output-hk
https://github.com/terra-money
https://github.com/paritytech
github.com/StefanoOr/RecuperoCommentiDeBitoTecnio
github.com/StefanoOr/RecuperoCommentiDeBitoTecnio

Future Internet 2023, 15, 232 10 of 20

extrapolated from the file and some relevant information, such as the position of the
comment within the file. The newly created file will be placed in a specific folder.

The result of this operation is a number of CSV files equal to the number of source
files present for each repository, and each CSV file will contain all the comments of the
corresponding source file. The set of CSV files represents our initial dataset to analyze.

For the SATD analysis, once all the comments from all the files have been extracted,
the files are merged into a single file using a script created for the purpose. The script
recursively takes the “.csv” files and, for each file containing the comments extracted
above, removes the character structures used in the syntax of the language to indicate the
comments (for example, ‘//’ or ‘/ *’ and ‘*/’), punctuation characters (for example, ‘,’,
‘. . . ’, ‘;’, ‘:’), and any extra white space characters (for example, ‘ ’, ‘\t’, ‘\n’), and finally
we convert all the comments to lowercase, the comment once it has been cleaned of
punctuation marks is placed in another CSV file. However, we have decided not to
remove the exclamation and question marks. These specific punctuations are helpful when
identifying comments with SATD. Once this process is finished, we will have, as a final
result, a single CSV file per project that contains all the comments of the repository.

Table 2 shows an example of the contents of each CSV file. The “Line” and “Column”
data indicate where the comment is located within the source file, and the “Number of lines”
indicates how many lines the comment consists of (in the case of multiline comments).

Table 2. Example of csv file content created by the comment extractor.

Line Column Number of Lines Text of the Comment

1 1 1 Copyright (C) 2019–2021, Ava Labs, Inc. All
rights reserved.

2 1 1 See the file LICENSE for licensing terms.

12 1 1 This file contains structs used in arguments and
responses in services.

14 1 1 EmptyReply indicates that an api doesn’t have a
response to return.

Multi-line comments were also processed. Most programming languages support
multi-line comments. However, developers can use a single-line comment set to leave a
single comment. These multi-line comments often need to be combined to represent the
final intention of the developer. For our study, these comments were collected and merged
into a single comment.

3.3. Comments Filtering Rules

Before proceeding to the comment classification, we have chosen to remove from the
comment dataset all the lines that contain the following types of comments:

• License specification comments (such as “mit software licens”, “Spdx-license-identifier”,
or “License New BSD License”).

• Comments generated by the development environment.
• Documentation comments (such as long comments that describe source code ele-

ments).
• Copyright comments (such as “Copyright c 2018–2020 The Bitcoin Core developer”,

“Copyright c 2007 2015 University of Illinois at Urbana Champaign”)
• Comments containing blockchain addresses (sucha s “5DhDcHqwxoes5s89AyudGMjt

ZXx1nEgrk5P45X88oSTR3iyx”).
• Comments with only numbers.

At the end of the filtering process, a reduced number of actual comments to be
analyzed is obtained compared with the initial one. Table 3 reports, for each project, the total
number of comments extracted from the source codes, the number of comments filtered
and eliminated, and the number of effective comments to be subjected to classification.

Future Internet 2023, 15, 232 11 of 20

Table 3. Number of extracted comments before and after the filtering process.

Project Total
Comments

Removed
Comments

Effective
Comments

Filtering
Percentage

Bitcoin 18,858 971 17,887 5.14%
Ethereum 43,655 1092 42,563 2.50%
Binance 1294 11 1283 0.85%

USD coin 1575 42 1533 2.67%
Solana 27,534 14 27,520 0.05%

XRP 14,224 625 13,599 4.39%
Avalanche 13,145 1265 11,880 9.62%
Cardano 24,325 213 24,112 0.87%

Terra 1575 7 1568 0.44%
Polkadot 56,007 6419 49,588 11.46%

3.4. Choice of Detection Technique and Configuration

The choice of detection technique is essentially based on considering two main aspects.
The first regards the possibility of replicating the process in existing studies, i.e., accessing
the method and the training dataset and the second regards having comparable results
about the presence of the SATD in open source projects, which we can take as a reference
for the results that will be obtained in this study. Among the techniques presented in
Section 2.2, we decided to use the technique used in [11], as the authors provide the tool
specifications and the training dataset, and discuss the results of the detection of the SATD
in a selection of open source projects. We will then use NLP techniques and the Stanford
Classifier, which is a Java implementation of a maximum entropy classifier [36].

The Stanford Classifier is a machine learning tool developed by Stanford University
designed to perform text classification. The classification algorithm used by this tool is
based on the Maximum Entropy (MaxEnt) method [37]. The algorithm uses several binary
functions (features) that correspond to specific properties or attributes of the input text that
are distinctive enough with respect to the class it belongs to. In other words, features are
elementary pieces of evidence that link the fact that we observe a given d (for example,
a word) with a category c that we want to predict for a new text. Examples of features are:
previous word, current word; presence of suffixes; type of word (adjective, noun, verb,
etc.); presence of capital letters in a specific order; tags that precede or follow the word
(in, to) [38]. The learning phase of the algorithm consists of optimizing the weights of the
characteristic functions in order to maximize the joint probability of the observed data and
the corresponding class labels. This process is usually completed using an optimization
algorithm, such as gradient descent or coordinate optimization. The underlying principle
of the MaxEnt algorithm is to find the probability distribution model that maximizes
entropy (a concept related to the degree of uncertainty in a distribution) subject to specific
given constraints. In other words, we try to find the most uniform model possible that
is consistent with the observed information. Once trained, the Stanford Classifier can be
used to assign class labels to new data based on the learned probability distribution model.
The algorithm calculates the probability of each possible class label given the observation
and selects the one with the highest probability as the predicted label.

To that end, a tool capable of configuring the classifier via property files, training the
classifier via the training dataset, and processing the data collected in the CSV files to detect
the presence of SATD in the comments has been developed. The tool takes as input the
configuration property file for the classifier, the training set, and the CSV file containing
the comments extracted from each repository. The classifier, once trained, will be used to
assign a class label to each comment in our comments dataset. The tool makes use of the
“ColumnDataClassifier” belonging to the library “edu.stanford.nlp.classify”, which allows
the processing of labeled structured data organized into columns, as in the case of our csv
file-based dataset.

Future Internet 2023, 15, 232 12 of 20

The training dataset described in ref. [11] is composed of 57,676 source code comments,
manually categorized into SATD classification labels. Although the set pf dataset labels
includes multiple categories of SATD, in order to avoid an excessive imbalance, we decide
to consider only the three most represented categories: “design”, “requirements” and
“withoutclassification” (i.e., absence of SATD), where “design” indicates that the comment
refers to suboptimal design, including workarounds and features that need to be extended
to support more features, and “requirement” indicates that the comment refers to some
software requirements that have not been fully satisfied by the implementation. The
training phase was repeated several times, and at each training of the classifier, the training
dataset was randomly divided into two sets, training set (90% of labeled comments) and
the test set (the remaining 10%).

The configuration of the classifier consists of the selection of the NLP properties the
classifier has to use in its training. A configuration file (named prop) consists of a series of
properties described in the “ColumnDataClassifier” class [36].

In our study, we defined two different props. A first prop was extracted from the
reference study [11], while we created the second prop aiming to optimize training per-
formance, i.e., to reach the highest possible score of the “Micro-averaged accuracy/F1”
and “Macro-average F1”, These two configuration files describe the configuration of two
different SATD detection models. The two configurations differ in that in the configuration
used in ref. [11], the use of N-Grams is set to false and the use of lowercase words is set
to true, while in the prop we created, the use of N-Grams is set to true, the use of split
words is set to true, and the length of the N-Grams is limited between 1 and 5. In summary,
the main differences between the two configuration files are the use of N-Grams, the form
of the split words, and the length of the N-Grams.

For each class, the results show the number of true positives (TP), false negatives (FN),
false positives (FP), and true negatives (TN). True positives are cases where the maximum
entropy classifier correctly identifies, while true negatives are comments without technical
debt that are classified as such. The table also shows the accuracy, precision, recall and F1
measure for each class. The classes in question are the three classes present in the dataset,
namely WITHOUTCLASSIFICATION, REQUIREMENT and DESIGN.

Using the TP, TN, FP, and FN values, we are able to evaluate the performance of
different classifier configurations. Performances are evaluated in terms of

Precision P = TP/(TP + FP), Recall R = TP/(TP + FN),

Accuracy = (number o f correct predictions)/(total predictions),

F1 score = (2 × ((P × R)/(P + R)).

The Micro-averaged F1 score is used to evaluate the overall performance of a classifier
and has a value between 0 and 1. Table 4 lists the performance of the training by using the
same configuration as in [11], while Table 5 lists the performance of the training obtained
using the optimized configuration.

We can see from tables that the performances obtained through the optimized con-
figuration outperform those of the reference configuration. This is essentially given
by a reduction in false positives and this is reflected in a substantial reduction in the
number of comments classified as SATD compared with what was obtained using the
reference configuration.

Although our configuration has better results in terms of score, we felt it necessary
to make some considerations. As mentioned, the optimized classifier uses a different
model than the reference study. By running a test classification on one of the blockchain
projects under review (Avalanche) with both classifiers, the results obtained highlight the
differences between the two models. In particular, as shown in Table 6, the optimized
classifier detects a number of comments with a SATD 85% lower than the classifier of the
reference configuration.

Future Internet 2023, 15, 232 13 of 20

Additionally, if we manually examine comments that were classified as SATD using
the reference setup but not the optimized configuration, we discover that these are not
necessarily false positives. For example, comments that have keywords like TODO, FIXME,
and XXX are labeled “WITHOUT CLASSIFICATION” by the classifier with the optimized
configuration. The same comments are detected as SATD by the classifier with the reference
configuration. Some of these comments and their classification labels are shown in Table 7.

As a further consideration, we must mention that this study aims to compare the
presence of SATD in blockchain projects with that in other open-source projects. Having
chosen the study in [11] as a reference, the same configuration must be maintained.

Both considerations lead us to decide to use the reference configuration in [11] for
SATD detection in blockchain projects.

Table 4. Classification Result with the configuration in [11] of 5768 samples in test set.

Class TP FN FP TN Acc P R F1

DESIGN 189 96 303 5183 0.913 0.380 0.660 0.482
REQUIREMENT 42 30 39 5657 0.988 0.519 0.583 0.549
WITHOUT CLASSIFICATION 5100 314 98 256 0.929 0.981 0.942 0.961

Micro-averaged accuracy/F1: 0.92372
Macro-average F1: 0.66423

Table 5. Classification result with the optimized configuration prop of 5768 samples in test set.

Class TP FN FP TN Acc P R F1

DESIGN 209 73 48 5438 0.979 0.813 0.741 0.776
REQUIREMENT 42 30 16 5680 0.992 0.724 0.583 0.646
WITHOUT CLASSIFICATION 5380 34 73 281 0.981 0.987 0.994 0.990

Micro-averaged accuracy/F1: 0.97625
Macro-average F1: 0.80394

Table 6. Comparison of classification results with the two configuration props, namely the reference
configuration and the optimized configuration.

Project Number of Comments SATD Design.
Reference|Optimized

SATD Requirement.
Reference|Optimized

Avalanche 12,071 909|131 179|29

Table 7. Samples of comments and the comparison of the classification obtained with the models
created via the reference prop file and via the optimized prop file.

Comment Classification—Reference
Prop

Classification—Optimized
Prop

TODO actually disable crypto
verification REQUIREMENT WITHOUT CLASSIFICATION

TODO Shutdown VM if an
error occurs REQUIREMENT WITHOUT CLASSIFICATION

Probably because signature
wrong DESIGN WITHOUT CLASSIFICATION

If p node Dispatch panics then
we should log the panic and
then re raise the panic This is

why the above defer is broken
into two parts

DESIGN WITHOUT CLASSIFICATION

Future Internet 2023, 15, 232 14 of 20

4. Results

This section presents the results of the study of the presence of the SATD in blockchain
projects. The first part is intended to show the results of the classification of project
comments, while the second part aims to compare what was obtained with the SATD
detection measures in the baseline study.

4.1. Classification Results

Table 8 provides details on each of the projects analyzed in our study. The columns
of the table show the results of the detection both in terms of the presence of SATD in the
single comments and in terms of the presence of SATD in the files (where it is established
that a file has SATD if at least one comment in it has been classified as SATD).

In general, the percentage of self-admitted technical debt for all blockchain projects is
between 7.12% and 11.80% of comments, averaging 8.35%, with Terra and XRP projects
having the highest percentage of SATD in comments, respectively 11.79% and 11.80% of
comments. While the Ethereum and Bitcoin projects have the lowest percentages, at 7.13%
and 7.72%, respectively. In all projects, the SATD classified as Design is more present than
the SATD Requirement, and is on average about 4 times more present. However, the gap is
more pronounced in projects like Binance and Terra where SATD Design is about 6.4 times
more present, while it is smaller in Cardano where SATD Design is 1.9 times more present
than the SATD Requirement. In terms of the percentage of files with SATD, the variation is
more significant, ranging from 14.50% for Ethereum to 41.09% for Bitcoin, with an average
of 23.02% of files where there is at least one comment classified as SATD. This means that
among all the blockchain repositories, the Ethereum project has the lowest percentage of
files containing SATD, while Bitcoin has the highest percentage of files containing SATD.

Table 8. Results of SATD detecting in Blockchain projects.

Project Number of
Comments

Number of
SATD
Design

Comments

Number
SATD Re-
quirement
Comments

Percentage
of SATD

Comments

Number of
Examined

Files

Files with
SATD

Total % of
Files

with SATD

Bitcoin 17,887 1130 251 7.72% 988 406 41.09%
Ethereum 42,563 2486 546 7.13% 8334 1214 14.5%
Binance 1283 89 14 8.02% 174 39 22.4%
Usd coin 1533 109 28 8.93% 290 60 20.6%
Solana 27,520 1770 682 8.90% 2048 570 27.9%

Xrp 13,599 1316 289 11.80% 757 310 40.9%
Avalanche 11,880 870 176 8.80% 1472 381 25.9%
Cardano 24,112 1309 691 8.29% 2283 406 38.3%

Terra 1568 160 25 11.79% 542 88 16.2%
Polkadot 49,588 3023 1024 8.16% 2376 960 40.04%

Total 191,533 12,262 3726 19,264 4434
Average 19,153.3 1226.2 372.6 8.35% 1926.4 443.4 23.02%

Table 9 shows the distribution of comments with SATD in the respective project files,
showing that in the SATD files, the average number of comments detected varies from 2.10
to 5.19. In correspondence with projects with higher averages, we can also notice higher
standard deviation values, indicating a possible high concentration of SATD comments in
a limited number of files.

Future Internet 2023, 15, 232 15 of 20

Table 9. Distribution of SATD comments in files.

Project Files with SATD
Average Number of
SATD Comments

per File
Standard Deviation

Bitcoin 406 3.59 5.26
Ethereum 1214 2.52 4.75
Binance 39 2.53 3.37

Usd-coin 60 2.26 2.63
Solana 570 4.38 11.37

Xrp 310 5.19 10.53
Avalanche 381 2.84 3.35
Cardano 406 3.57 4.01

Terra 88 2.10 3.27
Polkadot 960 4.59 10.69

Based on the number of files with SATD, we can divide the projects into three sets.
In particular, as reported in Table 10, four projects have a percentage of files with SATD
lower than 25%, four projects have a percentage of files with SATD greater than 30%, while
two projects have intermediate values.

Table 10. Projects by the percentage of files with SATD.

Concentration of Files with
SATD Less than 25%

Concentration of Files with
SATD between 25% and 30%

Concentration of Files with
SATD over 30%

Ethereum Avalanche Cardano
Terra Solana Polkadot

Usd coin Xrp
Binance Bitcoin

4.2. Comparison of SATD Detection Results in Blockchain Projects and in Open-Source
Java Projects

We compared the results previously reported with those contained in the reference
research [11] for Java projects. The baseline study examines ten open source projects from
different application domains, namely Ant, ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby, and SQuirrel SQL. These selected projects are all written in JAVA.
Table 11 reports the result of the SATD identification in this set of open-source project.

The comparison between blockchain projects and Java projects allows deducing
whether the blockchain projects are more or less exposed to the presence of SATD. This is
useful for understanding whether blockchain projects are more or less threatened by TD.
In particular, the main difference between the two sets of projects concerns, in addition
to the technology used, the fact that blockchain projects are characterized by the need to
generate trust—trust that resides in the code—in users as a fundamental requirement for
their success. In both sets of projects, the presence of SATD is a sign of unpaid TD and can
be a symptom of future difficulties in maintaining the project, which manifests itself in
delays in fixing malfunctions and vulnerabilities. In blockchain projects, this is intolerable
and would lead to a loss of trust and, therefore, project failure.

First of all, some differences between the two sets of projects should be noted. First,
unlike the baseline study, our selected blockchain projects contain source code written
in several programming languages. Furthermore, the average number of contributors in
blockchain projects is, on average, about five times higher than that of the Java projects
examined in the benchmark study. Finally, the average percentage of comments filtered
by us in the blockchain repositories is approximately 5%, while the average percentage of
comments filtered in the reference study is 24%.

The results of the SATD detection show that the blockchain repositories selected in
this study have an average percentage of SATD in comments of 8.25%, which is therefore

Future Internet 2023, 15, 232 16 of 20

higher than the percentage found in the repositories selected in the reference study, where
this percentage is 5.52%. So blockchain projects have on average nearly 50% more SATD
comments than projects selected by the reference study, and all blockchain projects have a
higher SATD comment rate than the average percentage calculated in the reference projects.
From these results, it can be deduced that blockchain projects could contain more TDs
than the average of the reference projects, which could be detrimental to the long-term
maintainability of the projects and therefore to the generation of trust.

It should be noted that the reference projects are characterized by greater variability
in the percentage of SATD, with a minimum SATD detection value of 2.05% of JEdit and
a maximum of 14% of Hibernate, compared with the blockchain projects. Three of the
reference projects have a SATD comment rate that exceeds the average value for blockchain
projects, which could indicate a higher accumulation of technical debt compared with both
blockchain projects and the other reference projects.

For both studies, it is noted that the percentages of comments classified as SATD
Design are higher than those of SATD Requirement, but, while in blockchain projects
the presence of SATD Design is about 4 times higher than that of Requirement, in the
reference projects there is a presence of SATD Design about 7 times higher than that of
SATD Requirement.

This indicates that in blockchain projects, compared with the reference study, the pres-
ence of debt requirements is more pronounced, and this is a symptom of a greater incidence
of requirements that developers have not been able to fully implement.

Table 11. Results of SATD Detection in Open-Source Java Projects form [11].

Project Contributors Effective
Comments

Number of
SATD
Design

Comments

Number of
SATD Re-
quirement
Comments

Percentage
of SATD

Comments

Ant 74 4137 95 12 2.58%
ArgoUML 87 9548 801 411 12.69%
Columba 9 6478 125 42 2.57%

EMF 30 4401 78 16 2.13%
Hibernate 226 2968 355 64 14.11%

JEdit 57 10,322 196 14 2.05%
JFreeChart 19 4423 184 15 4.49%

JMeter 33 8162 316 21 4.12%
JRuby 328 4897 343 110 9.25%

SQuirrel 46 7230 209 50 3.58%

Total 909 62,566 2702 755 -
Average 91 6256.6 270.2 75.5 5.52%

5. Discussion

The detection of SATD in blockchain projects has made it possible to evaluate the
presence of two types of SATD, i.e., requirement and design, in ten selected projects.
The results examined in the previous section allow us to answer RQ1: the findings reveal
the common existence of SATD in the selected blockchain software systems, revealing and
making visible a part of TD that should be paid off. Results showed the amount of SATD
detected and evaluated its presence both at the level of comments and at the level of files.
What emerges is that a percentage of comments between 7.13% and 11.40% was detected as
SATD. As far as files are concerned, this percentage varies between 14.5% and 41.09%.

In projects where the SATD is distributed over many files (Bitcoin, XRP, Polkadot,
and Cardano), the TD is distributed over a larger portion of the project. This can be
problematic for long-term project maintainability if the development team does not adopt
a TD monitoring strategy. In these projects, the identification of the TD through SATD is
particularly useful as it allows to precisely locate the points of accumulation of TD and
intervene for its removal. The Bitcoin and Polkadot projects, while not having the highest

Future Internet 2023, 15, 232 17 of 20

percentage of SATD in comments, have a higher diffusion of SATD comments in files. This
may require more future work to maintain and improve those projects.

Thanks to the results obtained in the comparison phase, it is also possible to answer
RQ2. Blockchain projects have a higher average SATD percentage detected and are more
evenly distributed than the projects in the reference study. It was also found that in
blockchain projects, the detection rate of the SATD Design is less dominant than in the
projects of the reference study. This indicates that blockchain developers are more likely to
report inconsistencies between their implementation and project requirements. The results
of this study allow us to observe that blockchain projects have a greater presence of SATD
than the reference projects. This means that the developers of the blockchain projects are
accumulating technical debt, and some of this is being detected through the identification
of the SATD [15].

The high presence of SATD in blockchain projects can be seen as a threat to the bond
of trust that must be generated between the blockchain system and the users for the project
to be successful. For this reason, blockchain project development teams can benefit from
SATD detection. The detection results allow the development team to locate the source of
TD in the code and understand the problem that generated it thanks to the comment left by
the developer.

Therefore, the detection of the SATD can be seen as a practice to allow the development
team to make the payment of the TD (or its removal) faster and more punctual [14].
The SATD detection result can be used to monitor TD and gain insight into which aspects
of blockchain projects require the most attention in order to be maintained and improved.
Thanks to this, in the refactoring phase, it would be possible to effectively remove TD
by punctually acting on the identified lines of code without requiring a review of all the
project source codes. Adopting practices for timely monitoring and repaying TD can enable
blockchain project development teams to gain trust from users, which is a key factor in the
success of blockchain projects.

However, detected SATD reveals TD introduced proactively by programmers during
the development process, and these programmers may be able to address these issues
consciously during a future software refactoring. However, because blockchain systems
are currently in a state of rapid development, application developers who use these open-
source frameworks could have difficulty keeping up with these potential issues.

5.1. Threats to Validity

In this section, threats to the validity of our study will be examined. In particular,
threats to internal, external, and construct validity are examined.

5.1.1. Internal Validity

Internal validity evaluates the causal relationship between an activity and observable
changes. In our case, the data comes from a selection of ten projects that recall the charac-
teristics of the chosen blockchains. So, according to this, examined projects may contain
unknown and hidden elements that could influence the outcome; for example, different
attitudes toward annotating the SATD or the manners used to annotate the SATD may have
influenced the quality of the results. Likewise, the method adopted to detect SATD in the
projects could also affect the outcomes. Although the SATD detection process replicates the
reference work, it could not fully encompass the aspects related to the presence of different
programming languages in blockchain projects.

5.1.2. External Validity

External validity represents the utility of the outcomes of research and their applica-
bility in real-world settings. If a study has external validity, its findings will generalize
to a larger population that was not included in the experiment. In our case, we limited
the number of examined blockchain projects to ten. The limited number of projects could
jeopardize the external validity of our findings. However, the set of projects was popu-

Future Internet 2023, 15, 232 18 of 20

lated, including the most relevant blockchain projects and various typologies of blockchain
projects. In addition, the SATD detection process we used has already been tested on a large
number of projects, even if they are non-blockchain, and has been studied and analyzed in
depth. The findings obtained from the blockchain projects confirmed, in some way, those
obtained from other studies conducted in the reference study regarding the prevalence of
SATD design over SATD requirements. So we can assume that the results are generalizable.
However, more research is needed to corroborate the project-related findings and deter-
mine whether they can be generalized. In order to maximize performance, the real-world
application of SATD detection techniques for TD management in the blockchain projects
may necessitate revised training dataset creation and configuration phases.

5.1.3. Construct Validity

Construct validity refers to the degree to which inferences can be drawn from observed
phenomena about the constructs that these instances may represent. The first threat to
construct validity is that, in our work, our conclusions could be influenced by the quality of
the dataset used for training the classifier, which was constructed by other people. In fact,
we adopted the dataset used in the reference study. Another threat to construct validity is
the fact that we focused our discussion on SATD detection and management as a relevant
factor for blockchain projects success. However, there are numerous additional aspects that
could affect the success of blockchain projects, such as, for example, the high number of
contributors or the various tools and languages.

6. Conclusions

In this work, the study of the presence of SATD in blockchain projects has been
addressed. The need for this study arises from the particular characteristics of blockchain
projects, which could be sensitive to an accumulation of TD. First, blockchain technology is
believed to be a new and fast-evolving technology, and furthermore, blockchain technology
is designed to be trusted. The creation of SATDs by developers, if properly detected,
can help the development team make the TD visible and manage it. In this study, SATD
was detected in ten blockchain projects using NLP-based machine learning techniques.
The results of the study reveal that all ten blockchain projects examined have comparable
percentages of SATD in the comments, ranging between 7 and 11%, with the presence of
SATD Design 4 times higher than that of SATD requirement. The major differences are
seen at the file level with SATD, where it is noted that the distribution of SATD is more
concentrated in some projects than others. By comparing what emerged by examining the
SATD in ten projects in a reference study, it can be seen that the percentage of SATD in
blockchain projects is on average higher, and more evenly distributed between the two
types of SATD surveyed. This may indicate that developers of blockchain projects are more
likely to leave explanatory comments about their choices when introducing TDs than those
of the reference study projects. The SATD detection result can be used to track TD and learn
which elements of blockchain projects need the greatest attention in order to be maintained
and developed. As a result, during the refactoring phase, it would be easy to successfully
remove TD by acting on the recognized lines of code on a regular basis without having
to review all of the project source codes. Adopting policies for prompt monitoring and
repayment of TD could help blockchain project development teams maintain user trust,
which is critical to project success.

Author Contributions: Conceptualization, A.P.; methodology, A.P., R.T. and M.I.L.; software, S.O.
and A.P.; validation, R.T. and M.I.L.; investigation, S.O., A.P. and M.I.L.; formal analysis, S.O. and A.P.;
data curation, S.O. and A.P.; writing—original draft preparation, A.P. and M.I.L.; writing—review
and editing, A.P. and M.I.L.; supervision, R.T.; project administration, R.T.; funding acquisition, R.T.
All authors have read and agreed to the published version of the manuscript.

Future Internet 2023, 15, 232 19 of 20

Funding: This work was partially supported by project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the European Union-NextGenerationEU. We
acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mission 4
Component 2 Investment 1.5-Call for tender No. 3277 published on 30 December 2021 by the Italian
Ministry of University and Research (MUR) funded by the European Union-NextGenerationEU.
Project Code ECS0000038—Project Title eINS Ecosystem of Innovation for Next Generation Sardinia—
CUP F53C22000430001-Grant Assignment Decree No. 1056 adopted on 23 June 2022 by the Italian
Ministry of University and Research (MUR). This work was partially funded by the “W.E. B.E.S.T.
Wine EVOO Blockchain Et Smart ContracT” PRIN 2020 financed by the Italian Ministry of University
and Research (MUR), CUP: F73C22000430001.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lilienthal, C. Sustainable Software Architecture: Analyze and Reduce Technical Debt; Rocky Nook: Heidelberg, Germany, 2019.
2. Alliance, A.; Letouzey, J.-L.; Whelan, D. Introduction to the Technical Debt Concept. 2016. Available online: https://www.

agilealliance.org/introduction-to-the-technical-debt-concept (accessed on 10 May 2023).
3. Cunningham, W. The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger 1992, 4, 29–30. [CrossRef]
4. Ibba, S.; Pinna, A.; Lunesu, M.I.; Marchesi, M.; Tonelli, R. Initial coin offerings and agile practices. Future Internet 2018, 10, 103.

[CrossRef]
5. Huang, Q.; Shihab, E.; Xia, X.; Lo, D.; Li, S. Identifying Self-Admitted Technical Debt in Open Source Projects Using Text Mining.

Empir. Softw. Eng. 2018, 23, 418–451. [CrossRef]
6. Li, Y.; Soliman, M.; Avgeriou, P. Automatic identification of self-admitted technical debt from four different sources. Empir. Softw.

Eng. 2023, 28, 65. [CrossRef]
7. Potdar, A.; Shihab, E. An Exploratory Study on Self-Admitted Technical Debt. In Proceedings of the 2014 IEEE International

Conference on Software Maintenance and Evolution, Victoria, BC, Canada, 29 September–3 October 2014; pp. 91–100. [CrossRef]
8. Wehaibi, S.; Shihab, E.; Guerrouj, L. Examining the impact of self-admitted technical debt on software quality. In Proceedings

of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Osaka, Japan,
14–18 March 2016; Volume 1, pp. 179–188.

9. Ibba, G.; Ortu, M.; Tonelli, R. Analysis of Topics Related To Smart Contracts on Social Media. In Proceedings of the PoEM’2022
Workshops and Models at Work Papers, London, UK, 23–25 November 2022.

10. Ortu, M.; Ibba, G.; Conversano, C.; Tonelli, R. Smart Topics: Designing an Ethreurm Smart Contracts Environment Knowledge-
Base Using Natural Language Processing, Social Media and Complex Network Theory. SSRN 2023. [CrossRef]

11. Maldonado, E.d.S.; Shihab, E.; Tsantalis, N. Using Natural Language Processing to Automatically Detect Self-Admitted Technical
Debt. IEEE Trans. Softw. Eng. 2017, 43, 1044–1062. [CrossRef]

12. Mensah, S.; Keung, J.; Svajlenko, J.; Bennin, K.E.; Mi, Q. On the value of a prioritization scheme for resolving Self-admitted
technical debt. J. Syst. Softw. 2018, 135, 37–54. [CrossRef]

13. Casey, M.J.; Vigna, P. In blockchain we trust. MIT Technol. Rev. 2018, 121, 10–16.
14. Maldonado, E.D.S.; Abdalkareem, R.; Shihab, E.; Serebrenik, A. An empirical study on the removal of self-admitted technical

debt. In Proceedings of the 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai,
China, 17–22 September 2017; pp. 238–248.

15. Pavlič, L.; Hliš, T.; Heričko, M.; Beranič, T. The Gap between the Admitted and the Measured Technical Debt: An Empirical Study.
Appl. Sci. 2022, 12, 7482. [CrossRef]

16. Khomyakov, I.; Makhmutov, Z.; Mirgalimova, R.; Sillitti, A. An analysis of automated technical debt measurement. In Proceedings
of the Enterprise Information Systems: 21st International Conference, ICEIS 2019, Heraklion, Greece, 3–5 May 2019; Revised
Selected Papers 21; Springer: Berlin/Heidelberg, Germany, 2020; pp. 250–273.

17. Lenarduzzi, V.; Martini, A.; Taibi, D.; Tamburri, D.A. Towards surgically-precise technical debt estimation: Early results and
research roadmap. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for
Software Quality Evaluation, Tallinn, Estonia, 27 August 2019; pp. 37–42.

18. Tsoukalas, D.; Siavvas, M.; Jankovic, M.; Kehagias, D.; Chatzigeorgiou, A.; Tzovaras, D. Methods and Tools for TD Estimation
and Forecasting: A State-of-the-art Survey. In Proceedings of the 2018 International Conference on Intelligent Systems (IS),
Funchal, Portugal, 25–27 September 2018; pp. 698–705.

19. Alfayez, R.; Winn, R.; Alwehaibi, W.; Venson, E.; Boehm, B. How SonarQube-identified technical debt is prioritized: An
exploratory case study. Inf. Softw. Technol. 2023, 156, 107147. [CrossRef]

20. Zampetti, F.; Serebrenik, A.; Di Penta, M. Was self-admitted technical debt removal a real removal? An in-depth perspective.
In Proceedings of the 15th International Conference on Mining Software Repositories, Gothenburg, Sweden, 28–29 May 2018;
pp. 526–536.

21. Sierra, G.; Shihab, E.; Kamei, Y. A survey of self-admitted technical debt. J. Syst. Softw. 2019, 152, 70–82. [CrossRef]

https://www.agilealliance.org/introduction-to-the-technical-debt-concept
https://www.agilealliance.org/introduction-to-the-technical-debt-concept
http://doi.org/10.1145/157710.157715
http://dx.doi.org/10.3390/fi10110103
http://dx.doi.org/10.1007/s10664-017-9522-4
http://dx.doi.org/10.1007/s10664-023-10297-9
http://dx.doi.org/10.1109/ICSME.2014.31
http://dx.doi.org/10.2139/ssrn.4345267
http://dx.doi.org/10.1109/TSE.2017.2654244
http://dx.doi.org/10.1016/j.jss.2017.09.026
http://dx.doi.org/10.3390/app12157482
http://dx.doi.org/10.1016/j.infsof.2023.107147
http://dx.doi.org/10.1016/j.jss.2019.02.056

Future Internet 2023, 15, 232 20 of 20

22. Liu, Z.; Huang, Q.; Xia, X.; Shihab, E.; Lo, D.; Li, S. SATD detector: A text-mining-based self-admitted technical debt detection
tool. In Proceedings of the 40th ACM/IEEE International Conference on Software Engineering (ICSE), Gothenburg, Sweden,
27 May–3 June 2018; Volume 3, pp. 9–12.

23. Li, Y.; Soliman, M.; Avgeriou, P.; Somers, L. Self-Admitted Technical Debt in the Embedded Systems Industry: An Exploratory
Case Study. IEEE Trans. Softw. Eng. 2023, 49, 2545–2565. [CrossRef]

24. Brownlee, J. Deep Learning for Natural Language Processing: Develop Deep Learning Models for Your Natural Language Problems;
Machine Learning Mastery: Victoria, Australia, 2017.

25. Wattanakriengkrai, S.; Maipradit, R.; Hata, H.; Choetkiertikul, M.; Sunetnanta, T.; Matsumoto, K. Identifying Design and
Requirement Self-Admitted Technical Debt Using N-gram IDF. In Proceedings of the 2018 9th International Workshop on
Empirical Software Engineering in Practice (IWESEP), Nara, Japan, 4 December 2018; pp. 7–12. [CrossRef]

26. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha,
Qatar, 2014; pp. 1746–1751. [CrossRef]

27. Ren, X.; Xing, Z.; Xia, X.; Lo, D.; Wang, X.; Grundy, J. Neural Network-Based Detection of Self-Admitted Technical Debt: From
Performance to Explainability. ACM Trans. Softw. Eng. Methodol. 2019, 28, 1–45. [CrossRef]

28. Li, Y.; Soliman, M.; Avgeriou, P. Identifying Self-Admitted Technical Debt in Issue Tracking Systems Using Machine Learning.
Empir. Softw. Eng. 2022, 27, 131. [CrossRef]

29. Yu, J.; Zhou, X.; Liu, X.; Liu, J.; Xie, Z.; Zhao, K. Detecting Multi-Type Self-Admitted Technical Debt with Generative Adversarial
Network-Based Neural Networks. Inf. Softw. Technol. 2023, 158, 107190. [CrossRef]

30. Zampetti, F.; Serebrenik, A.; Di Penta, M. Automatically Learning Patterns for Self-Admitted Technical Debt Removal. In
Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER),
London, ON, Canada, 18–21 February 2020; pp. 355–366. [CrossRef]

31. Wüst, K.; Gervais, A. Do you need a blockchain? In Proceedings of the 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), Zug, Switzerland, 20–22 June 2018; pp. 45–54.

32. Ahmadjee, S.; Mera-Gómez, C.; Bahsoon, R. Assessing Smart Contracts Security Technical Debts. In Proceedings of the 2021
IEEE/ACM International Conference on Technical Debt (TechDebt), Madrid, Spain, 19–21 May 2021; pp. 6–15. [CrossRef]

33. Ahmadjee, S.; Bahsoon, R. A Taxonomy for Understanding the Security Technical Debts in Blockchain Based Systems. arXiv 2019,
arXiv:1903.03323.

34. Qu, Y.; Bao, T.; Chen, X.; Li, L.; Dou, X.; Yuan, M.; Wang, H. Do we need to pay technical debt in blockchain software systems?
Connect. Sci. 2022, 34, 2026–2047.

35. Qu, Y.; Wong, W.E.; Li, D. Empirical Research for Self-Admitted Technical Debt Detection in Blockchain Software Projects. Int. J.
Perform. Eng. 2022, 18, 149. [CrossRef]

36. Group, S.N. ColumnDataClassifier (Stanford JavaNLP API). Available online: https://nlp.stanford.edu/nlp/javadoc/javanlp/
edu/stanford/nlp/classify/ColumnDataClassifier.html (accessed on 10 June 2023).

37. Manning, C.; Klein, D. Optimization, Maxent Models, and Conditional Estimation without Magic. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology:
Tutorials, Edmonton, AB, Canada, 27 May–1 June 2003.

38. Curran, J. Maximum Entropy Models for Natural Language Processing; Australasian Language Technology Summer School: Sydney,
Australia, 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSE.2022.3224378
http://dx.doi.org/10.1109/IWESEP.2018.00010
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1145/3324916
http://dx.doi.org/10.1007/s10664-022-10128-3
http://dx.doi.org/10.1016/j.infsof.2023.107190
http://dx.doi.org/10.1109/SANER48275.2020.9054868
http://dx.doi.org/10.1109/TechDebt52882.2021.00010
http://dx.doi.org/10.23940/ijpe.22.03.p1.149157
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/ColumnDataClassifier.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/classify/ColumnDataClassifier.html

	Introduction
	Background
	Self-Admitted Technical Debt
	SATD Detection Strategies and Techniques
	Technical Debt in Blockchain Projects

	SATD Detection in Blockchain Software Projects
	Selection of Open-Source Blockchain Projects
	Bitcoin
	Ethereum
	Xrp (Ripple)
	USD Coin
	Cardano
	Terra
	Polkadot
	Avalanche
	Binance
	Solana

	Comment Extraction
	Comments Filtering Rules
	Choice of Detection Technique and Configuration

	Results
	Classification Results
	Comparison of SATD Detection Results in Blockchain Projects and in Open-Source Java Projects

	Discussion
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions
	References

