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Abstract: In recent years, many studies have been devoted to discovering the inner workings of
Transformer-based models, such as BERT, for instance, attempting to identify what information is
contained within them. However, little is known about how these models store this information
in their millions of parameters and which parts of the architecture are the most important. In this
work, we propose an approach to identify self-attention mechanisms, called heads, that contain
semantic and real-world factual knowledge in BERT. Our approach includes a metric computed
from attention weights and exploits a standard clustering algorithm for extracting the most relevant
connections between tokens in a head. In our experimental analysis, we focus on how heads can
connect synonyms, antonyms and several types of factual knowledge regarding subjects such as
geography and medicine.
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1. Introduction

Huge unsupervised textual corpora, such as Wikipedia or PubMed, have been fre-
quently used for training Transformer-based models, such as BERT [1], BlueBERT [2] or
RoBERTa [3], with the goal of learning how to predict words from the context or whether
two sentences are consecutive or not. In order to do that, it has been established that these
models need to acquire different forms of linguistic knowledge. In fact, they are able to
identify verbs, nouns, direct objects and other similar concepts [4–6]. Moreover, especially
considering the high performance in many natural language processing tasks, it has been
debated whether Transformer-based models encode some forms of semantic knowledge or
do not [7].

Another important line of work concerning these models regards their real-world
knowledge. In fact, it was observed that the data used for training these models (which
are usually taken from newspapers, Wikipedia or scientific papers) did not contain only
linguistic information but also a large quantity of factual knowledge about real-world
entities, such as the capital of a state, or where a famous person was born. Therefore,
several studies [8–10] assess that this kind of knowledge is somehow captured by these
large language models and that it is possible to retrieve it in a particular kind of classification
task. This task can be structured as follows: given a sentence with a masked token such
as “The capital of France is [MASK]”, the model has to select a token among its dictionary
and its prediction can be compared with a pre-determined label, which, in this case, would
be the token “Paris”. For performing such tasks, probing datasets, containing sentences
like PARAREL [11] or T-REX [12], were introduced. These datasets are created by triples
〈E1, r, E2〉, where E1 and E2 are entities (such as a state and its capital) and r is a relation
that connects them. For the classification task, the entities are inserted into a sentence
that describes their relationship, and then one entity is masked and has to be guessed by
the model.

The studies regarding what knowledge (linguistical or not) is contained in BERT, its
inner workings and its interpretability belong to the so-called field of “BERTology” [13]. In
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particular, several studies focus on some specific components of BERT, its heads [14,15]. A
head is a particular kind of a neural network layer, called a self-attention mechanism, with
the following behaviour. Given a sequence of words, such as a sentence or a document, a
head calculates how much a word is related to every other word (including itself) contained
in the sequence. The overall architecture of BERT, which is made by several encoding layers
(typically 12), can contain more than a hundred heads (typically 12 heads for each layer,
for a total of 144 different heads), and each one of them can focus on different linguistic
aspects or grammatical relations.

Since each head provides a numerical weight for every possible pair of tokens in a
sentence, these weights can be visualized and manually inspected [16]. More interestingly,
the study in [14] measures the performance of each head in different probing tasks. In the
latter, they compare the pairs with the highest weights assigned by each head with some
ground truth labels. These labels usually represent grammatical relations, such as the one
between a noun and its modifier or a verb and its direct object, etc. Proposing different
probing tasks, the study in [15] also evaluates what happens to the behaviour of the
heads after adapting (or fine-tuning) the model for specific tasks, such as text classification
or sentiment analysis. Finally, this study evaluates the effect that each head has on the
performance in these tasks.

However, these studies focused only on linguistic capabilities, without taking into
consideration the role of BERT heads in capturing semantic-related aspects, such as if two
words are synonyms or antonyms. Moreover, despite it having been established that BERT
models possess not only linguistic capabilities but also real-world factual knowledge, there
are no available studies that assess whether this information is captured by the heads or is
not, which heads are these, what their behaviour is and how they can be identified. This can
be important in terms of model explainability, providing a more intuitive understanding
of how BERT stores its knowledge and which parts of the architectures are involved in
this process.

In this work, our goal is to understand the role of the heads in capturing semantic
information and factual knowledge in BERT. Therefore, we analysed the behaviour of the
heads and tested them with specific probing tasks, exploiting portions of the PARAREL and
T-REX datasets and other corpora of sentences we specifically created for this analysis. We
propose a new metric that identifies a group of heads that mainly focus on the identification
of words in the same semantic field, such as synonyms and antonyms or words that have a
relation based on some real-world factual knowledge, such as Jutland and Denmark. In
our experimental analysis, we show how such heads can contain several forms of factual
knowledge in subjects such as geography or medicine, for instance by linking a state to its
capital, a drug to the disease treated by it, etc.

Another important aspect is that we show that, several times, these relationships based
on factual knowledge are not strongly influenced by the overall context of the sentence or
the document but are mostly based on the words themselves. For instance, in the sentences
“The frigid temperature outside caused by the cold wind made my bones feel like they were
about to break into pieces” and “I held onto her cold hand tightly as we braved through
the frigid night without looking back”, the head will give a high weight for the association
between cold and frigid even if the context of the two sentences is completely different.
Therefore, we claim that these kinds of relations are not based on grammatical properties
but are based on actual semantic knowledge that the head has the duty to identify.

In this work, our contributions are the following:

• We propose a technique for identifying heads that find relationships among words
that are in the same semantic field (synonyms or antonyms) or are related by some
real-world knowledge;

• We experimentally verify that different types of relations (such as semantics, geogra-
phy or medicine) are mostly identified by the same heads across different domains;
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• We perform an experimental analysis that shows how the behaviour of these heads
is correlated to the model performance in simple question-answering tasks (without
access to external knowledge sources) using probing datasets;

• We show how semantic knowledge is not strongly influenced by the overall context of
the sentence and is robust to different types of prompts and contexts.

The rest of the paper is organized as follows: in Section 2, we provide an overall
description of the BERT architecture and we review the related work; in Section 3, we
explain our methodology for studying heads; in Section 4, we present our case studies and
datasets; in Section 5, we describe our experimental evaluation and the results we obtained
and, finally, in Section 7, we provide our conclusions and discuss potential future work.

2. Background and Related Work

In this section, we provide a description of the architecture considered, BERT, and we
review the most important related work regarding the study of which linguistic, grammati-
cal or factual knowledge is contained in this type of large language model architecture and
the techniques developed to provide explainability of the information stored in the model.

2.1. BERT

BERT (Bidirectional Encoder Representations from Transformer) [1] is an architecture
based on Transformer [17] composed of several encoding layers, which progressively anal-
yse a sequence of tokens (i.e., words or parts of a word) in order to capture their meaning.

An overall representation of the entire architecture can be seen in Figure 1. The docu-
ment in input is divided into tokens and each token is represented as an array x ∈ Rd. Then,
the model adds a Positional Encoding to each token, allowing the model to understand
the position of each word in a sentence and the distance between different words in the
same sentence.

Figure 1. Architecture of the BERT model receiving two vectors representing two tokens (x1 and
x2) as input. On the left, we show the overall stack of the encoder layers alongside the input, the
output and the positional encoding. On the right, we show the components of each encoder layer
(the Multi-Head Self-Attention Mechanism, the normalization layers and the Feed-Forward Neural
Network). The dashed arrows represent skip connections.
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This representation is then fed to the first Encoder layer, which contains a Multi-
Head Self-Attention and a Feed-Forward Neural Network. This layer applies multiple
self-attention mechanisms (called heads) in parallel. Considering a sequence of tokens S
of length N, this mechanism produces a matrix Ai,j ∈ RN×N , where i is the number of
the encoding layer and j is the head number. For each token w ∈ S, the vector aw ∈ Ai,j
contains the attention weights that represent how much w is related to the other tokens
in S.

In order to calculate these weights, in each head, the input representation of the token
sequence X ∈ RN×d (where d is the length of the input representation of each token) is
projected into three new representations called key (K), query (Q) and value (V) with three
matrices, Wk, Wq and Wv:

K = X×Wk, Q = X×Wq, V = X×Wv (1)

Then, the attention weights are calculated using a scaled dot product between Q and
K and applying the softmax function. The new token representation Z is calculated by
multiplying the attention weights for V.

A = so f tmax(
Q× Kᵀ
√

d
), Z = A×V (2)

Given that in each encoding layer there are multiple heads, in order to create a
single representation provided by the Multi-Head Attention Mechanism, the result of each
head is concatenated and then passed to a feed-forward layer. The Multi-Head Attention
Mechanism followed by a residual connection that adds its output to the original input
before a layer normalization and a dropout are applied. The result of this operation is
then passed to a Feed-Forward Neural Network composed of two layers, and to another
residual connection with layer normalization. The output of an encoding layer is the input
of the next one.

Exploiting a large collection of documents, BERT is trained for two tasks: language
modeling, where BERT learns to predict a percentage (usually 15%) of masked tokens
from context, and next sentence prediction, which is a binary classification task where
BERT has to predict if a sequence of two sentences is correct or not. For the latter task,
BERT introduces two special tokens: [CLS], whose representation is used for the binary
classification task and represents the whole sequence, and [SEP], which separates the two
sentences. Learning these two tasks allows BERT to create a meaningful representation
of each token and also to summarise the most important information in a sentence. Once
the model is trained, it can be adapted using smaller datasets for specific NLP tasks, like
Named Entity Recognition, text classification [18], sentiment analysis, etc.

2.2. Related Work

Our work follows an active research field that studies the inner workings of BERT, its
inner parts (such as its heads or its neurons) and how to explain its predictions. This field
is often called “BERTology” [13]. In the last few years, many studies have been devoted to
discovering the knowledge stored in large language models (LLM), such as Transformer,
BERT or GPT, trying to identify the quantity of information stored in them. These studies
are usually performed on pre-trained models, available online.

In particular, our work focuses on the study of the behaviour of the different heads in
BERT models. Since the introduction of these models, several studies have been devoted
to this subject. First of all, the work in [16] introduces BertViz, a visualization tool that
can easily represent (especially for shorter sentences) the self-attention weights and the
most important relations among words. Differently from this work, we do not focus on
visualization or intuition but perform a more thorough analysis through several classifi-
cation tasks. From a linguistic point of view, the work in [14] presents some interesting
results. Firstly, the authors manually selected heads that give attention broadly to the
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following token or to the end of sequence token. Next, they defined probing tasks in order
to show that certain heads target specific linguistic information, like the most important
dependency relations among words (preposition–noun, noun–adjective, etc.). A similar
approach was adopted in [15]: similar patterns were presented and other tasks of the same
kind related to linguistic properties were performed. Moreover, in this work, the authors
study how fine-tuning BERT for specific tasks, for instance, sentiment analysis, influences
the behaviour of the heads. They show that the last two layers of BERT are much more
task-oriented with respect to the first ones, which usually focus on low-level linguistic
information. Differently from these two works, we do not focus our study on linguistic or
grammatical properties. Instead, we study how heads are involved in capturing semantic
information and factual knowledge regarding real-world entities, without considering
linguistic aspects.

Regarding factual knowledge, several works focused on assessing whether this kind
of information is present in BERT or similar models or is not. One of the most important
ones is presented in [10], where the authors compared Transformer-based models with
traditional NLP methods that have access to oracle knowledge and test them on open-
domain questions. They define the LAMA dataset and use it as a probe for verifying how
different kinds of LLMs (with a special focus on BERT) can answer questions regarding
well-known facts. Their results show that BERT actually has knowledge regarding basic
semantics, geography, sports, famous people and other domains. Similar results are
obtained also for multi-lingual models by the work in [19]. In this work, we do not try to
assess whether Transformer-based models possess these types of knowledge: we take this
result for granted. Instead, we aim to discover the relation between a specific part of their
architecture, the heads, with basic semantic information and factual knowledge.

Subsequent works such as [8,9] studied the performance variation on the LAMA
dataset using different sentences and how expressing facts in different ways influences
the model predictions. This was observed also in [11], where the PARAREL dataset was
defined. This dataset contains well-known facts represented as two entities and a relation,
and the latter is paraphrased in different ways in order to express the same relationship
with different words. They found that the BERT and RoBERTa outputs are not consistent
with a paraphrased input. Similarly to what we discussed previously, these works focus on
the entire architecture without looking in depth into the role of the heads. However, we
found their results very interesting and we performed an experiment (please see Section 5.2)
specifically designed for considering different types of sentences.

Although these studies prove that the Transformer-based models contain numerous
information of different kinds, we found only one work regarding how this knowledge is
stored inside the architecture. The work in [20] focuses on the neurons of Feed-Forward
Networks in BERT encoding layers and found that different queries for specific facts mostly
activate specific units, identifying them as the neurons containing that knowledge. In
our work, we perform a parallel analysis, focusing on heads, the attention mechanisms of
Transformer-based models, to identify which kinds of knowledge are contained in them.

Specifically for semantics, the work in [21] focuses on the word embedding repre-
sentations produced by BERT models, retrieving the relations between them and using
them to generate a Knowledge Graph. They also found that these word vectors contain
basic semantic information by training a classifier that has the duty to predict the general
category (extracted by Wikipedia) to which the word belongs. Differently from this work,
we do not take into consideration the word embedding. Instead, we measure how heads are
related to some basic semantic capabilities, such as identifying if two words are synonyms
or antonyms, or verifying whether specific heads assign a high weight to a pair formed by
a word and its category.

In a preliminary work published in [22], we manually observed the behaviour of
BERT heads in the context of the classification of clinical reports in Italian [23,24]. We
found that several heads could capture some related medical concepts and synonyms,
which were manually annotated. In the present work, we conduct a more thorough study
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defining a clearer methodology and evaluation procedure, with new and better-defined
metrics. Moreover, in this work, we rely on standard datasets (based on the state-of-the-art
techniques for assessing the factual knowledge of BERT) without the need of manual
annotations. Finally, we perform a much more detailed analysis with four different BERT
models (with respect to a single model for the Italian language) and seven different datasets.

3. Methodology

Differently from most works, which analyse heads in order to discover their gram-
matical capabilities, our goal is to discover the role of the heads in capturing semantic and
factual knowledge in BERT architectures. In particular:

• Instead of analysing the entire architecture or relying on manual observations [14,15],
we aim to identify which heads are the most promising ones to contain this kind of
knowledge through calculating an evaluation metric (called Self Metric).

• For each head we have identified, we extract which pairs of tokens have the highest
weights assigned by the head. This is conducted with a custom-made algorithm (the
Linker Algorithm).

• We compare these pairs of tokens with some ground truth pairs. More specifically, we
aim to verify whether a head (or a specific group of heads) is able to capture if two
words are related by some semantic or factual knowledge, such as the one between
the synonyms important and meaningful, or the state–capital relation between Paris
and France. We claim that, if a head gives an high attention weight specifically
to these pairs of words considering different examples, then it is able to capture
such knowledge.

In the following, we provide a more detailed description of how our datasets are
structured. Next, we describe the methods and techniques we designed (the Self Metric
and the Linker Algorithm) and how we evaluated our experiments and which metrics
were used.

3.1. Dataset Structure

Despite having considered different datasets built on different case studies (which we
describe in Section 4), such as pairs of synonyms, antonyms or a disease and the drug that
treats it, all our datasets have the same structure.

First, we consider a relation r, which describes a particular type of link between two
words. For instance, a relation “Capital of” can represent the link between the name of
a state (such as Italy) and a city (such as Rome). Next, we associate a prompt P to the
relation r. The prompt is a sentence, and therefore a sequence of tokens, which express
r in natural language. For instance, “The country called [X] has [Y] as its capital” can be
associated to the “Capital of” relation. Finally, we define a series of Data Pairs. Each Data
Pair D = (X, Y) is a pair of words that are related by r, such as the previously mentioned
Italy and Rome. Therefore, each instance of our dataset can be seen as a triple 〈D, r, P〉, into
which a relation r connects a Data Pair D as expressed by a prompt P.

In Figure 2, we show a toy example of our Capitals dataset, into which we consider the
“Capital of” relation, its prompt and three different real-world data pairs (Italy and Rome,
Spain and Madrid, France and Paris). Therefore, we obtain three instances into which the
prompt “The country called [X] has [Y] as its capital” is filled with the three data pairs.

3.2. Self Metric

The intuition behind the use of this metric for identifying the most promising heads,
in terms of semantic or factual knowledge, comes from manual observation and from some
analyses performed in a previous preliminary work presented in [22]. However, analysing
the behaviour of these heads over a dataset of medical reports, some of them did not assign
high attention value only to equal tokens but also to words that are semantically related.
These words could be basic synonyms (such as segments and portions), antonyms (left and
right); however, they also could be more complicated medical concepts, such as artery and
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aorta, nodule and lesion or texture and parenchyma. These preliminary results lead us to
continue such analysis in a more structured way. Therefore, in the first step of the analysis,
we designed the Self Metric in order to identify the ones showing this particular behaviour.

Figure 2. Example of our dataset structure. Starting from the “Capital of” relation, we associate it
with a general prompt, which is filled by three real-world pairs made by a state and its capital. On
the right, we show the actual dataset instances, which are formed by filling the prompt with the data
pairs considered.

The Self Metric σw is defined by the Jensen–Shannon distance between aw, the vector
of the attention values of a head on a token w in relation to the other tokens in the sentence
or document, and a binary vector Bw, where the 1s are in the position of w and where this
token repeats itself.

For instance, in the sentence “The earth revolves around the sun. The moon revolves
around the earth”, analysing the token w = “the” (case-insensitive), we will have a binary
vector Vthe = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0], and we will compute the distance between it
and aw. If we analyse the token w = moon, instead, the vector is
Vmoon = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0].

More formally,

σw = JSD(aw||Vw), Vw[k] =

{
0 Vw[k] 6= w
1 Vw[k] = w

(3)

where k are the positions of the tokens in the document. Considering an entire document,
the Self Metric of a document is calculated as the average of the Self Metrics of all the
tokens in a document.

3.3. Linker Algorithm

In [14,16], the connections between pairs of tokens are simply shown with visualization
techniques, with lines of different thickness on the basis of the attention weights, as can be
seen in the left part of Figure 3. However, with relatively long sentences or documents, the
amount of connections increases drastically, making the visualization less understandable
and very complex to compute. Therefore, our approach is to directly extract the most
important connections among tokens from a specific head and verify if they are related to
some specific semantic or factual knowledge comparing them to a ground truth.

However, extracting these connections is not a trivial task. In fact, the attention weights
distribution can vary across different weights. For instance, as is shown in [16], some heads
basically distribute their attention evenly across the whole sentence, while other heads
connect each token with just another token. Moreover, this behaviour can differ (as can be
seen on the left of Figure 3) across different tokens even in the same sentence. Therefore,
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we cannot simply extract the pairs of tokens with the highest attention weights and we
need a more refined procedure.

Figure 3. Example of how the Linker Algorithm works on the words Italy and Rome. On the left,
we show a visualization of the attention weights of these two words, into which the thickest lines
indicate a higher value of attention between the word pairs. On the right, we show the word pairs
returned the algorithm, which is the cluster of words with the attention weights extracted with the
Mean Shift algorithm [25]. These results can be noisy, and, in this example, we can see that our
algorithm can return pairs that are not the ones we want to identify, such as (Italy, country). We use
different colours for different tokens.

Hence, our algorithm for automatically finding these connections is based on Mean
Shift [25], a clustering algorithm suitable for density functions and one-dimensional clus-
tering [26]. Given a distribution of attention weights aw = [α1, α2 . . . αN ] for a token w, the
different αi ∈ aw are grouped into several clusters depending on their value. Then, the
Linker Algorithm returns the cluster with the highest average weight, containing the most
valuable pairs of words. Please note that this algorithm works only at the numeric level of
the attention weights and it has no information regarding the tokens.

A simplified representation of the results of this algorithm is presented in Figure 3.
On the left, we have a typical visualization of the attention weights very similar to the
one provided by [16], into which the pair of words with the highest attention weights are
connected by a thick line. On the right, we have the output of the algorithm for the tokens
Italy and Rome, showing which words are mostly related to them according to the head.
Please note that the algorithm can provide a variable number of relations with a specified
token. For instance, Italy is mostly related to 3 tokens (itself, Rome and country), while
Rome is connected to itself and Italy.

3.4. Evaluation Metrics

Once we have extracted the word pair pairs with the Linker Algorithm, we can
compare them to some ground truth relations. Thus, we can verify whether a head possesses
some specific knowledge and quantify it through specific evaluation metrics.
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For this purpose, we defined an evaluation metric with the same idea of the F1-Score.
We compute this metric as the harmonic mean between precision and recall, which we
define this way:

precision =
#Identi f ied

#Pairs
(4)

recall =
#Identi f ied

#Dataset
(5)

where #Identi f ied is the number of word pairs retrieved by the Linker Algorithm for the
head that are correctly identified; #Pairs is the total number of pairs retrieved by the Linker
Algorithm and #Dataset is the number of ground truth pairs present in the dataset. With
these metrics, we can compute the F1-Score as:

F1 score =
2 ∗ precision ∗ recall

precision + recall
(6)

Another evaluation metric we considered is accuracy, which is the number of word
pairs correctly identified (by a head or a group of heads) over the total number of pairs in
the dataset. In particular, we considered two different types of accuracy, accN and accTot,
which are computed this way:

accN =
#Identi f iedN

#Dataset
(7)

accTot =
#Identi f iedTot

#Dataset
(8)

into which #Identi f iedN is the number of pairs correctly identified by N heads, and
#Identi f iedTot is the number of pairs correctly identified by all the heads in the BERT model.

The idea behind these two metrics is the following. We consider accTot as a baseline,
which represents all the possible knowledge contained in all the heads across the entire
BERT architecture. If a relationship between two terms is not identified by any of the heads,
that information is contained in other parts of the architecture or not known by the model.
Nonetheless, we are not interested in just verifying if that information is present or not
but aim to create a selection mechanism into which the Self Metric identifies the most
promising heads in terms of semantics and factual knowledge. Therefore, we design also
the accN metric, into which we consider only the first N heads identified by the Self Metric.
If accN is very similar or equal to accTot, we can say that our method for selecting the most
promising heads performs well because we select those heads that contain all (or almost
all) the knowledge of the entire model. Instead, if accN is much lower than accTot, our Self
Metric is not able to identify the most promising heads.

After some preliminary experiments, as described in Section 5 (and, in particular, in
Figure 4), we selected N = 20.

(a) Synonyms (b) Capitals
Figure 4. Cumulative Normalized F-Score progressively considering more heads, which are ordered
on the basis of the Self Metric value. These results are obtained considering the Synonyms (a) and
Capitals (b) datasets for all the models we considered.
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4. Case Studies

We tested our approach on different types of knowledge: Semantic Knowledge, which
is related to the words and their meaning, and Factual Knowledge, with three different
domains: Geography, General Knowledge and Medicine. For each of these relations, we
selected pairs entities (which are related by some ground truth factual knowledge) and a
prompt to compose the sentences, as explained in Section 3.

Our datasets follow (and, sometimes, are based on) the general scheme defined
by PARAREL [11] and T-REX [12], which are the state-of-the-art examples for verifying
the factual knowledge of Transformer-based models [8,9,19,20]. Please note that these
datasets only consider words made by one token. Although this can be a limitation, this
configuration is also the most suitable for our study since we extract pairs of tokens.

As observed in [14,22], in the first layers of BERT, there are heads that split attention
evenly across all word pairs. In order to avoid that such heads obtained high F1-Scores,
we chose prompts long enough to penalise lucky guesses. With respect to PARALEL,
we use longer prompts. In fact, the average length of our instances is 14 words, while
PARAREL has an average length of five words. Although it could be interesting to study
the performance of our method considering longer sentences (or even entire documents
taken directly from real-world applications), this is left as a future work.

In the following, we describe in detail the datasets we considered.

4.1. Semantic Knowledge

For testing the semantic capabilities of BERT, we chose two different domains: Syn-
onyms and Antonyms and created two datasets with pairs belonging to these categories:

• Synonyms: we took the dataset containing synonyms from Kaggle (https://www.
kaggle.com/datasets/duketemon/wordnet-synonyms accessed on 26 June 2023),
which is based on WordNet [27]. We randomly selected 250 synonym pairs and filled
the prompt: “If you would ask me to describe it I could say that it is [X], or, in other words, it
is [Y]”, replacing the [X] and [Y] with a word and its synonym. For example, a pair of
synonyms is (frigid, cold).

• Antonyms: Similarly to the procedure we used for the Synonyms, we took the
WordNet-based antonyms dataset from Kaggle (https://www.kaggle.com/datasets/
duketemon/antonyms-wordnet accessed on 26 June 2023) and we randomly selected
250 antonym pairs considering the prompt “You described it as [Y], but I would say that
it is the opposite, I would describe it as [X]”, replacing the [X] and [Y] with a word and its
antonym. For example, a pair of antonyms is (hot, cold).

4.2. Real-World Factual Knowledge

While Semantic knowledge is based on common words that can be identified because
they belong to the same semantic field, this type of knowledge is typically based on nouns
such as the name of cities, drugs or other entities. Here we aim to verify if the model is able
to identify pairs of words related by some known facts, such as the name of a state and the
name of its capital. Despite these differences, the datasets we designed followed the same
scheme we showed in the previous sections. The domains we considered for testing the
capabilities of our model are Geography, General Knowledge and Medicine (Drugs). In
detail, we created these datasets:

• States and Capitals: we created a dataset using state–capital pairs that can be com-
monly found on the Internet. In order to simplify the analysis of the relationship
based on attention, we took only the pairs where both capital and nation names were
one word long in order to have precise word pairs to compare with the ground truth
labels. Thus, we created a dataset of 159 sentences based on the state–capital pairs and
the prompt “The country called [X] has the city of [Y] as its capital”. For example, a pair
state–capital is (Italy, Rome).

• Locations: we used some entities included in the T-REX dataset [12], containing a
state and a well-known place belonging to that state. As we did for the States and

https://www.kaggle.com/datasets/duketemon/wordnet-synonyms
https://www.kaggle.com/datasets/duketemon/wordnet-synonyms
https://www.kaggle.com/datasets/duketemon/antonyms-wordnet
https://www.kaggle.com/datasets/duketemon/antonyms-wordnet
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Capitals, we consider one-word entities. The dataset is created from 95 sentences and
exploits the prompt “[X] is a place of great fame and it is located in the country of [Y]”. For
example, a relation location nation is (Catalonia, Spain).

• Belongs to: this dataset is based on the T-REX dataset and contains pairs made by
a concept and a more general category to which the concept belongs. It is made by
220 sentences with the prompt “As we all know [X] belongs to the bigger category of [Y]”.
For instance, it contains the relation (Champagne, Wine).

• Part of: this dataset contains pairs of sets, into which one is a subset of the other. It
contains 260 sentences with the prompt “It has been proven that [X] is a specific part
of [Y]”. For example, it contains the relation (Torah, Bible). Although this dataset is
quite similar to the previous one (also based on T-REX), please note that we used a
completely different prompt for better generalization.

• Medicine: this dataset contains pairs (which are commonly available online) of drugs
and medical conditions treated by them. It contains 100 sentences and it exploits
the prompt “The medicine [X] is commonly used for the treatment of [Y] and other medical
conditions”. For example, it contains the relation (Aspirine, Inflammation).

5. Experimental Settings and Evaluation

In this section, we describe how we conducted the experimental evaluation of our
approach and we present our results. We applied these techniques to different BERT models.
All these models have the same architecture (12 layers and 12 heads for each layer), and
they are available on HuggingFace. They mostly differ in case-sensitivity, training process
and training data. However, our approach is completely general and it can be applied also
to different architectures based on Multi-Head Attention Mechanisms. For instance, we
tested it on a BERT model with 8 layers and 8 heads for each layer, obtaining similar results.

The models considered are the following ones:

• bert-base-uncased (https://huggingface.co/bert-base-uncased accessed on 26 June
2023), a BERT English model insensitive to capital letters [1];

• bert-base-cased (https://huggingface.co/bert-base-cased accessed on 26 June 2023), a
BERT English model sensitive to capital letters [1];

• bert-base-multilingual-cased (https://huggingface.co/bert-base-multilingual-cased
accessed on 26 June 2023), a multilingual BERT model [1];

• bluebert (https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_
A-12 accessed on 26 June 2023), an uncased BERT model training on a generic corpus
and on medical documents [2].

5.1. Experimental Results

First of all, we computed Self Metric, as defined in Section 3.2, on each head of the
model for a subset of sentences belonging to the Synonyms dataset, and we identified the
most promising heads according to the metric. In Table 1, we show the five most promising
heads according to the Self Metric across all the considered domains for the bert-base
English models (cased and uncased). We can notice that the heads are almost entirely
the same across all the domains. This means that the behaviour of the heads is mostly
independent from the data we considered and the prompt we designed. However, we can
also see that the heads identified by the Self Metric are completely different between bert-
base-cased and bert-base-uncased. For the other models, we obtained very similar results,
which are not reported for brevity’s sake. A more thorough analysis of this phenomenon is
reported in Section 6.

After computing the Self Metric for each token, we can select the more promising heads
and verify if they connect words belonging to the same semantic field or if they identify
relations based on some factual real-world knowledge, exploiting the Linker Algorithm
described in Section 3.3. In order to select an adequate number of heads for our study, we
conducted a preliminary experiment on the Synonyms dataset, considering the bert-base

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
https://huggingface.co/bionlp/bluebert_pubmed_uncased_L-12_H-768_A-12
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English models. In this experiment, we evaluate the Cumulative Normalized F-Score,
which is calculated as follows:

Cumulative Normalized F-Score(N) =
N

∑
i=1

F-Scorei
L ∗ H

(9)

We progressively considered N heads (from 1 to 144) from the most promising to the
least promising according to the Self Metric. For each head, we computed its F-Score and
divided, as a normalization process, by the number of layers (L) multiplied by the number
of heads per layer (H). Then, we calculated the sum of the F-Score of the N heads.

Table 1. Most important heads identified by the Self Metric and ordered by their value for the
bert-base-uncased and bert-base-cased models. Each head is expressed by a pair (l, h), where l is the
layer number and h is the head number of the l-th layer.

(a) Bert-Base-Uncased

Synonyms Antonyms Capitals Locations Part of Belogns to Medical

(3,7) (3,7) (3,7) (3,7) (3,7) (12,9) (3,7)

(12,9) (12,9) (12,9) (12,9) (12,9) (3,7) (12,9)

(4,1) (11,11) (2,12) (2,12) (2,12) (2,12) (2,12)

(2,12) (11,10) (11,10) (11,10) (11,10) (11,11) (4,1)

(11,10) (2,12) (11,11) (4,1) (11,10) (11,10) (11,10)

(b) Bert-Base-Cased

Synonyms Antonyms Capitals Locations Part of Belogns to Medical

(12,4) (12,4) (12,4) (12,4) (12,2) (12,4) (12,4)

(12,12) (12,12) (12,12) (12,12) (12,4) (12,12) (12,12)

(4,8) (4,8) (12,3) (12,3) (12,3) (12,3) (12,3)

(12,3) (12,3) (4,8) (4,8) (4,8) (11,3) (4,8)

(5,1) (5,1) (10,2) (3,6) (3,3) (3,6) (3,6)

The results for the Synonyms dataset and for the Capitals dataset are shown in Figure 4.
We can see that the normalized F-Score increases rapidly considering the first heads identi-
fied by the Self Metric and stops after 20 or 25 heads, confirming the capability of our metric
to identify this desired behaviour and that the remaining heads perform some other types
of operations not related to semantics or factual knowledge but probably most focused on
grammatical properties [14]. The results are similar in the other domains we considered,
except for the bert-multilingual-cased model in the Belongs to, Part of and Medical datasets
and for the bert-base-cased model in the Medical dataset. These issues are discussed more
thoroughly in Section 6. Therefore, thanks to this preliminary study, we selected N = 20,
thus identifying 20 heads as the most promising for the next experiments across all the
domains considered.

The results of our approach that extracts pairs of words for the most promising
20 heads are presented in Table 2 in terms of acc20, and they are compared to the baseline,
i.e., considering all heads (accTot). In terms of acc20, considering the Semantics domains,
our approach obtains remarkable results. Here, the accuracy of the approach on 20 heads is
at most 0.05 lower than the accTot. For instance, considering bert-base-uncased model in
the Synonyms domain, we obtained 0.84 in accTot and 0.82 in acc20. This means that those
heads contain almost all the knowledge of the model on these domains and that our Self
Metric correctly identified them.

The performance is very good also on the Geography domains. For the States and
Capitals dataset, we can see a very small drop in performance between accTot and acc20,
with performances always higher than 0.8. On the Locations dataset, the results even reach
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0.97 in terms of acc20 with bert-base-uncased. However, we have a drop in accuracy, with
0.62 in terms of acc20 and 0.9 in terms of accTot using the multilingual version of BERT,
which probably stores this kind of knowledge in a different way.

Table 2. Accuracy of pairs correctly identified by all heads and the top 20 heads in the Self Metric for
each model. We have highlighted in bold the best performance of our approach for each domain.

Model Synonyms Antonyms Capitals Locations
accTot acc20 accTot acc20 accTot acc20 accTot acc20

bert-base-uncased 0.84 0.82 0.77 0.76 0.85 0.84 0.97 0.97

bert-base-cased 0.84 0.80 0.76 0.76 0.87 0.86 0.94 0.94

bert-multilingual-cased 0.84 0.79 0.77 0.74 0.84 0.82 0.90 0.62

bluebert 0.84 0.81 0.77 0.77 0.87 0.81 0.93 0.90

Model Belongs to Part of Medical
accTot acc20 accTot acc20 accTot acc20

bert-base-uncased 0.91 0.75 0.82 0.68 0.87 0.69

bert-base-cased 0.91 0.52 0.81 0.75 0.88 0.21

bert-multilingual-cased 0.91 0.67 0.81 0.53 0.87 0.46

bluebert 0.91 0.70 0.82 0.56 0.88 0.79

From this analysis and considering the fact the we considered (as can be seen in
Table 1) basically the same heads, we claim that the models see the geography relations
between a state and its capital and between a place (such as a region) and the state where
it is located as semantically related, as if they were synonyms, providing an interesting
perspective on how factual knowledge can be memorised by a pre-trained language model.

Considering the other domains, our approach still performs well. However, we can see
that we have a larger difference between accTot and acc20. For instance, in the Belongs to
dataset using bert-base-uncased, we obtain 0.75 in terms of acc20, while accTot reaches 0.91.
The most significant case, however, is regarding the Medical dataset. In fact, considering
the bert-base-cased model, we can see a 0.21 in terms of acc20, while the accuracy calculated
on all the heads is 0.88. Therefore, we claim that the knowledge between a drug and the
disease it treats is not captured by the heads we selected and, with respect to the other
domains, cannot be seen as semantically related.

An interesting fact can be observed by analysing the blue-bert model, which is fine-
tuned on documents about medicine and biology, regarding the Medical domain. We
can see that our approach produces better acc20 (0.79) than all the other models while
maintaining basically the same accTot. From these results, we can make a few observations.
First, it seems that the relations between the most common drugs and the corresponding
disease are also present in the general-purpose models, and a fine-tuning with medical
documents does not increase that kind of knowledge. However, the fine-tuning process
seems to modify the way it is stored inside the BERT architecture.

Please note that, in all configurations, the accTot is never equal to 1, which means that
not all the semantic relations or the factual knowledge are captured by the self-attention
mechanism and they perhaps could be contained in other parts of the architecture, like the
feed-forward layers [20].

If we look at the models, we can see that bert-base-uncased is the model where our
approach is more stable, but, in the Semantics and Geograpy domains, all the models
perform great. During the experiments, we observed that, for bert-base-cased and bert-
base-multilingual-cased, it was more difficult to distribute attention between words due
to the presence of capital letters, which makes the same word correspond to two different
tokens or makes the tokenizer split the word into several tokens. Moreover, the further
reduction in performance in bert-multilingual-cased might be caused by the presence of
other languages known by the model, Thus, it is less confident in sharing the attention
between words. The results on the approach regarding bluebert show that its knowledge
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is quite the same as bert-base-uncased, and it seems that fine-tuning does not affect the
general knowledge of the model negatively.

5.2. Robustness to Different Prompts

We ran an additional experiment to check the behaviour of our approach with different
prompts. We created new datasets of synonyms and antonyms, selecting five different
prompts and forty entities, for a total of two-hundred samples per domain. We then
analysed the results of our techniques, checking that they identified the same entities
regardless of the prompt in which they were entered. The prompts we designed for the
study on the Synonyms domain are:

• I could describe it as [X], or, to put it another way, it is [Y].
• If I had to put it into words, I would say it is [X], or, to use a synonym, it is [Y].
• You might call it [X], but I would describe it as [Y]—they are essentially synonyms.
• In my opinion, it is [X], or, to use a similar term, it is [Y].
• If you were to ask me for a word to describe it, I might choose [X], or, to put it

synonymously, [Y].

Similarly, for the Antonyms domain, we designed the following prompts:

• You used the term [X], but I would argue that it is actually quite the opposite. I would
describe it as [Y].

• While you described it as [X], I believe that it is actually the antithesis. I would say it
is [Y].

• Your description of it as [X] does not quite fit; I think the antonym is more accurate. I
would label it as [Y].

• Although you referred to it as [X], I think there is a more fitting antonym. I would say
it is [Y].

• Your characterization of it as [X] does not match my perception; the opposite seems
more appropriate. I would describe it as [Y].

The results of these experiments are available in Table 3. We can see that our method
exhibits a remarkable level of robustness with respect to the prompt used, allowing for
flexibility and adaptability in various contexts. Despite the diverse prompts employed, our
methods obtain stable accuracy in both domains, demonstrating their robustness despite
the context in which the entities are presented.

Table 3. Accuracy of pairs correctly identified by all heads and the top 20 heads in the Self Metric for
each model on Synonyms and Antonyms domains, on each different prompt, to prove the robustness
of our approach.

(a) Synonyms

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
accTot acc20 accTot acc20 accTot acc20 accTot acc20 accTot acc20

bert-base-uncased 0.9 0.8 0.9 0.83 0.9 0.88 0.9 0.85 0.9 0.88

bert-base-cased 0.88 0.83 0.90 0.80 0.90 0.78 0.90 0.85 0.90 0.88

bert-multilingual-cased 0.90 0.83 0.90 0.78 0.90 0.83 0.90 0.83 0.90 0.90

bluebert 0.88 0.75 0.90 0.90 0.90 0.78 0.90 0.85 0.88 0.88

(b) Antonyms

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
accTot acc20 accTot acc20 accTot acc20 accTot acc20 accTot acc20

bert-base-uncased 0.9 0.8 0.9 0.83 0.9 0.88 0.9 0.85 0.9 0.88

bert-base-cased 0.83 0.55 0.83 0.60 0.83 0.60 0.83 0.63 0.83 0.63

bert-multilingual-cased 0.83 0.78 0.83 0.75 0.83 0.78 0.83 0.83 0.83 0.80

bluebert 0.80 0.80 0.80 0.78 0.80 0.78 0.80 0.78 0.80 0.80
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6. Discussion

In this section, we discuss more thoroughly our results and their consequences and
we contextualize them with our initial goals.

Our first objective was to find a technique to identify heads that focus on basic semantic
information, for example, if two words are synonyms or antonyms. We defined the Self
Metric to highlight heads that strongly connect a word with itself inside a sentence, with
the assumption that they also linked those semantically related words. However, from
the results we reported in Table 1, we have found that the values of the Self Metric, and,
therefore, the overall behaviour of the heads, did not regard only synonyms or antonyms
but also factual knowledge in domains such as geography. We claim that this is one of the
first results of our study because we show how semantics and factual knowledge can be
treated in the same way by a Transformer-based model as if the name of a state and the
name of its capital were treated as synonyms. Nonetheless, considering other domains
could lead to further results, and we want to conduct a more in-depth study of this kind of
behaviour as future work.

Another aspect to be considered is that there is no guarantee that these heads are
located in the same positions in different models. In fact, in Table 1, we can see that
the first five heads identified by the Self Metric are completely different in the bert-base-
uncased and in the bert-base-cased models. Given that these models have exactly the same
architecture, we claim that this difference is simply due to the randomness of the training
procedure. In fact, these two models are trained with the same data, apart from the fact
that the uncased model does not deal with capital letters, and with the same algorithm
and hyperparameters. Therefore, less-measurable aspects, such as weight initialization,
can produce some differences regarding which heads do what. As a consequence, models
trained with substantially different corpora of documents (such as the multilingual model
or bluebert, which is trained also on medical documents) exhibit the same behaviour. From
these experiments, we show that different types of BERT models have several heads into
which tokens are mostly connected to themselves. This is coherent with the results shown
in [15]. Therefore, we claim that these heads present something that should be learned by a
model, and it is very useful for NLP tasks that BERT is able to solve.

Another important aspect that should be analysed is the number of heads we have
to consider. As we reported in Section 5 (in particular, in Figure 4), we see that all models
reach their performance in terms of the Cumulative Normalized F-Score considering about
20 heads for both the Synonyms and the Capitals datasets. Although similar results were
obtained for most of the other cases we considered, there are a few notable exceptions: the
Medical domain (except for the bluebert model); the bert-base-cased and bert-multilingual-
cased models on the Belongs to dataset and the bert-multilingual-cased model on the
Part of dataset. In these cases, more heads could be considered in order to obtain better
performance. This behaviour can be seen also in Table 2, where these experiments are
the ones with lower acc20. In a further analysis, we noticed that the important heads are
included in the first 30 and not the first 20, and, in general, all the models reach an acc20
equal to accTot in the first 40 heads. Given these experiments, we claim that, for these
models, this type of knowledge is captured by heads that are not easily identifiable by the
Self Metric, and they exhibit different behaviour. For the Medical dataset, this could be
due to the specificity of the task, which involves strictly medical terms regarding drugs
and diseases, which are not exactly known to the models trained on corpora of general
documents. In fact, bluebert (which is trained also on medical documents and research
articles) obtains very good results in its first 20 heads, exactly as the other models for the
more general tasks. Moreover, the difficulties of the multilingual model could be due
to the fact that this model has to learn several languages, and, therefore, it has much
more knowledge to encode and distribute across its heads. Moreover, this model has a
much larger vocabulary, so it could be less confident in connecting important words. A
more in-depth study of the behaviour of multilingual models could be performed as a
future work.
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We obtained great results over our target datasets, Synonyms and Antonyms. In these
experiments, the acc20 is at most 5 points below the acctot, which means that the most
important heads are correctly identified by our metric. This confirms our initial hypothesis,
that the models see semantic-related words in the same way as repetition of the word itself.
Seeing these results, we extended our approach to different types of knowledge belonging
to real-word knowledge. We found that our approach works very well also on geographic
knowledge. In this experiment, we reached an acc20 almost equal to accTot, which means
that, in this case as well, our approach identified the most important heads. The last
domains, Belongs To, Part Of and Medical, have lower accuracy. This could be due to the
fact that the models see this knowledge in a different way than before. Therefore, these
entities are not seen as semantically related, but there are heads with different behaviours
that connect them. This leads to the question of how the model classifies different types of
knowledge and what head behaviour identifies them, and that could be answered with
future works on the topic.

Finally, we conducted another experiment on the robustness of our method, evaluating
the results of our approach with five different prompts for the Synonyms and Antonyms
datasets. Our results show another important aspect of our work: in fact, we obtained very
similar results considering different sentence prompts in the identification of synonyms
and antonyms. Given that the behaviour of the heads identified by the Self Metric does not
depend on context (most of the tokens simply are linked to themselves, with the notable
exceptions of synonyms, antonyms and factual knowledge), we claim that this form of
knowledge in a Transformer-based model is not strongly influenced by the overall context
of the sentence but can be inherent to the model itself. However, more experiments should
be conducted on this subject, considering longer and more complex prompts.

7. Conclusions and Future Work

In this work, we proposed a new metric to identify heads containing semantic knowl-
edge in large language models based on attention, in this case based on the BERT architec-
ture. In order to study the relationship between words, we designed an algorithm based on
Mean Shift [25] that returns the word pairs with the highest attention weights.

Comparing the mostly related tokens according to the heads we identified together
with the ground truth labels, we verified that these heads can capture synonyms and
antonyms. Next, we applied our methods to different factual knowledge domains, such
as geography, general knowledge and medicine. We found out that the approach works
well in geographical domains as if the model sees these entities as semantically related. On
the other hand, we also noticed some difficulties in particular areas, such as the medical
domain. Therefore, we claim that the model has different ways of storing various kinds of
knowledge. However, it is possible that slight variations in our technique could identify
other types of heads and their knowledge.

Although this work does not provide a full explanation of how BERT works, we claim
that we have found something worthy of interest on the behaviour of attention mechanisms.
However, further studies could be conducted. We defined only one of the possible metrics
that can describe a behaviour of the model. Future studies can focus on identifying other
behaviours and designing different metrics to analyse them.

These techniques can be applied to more domains, such as history, physics or chemistry,
in order to test the performance of our methodology with other types of knowledge.

Moreover, for the Synonyms and Antonyms datasets, we also found that our method
provides stable results with different prompts. As future work, we could expand this
study considering more prompts and using more complex sentences taken directly from
real documents.

In addition, our techniques could be redesigned or adapted to other BERT models or
other architectures based on self-attention, like T-5, Reformer or GPT models. Finally, these
methods can lead to a study on how the model manages different kinds of knowledge,
designing different metrics.
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