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Abstract: As microservice-based architectures are increasingly adopted, microservices security has
become a crucial aspect to consider for IT businesses. Starting from a set of “security smells” for
microservice applications that were recently proposed in the literature, we enable the automatic
detection of such smells in microservice applications deployed with Kubernetes. We first introduce
possible analysis techniques to automatically detect security smells in Kubernetes-deployed microser-
vices. We then demonstrate the practical applicability of the proposed techniques by introducing
KUBEHOUND, an extensible prototype tool for automatically detecting security smells in microservice
applications, and which already features a selected subset of the discussed analyses. We finally show
that KUBEHOUND can effectively detect instances of security smells in microservice applications by
means of controlled experiments and by applying it to existing, third-party applications.
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1. Introduction

Microservices are being increasingly adopted by the IT industry, with companies
such as Amazon, Netflix, and Spotify already delivering their core businesses through
microservices [1,2]. This is because microservices enable obtaining so-called cloud-native
applications, namely, applications fully exploiting the potentials of cloud computing, and
since microservices smoothly integrate with the widespread DevOps practices [3].

Microservice architectures can be seen as peculiar extensions of service-oriented ar-
chitectures (SOAs), characterised by an extended set of design principles, e.g., designing
microservices around business concepts, making them independently deployable and
highly observable, and isolating their possible failures [4]. Microservices hence inherit the
traditional security concerns for SOA, whilst also raising new security challenges [5]. For
instance, compared to SOA, microservices increase the surface prone to security attacks and
raise the need to establish trust among the microservices forming an application and man-
age distributed secrets [6]. Furthermore, microservices interactions should be thoroughly
secured, not only when interacting with external clients, but also whenever a microservice
communicates with another microservice of the same application [7].

In this perspective, Ponce et al. [1] recently elicited the smells and refactorings for
microservice security. They defined the “security smells” for microservices as possible
symptoms of bad (though often unintentional) design decisions, which can negatively affect
the security of a microservice application. Examples of security smells are non-secured
service communications and unauthenticated traffic, which occur when the interactions
among an application’s microservices are not encrypted nor authenticated. Security smells
can be resolved by refactoring an application or the microservices therein. For instance, the
use of Mutual TLS and OpenID Connect enables the resolution of the above-mentioned
smells [1]. However, automatically detecting the security smells affecting an existing
microservice application is still an open problem [8].

In this perspective, the objective of this work is to demonstrate that instances of the
security smells by Ponce et al. [1] can be automatically detected in microservice applications,
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while also providing an extensible tool for supporting this task. More precisely, the main
contributions of this work are the following:

(i) We demonstrate that security smell detection can be automated by proposing a set of
techniques enabling the detection of such smells in microservice applications deployed
with Kubernetes, the de facto standard for orchestrating microservices [5].

(ii) We introduce KUBEHOUND, an open-source security-smell-detection tool that already
features the implementation of a selected subset of the analyses in (i). KUBEHOUND

is extensible and modular, enabling users to specify custom plugins that implement
additional analyses to be applied.

(iii) We assess our approach in practice by running KUBEHOUND in controlled experiments
with a “mock” microservice application and by applying it in two case studies based
on existing, third-party applications.

It is worth noting that KUBEHOUND follows a “best effort” approach, meaning that it
runs a smell-detection technique only if all the resources it needs are available. In other
words, KUBEHOUND performs the largest possible subset of smell-detection techniques
it can, given the inputs provided by an end-user. This enables end-users to provide only
what they wish to be analysed, e.g., also enabling KUBEHOUND to work if the source code
of some microservices is not available or if users do not wish KUBEHOUND to interact with
a running instance of the target microservice application.

The rest of this article is organised as follows. Section 2 provides the necessary
background on microservice security smells [1]. Section 3 discusses the relevant related
work. Section 4 outlines possible analysis methods to automatically detect security smells.
Section 5 describes the architecture and implementation of KUBEHOUND, together with
the implementation of six plugins that perform smell detection. Finally, Sections 6 and 7
present the assessment of KUBEHOUND and draw some concluding remarks, respectively.

2. Background

We hereafter recall the security smells for microservices proposed by Ponce et al. [1],
which they organised in the taxonomy in Figure 1. We then show how to detect instances
of each of such smell in Kubernetes-deployed microservices in Section 4.

Figure 1. Taxonomy showing the (a) affected security properties, (b) security smells, and (c) refactor-
ings for microservices [1].

Insufficient Access Control. This smell occurs when a microservice does not enforce
access control. The lack of access control may indeed compromise the Confidentiality of a
microservice, as attackers can trick it and access data/functions that should not be accessible
to them. The possible effects of Insufficient Access Control can be mitigated by applying the
Use OAuth 2.0 refactoring, namely, by exploiting the access-delegation framework OAuth
2.0 to control the accesses to a microservice.
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Publicly Accessible Microservices. This smell occurs when a microservice can be invoked
directly by an external client. This would require authentication to be performed on all
publicly accessible microservices, always requiring users’ credentials, which may compro-
mise the application’s Confidentiality (e.g., by exposing long-term credentials). It would
also result in increasing an application’s overall attack surface and in reducing its usability
and maintainability. For this reason, the suggested refactoring is to Add an API Gateway
to be used as the entry point of the application. Individual microservice APIs can then be
accessed through the gateway, and authentication can be performed centrally, overall re-
ducing the attack surface of the application and simplifying authentication-auditing tasks.

Unnecessary Privileges to Microservices. This smell occurs when unnecessary privileges
are granted to a microservice, even if it does not need them to deliver its business functions.
If this is the case, the resources of an application may become unnecessarily exposed,
therefore increasing the attack surface and likelihood of compromising the application’s
Confidentiality and Integrity. A microservice application should rather be secured by Follow-
ing the Least Privilege Principle, namely, by ensuring that each microservice can access only
the least set of functionalities and data it needs. This would indeed help contain the effects
of security attacks in which attackers obtain control of a microservice, e.g., by exploiting a
software vulnerability.

Own Crypto Code. Microservices should be developed by avoiding the use of Own Crypto
Code, which may compromise an application’s Confidentiality, Integrity, and Authenticity.
The use of Own Crypto Code may produce a false sense of security, which may be even
worse than not using any encryption solution. When the Own Crypto Code smell occurs,
the affected microservices should be refactored by Using Established Encryption Technologies,
namely, by replacing the own crypto code with security technologies/libraries that have
already been thoroughly tested.

Non-Encrypted Data Exposure. Microservice applications may accidentally expose sen-
sitive data, e.g., since no encryption was used when storing them or because of security
vulnerabilities in the employed protection mechanisms. The Confidentiality and Integrity of
the exposed data can thus be compromised, e.g., since an attacker could acquire or modify
the exposed data by obtaining unauthorised access to the application. For this reason,
the recommended refactoring is to Encrypt All Sensitive Data at Rest, with “data at rest”
intended as structured/unstructured data stored in digital form (e.g., cloud storage [1]),
and to decrypt such data only when it is used. Data encryption can be performed by
database-management systems or by the operating system at the disk level, and it should
also be applied to cached sensitive data.

Hardcoded Secrets. This smell occurs when secrets (e.g., API keys, client secrets, or long-
term credentials) are hardcoded in the microservices’ source code or deployment scripts.
Secrets should also not be stored in environment variables, because logging platforms might
accidentally expose them by dumping the environment. This could lead to Confidentiality
and Integrity violations of the stored secrets. The suggested refactoring is to Encrypt Secrets
at Rest by allowing only authorised services to access their corresponding secrets. This
includes never storing credentials alongside applications, as well as avoiding passing
secrets to a microservice by setting environment variables of its hosting container.

Non-Secured Service-to-Service Communications. Even if running in the same internal
network, microservices should establish secure communication channels to interact with
each other. When this is not the case, we have Non-Secured Service-to-Service Communications,
which may compromise an application’s Confidentiality, Integrity, and Authenticity. Indeed,
when service communications are not secured, attackers can perform man-in-the-middle,
eavesdropping, and/or tampering attacks on such communications. Development teams
should rather follow a “zero-trust” approach by applying the Use Mutual TLS refactor-
ing. Mutual TLS is a well-known method to secure service-to-service communications
that creates a secure communication channel that features data encryption and mutual
authentication, hence preventing, e.g., man-in-the-middle attacks.
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Unauthenticated Traffic. This smell occurs when a microservice receives unauthenticated
requests from external clients or other microservices of the same application. This may
result in violating the application’s Authenticity, since there is no guarantee that the ex-
changed data are trusted and have not been modified. The suggested refactoring is to Use
Mutual TLS (described earlier) and to Use OpenID Connect, an identity layer built on top of
OAuth 2.0.

Multiple User Authentication This smell occurs on microservice applications authenticat-
ing users through multiple different access points. Each access point can be exploited by
intruders to authenticate as end-users, thus violating the Authenticity of the application.
The suggested refactoring is to Use Single Sign-On, namely, a single entry point to handle
user authentication. The single sign-on can be realised by also implementing the Add an
API Gateway and Use OpenID Connect refactorings discussed earlier.

Centralised Authorisation This smell occurs when authorisation is handled by only one
application component. This may result in violating the Authenticity of the application,
since compromising such a component could lead to an attacker having full access to
the application. A fine-grained, microservice-level authorisation control should rather be
enforced. For this reason, the suggested refactoring is to Use Decentralised Authorisation by
relying on access tokens (e.g., JSON Web Tokens) transmitted with each request. Tokens
indeed provide a mechanism to pass digitally signed user claims or data, which enables
the enactment of access control at the microservice level.

3. Related Work

Securing microservice applications is crucial [5], as also witnessed by the number
of recent contributions in the field. For instance, Chondamrongkul et al. [9] propose a
technique to automatically identify security threats in microservice applications, starting
from a collection of formally defined security characteristics. Other examples are given by
Schneider et al. [10] and Zdun et al. [11], who support checking microservice applications
for security by extracting security-aware dataflow diagrams and providing KPI metrics to
measure the effectiveness in securing applications, respectively. Automatically detecting
the security smells proposed by Ponce et al. [1] in microservice applications is, however,
still an open problem [8], as also witnessed by the recent review by Pinheiro et al. [12].
Our objective is therefore to complement the existing studies on microservices’ security
smells [1,8] by providing concrete techniques for their detection and a first tool for support.

At the same time, there exist methods and tools for analysing microservice applications’
security that can also be used to detect other security smells, sometimes partly overlapping
with those of Ponce et al. [1]. The closest to our proposal is perhaps the security smell
detection proposed by Rahman et al. [13]. They propose a static analysis approach to
detect smells in Infrastructure-as-Code (IaC) scripts. Their approach differs from ours in its
objectives, as it aims at detecting IaC security smells, rather than microservices’ security
smells. The security smells detected by Rahman et al. [13], however, cover two instances of
microservice security smells that we also consider, viz., Hardcoded Secrets and Unnecessary
Privileges to Microservices, which can be detected on the IaC scripts used to deploy a
microservice application. The other microservice security smells by Ponce et al. [1] cannot
be detected with the method proposed by Rahman et al. [13].

There also exist production-ready tools for security analysis, such as Kubesec.io [14],
Checkov [15], Kube-bench [16], Kube-hunter [17], OWASP Zed Application Proxy (ZAP) [18],
OpenAPI-fuzzer [19], and Sonarqube [20], for instance. Kubesec.io [14] implements a static
analysis of Kubernetes configuration files, aimed at detecting known security weaknesses.
More generally, Kubesec.io [14] provides a priming tool to detect misconfigurations that
may induce vulnerabilities for a microservice application deployed with Kubernetes.

Checkov [15] is another tool based on the static analysis of deployment configuration
files. It enables the detection of security weaknesses due to misconfigurations in the
Kubernetes configuration files and Dockerfiles, among others. Checkov features many
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built-in policies, each targeting a specific known security weakness, and it provides a
Python interface to support extending it with custom policies.

Kube-bench [16] and Kube-hunter [17] instead implement two different dynamic
analyses to detect security issues in containerised applications running on some Kubernetes
clusters. Kube-bench [16] checks whether a running application adheres to the security
guidelines defined by the Center for Internet Security [21]. This is carried out by inspecting
the configuration of the cluster where the application is running by running Kube-bench
either directly on its nodes or as a privileged pod on the cluster. Kube-hunter [17] instead
performs a black-box vulnerability assessment of the cluster. Kube-hunter can also run a
so-called “active scan” that will try to automatically exploit the vulnerabilities found to
find even more vulnerabilities to automatically create exploitation chains.

OWASP ZAP [18] and OpenAPI-fuzzer [19] are two other tools enacting dynamic
analyses for finding the security vulnerabilities/weaknesses of running applications. They,
however, differ from the above-described tools in their scope and method, focusing on the
APIs of running services and enacting security testing. More precisely, OWASP ZAP [18]
focuses on Web and API security testing by checking for the security risks defined by
the OWASP Top Ten [22]. OpenAPI-fuzzer [19] instead exploits fuzzing to dynamically
test services’ APIs based on their OpenAPI specification. Even if not focusing on security
only, OpenAPI-fuzzer provides a valuable supplement to security testing, thanks also
to the possibility of assessing whether the implemented services’ APIs conform to their
corresponding specification in OpenAPI.

Finally, Sonarqube [20] is a general-purpose static code analyser aimed at enforcing
code quality and security. The tool supports most used programming languages and
analysis techniques, and it features static-application security testing to detect weaknesses
and vulnerabilities. It defines and computes many metrics to assess the quality and the
security of the source code, and so-called “quality gates” can be set to enforce a specific
quality level. Sonarqube distinguishes security hotspots, which are code areas of high
interest and security impact that may not contain any weakness, and security vulnerabilities,
which require immediate developer action. The tool can be used to check, e.g., the OWASP
Top 10-related issues [22] and it can be integrated into testing pipelines.

The above-listed security analysis tools provide validated solutions for identifying
security vulnerabilities/weaknesses in existing applications and can be used for microser-
vices applications too. They, however, differ from our proposed analyses and KUBEHOUND

in their objectives, as we instead focus on detecting the microservices’ security smells of
Ponce et al. [1]. At the same time, the analyses enacted by the above-listed tools can be
fruitfully exploited to implement the automated detection of instances of some security
smells of Ponce et al. [1], as we discuss in the following section.

4. Detecting Security Smells in Kubernetes-Based Microservices

We now demonstrate the possibility of automatically detecting the security smells
for microservices listed by Ponce et al. [1]. We provide both static and dynamic analysis
techniques for the purpose:

• Static analysis techniques detect security smells without running the target application,
but rather by analysing the source code of an application, the Kubernetes configuration
files and Dockerfiles used to deploy its microservices, or the specification of their APIs,
e.g., with the OpenAPI standard [23].

• Dynamic analysis techniques instead detect security smells by inspecting and commu-
nicating with an application running on a Kubernetes cluster. The cluster may be left
unmodified, namely, used “as-is”, or it may be modified to enact other types of analyses,
provided that the applied changes are not invalidating the analysis itself (e.g., by
adding monitoring probes to analyse the traffic exchanged among microservices).

To demonstrate the possibility of automatically detecting the security smells of
Ponce et al. [1], we hereafter introduce techniques enabling the detection of instances of
such smells in microservice applications deployed with Kubernetes, the de facto standard
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for microservice orchestration [5]. The presented techniques are also designed to enable the
reuse of existing security analysis tools (such as those recapped in Section 3) when possible.

For readability reasons, we separately demonstrate the detectability of each security
smell. Namely, for each security smell, we introduce a set of analysis techniques named for
the smell instance that they detect in Kubernetes-deployed microservice applications.

4.1. Insufficient Access Control

We consider three different instances of the Insufficient Access Control smell, for which
we hereafter introduce three different detection techniques. The detected instances are
distinguished based on whether they affect the specification of the microservice’s API, their
actual implementations, or their deployment in Kubernetes. In the first two cases, we take
the OpenAPI standard [23] as a reference to specify microservices’ API. When analysing
the OpenAPI specification of microservices’ API, we assume their actual implementation to
align to that specified, as possible divergences can be automatically detected with existing
techniques [24].

Insufficient Access Control in API Specifications. This technique enables the detection of
an instance of the Insufficient Access Control smell by statically analysing the OpenAPI speci-
fication of microservices’ APIs. This can be accomplished by identifying specific endpoints
or even whole services that are not performing authorisation, according to their OpenAPI
specification. The OpenAPI standard indeed allows specifying the authorisation scheme
enacted by each endpoint of a microservice’s API by specifying a security field, which
links to a securityScheme. The latter specifies the actual authorisation scheme enforced by
the endpoint, which spans from passing the username and password passed through HTTP
headers, to more elaborate schemes exploiting API keys, OAuth2, or OpenId Connect [23].
The actual implementation of this analysis technique must take into consideration that the
authentication endpoint itself does not by design have a security scheme associated with
it. In addition, there could be some endpoints that are by design accessible without any
authentication (e.g., to provide pre-authentication functionality).

Insufficient Access Control in Services’ Implementations. This technique enables the
detection of an instance of the Insufficient Access Control smell by dynamically analysing
microservices’ APIs, and more precisely by enacting automated API security testing. To
ensure that the services perform correct access control, it is not enough to check their
API specification, because the services’ implementation may not fully adhere to their
specification. Some form of dynamic testing is thus required to test the correctness of
the authorisation implementation. This analysis does not require the modification of the
cluster’s structure, since it can be performed by deploying a testing pod in the cluster that
calls an application’s microservices and checks their response to detect possible anomalies.
The testing pod can be implemented in two ways: if an OpenAPI specification is given,
then OpenAPI-fuzzer [19] can be employed to check the compliance of the services’ imple-
mentation with their specifications. Otherwise, OWASP ZAP can be used to detect broken
access control in the services’ APIs [18].

Insufficient Access Control to the Kubernetes API. This technique enables the detection
of an instance of the Insufficient Access Control smell affecting the Kubernetes control plane
by dynamically interacting with it. The Kubernetes API should indeed be configured with
proper authentication and authorisation configurations, since leaving the API unprotected
could lead to compromising the Kubernetes control plane, which would give an attacker
full control of the deployed application. Development teams should also set up proper
user/service accounts, configured with the fewest privileges to limit the risk of unautho-
rised access to the Kubernetes API with full privileges [25]. A tool that can be used to
check whether this is the case is Kube-hunter [17], which ensures that the Kubernetes API
is secured and has proper access control configured.
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4.2. Publicly Accessible Microservices

We consider three different instances of the Publicly Accessible Microservices smell, for
which we hereafter introduce three different detection techniques. The techniques are
distinguished based on whether they detect smell instances by statically analysing the
Kubernetes configuration files or by dynamically interacting with a running Kubernetes
deployment. Extra care has to be taken in this case, as some services could be intentionally
exposed by application developers, e.g., API gateways. The actual implementation of the
introduced analyses should therefore enable developers to specify this information to filter
out intentionally exposed services.

Exposed Kubernetes Services Using Service Type. This technique enables the detection
of an instance of the Publicly Accessible Microservices smell by statically analysing the
configuration files specifying an application’s deployment in Kubernetes. In particular, for
each microservice in an application, the analysis statically checks whether its deployment
configuration is set to be publicly accessible. Namely, the analysis checks whether the
microservice is exposed through Kubernetes Service objects of type LoadBalancer and
NodePort [26] or by using Ingress objects [27].

Exposed Kubernetes Services Using External-IP Field. This technique enables the detec-
tion of an instance of the Publicly Accessible Microservices smell by dynamically analysing the
metadata assigned by Kubernetes to running microservices. Kubernetes indeed associates
all running services with a Cluster-IP, that is, an IP address to reach the service from within
the internal cluster network. Publicly exposed services are also assigned an External-IP
address. This analysis hence retrieves the information about all services and whether they
are assigned an External-IP in their metadata.

Listing 1 gives an example of how this information can be retrieved using the command
kubectl. The output in the figure shows the Kubernetes services running on the cluster,
with two of them publicly accessible by external clients. While this may be intentional
for the application’s gateway, the same may not be the case for service2. The latter may
indeed be an internal microservice whose misconfiguration resulted in unintentionally
exposing it.

Listing 1. Example of output returned by kubectl, simplifed for readability reasons.

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
service1 ClusterIP 10.128.129.2 <none> 80/TCP
service2 NodePort 10.128.61.47 [Real IP here] 443/TCP
gateway NodePort 10.128.61.46 [Real IP here] 443/TCP

Exposed Kubernetes Services Using Port Scanning. This technique enables the detection
of an instance of the Publicly Accessible Microservices smell dynamically. This is performed by
running port scanning [28], a technique that allows probing a host in order to find services
listening on specific ports. The industry-standard tool that implements this technique is
Nmap [29], which can also enumerate the exposed services, e.g., by returning the name
of the running service. Other existing security-analysis tools, e.g., Kube-hunter [17], also
perform port-scanning techniques to search for exposed services.

4.3. Unnecessary Privileges to Microservices

We consider two different instances of the Unnecessary Privileges to Microservices smell,
for which we hereafter introduce two different detection techniques. The detected instances
are distinguished based on whether they are detected by analysing the privileges assigned
to the pods in Kubernetes configuration files or by checking the network policies.

Unnecessary Privileges to Kubernetes Pods. This technique enables the detection of an in-
stance of the Unnecessary Privileges to Microservices by statically analysing the configuration
files specifying an application’s deployment in Kubernetes. The analysis checks the privi-
leges of the cluster’s pods by parsing the Kubernetes configuration files specifying them.



Future Internet 2023, 15, 228 8 of 26

Kubernetes allows developers to configure each pod with some associated privileges, e.g.,
through the securityContext field, which describes the security properties that a deployed
pod should have (Listing 2). This field can be given for each pod or each container in a pod,
enabling a more granular privilege specification. The properties specified include, e.g., if
the service should run as privileged or unprivileged, its access control to files using User
ID and Group ID, and its Linux capabilities. A proper setting of the securityContext field
can thus help achieve minimal privileges for a microservice at the level of the Kubernetes
pod used to deploy it [30]. Implementations of this analysis should ensure that the service
is running as a non-privileged user, the application has minimal capabilities, and the host
network namespace is invisible to the service.

Listing 2. Example configuration of securityContext.

securityContext:
runAsNonRoot: true
runAsUser: 10001
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities: { drop: [ all ], add: [ NET_BIND_SERVICE ] }

Moreover, the proper configuration of service accounts should be taken into careful
consideration. If this is not carried out, an attacker that obtained unauthorised access to a
pod’s file system, e.g., by exploiting a software vulnerability, may also be able to escalate
their privileges by gaining access to the Kubernetes API. Service accounts offer a solution
to try to mitigate the impact of this occurrence by offering the pods a token to access the
Kubernetes API, if needed, and with limited privileges [31]. The described analysis is
implemented and validated in two existing tools, viz., Kubesec.io [14] and Checkov [15].

Misconfigured Network Policies. This technique enables the detection of an instance of the
Unnecessary Privileges to Microservices smell by dynamically checking whether each service
can communicate only with the services it is supposed to. In Kubernetes, developers
can configure network policies. These are often used in combination with Kubernetes
namespaces to create groups of microservices that can communicate with each other, but
not with other entities [32]. This enables creating pods with the fewest privileges possible,
as they can access only the services/resources they require to provide their functionality.
The tool Kube-bench [16] can be used to dynamically check such network policies.

4.4. Own Crypto Code

We consider two different instances of the Own Crypto Code smell, for which we
hereafter propose two different detection techniques. The detection techniques are dis-
tinguished based on whether they search for the occurrence of cryptographic primitives
(https://csrc.nist.gov/glossary/term/cryptographic_primitive, accessed on 26 June 2023)
or suspicious cryptographic names.

Usage of Cryptographic Primitives. This technique enables the detection an instance of
the Own Crypto Code smell by statically analysing the microservice’s source code to detect
the use of cryptographic primitives, e.g., AES or RSA. The usage of such primitives could
be a symptom of a custom cryptography solution being re-implemented, instead of reusing
established and trusted high-level solutions. One such detection of primitive cryptographic
function calls can be enacted using the tool Sonarqube [20], which tags as a “hotspot” any
invocation of cryptographic primitives. This is not to be confused with the usage of weak
and outdated cryptographic systems (e.g., the DES cryptosystem), which is considered by
Sonarqube a security vulnerability.

Suspicious Cryptographic Names. This technique enables the detection of an instance of
the Own Crypto Code smell by statically analysing the microservice’s source code to detect
suspicious cryptographic names used therein, e.g., RSA, IV, or AES, which could suggest
some customised cryptographic implementation. This of course does not mean that the

https://csrc.nist.gov/glossary/term/cryptographic_primitive
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code performs custom cryptography computation, but it at least informs the developers
that the naming of the function could be misleading.

4.5. Non-Encrypted Data Exposure

We consider a possible instance of the Non-Encrypted Data Exposure smell, which
occurs when data-at-rest encryption is not enabled in data stores. We therefore introduce
the following analysis to detect one such smell instance.
Data-at-Rest Encryption Not Enabled in DBMSs. This technique enables the detection of
an instance of the Non-Encrypted Data Exposure smell by statically analysing the configu-
ration files of database management systems (DBMSs). The analysis aims at determining
whether encryption-at-rest of data is enabled in a DBMS by inspecting its Kubernetes
configuration files, Dockerfiles, or custom configuration files. Such a static analysis can be
implemented by suitably configuring the static analysis featured by Checkov [15] to detect
whether data encryption is enforced by the configuration files of the most widely used
DBMSs (e.g., MongoDB, MySQL, PostgreSQL, or Redis). This analysis could be extended
to work with other DBMSs not yet supported by Checkov.

4.6. Hardcoded Secrets

We consider three different instances of the Hardcoded Secrets smell, for which we
hereafter introduce three different detection techniques. The introduced techniques are
distinguished based on whether the secrets are hardcoded in Kubernetes configuration
files, Dockerfiles and source code, or in containers’ environment variables.
Hardcoded Unencrypted Kubernetes Secrets. This technique enables the detection of an
instance of the Hardcoded Secrets smell by statically analysing the configuration files speci-
fying an application’s deployment in Kubernetes and by looking for unencrypted secrets
written therein. As stated in the official documentation, Kubernetes secrets are by default
stored unencrypted, typically represented in base64 encoding, which can be decoded to
recover the original secret [33]. Listing 3 shows an example of an unencrypted Kubernetes
secret in which one can readily recover the username “admin” and password “password”
by decoding the data fields. The tool Checkov [15] can statically detect unencrypted
Kubernetes secrets in order to enforce encryption-at-rest of secrets.

Listing 3. Example of an unencrypted Kubernetes secret.

apiVersion: v1
data: { username: YWRtaW4=, password: cGFzc3dvcmQ= }
kind: Secret
type: Opaque
metadata: { ... }

Hardcoded Secrets in Dockerfiles and Source Code. This technique enables the detection
of an instance of the Hardcoded Secrets smell by statically looking for hardcoded secrets in
the Dockerfiles and source code of the microservices forming an application. Since it is
not obvious whether secrets are stored, we can employ different techniques to find them.
For instance, we can define heuristics on the names of constants (e.g., “user”, “password”,
“pwd”, etc.), match the file’s content against regular expressions that represent known
secrets formats (e.g., AWS API keys format), or use entropy-based approaches. This analysis
technique is very common among existing tools’ implementations, and it is performed in
both Checkov [15] and Sonarqube [20].
Hardcoded Secrets in Containers’ Environment. This technique enables the detection
of an instance of the Hardcoded Secrets smell by dynamically inspecting the containers
running an application’s microservices. The analysis looks for hardcoded secrets within
the environment variables of such containers. The environment variables can be retrieved
from the containers running in the cluster’s pods by exploiting the Kubernetes API with
the command

$ kubectl exec [pod_name] --env.
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Alternative approaches may exploit the docker inspect command, which also allows
the inspection of the environment variables set for a running container. The retrieved
environment variables are then checked to detect Hardcoded Secrets using the same heuristics
as those described for the Hardcoded Secrets in Dockerfiles and Source Code analysis.

4.7. Non-Secured Service-to-Service Communications

We consider one possible instance of the Non-Secured Service-to-Service Communications
smell, which can be detected with the analysis introduced hereafter.

Unencrypted Pod-to-Pod Traffic. This technique enables the detection of an instance of
the Non-Secured Service-to-Service Communications smell by dynamically analysing the traffic
exchanged among the pods used to deploy an application’s microservices. The objective
of the analysis is indeed to detect unencrypted traffic that is exchanged among such pods.
This analysis requires the modification of the cluster by deploying network probes to record
the traffic exchanged among the microservices forming the deployed application. The
captured packets are then analysed to ensure that all the traffic is encrypted, reporting the
cases in which packets are exchanged by exploiting unencrypted communication protocols,
such as HTTP or HTTP2, for instance.

4.8. Unauthenticated Traffic

We consider one possible instance of the Unauthenticated Traffic smell, which can be
detected by looking for user context drops in internal requests.

User Context Drop in Internal Requests. This technique enables the detection of an
instance of the Unauthenticated Traffic smell by dynamically analysing the distributed traces
of microservice interactions to detect a drop in user context in such traces. In microservice
applications, there is the need to share the calling user context among the microservices,
which is used to propagate user claims in a decentralised manner and to ensure the
authenticity of requests. Typically, this is achieved by propagating a signed token (often a
JSON Web Token) to each involved service. Such a service can then verify the signature
and enact access control based on the user claims contained in the token.

The analysis makes individual requests to the target application and, by exploiting
network probes in the cluster, traces the call graph of the request. The user context drop
occurs if, at some point in the call graph, requests do not have the user context token
anymore. This is an instance of the Unauthenticated Traffic smell, since (starting from the
service that dropped the user context) requests are no longer authenticated.

4.9. Multiple User Authentication

We consider three different instances of the Multiple User Authentication smell, for
which we hereafter introduce three different detection techniques. The techniques enable
the detection of such smell instances in the OpenAPI specification of microservices’ APIs or
by interacting with token-emission endpoints.

Multiple Authentication Endpoints in Services’ API specifications. This technique en-
ables the detection of an instance of the Multiple User Authentication smell by statically
analysing the specification of the microservices’ APIs in the OpenAPI standard [23]. The
analysis detects multiple endpoints that enact user authentication, as per the specifications
in the security field in the OpenAPI specification (described in Section 4.1). If the analysis
detects multiple endpoints secured through HTTP basic authorisation (i.e., username and
password), it considers this as an instance of the Multiple User Authentication smell.

Suspicious Authentication Endpoints and Parameters. This technique also enables the
detection of an instance of the Multiple User Authentication smell by statically analysing
the specification of the microservices’ APIs in the OpenAPI standard [23]. The analysis,
however, focuses on identifying, from the OpenAPI specification of the microservices,
endpoints with suspicious names and parameters that would suggest that such endpoints
are performing authentication. These endpoint names can be things such as /auth or
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/login, and parameter names can be things such as username or password. The Multiple
User Authentication smell is detected if there are multiple such endpoints in an application.

Multiple Access Token Emission Endpoints. This technique enables the detection of an
instance of the Multiple User Authentication smell by dynamically looking for multiple
endpoints that emit an access token back to the user. The emission of a token is common
practice for standard authentication methods such as OAuth2 and OpenID Connect. Fol-
lowing the single-sign-on pattern, there should be only one endpoint that can emit such
tokens. Therefore, this dynamic analysis can make requests to the application and analyse
the responses to detect if they contain an access token. If we detect multiple endpoints
emitting an access token, we have an instance of the Multiple User Authentication smell.

4.10. Centralised Authorisation

Instances of the Centralised Authorisation smell can be detected with the User Context
Drop in internal requests analysis described in Section 4.8. Indeed, if authorisation is per-
formed only at the edge of the application, the user context will not be propagated through
the internal services, which can be interpreted as a user context drop by the gateway.
Instances of the Centralised Authorisation smell can also be detected by using the Insufficient
access control in Services’ APIs analysis described in Section 4.1, detecting missing autho-
risation in the internal services’ APIs. We here identify another possible instance of the
Centralised Authorisation smell, for which we provide the following detection technique.

Central Request Point. This technique enables the detection of an instance of the Centralised
Authorisation smell by dynamically checking whether there exists a single microservice
that is invoked for each request made to an application. Centralised Authorisation indeed
also occurs if the application is using a single microservice to perform authorisation. The
analysis could make requests to the application and then, for each one of them, we inspect
the call graph of the internal services. If there is one service that is always called (other than
the edge service, which will likely be the API gateway) we can suspect that it is performing
authorisation. As with the User Context Drop in internal requests analysis (Section 4.8), this
analysis requires modification of the cluster by inserting network probes and enabling
access to the network packet content.

4.11. Summary

Table 1 recaps the techniques introduced in the previous sections to enable automatic
detection of instances of the microservice security smells of Ponce et al. [1].

The table associates each analysis technique with its type and its needed inputs.
It hence distinguishes the static analysis techniques processing the application’s source
code, deployment files, or OpenAPI specification from the dynamic analysis techniques
interacting with a modified/unmodified cluster where the application is running. Table 1
also indicates the security smells that can be detected with each analysis technique and the
existing tools that can be used to implement such techniques, if any.

The analyses listed in Table 1 provide examples of techniques enabling the detection
of different instances of the microservices’ security smells of Ponce et al. [1] to demonstrate
that their detection can be automated. At the same time, being examples, such analysis tech-
niques are not intended to comprehensively cover all the possible instances of such smells.
For instance, we consider the OpenAPI standard for microservices’ API specifications, if
available, but APIs might be specified in different formats and therefore require different
analysis techniques. For future work, we plan to expand the set of analysis techniques
enabling the automatic detection of instances of the microservices’ security smells, with the
ultimate goal of enabling a more comprehensive and effective detection of microservice
security smells. This is one of the main reasons behind developing an extensible tool for
microservice smell detection, like the one we introduce in the following section.
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Table 1. Analyses to automatically detect microservices’ security smells.

Name Type Input Detected Smells Tools

Insufficient Access Control in
API Specifications static OpenAPI Insufficient Access Control,

Centralised Authorisation -

Insufficient Access Control in
Services’ Implementations

dynamic on
unmodified

cluster
OpenAPI Insufficient Access Control OpenAPI-

fuzzer

Insufficient Access Control to
the Kubernetes API

dynamic on
unmodified

cluster
- Insufficient Access Control Kube-

hunter

Exposed Kubernetes Services
using service type static Kubernetes

configuration files Publicly Accessible Microservices -

Exposed Kubernetes Services
using External-IP Field

dynamic on
unmodified

cluster
- Publicly Accessible Microservices -

Exposed Kubernetes Services
using Port Scanning

dynamic on
unmodified

cluster
- Publicly Accessible Microservices

Nmap,
Kube-
hunter

Unnecessary Privileges to
Kubernetes Pods static Kubernetes

configuration files
Unnecessary Privileges

to Microservices
Kubesec.io,

Checkov

Misconfigured
Network Policies

dynamic on
unmodified

cluster
- Unnecessary Privileges

to Microservices
Kube-
bench

Usage of Cryptographic
Primitives static source code Own Crypto Code Sonarqube

Suspicious
Cryptographic Names static source code Own Crypto Code -

Data-at-Rest Encryption Not
Enabled in DBMSs static

Kubernetes
configuration

files, Dockerfile
Non-Encrypted Data Exposure Checkov

Hardcoded Unencrypted
Kubernetes Secrets static Kubernetes

configuration files Harcoded Secrets Checkov

Hardcoded Secrets in
Dockerfile and Source Code static Dockerfile,

source code Harcoded Secrets Checkov,
Sonarqube

Hardcoded Secrets in
Containers’ Environment

dynamic on
unmodified

cluster
- Harcoded Secrets -

Unencrypted
Pod-to-Pod Traffic

dynamic on
modified

cluster
- Non-Secured

Service-to-Service Communications -

User Context Drop in
internal requests

dynamic on
modified

cluster
- Unauthenticated Traffic,

Centralised Authorisation -

Multiple Authentication
Endpoints in Services’

API specifications
static OpenAPI Multiple User Authentication -

Suspicious Authentication
Endpoints and Parameters static OpenAPI Multiple User Authentication -

Multiple Access Token
Emission Endpoints

dynamic on
unmodified

cluster
- Multiple User Authentication -

Central Request Point
dynamic on

modified
cluster

- Centralised Authorisation -

5. An Extensible Tool for Detecting Microservices’ Security Smells

We hereafter introduce KUBEHOUND, a prototype tool for automatically detecting
security smells in microservice applications. More precisely, after describing the extensible
architecture of KUBEHOUND (Section 5.1), we present its prototypical implementation
(Section 5.2) and that of the six smell-detection techniques it already features (Section 5.3).
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5.1. Architecture of KubeHound

The main goal of KUBEHOUND is to enable automation of the detection of the mi-
croservices’ security smells of Ponce et al. [1] by running analysis techniques such as those
outlined in Section 4. KUBEHOUND therefore takes as input the Kubernetes configuration
files and Dockerfiles specifying the target application deployment and a configuration file
specifying where to retrieve the microservices’ source code and their API specifications in
the OpenAPI standard, when available. The Kubernetes cluster to which it connects to run
dynamic smell-detection techniques is instead automatically retrieved from the KUBECONFIG
variable specified in the environment where KUBEHOUND is running.

KUBEHOUND then processes the above-listed inputs by running the featured smell-
detection techniques. In this perspective, with the examples of possibly analysis techniques
outlined in Section 4, a main requirement of KUBEHOUND is extensibility, to enable a more
comprehensive coverage of the possible instances of already-known security smells [1],
as well as to enable the incorporation of newly discovered security smells, if any. Newly
implemented analysis techniques must be easily pluggable into KUBEHOUND, and it must
be possible to implement them by reusing or integrating with existing security-analysis
tools (as illustrated for some of the analysis techniques in Section 4).

To realise the required extensibility, we designed KUBEHOUND with the Plugin Archi-
tecture [34] in Figure 2. KUBEHOUND is composed of three core components, viz., Hound,
Frontend, and Scheduler, and a set of analysis plugins, viz., A1, A3, . . . An. Each analysis
plugin is responsible for implementing one or more techniques for detecting instances of
microservices’ security smells. In general, analyses should be specific to a given instance
of a security smell, as the overall detection capabilities of KUBEHOUND are derived from
combining the results of all featured analyses.

Hound

Frontend

Scheduler

A1

A2

AN

…

Figure 2. Architecture of KUBEHOUND, modelled as a UML component diagram [35].

The core components are instead responsible for acquiring the configuration files specify-
ing an application deployment, parsing them, scheduling the analysis plugins implementing
the featured smell-detection techniques, and collecting their results. More precisely, Hound
takes the input files and orchestrates the smell detection on the microservice application speci-
fied therein. It first passes the input files to the Frontend, which is responsible for application
data acquisition and parsing. Frontend then returns to Hound a collection of application
objects, each representing a resource in the application’s sources, together with some metadata
about them. The application objects and metadata are then passed to the Scheduler, which
is responsible for invoking the plugins to run the analyses they implement, as well as for
collecting and suitably merging their results. The merged results are then returned to Hound,
which displays them to the end-user.

Each analysis plugin complies with a given interface, which includes the properties it
should expose, e.g., the name, the description, and the required application objects. The
Scheduler exploits such properties to prepare the input to each analysis and call them
accordingly using the plugin interface. KUBEHOUND’s Scheduler follows a “best effort”
approach, meaning that it invokes a plugin only if the required inputs were provided
by the end-user. If this is not the case, the plugin’s execution is skipped, as the analysis
technique it implements cannot be performed. As a result, KUBEHOUND always performs
the largest possible subset of smell-detection techniques it can, given the inputs provided
by the end-user. This has two advantages. On the one hand, it enables the development
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of plugins without making assumptions about the structure and/or technologies of the
microservice application they will analyse. On the other hand, it enables end-users to
provide only what they wish to be analysed, e.g., enabling KUBEHOUND to work if the
source code of some microservices is not available or if the users do not wish KUBEHOUND

to interact with the Kubernetes cluster where an application is running.

5.2. Implementation of KubeHound

KUBEHOUND is open-source and publicly available on GitHub (https://github.com/
di-unipi-socc/kube-hound, accessed on 26 June 2023). A snapshot of the current version
of the tool is also stored on Software Heritage at https://archive.softwareheritage.org/
browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/kube-hound, ac-
cessed on 26 June 2023). It is implemented in Python, and this is mainly motivated by
the fact that Python already features a rich ecosystem of libraries, including those to
process/interact with Docker and Kubernetes [36].

Input Configuration File. KUBEHOUND takes as input a YAML configuration file structured
in four main YAML objects, viz., repositories, deployment, services, and properties, as
shown in Listing 4.

• The object repositories provides a list of named repositories storing the deployment
configuration files and source code of the target microservice application. The listed
repositories can be local folders or remote git repositories, which will be cloned locally
by KUBEHOUND when starting to analyse the target application. The need to organise
the application source in multiple logical repositories comes from the fact that many
microservice applications are developed in a “one repository per microservice” fashion,
so tracking the different sources for different microservices’ files requires an additional
layer of abstraction.

• The object deployment indicates the repository where the configuration files specifying
the target application deployment is found by also supporting regular expressions to
match all deployment configuration files. Currently, only kubernetes configuration
files are supported, but the syntax is intended to allow for extending the support to
other deployment frameworks.

• The object services lists all the microservices forming the target application by asso-
ciating them with the paths to their related configuration files, source code, and the
specification of their APIs in OpenAPI, if available.

• The object properties provides a list of claimed properties for the services, which can
be used by KUBEHOUND to ignore some detected smells to reduce the amount of false
positive reports. Currently, two properties are supported, viz., external, to indicate
that a service is intentionally exposed to external clients, and performsAuthentication,
to indicate that a service is known to perform authentication.

KUBEHOUND will ignore any missing field in the configuration file, and it will apply
a “best effort” approach to provide meaningful results out of the provided resources.

Application Acquisition and Parsing. The repositories described in the configuration files
are first acquired and parsed by KUBEHOUND. For local folders, the acquisition phase is
not present, while remote git repositories are cloned locally in the current working directory.
If a folder with the same name already exists, KUBEHOUND will try to detect if it is a git
repository and will perform a pull command to fetch the latest version of the repository.
This provides a mechanism to avoid always downloading the full application on each run
of the tool, which can be costly for large code bases.

Once all the files are gathered, KUBEHOUND will perform the parsing of the appli-
cation, which means taking the application files and turning them into a collection of
application objects. An application object is an object that represents any resource in the
application. They have three main fields: type, path, and data. type specifies the type
of object (viz., kubernetes_config, dockerfile, or openapi), path specifies the path of the
corresponding application file, while data specifies optional metadata of the object.

https://github.com/di-unipi-socc/kube-hound
https://github.com/di-unipi-socc/kube-hound
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/kube-hound
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/kube-hound
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Listing 4. Example of input configuration file for KUBEHOUND, with some repositories/services
omitted for readability reasons.

repositories:
main: { git: https://github.com/microservices-demo/microservices-demo.git }
front-end: { git: https://github.com/microservices-demo/front-end.git }
shipping: { git: https://github.com/microservices-demo/shipping.git }
...

deployment:
kubernetes: { repository: main, glob: deploy/kubernetes/manifests/*.yaml }

services:
- { name: front-end, image: weaveworksdemos/front-end:0.3.12, repository: front-end,

dockerfile: Dockerfile }
- { name: shipping, image: weaveworksdemos/shipping:0.4.8, repository: shipping, dockerfile:

docker/shipping/Dockerfile }
...

properties:
front-end: { external: true }

For Dockerfiles and OpenAPI specifications, application objects map one-to-one to a
particular file. For Kubernetes configuration files, instead, multiple application objects can
be generated from the same file, one for each YAML document. KUBEHOUND will also put
in the data object the claimed properties specified in the configuration file. KUBEHOUND

will also follow a “best effort” approach for application parsing, so if there are missing
resources or no metadata available for a given object, it will simply be ignored.

Analysis Scheduling and Results. The Scheduler component prepares the inputs for all
the available analyses, runs them, and collects their results. For this to happen, analysis
techniques must be implemented as Python classes extending the existing StaticAnalysis
or DynamicAnalysis classes, as exemplified in Listing 5. The analyses expose some pa-
rameters through class variables, such as their name or their description, and implement
their functionality through the run_analysis method. They also expose the input_types
variable, which specifies the types of input this analysis requires. Any particular analysis is
called only if there is at least one available object of the required types, passing them as a
list of application objects to the run_analysis method. Custom analyses can be added to
the scheduler using the register_analysis method (as shown in Listing 5).

Each analysis is expected to complete in a finite time, and this is particularly important
for dynamic analyses needing to run for longer periods, e.g., to first monitor and then
analyse the traffic exchanged among deployed microservices (as described in Section 4.7).
Upon completion, the analysis returns a list of results, represented as Python objects. The
results returned by all the run analysis plugins are collected together by the Scheduler, and
they are suitably merged to compute the union of all detected smell instances. KUBEHOUND

then returns the merged results as the output of the overall analysis by streamlining them
to a JSON representation.

5.3. Implementation of Selected Analyses

We hereby illustrate the implementation of six of the analysis techniques described in
Section 4, which come as built-in plugins in KUBEHOUND. The selection of which analysis
plugins to present was mainly aimed at showcasing the different types of techniques,
while also demonstrating the possibility of implementing them by integrating them with
existing analysis tools. For static analysis techniques, we present the plugins implementing
the detection of Insufficient Access Control in API Specifications and Multiple Authentication
Endpoints in Services’ API Specifications, both analyzing the OpenAPI specifications. We
also present the detection of Unnecessary Privileges to Kubernetes Pods, which we realised by
integrating the tool Kubesec.io [14]. For dynamic analysis techniques, instead, we present
the detection of Hardcoded Secrets in Containers’ Environment and the detection of Exposed
Kubernetes Services using External-IP Field, both of which are custom dynamic techniques
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applied to an unmodified cluster. We also present the plugin implementing the detection
of Unencrypted Pod-to-Pod Traffic, which exploits network probes, hence being a dynamic
technique applied to a modified cluster.

Listing 5. Example of Python script running KUBEHOUND with an additional custom analysis (lines
14–27). The custom analysis is a static analysis called HelloWorldAnalysis (line 1), and it inputs the
Kubernetes configuration files and Dockerfiles of the target application (line 6). When invoked, it
prints the string “Hello, World!” and returns an empty list of detected smells (lines 8–12).

1 # create a new static analysis that prints Hello, World!
2 class HelloWorldAnalysis(StaticAnalysis):
3 analysis_id = "hello_world"
4 analysis_name = "Hello World Analysis"
5 analysis_description = "This analysis prints Hello, World!"
6 input_types = ["kubernetes_config", "dockerfile"]
7

8 def run_analysis(self, input_objects: Mapping[str, List[ApplicationObject]])\
9 -> List[AnalysisResult]:

10 # actual analysis code goes here
11 print(’Hello, World!’)
12 return []
13

14 # instantiate the Hound object and set the configuration path
15 hound = Hound(Path("test_files/mock-application/"))
16 hound.set_config_path(Path("test_files/mock-application/mock-config.yaml"))
17

18 # acquire and parse the application
19 hound.aquire_application()
20 hound.parse_application()
21

22 # register HelloWorldAnalysis to the scheduler
23 hound.register_analysis(HelloWorldAnalysis)
24

25 # run the analyses and show the results
26 hound.run_analyses()
27 hound.show_results()

Insufficient Access Control in API Specifications. We implemented the Insufficient Ac-
cess Control in API Specifications Analysis (Section 4.1) as a plugin to KUBEHOUNDto enable it
to detect insufficient access control using the services’ OpenAPI specifications (https://github.
com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/insufficient_
access_control_openapi.py, accessed on 26 June 2023). The plugin works with the 3.1.0
version of the OpenAPI specification [23], which allows it to describe security properties
for endpoints, as shown in Listing 6. The plugin receives as input OpenAPI documents
and starts by parsing them and searching the securitySchemes field, which describes all
the security schemes used by the API. Then, the plugin tries to find a global security field,
if any, and for each API endpoint, the associated security field. Based on the service’s
claimed properties, the plugin reports the security smells based on the following rules:

• If no SecuritySchemes is specified or, for some endpoint, no security field is specified,
a corresponding instance of the Insufficient Access Control smell is reported.

• If this is the case, and if the input configuration file is not indicating that the service
is external nor that it performsAuthentication, then an instance of the Centralised
Authorisation smell is also reported.

Listing 6. Example of OpenAPI specification that describes a security scheme using HTTP bearer
(i.e., externalAPIKey), which secures the POST method of the /foo path.

openapi: 3.0.0

paths:
/foo: { post: ..., security: [ externalAPIKey: [] ] }

components:
securitySchemes: { externalAPIKey: { type: http, scheme: bearer } }

https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/insufficient_access_control_openapi.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/insufficient_access_control_openapi.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/insufficient_access_control_openapi.py
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Multiple Authentication Endpoints in Services’ API Specifications. KUBEHOUND fea-
tures a plugin implementing the method described in Section 4.9, which we implemented to
enable the detection of multiple user authentication endpoints based on the services’ Ope-
nAPI specifications. The implemented plugin inputs the OpenAPI specification of the APIs
of the target application’s microservices, and it starts by parsing them and retrieving their
security properties. If multiple endpoints are recognised as using HTTP basic authentication
(i.e., username- and password-based), the plugin reports an instance of the Multiple User
Authentication smell. Services that have a corresponding performsAuthentication property
set in the input configuration file are ignored by this plugin, since they are supposed by
design to perform user authentication.
Unnecessary Privileges to Kubernetes Pods with Kubesec.io. We implemented the
method described in Section 4.3 as a plugin of KUBEHOUND to enable the detection
of unnecessary privileges to Kubernetes pods (https://github.com/di-unipi-socc/kube-
hound/blob/master/kube_hound/builtin_analyses/unnecessary_privileges_pods.py, ac-
cessed on 26 June 2023). To accomplish this, the implemented plugin integrates with the
tool Kubesec.io [14] to perform such an analysis. Kubesec.io indeed employs a suite of test
cases to check for minimum privileges in Kubernetes pod configuration files, and it comes
as a Docker image on DockerHub, which we can directly pull and execute. Docker will take
care of fetching (if not already present on the local machine) the Kubesec.io image, hence
favouring the distribution and packaging of KUBEHOUND. To interact with the Docker
daemon, the plugin uses the Docker Python library, which exposes an API to interact
with Docker containers [36]. This plugin thus starts Kubesec.io in a Docker container,
which starts a web server that exposes a REST API. The plugin submits the application’s
Kubernetes configuration files using the /scan endpoint, and the Kubesec.io server then
returns a JSON response containing a list of passed and failed checks. Such results are
parsed and each failing test case reported by Kubesec.io is considered as an instance of the
Unnecessary Privileges to Microservices smell.
Hardcoded Secrets in Containers’ Environment. We implemented the detection of Hard-
coded Secrets in Containers’ Environment described in Section 4.6 by developing a plugin for
KUBEHOUND that exploits the Kubernetes Python client library to interact with the Ku-
bernetes API of a cluster (https://github.com/di-unipi-socc/kube-hound/blob/master/
kube_hound/builtin_analyses/hardcoded_secrets_environment.py, accessed on 26 June
2023). The plugin retrieves all the running pods of the clusters, and for each pod it retrieves
all the running containers. It then executes the env command on each container and stores
the resulting output, which is then processed to detect secrets.

For detecting secrets, the plugin uses the open-source Python module detect-secrets [37],
which provides a built-in set of secret-detection techniques. If any environment variable is
detected as storing a secret, the plugin reports the Hardcoded Secrets smell, together with a
description of the variable that stores the secret. In the output of KUBEHOUND the actual
values are obfuscated to prevent accidental secret exposure.
Exposed Kubernetes Services using External-IP Field. We implemented the detection
of Exposed Kubernetes Services using External-IP Field as a plugin for KUBEHOUND that
dynamically looks for exposed services by retrieving the External-IP field as described in
Section 4.2 (https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/
builtin_analyses/exposed_services_external_ip.py, accessed on 26 June 2023). Using the
Kubernetes API, the plugin retrieves the information about all the Kubernetes services
running on a cluster, including its External-IP (if any). The service names are then matched
against the user-provided properties. We report an instance of the Publicly Accessible
Microservices smell for each service that has a non-empty external IP. This plugin makes use
of the services’ properties claimed in the input configuration file: if some service is declared
external, it will assume that it was intentionally exposed to the public by the development
team and it will not report any corresponding smell instance.
Unencrypted Pod-to-Pod Traffic with Ksniff. We implemented as a plugin for KUBE-
HOUND to detect unencrypted pod-to-pod traffic (Section 4.7), that is, an instance of the Non-

https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/unnecessary_privileges_pods.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/unnecessary_privileges_pods.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/hardcoded_secrets_environment.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/hardcoded_secrets_environment.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/exposed_services_external_ip.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/exposed_services_external_ip.py
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Secured Service-to-Service Communications smell (https://github.com/di-unipi-socc/kube-
hound/blob/master/kube_hound/builtin_analyses/unencrypted_pod_to_pod_traffic.py,
accessed on 26 June 2023). In particular, the plugin focuses on detecting HTTP and HTTP2
packets, but it can be extended to work with other clear-text protocols. To achieve this, we
injected network probes in the cluster to monitor traffic in the Kubernetes overlay network.

Figure 3 sketches the internals of Kubernetes networking. Each pod is assigned an IP
address in the overlay network, while containers in the same pod can communicate with
each other using localhost [38]. This implies that every container in the pod has (at least)
two network interfaces: a loopback interface and a pod-to-pod interface, typically called
eth0 [39]. The eth0 interface is also used for communications with external entities, e.g.,
health checks for the liveness of the pods [40].

C1 C2

loopback

eth0

Overlay network

Pod A

C1 C2

loopback

eth0 Pod B

C1 C2

loopback

eth0 Pod C

Node A Node B

Figure 3. A sketch of the networking in Kubernetes: intra-pod communications exploit the loopback

interface, while inter-pod communications exploit the eth0 interface, with each pod having its unique
IP in the overlay network [38].

The implementation of this plugin makes use of the tool Ksniff [41], which allows it
to intercept and record traffic on clusters networked as in Figure 3. In particular, given
a pod, a container, and a network interface, Ksniff will record the network traffic and it
will save it on the local disk as a pcap file. Ksniff is run with the -p flag set, so as to deploy
a privileged pod that has access to the node’s network interfaces. This pod will run the
tcpdump program to record network packets on the target interface.

Following the network model presented above, this plugin will capture network traffic
from the eth0 interface to intercept only pod-to-pod traffic. In the presence of a service
mesh that enables mTLS via a sidecar container (e.g., the Istio service mesh), it is also
possible to intercept clear-text service-to-service communications by capturing packets on
the loopback interface [42]. This, other than providing a concrete basis to implement more
sophisticated types of analysis that also take into account the content of network packets,
is also an example of why services should be deployed with the fewest privileges. The
takeover of a privileged pod by an attacker could result in eavesdropping of clear-text
communications, even in the presence of a service mesh providing mTLS.

The plugin executes the following steps: (1) Using the Kubernetes API, the external
IP addresses of worker nodes are retrieved and stored in a list. (2) For each pod related
to a service in the cluster, a Ksniff privileged pod is deployed on the cluster, recording on
the eth0 interface. (3) The network traffic is recorded for a configurable amount of time
(the default is 30 s) and the resulting network captures are stored in a temporary directory.
(4) The Ksniff pods are destroyed to clean up the cluster. (5) Using the pyshark library (a
Python wrapper to tshark), the resulting capture file is loaded and packets are filtered
by excluding those whose source or destination IP is present in the nodes IP list. This
is carried out to exclude them from the analysis health check requests performed by the
cluster’s nodes, since they are often made using plain HTTP [40]. (6) Every packet in the
capture file is analysed and each packet for which tshark decoded the HTTP protocol layer
is saved in a list. (7) If no HTTP packets are found, then the capture file is analysed again,

https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/unencrypted_pod_to_pod_traffic.py
https://github.com/di-unipi-socc/kube-hound/blob/master/kube_hound/builtin_analyses/unencrypted_pod_to_pod_traffic.py
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trying to identify HTTP2 packets. The motivation for detecting HTTP2 is that high-level
protocols such as gRPC are implemented on top of HTTP2 [43]. The detection of the HTTP2
protocol layer is not performed by tshark by default, and an additional decoding flag has
to be specified during the capture loading. (8) Finally, if any HTTP or HTTP2 packets
are detected, corresponding instances of the Non-Secured Service-to-Service Communications
smell are reported, together with a sample of the packets that triggered this report.

Sometimes tshark will incorrectly detect the HTTP protocol layer on packets that are
part of a TLS stream. In our experience, this situation occurs quite commonly, even when
dealing with relatively small capture files. This could lead to false positives, as unencrypted
traffic could be falsely detected. To mitigate this issue, the plugin implements a heuristic
that exploits the fact that HTTP packets start with a printable line. On detection of HTTP
packets, the tool will try to decode the first line as ASCII. If this decoding fails then the
packet is simply ignored. In our experiments, this was sufficient to eliminate false positives
without impacting the effectiveness of the smell-detection technique when unencrypted
HTTP traffic was present.

6. Assessment

In this section, we report on the assessment of KUBEHOUND by illustrating its ap-
plication in controlled experiments (Section 6.1) and two case studies (Section 6.2). The
controlled experiments are based on a mock application, which we realised ad hoc to
enable the injection of the instances of security smells that should be detected. The two case
studies are instead based on two third-party microservice applications, viz., Sock Shop [44]
and Online Boutique [45]. To enable repetition of our experiments and case studies, all the
necessary data are publicly available on GitHub (https://github.com/di-unipi-socc/kube-
hound/tree/master/data/examples. A snapshot of the experiments’ data is also stored
on Software Heritage at https://archive.softwareheritage.org/browse/origin/directory/
?origin_url=https://github.com/di-unipi-socc/kube-hound&path=data/examples, ac-
cessed on 26 June 2023).

6.1. Controlled Experiments

To experiment with KUBEHOUND’s functionalities, we developed a simple mock
microservice application. Despite there already existing benchmarking microservice ap-
plications, such as Sock Shop [44] and Online Boutique [45], they are not focused on
security aspects, but rather on experimenting with the microservice-based architectural
style. Moreover, these applications are rather complex, and this makes it difficult to exploit
them to “unit test” the implemented analyses. We instead decided to implement a mock
microservice application that focused on security and that would adhere to well-known
architectural security patterns [46,47]. The idea was to have a microservice application
without any security smells and to artificially introduce them to test the analyses.

The mock application is composed of the seven microservices shown in Figure 4,
each with an associated OpenAPI specification of its API. The microservices are essentially
instances of the following three types of services:

• The Authorization server handles user tokens and authorisation.
• The Gateway service implements an API gateway for all the functionalities of

the application.
• Echo services call other Echo services (following the topology shown in Figure 4),

wait for their answers, and then simply return back the messages they received
when invoked.

The functionality is therefore very simple: the gateway exposes a /login endpoint,
where the user can perform authentication and receive an access token, and two endpoints
/echo1 and /echo2 that simply return back the input to the user. These two endpoints
must be called by the user using the authorisation token emitted by the Authorization
server. Decentralised authorisation is implemented by using a signed user claim token
emitted by the Authorization server, which is decoupled from the “external” authorisation

https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/kube-hound&path=data/examples
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/di-unipi-socc/kube-hound&path=data/examples
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mechanism [48]. A variant of this pattern was presented by Netflix in 2019, using what they
called a “user passport” to solve the user-identification and -authorisation problems [49].
We also used the Istio service mesh to enable mTLS communications between the services.

Interacts With

Gateway

Echo1

Authorization 
Server

Echo2

Echo3

Echo4

Echo5

Containerized
Microservice

End 
User

Legend

Figure 4. Microservice architecture of the mock application.

In the following, we show how we configured our mock application to inject instances
of the security smells covered by the analysis techniques implemented by the plugins
featured by KUBEHOUND. Our objective is to demonstrate that all injected smell instances
were automatically detected by KUBEHOUND.

6.1.1. Insufficient Access Control in API Specifications

To test whether KUBEHOUND can detect Insufficient Access Control in API specifications,
we devised three alternative versions of the OpenAPI specification of the Echo service,
which can be found online (https://github.com/di-unipi-socc/kube-hound/tree/master/
data/examples/openapi_security/openapi_iac, accessed on 26 June 2023).

• The specifications in echo_no_security.yaml and echo_no_schemes.yaml instantiate
two different Insufficient Access Control smells by not specifying the service’s security
or securityScheme, respectively.

• In echo_security_override.yaml, the POST /echo endpoint is overriding the global
security policy with an empty policy (i.e., no authorisation is performed).

We then executed three different runs of KUBEHOUND, to which we passed the smell-
free mock application deployment. In each run, we replaced the OpenAPI specification of
the Echo service with one of the above-listed specifications. As a result, we observed that
KUBEHOUND was capable of identifying all the injected security smells.

6.1.2. Multiple Authentication Endpoints in Services’ API Specifications

For this experiment we modified the OpenAPI specification of the Gateway service,
naming it gateway_multiple_auth.yaml and including an additional endpoint secured with
HTTP Basic. This is an instance of the Multiple User Authentication smell, since the modified
version has two endpoints that perform authentication. KUBEHOUND was able to correctly
identify it as an instance of the Multiple User Authentication smell. The configuration files
used in the above-described experiment are publicly available online (https://github.com/
di-unipi-socc/kube-hound/tree/master/data/examples/openapi_security/openapi_mua,
accessed on 26 June 2023).

6.1.3. Unnecessary Privileges to Kubernetes Pods

To experiment with the plugin detecting Unnecessary Privileges to Kubernetes Pods, we
generated three alternative versions of the Kubernetes deployment of echo1, each giving
some services unnecessary privileges in a different way.

• In echo1_no_resources.yaml, there are no resource limits and requests specified,
which could starve the cluster.

• In echo1_no_securitycontext.yaml, the security context of the pod is not specified.
• In echo1_privileged.yaml, the pod is set to be deployed in privileged mode.

https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/openapi_security/openapi_iac
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/openapi_security/openapi_iac
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/openapi_security/openapi_mua
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/openapi_security/openapi_mua
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All the above-listed files can be found in KUBEHOUND’s GitHub repository (https://
github.com/di-unipi-socc/kube-hound/tree/master/data/examples/kubesec, accessed
on 26 June 2023). We then ran KUBEHOUND on the mock application deployment, each
time considering a different alternative of the Kubernetes deployment of echo1 among
those listed above. As a result, we observed that KUBEHOUND effectively identified all the
injected smell instances.

6.1.4. Hardcoded Secrets in Containers’ Environment

In this case, we added a service to our smell-free mock application deployment called
secrets-holder. The latter is a dummy service that does not interact with the rest of the
application, but just contains Hardcoded Secrets in its environment variables (viz., a database
password, an AWS key, high-entropy hex and base64 strings, and a URL that contains basic
authorisation credentials). The Kubernetes manifest file to add secrets-holder to the mock
application deployment is publicly available online (https://github.com/di-unipi-socc/
kube-hound/blob/master/data/examples/secrets_in_env/secrets-holder.yaml, accessed
on 26 June 2023). We hence deployed secrets-holder in a Kubernetes cluster alongside
our smell-free application deployment, and we ran KUBEHOUND to analyse the services
deployed on the cluster. As a result, we observed that KUBEHOUND effectively identified
all the instances of the Hardcoded Secrets smell that we injected into the secrets-holder.

6.1.5. Exposed Kubernetes Services Using External-IP Field

For this experiment, we updated the Kubernetes deployment of the echo1 service,
changing its type to a LoadBalancer. In this way, we prescribed it to be exposed outside
of the cluster where it is deployed, hence injecting a Publicly Accessible Microservices smell.
The updated Kubernetes deployment is publicly available on GitHub (https://github.
com/di-unipi-socc/kube-hound/tree/master/data/examples/external_ip, accessed on
26 June 2023). We deployed the updated mock application on a Kubernetes cluster. We then
injected another Publicly Accessible Microservices smell by exploiting the kubectl expose
command to also expose the echo2 service. Finally, we analysed the resulting application
deployment with KUBEHOUND, observing that it successfully identified both the injected
instances of the Publicly Accessible Microservices smell.

6.1.6. Unencrypted Pod-to-Pod Traffic

This experiment aimed at checking whether KUBEHOUND can effectively detect Un-
encrypted Pod-to-Pod Traffic occurring in the application. We deployed the smell-free mock
application on the cluster, enabling and disabling mTLS between the services by using the
Istio service mesh [42]. More precisely, we wrote two Kubernetes configuration files:

• mTLS-disable.yaml, which specifies a PeerAuthentication object to disable mTLS in
the cluster, and

• mTLS-strict.yaml, which specifies PeerAuthentication object to enable mTLS in strict
mode on the cluster.

Both the above-listed files can be downloaded from KUBEHOUND’s GitHub reposi-
tory (https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/pod_
to_pod_traffic, accessed on 26 June 2023). We then ran KUBEHOUND on the cluster, making
sure that we were making requests to the application while the analysis was running.
When mTLS was enabled, no smells were found. Instead, when mTLS was disabled, KUBE-
HOUND successfully identified the Non-Secured Service-to-Service Communications smells
due to the unencrypted traffic being exchanged between the deployed services.

6.2. Case Studies

In this section, we describe two case studies based on two third-party microservices
applications whose existing deployment was analysed by KUBEHOUND. The applications
are Weaveworks’ Sock Shop [44] and Google’s Online Boutique [45]. Both the considered
applications are benchmarking applications intended to showcase microservice-based

https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/kubesec
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/kubesec
https://github.com/di-unipi-socc/kube-hound/blob/master/data/examples/secrets_in_env/secrets-holder.yaml
https://github.com/di-unipi-socc/kube-hound/blob/master/data/examples/secrets_in_env/secrets-holder.yaml
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/external_ip
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/external_ip
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/pod_to_pod_traffic
https://github.com/di-unipi-socc/kube-hound/tree/master/data/examples/pod_to_pod_traffic
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architectures, but not focusing on application security. Hence, we expected that some
security smells could be detected therein.

6.2.1. Sock Shop

Sock Shop [44] is composed of fourteen microservices implemented in different tech-
nologies whose sources are split in multiple repositories, following the “one repository per
service” pattern. The deployment scripts can be found on the main GitHub repository of the
application https://github.com/microservices-demo/microservices-demo, accessed on
26 June 2023). while each microservice’s source code, Dockerfile, and OpenAPI specification
(if any) can be found in its own repository.

The first thing we did for this case study was create the configuration file for letting
KUBEHOUND process Sock Shop’s Kubernetes deployment and OpenAPI specifications. In
the file, we specified the repositories from which to download the necessary inputs, and
we set to true the external property of the front-end service, to indicate that it is acting as
the gateway of the application, as indicated in the online documentation [44]. We deployed
the application on a cluster, ran KUBEHOUND on the obtained application deployment,
and collected its output. We only then checked whether the security smells detected by
KUBEHOUND were present in the considered applications by inspecting their sources. We
now comment on some of the security smells reported by KUBEHOUND on Sock Shop,
while the full list of identified smells can be found online (https://github.com/di-unipi-
socc/kube-hound/tree/master/data/examples/sock_shop, accessed on 26 June 2023).

Unnecessary Privileges to Microservices. By analysing Sock Shop’s Kubernetes manifest
files, KUBEHOUND identified various instances of the Unnecessary Privileges to Microservices
smell in multiple services. We hence inspected such Kubernetes manifest files, observing
that there are inconsistencies in the privileges assigned to the pods, which correspond
to the identified smell instances. For instance, in the deployment configuration of the
service carts-db the securityContext specification is incomplete, as fields such as the
runAsNonRoot are missing and resource limits and requests are not present. Other examples
are given by the deployment of the service queue-master, which lacks altogether any
security-related specification, and by the fact that all services do not have any service
account specified. All those instances of the Unnecessary Privileges to Microservices smells
were correctly identified by KUBEHOUND.

Insufficient Access Control. The check for Insufficient Access Control in API Specifications
enacted by KUBEHOUND identified that each microservice’s OpenAPI specification did
not include any securityScheme, hence classifying this as an instance of the Insufficient
Access Control smell. Upon inspection of the APIs exposed by the internal services and
their implementation, we realised that Sock Shop’s microservices indeed do not enact any
authorisation of requests, as correctly witnessed by the identified instances of the Insufficient
Access Control smell.

Harcoded Secrets. The detection of Hardcoded Secrets in Containers’ Environment imple-
mented by KUBEHOUND found an interesting result, namely, that catalogue-db’s environ-
ment includes a variable named MYSQL_ROOT_PASSWORD, which stores a secret starting with
fake. One such variable was quite suspicious, as it very likely contains the database’s
root password for the catalogue-db. We then inspected the Kubernetes deployment
of the catalogue-db service, and we identified the hardcoded database password (viz.,
fake_password), meaning that the identified smell instance was denoting a security issue
for the application.

Non-Secured Service-to-Service Communications. KUBEHOUND reported unencrypted
HTTP traffic sent to or from all Sock Shop’s microservices, hence identifying instances of
the Non-Secured Service-to-Service Communications smell on all of them (Listing 7). We hence
inspected the application to detect whether this truly denote some security issue, finding
that this was the case, as no encryption was performed on the messages exchanged among
Sock Shop’s microservices.

https://github.com/microservices-demo/microservices-demo
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Listing 7. Selected fragments of the output of KUBEHOUND showing instances of the Hardcoded
Secrets and Non-Secured Service-to-Service Communications smells detected on Sock Shop [44].

Secrets in environment variables analysis - detected smells {HS}
Detected secret in pod catalogue-db-6d49c7c65-l46bk, container catalogue-db
variable: MYSQL_ROOT_PASSWORD=fake*********
reason: Secret Keyword

...

Traffic analysis - detected smells {NSC}
Unencrypted traffic detected in pod catalogue-5f495f9cf8-wvk5f
here is a sample of the packets (HTTP):
HTTP 10.2.2.204 -> 10.2.2.203 : GET /catalogue HTTP/1.1
HTTP 10.2.2.203 -> 10.2.2.204 : HTTP/1.1 200 OK
HTTP 10.2.2.204 -> 10.2.2.203 : GET /catalogue HTTP/1.1
HTTP 10.2.2.203 -> 10.2.2.204 : HTTP/1.1 200 OK
HTTP 10.2.2.204 -> 10.2.2.203 : GET /catalogue/03fef6ac-1896-4ce8-bd69-b798f85c6e0b HTTP/1.1
HTTP 10.2.2.203 -> 10.2.2.204 : HTTP/1.1 200 OK
HTTP 10.2.2.204 -> 10.2.2.203 : GET /catalogue/d3588630-ad8e-49df-bbd7-3167f7efb246 HTTP/1.1

Traffic analysis - detected smells {NSC}
Unencrypted traffic detected in pod front-end-6585d48b5c-qkmqp
here is a sample of the packets (HTTP):
HTTP 10.2.0.1 -> 10.2.2.204 : GET /catalogue HTTP/1.1
HTTP 10.2.2.204 -> 10.128.117.95 : GET /catalogue HTTP/1.1
HTTP 10.128.117.95 -> 10.2.2.204 : HTTP/1.1 200 OK
HTTP 10.2.2.204 -> 10.2.0.1 : 0
HTTP 10.2.0.1 -> 10.2.2.204 : GET / HTTP/1.1
HTTP 10.2.2.204 -> 10.2.0.1 : rue,
HTTP 10.2.0.1 -> 10.2.2.204 : GET /login HTTP/1.1
HTTP 10.2.2.204 -> 10.128.133.122 : GET /login HTTP/1.1
HTTP 10.128.133.122 -> 10.2.2.204 : HTTP/1.1 200 OK

6.2.2. Online Boutique

Online Boutique [45] is composed of eleven microservices, whose sources (unlike
those of Sock Shop) are stored in the same GitHub repository (https://github.com/
GoogleCloudPlatform/microservices-demo, accessed on 26 June 2023).

As we did for Sock Shop, we first created a configuration file for letting KUBEHOUND

process Online Boutique’s Kubernetes deployment and OpenAPI specifications. In the file,
we specified the repository from which to download the necessary inputs, and we set the
external property of the frontend service to indicate that it is acting as the gateway of the
application, as indicated in the online documentation [45]. Differently from Sock Shop,
here we also had the possibility of exploiting the Istio service mesh [42] when deploying
the target microservice application on a cluster. We therefore considered two different cases
in our study, namely, with and without making use of the Istio service mesh, to compare
KUBEHOUND’s results between the two.

We then analysed the obtained application deployments with KUBEHOUND, whose
full output is publicly available on GitHub (https://github.com/di-unipi-socc/kube-
hound/tree/master/data/examples/online_boutique, accessed on 26 June 2023). The
main difference between the two application deployments was in the identified Non-Secured
Service-to-Service Communications smells: when KUBEHOUND analysed the deployment of
Online Boutique with the Istio service mesh enabled, it was not returning any instance
of the Non-Secured Service-to-Service Communications smell due to unencrypted traffic. In-
stead, when analysing the deployment of Online Boutique without the Istio service mesh,
instances of the Non-Secured Service-to-Service Communications were identified in each ser-
vice interaction due to unencrypted HTTP2 traffic. We hence inspected the application,
observing that the services were communicating via gRPC without encrypting the traffic
themselves. The difference indeed resided in the Istio service mesh configuration, which,
when enabled, enforced mutual TLS in service-to-service communications [42].

KUBEHOUND also identified some other security smells that were common to both
deployments of Online Boutique. However, compared to Sock Shop, Online Boutique

https://github.com/GoogleCloudPlatform/microservices-demo
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was much more adherent to good security practices, so in the case of the application
deployed with Istio enabled, the identified security smells did not correspond to true bad
security decisions in the application. Indeed, KUBEHOUND identified Hardcoded Secrets
due to the featured, heuristics-based Hardcoded Secrets in Containers’ Environment analysis,
which reported false positive secrets this time. KUBEHOUND also detected Unnecessary
Privileges to Microservices smells due to Online Boutique’s microservices running as root.
However, by inspecting the Kubernetes manifest files, we observed that this was not truly
the case: containers were supposed to run as non-root, but this was specified under the
spec field instead of in the containers list, which is the only place where Kubesec.io looks
for deployed containers’ privileges.

7. Conclusions

We showed that the task of automatically detecting the security smells listed by Ponce
et al. [1] is actually possible, and we presented a first set of analysis techniques enabling the
detection of instances of such smells in microservice applications deployed with Kubernetes.
We also provided a first tool supporting automated security smell detection, called KUBE-
HOUND, which already features a subset of the presented smell-detection techniques
and whose design is modular and extensible to enable extending it to provide a more
comprehensive coverage of microservice security smell detection. We finally assessed our
approach and tool in practice by applying KUBEHOUND to controlled experiments and
case studies based on two third-party applications.

Our work can help researchers and practitioners better understand how security smells
[1] can be identified in microservice applications. They can also exploit KUBEHOUND to
automatically detect instances of such security smells in their microservice applications, if
deployed with Kubernetes. The coverage of detected smell instances is, however, currently
limited to the built-in plugins presented in Section 5.3. For this reason, we are already
working on extending KUBEHOUND to feature all the analysis techniques in Section 4 as
built-in plugins. We also plan to investigate new analysis techniques to provide a more
comprehensive coverage of the the possible instances of already-known security smells [1],
as well as to enable the incorporation of newly discovered security smells, if any.

It is worth noting that KUBEHOUND is “best effort”, meaning that it runs a smell-
detection technique only if all the resources it needs are available. This obviously limits the
set of detected smell instances to only those that can be detected with the inputs provided
to KUBEHOUND. At the same time, it enables end-users to provide only what they wish to
be analysed, e.g., enabling KUBEHOUND to work if the source code of some microservices
is not available or if users do not wish KUBEHOUND to interact with a running instance of
the target microservice application. The choice of a “best effort” approach was motivated
to enhance the usability and applicability of KUBEHOUND. We plan to further improve
such usability and applicability, e.g., by devising a graphical user interface and by enabling
it to work with other container-orchestration frameworks or API-specification languages.
We also plan to improve the performance of KUBEHOUND, e.g., by enabling the parallel
execution of the smell-detection techniques. Finally, we plan to further support end-users
by devising a confidence level to be attached to the detected security smells. This would
help assess how likely is that any security smell detected by KUBEHOUND represents a
security problem in the application.
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