
Citation: Bocci, A.; Forti, S.;

Guanciale, R.; Ferrari, G.-L.; Brogi, A.

Secure Partitioning of Cloud

Applications, with Cost Look-Ahead.

Future Internet 2023, 15, 224.

https://doi.org/10.3390/

fi15070224

Academic Editor: Luis Javier

Garcia Villalba

Received: 23 May 2023

Revised: 21 June 2023

Accepted: 21 June 2023

Published: 22 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Secure Partitioning of Cloud Applications, with Cost
Look-Ahead
Alessandro Bocci 1,* , Stefano Forti 1 , Roberto Guanciale 2 , Gian-Luigi Ferrari 1 and Antonio Brogi 1,*

1 Department of Computer Science, University of Pisa, 56127 Pisa, Italy; stefano.forti@unipi.it (S.F.);
gianluigi.ferrari@unipi.it (G.-L.F.)

2 KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; robertog@kth.se
* Correspondence: alessandro.bocci@phd.unipi.it (A.B.); antonio.brogi@unipi.it (A.B.)

Abstract: The security of Cloud applications is a major concern for application developers and
operators. Protecting users’ data confidentiality requires methods to avoid leakage from vulnerable
software and unreliable Cloud providers. Recently, trusted execution environments (TEEs) emerged
in Cloud settings to isolate applications from the privileged access of Cloud providers. Such hardware-
based technologies exploit separation kernels, which aim at safely isolating the software components
of applications. In this article, we propose a methodology to determine safe partitionings of Cloud
applications to be deployed on TEEs. Through a probabilistic cost model, we enable application oper-
ators to select the best trade-off partitioning in terms of future re-partitioning costs and the number
of domains. To the best of our knowledge, no previous proposal exists addressing such a problem.
We exploit information-flow security techniques to protect the data confidentiality of applications by
relying on declarative methods to model applications and their data flow. The proposed solution
is assessed by executing a proof-of-concept implementation that shows the relationship among the
future partitioning costs, number of domains and execution times.

Keywords: data confidentiality; trusted execution environments; separation kernels; information-
flow security; deployment costs; declarative programming

1. Introduction

Cloud computing has grown considerably in the last few decades to support applica-
tions by remotely providing computation, storage and networking resources [1]. Nowadays,
Cloud technologies are extensively adopted but open problems and issues still remain.
Among them, the security aspects of Cloud computing represent a major concern of both
fundamental research and development [2,3].

There are several lines of research in Cloud computing security [4], spanning from
network layers [5] to virtualisation and multi-tenancy [6], from the software stack to
specialised hardware [7], and from regulations to responsibility models [8]. A major concern
about adopting the Cloud relates to the difficulty of guaranteeing the data confidentiality
and code integrity of applications running on Cloud resources.

Most modern applications consist of large codebases that rely on third-party software,
subject to regular updates and short development time. Such complexity makes it difficult
to verify or certify the security assurances of the deployed software, also exposing appli-
cations to bugs that lead to exploitable vulnerabilities. Moreover, application operators
manage, run and maintain the software relying on Cloud providers. Those providers de-
liver hardware and software infrastructure capabilities, maintaining high privileges on the
access to the infrastructure [9]. From the data security point of view, Cloud infrastructure
providers cannot be considered fully reliable, e.g., a malicious insider could abuse her
access rights to steal secret data [10].

Consider a public Cloud scenario, where providers deliver hardware and software
infrastructure to their customers managing applications made from software components

Future Internet 2023, 15, 224. https://doi.org/10.3390/fi15070224 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15070224
https://doi.org/10.3390/fi15070224
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7000-2103
https://orcid.org/0000-0002-4159-8761
https://orcid.org/0000-0002-8069-6495
https://orcid.org/0000-0003-3548-5514
https://orcid.org/0000-0003-2048-2468
https://doi.org/10.3390/fi15070224
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15070224?type=check_update&version=1

Future Internet 2023, 15, 224 2 of 38

(e.g., microservice architectures) and hardware components (e.g., network devices). Each
software component of an application has a set of security-relevant characteristics, proper-
ties or software dependencies of the component, e.g., the use of a non-verified third-party
library. Those characteristics determine the degree of trust of a component in order to
establish whether the component can manage its data without leaks.

The usage of software with a low degree of trust can pave the way for attacks that
compromise the confidentiality of applications’ data. Hence, application developers need
mechanisms to: (i) identify how reliable software manages sensitive data, (ii) securely isolate
components in order to avoid data leaks from unreliable software and (iii) be protected from
unreliable infrastructure providers. To fulfil these requirements and protect the application
data from the deployment phase onwards, developers can leverage dedicated hardware to
separate the application components into isolated environments. This approach enables
data flow solely through explicit communication channels and eludes the privileges of the
hardware platform providers.

The most common technologies to provide this kind of isolation are separation ker-
nels (SK). They create a computational environment indistinguishable from a distributed
system, where information can only flow from one isolated machine to another through
explicit communication channels [11]. In a nutshell, SKs are (hardware or software) mecha-
nisms that partition the available resources in isolated domains (or partitions), mediate the
information flow between them and protect all the resources from unauthorised accesses.

In Cloud settings, the hardware is not directly available to customers and trusted
execution environments (TEEs) [12–14] are emerging to exploit the SK technology. TEEs
are tamper-resistant processing environments that run on a separation kernel [15]. They allow
customers to create isolated memory domains for code and data that are also not accessible
by the privileged software that is controlled by Cloud providers. TEEs provide in the Cloud
the same memory and register isolation that separation kernel (SK) technologies provide in
local machines.

In this work, we focus on the data separation provided by SKs. We do not consider
other sophisticated mechanisms offered, such as the timed scheduling of domains. Given
that our discussion is not dependent on the hardware that isolates the domains, in the rest
of our article we refer to SKs as the supporting technology that comprehends TEEs and
other similar mechanisms.

To effectively adopt these technologies, developers must face several design choices.
Deciding which components must be grouped together is particularly important and
challenging. Developers must solve the problem of how to partition their applications, i.e.,
how to separate the software components of the application to be placed in different SKs’
domains. Our ultimate objective is to avoid potential data leaks after the deployment phase
by exploiting applications’ information flow. Indeed, there is a research gap in addressing
this problem. There exist information-flow security methods to address complementary
problems, such as checking the correct labelling of software or monitoring the inputs and
storage accesses by the applications. Other proposals rely on specialised hardware to tackle
unreliable Cloud providers. As far as we know, however, there is no work that employs
both aspects (viz., information-flow security and SK protection mechanisms in the Cloud)
aiming at supporting the deployment of Cloud applications on specialised hardware such
as SKs.

In our previous work [16], we presented a methodology to determine a (minimal)
eligible partitioning of an application onto an SK. Namely, [16] presents:

(a) a declarative model to represent multi-component applications, exploiting information-
flow security to check whether components can manage their data without leaks, and

(b) a (formal) definition of safely partitionable applications and eligible partitioning,
also considering the performance cost of exploiting SKs and the cost of migrating
software, prototyped in SKnife (Open-sourced at: https://github.com/di-unipi-socc/
sk, accessed on 20 June 2023).

In this article, we extend (a) and (b), with the following original contributions:

 https://github.com/di-unipi-socc/sk
 https://github.com/di-unipi-socc/sk

Future Internet 2023, 15, 224 3 of 38

(c) the sketch of the proof that the partitioning determined by SKnife is minimal and unique,
(d) a cost model based on the probability of deployment migration, which depends on

user-defined parameters, viz., the upper limit of SK domains and the number of
admitted changes in data secrecy and components’ trust,

(e) a novel (Prolog and Python) prototype, ProbSKnife (open-sourced at: https://github.
com/di-unipi-socc/ProbSKnife, accessed on 20 June 2023), that exploits SKnife to
determine the eligible partitionings and implements the above probabilistic cost model
to support the decision-making related to the initial deployment of the application,
and

(f) the experimental assessment of ProbSKnife considering the execution times, future costs and
probability of not finding a safely partitionable application at varying input parameters.

The goal of our methodology is to support the decision-making of application oper-
ators for the deployment of their applications in Cloud settings where the infrastructure
provider is considered not trusted, by exploiting the SK technology. Our prototype tool
is able to determine the deployment using the minimum number of domains, e.g., with
the lowest SK performance impact, or to recommend different solutions considering the
trade-off between the number of domains and costs of future re-deployments.

The rest of this article is organised as follows. Section 2 deeply analyses the related
literature. Section 3 introduces essential notions to prepare the ground for our methodology
and a realistic motivating example. Section 4 describes our declarative modelling of multi-
component applications and information-flow methods. Section 5 presents our partitioning
methodology aiming at minimising the number of SK domains, prototyped in the Prolog
open-source tool SKnife. Section 6 introduces the cost model of a deployment migration
and the Prolog implementation ProbSKnife. Section 7 shows the results of the experimental
assessment of ProbSKnife aiming at investigating the performance and future costs of the
motivating example. Finally, Section 8 concludes the article by pointing to some lines
for future work.

2. Related Work
2.1. Specialised Hardware for Cloud Security

The adoption of specialised hardware for security in Cloud scenarios is largely dif-
fused [17–21] to address the issue to entrust applications and their data to Cloud providers.
The two main technologies adopted are TEEs and enclaves, which share the idea to reserve
a separate and protected region of memory for executing code that is not accessible or
temperable by the owner of the machine by enabling secure data processing.

Zheng et al. [22] survey the literature that exploits enclave-based hardware and TEEs to
build secure applications in the Cloud and possible attacks on such applications. Moreover,
the authors highlight the overheads brought by those technologies in terms of memory
usage, data and code encryption and the limited computing resources of the secure area.
Relatedly, Zhao et al. [23] conduct an experimental study to evaluate enclave technology’s
impact on application performance, measuring the overhead on function and system calls,
memory accesses and data exchanged from and to the enclave. The authors conclude that
such specialised hardware surely enhances the security of Cloud applications but it is very
important to take care of the performance overhead. Arfaoui et al. [24] deeply analyse TEEs
by comparing the currently available solutions, focusing on the security aspects.

2.2. Partitioning and Separation

Lind et al. [25] propose a framework to automatically partition C applications for
deployment on enclaves to protect data confidentiality from an untrusted operating system.
Differently from our work, they do not employ information-flow techniques to determine
the partitioning but rely on annotations of the source code as an indication of what should
be placed in the enclave. Without considering specialised hardware, other works perform
least-privilege application partitioning on source code relying on static analysis [26,27],
dynamic analysis [28,29] or their combination [30].

 https://github.com/di-unipi-socc/ProbSKnife
 https://github.com/di-unipi-socc/ProbSKnife

Future Internet 2023, 15, 224 4 of 38

In Cloud settings, Watson et al. [31] propose a methodology to support the deployment
of applications composed of service workflows that are partitioned on Cloud nodes based
on the security requirements of the data flow. Other approaches aim at verifying the data
separation and the data flow of SKs [32–35]. In mobile settings, Rubinov et al. [36] propose
a partitioning framework for placing Android applications on TEEs. By mixing source
code annotations and taint analysis, the framework indicates to the user a refactoring of
the application in order to isolate the most sensitive parts. Differently from our work, this
framework needs to analyse the source code and it is language-specific and OS-specific.

2.3. Information-Flow Security

Information-flow security assigns labels to variables of a program to follow its data
flow in order to verify the desired properties (e.g., non-interference [37]) and avoids covert
channels. Labels are ordered in a security lattice to represent the relations of the labels from
the highest ones (e.g., top secret) to the lowest ones (e.g., public data). Security lattices can
be arbitrarily complex and define total or partial orders, e.g., a three-label total order that
represents data secrecy from top secret to low secret is represented as top � medium � low.

Some approaches use information-flow security to address problems that are com-
plementary to our techniques, for example, checking the correct labelling of software or
monitoring inputs and storage accesses by the applications. Elsayed and Zulkernine [38]
propose a framework to deliver Information-Flow-Control-as-a-Service (IFCaaS) in order to
protect the confidentiality and integrity of the information flow in a Software-as-a-Service
application. The framework works as a trusted party that creates a call graph of an appli-
cation from the source code and applies information-flow security based on dependence
graphs to detect violations of the non-interference policy.

At the Function-as-a-Service (FaaS) level, Alpernas et al. [39] present an approach for
dynamic information-flow control, monitoring the inputs of serverless functions to tag them
with suitable security labels in order to check access to data storage and communication
channels to prevent leaks of the data managed by the functions. Similarly, Datta et al. [40]
propose to monitor serverless functions by starting to learn the information flow of an
application, showing the detected flows to the developers and enforcing the selected ones.

In the Cloud–Edge continuum, our previous work [41] exploits information-flow
security to place FaaS orchestrations on Fog infrastructures. Functions are labelled with
security types according to the input received and infrastructure nodes are labelled accord-
ing to user-defined security policies. The placements are considered eligible if every node
involved has a security type greater than or equal to the security type of all the hosted
serverless functions. Developers assign a level of trust to infrastructure providers that
concurs to rank the eligible placements.

Differently from our approach, all these proposals but [38] consider Cloud–Edge
providers reliable. Recently, a few proposals have leveraged information-flow analyses to
enforce data security in Cloud applications when the Cloud–Edge provider is untrusted.
For example, Oak et al. [42] have extended Java with information-flow annotations that
allow verification of whether partitioning an application into components that run inside
and outside an SGX enclave violates confidentiality security policies. In this proposal,
partitioning is decided by the programmer.

2.4. Declarative Approaches

Similarly to us, declarative techniques have been employed to resolve different Cloud-
related problems. There are proposals to manage Cloud resources (e.g., [43]), to improve
network usage (e.g., [44]), to assess the security and trust levels of different application
placements (e.g., [45]) and to securely place VNF chains and steer traffic across them
(e.g., [46]).

To the best of our knowledge, there are currently no proposals that employ information-
flow security to partition applications to support the deployment on SKs.

Future Internet 2023, 15, 224 5 of 38

3. Preliminaries
3.1. Threat Model

Table 1 shows the threat model considered hereinafter. Our goal is to protect the data
confidentiality of multi-component Cloud applications from external attackers and unreliable
Cloud providers.

Application developers are assumed to be trusted, and the information they give about
the application to protect is considered reliable. Our trusted computing base (TCB) lever-
ages the SK technology to isolate the software components of an application into separate
domains, guaranteeing that the information flows only along the explicit communication
lines given by the application developers and avoiding other side channels. This model is
consistent with the threat model of several trusted execution environments (e.g., [47]).

Table 1. Threat model.

Asset Data confidentiality

TCBs Application operator, TEE/SK

Threat Cloud Provider External Attacker

Attack Vectors Superuser Privileges Software Vulnerabilities,
Covert Channels

Countermeasures TEE, SK Eligible Partitioning

Software components can be hacked by external attackers by exploiting their vul-
nerabilities to leak application data. As an example, an attacker can gain control of a
software component from a malicious or bugged library and steal the data managed by
that component itself or by the components in the same environment, i.e., domain.

Moreover, a component under the control of an attacker can create covert channels, e.g.,
by sending stolen data via the network. For these reasons, we need to take particular care
in individuating less-trusted components and isolating them from components managing
important data. Exploiting SKs guarantees that communication only happens through
explicit channels, avoiding the creation of side channels. However, we need to pay particular
attention to software components having explicit channels toward the hardware that can be
exploited by compromised software components, i.e., creating a path to leak the data.

On the other hand, unreliable infrastructure providers can exploit their superuser
privileges on the infrastructure to steal application data. We exploit TEEs to protect the
software components that guarantee a tamper-resistant processing environment and remote
attestation that proves its trustworthiness for third parties [15]. What is not protected by
TEEs is the data exchange with unreliable hardware components, such as network interfaces
or storage disks. As an example, having an explicit channel to save secret data on a disk
is admitted by TEEs independently from the partitioning of the software components
and such data are leaked to the provider as the owner of the disk. Therefore, we need to
take care of the secrecy of the data exchanged with hardware components considered not
trusted.

3.2. Problem Formulation

We define a partitioning as the structuring of the software components of an application
in non-empty parts called domains. Intuitively, a partitioning domain represents an isolated
environment where data can flow (inbound or outbound) only by explicit communication
channels. Inside every domain, data can potentially be shared.

Domains must satisfy the following two properties:

• data consistency, meaning that the software components of the same domain manage
data with the same secrecy level, and

• reliability, meaning that the components of the same domain have the same trust from
the operator to manage their data.

Future Internet 2023, 15, 224 6 of 38

A partitioning is safe if and only if each of its domains is data-consistent and reliable.
An application is safely partitionable if it does not leak sensitive data from software

components to untrusted hardware components. When an application is non-safely parti-
tionable, exploiting the SK isolation is not enough to protect the data confidentiality of the
application. Our approach detects this situation and suggests how to improve the software
reliability or the data-secrecy level to make the application safely partitionable.

Overall, the problem addressed by this work can be stated as follows:

“Given a multi-component application consisting of a set S of software components,
find safe partitionings of S (if any) in order to deploy the application A to an SK
technology while minimising the considered costs and protecting A from data
leaks.”

While tackling this problem, two main challenges are addressed. On one hand, the
data confidentiality of applications must be considered during the deployment phase.
On the other, the performance of applications should not be degraded by the supporting
hardware technology that enforces security. We tackle the partitioning problem by em-
ploying information-flow security techniques [48]: (i) to understand whether the software
components leak sensitive data outside the SK and (ii) to partition the application in order
to avoid data leaks between components hosted on the same SK domain.

Moreover, to meet the security requirements it is enough to find a partitioning that
isolates unreliable software components of the application in different domains, but doing
so blindly can lead to unexpected performance and deployment costs. SKs bring overheads
that can heavily impact the application performance [34], e.g., switching domains during
the execution has a cost in terms of time that is influenced by sanitising the used resources
before re-using them and by the domain-scheduling algorithm of the SK. Moreover, chang-
ing software domains after deployment requires working on the explicit communication
channels that become intra-domain from extra-domain and vice versa. All of these call for
partitionings that allow application operators to reduce those kinds of costs.

We consider two different cost parameters to determine safe partitioning:

• the number of domains used by the safe partitioning in order to reduce the SK
overhead, and

• the expected migration cost of switching from one partitioning to another following
new evidence about the software components in our application (e.g., disclosure of a
new bug or defect bringing a vulnerability).

We also consider the combination of the above costs to support application operators
in determining the best trade-off in terms of SK overhead and potential migration cost.

We propose two declarative methodologies and open-source prototypes:

1. SKnife, which finds the minimal safe partitioning (Section 4) that minimises the number
of domains, and

2. ProbSKnife (Section 6.2), which exploits SKnife to find all the safe partitionings with
their expected migration cost, up to a user-defined limit of the number of domains.

The first methodology, prototyped in SKnife, exploits logic programming to define
partitionings and domains in such a way that they satisfy the data-consistency and -
reliability properties. By applying inference rules to the application model, our Prolog
prototype determines a minimal partitioning.

The second methodology, prototyped in ProbSKnife, determines all the possible initial
partitionings (not only the minimal one) and computes the cost of changing deployment
based on probability distributions that describe changes in the data classification and
component trustability.

3.3. Motivating Example

Consider a Cloud-centralised IoT system that collects data sampled by sensors and
sends them to a Cloud application, where the data are stored and used to decide which
commands to issue to IoT actuators. The users of this application can make requests on

Future Internet 2023, 15, 224 7 of 38

the status of the devices and can remotely configure the application. Nowadays, these
kinds of applications are well-established in the home-automation field [49], service-device
compositions [50] and platforms offered by Cloud providers [51,52].

The architecture of the example application is depicted in Figure 1. Consider six
software components and two hardware components—depicted in grey—that are used by
the application, connected by edges representing explicit communication links between
components.

IoT Measurements(T)
User Preferences(M)

From Provider(L)

TLS Library(T)

Authenticator

IoT Measurements(T)
User Requests(M)
IoT Commands(T)
IoT Events(T)
Network Data(L)

User Preferences(M)

-

App Manager

IoT Measurements(T)
User Requests(M)
IoT Commands(T)
IoT Events(T)

AI Framework (L)

AI Learning

Data Library(M)

User Config.

User Preferences(M)

DBMS(T)

DB

IoT Measurements(T)
User Preferences(M)
Crypted Data(L)

Net.Library(L)

API Gateway

Network Data(L)

From Provider(L)

Network
Interface

Network Data(L)

Disk

Crypted Data(L)

IoT
Users

20 30

20

10

10

50

Figure 1. Application architecture (labels: T = top, M = medium, L = low).

Users and IoT devices perform REST invocations toward the considered application. All
inbound communication passes through the Network Interface and is received by the API

Gateway. The intra-application communication is performed by message passing between com-
ponents, exploiting explicit channels supplied by the underlying hardware. The Authenticator

decrypts and authenticates the inbound data and forwards them to the intended recipient.
Application users can send General requests and Configuration requests. The former

are requests for explicit actuation or data previously sampled and are delivered to the App

Manager, which is the main component of the application that implements the business logic.
The latter are requests for reading or updating the current application configuration and
are delivered to the User Configuration component, which manages the configuration of
the application. The IoT devices send either sampled data or events, which are dispatched
to the App Manager component. The outbound communication consists of responses to the
users based on their requests or IoT commands from the App Manager toward the IoT devices.
To store relevant application data—IoT Measurement and User Preferences—the application
relies on the component DB, a database that is the only one connected to the Disk. Finally,
AI Learning is a machine-learning module that uses IoT Measurement and User Preferences

to perform predictions and support the decision-making of the App Manager.
Each component has explicit links to other components, its own data—depicted in the

lower boxes of the components—and its relevant characteristics—depicted in the upper
boxes of the components. For instance, the component AI Learning has data IoT Measurement

and User Preference, its relevant characteristic is AI Framework and it is linked to App Manager

and User Configuration. The characteristics are properties, third-party libraries, etc., that
impact the trust of the components. For instance, the Disk is owned by the Cloud provider,
which in our setting makes the component unreliable. The measure of the trust level of the
components is mandatory to determine if they can manage their data in order to avoid leaks.
For instance, the API Gateway must be able to manage its data to avoid the leak of such data
toward the Network interface. The dotted arrow between User Config and Disk represents
a link consisting of an alteration of the application architecture. Figure 1 represents two

Future Internet 2023, 15, 224 8 of 38

different application architectures with only that link as a difference. The base application—
identified as iotApp1—does not have the dotted link. The modified application—identified
as iotApp2—has the dotted link. We will use those two slightly different architectures in
Section 5.4 when discussing the partitioning of the two applications.

This application results in a large codebase that includes the operating system, com-
munication stacks, AI frameworks, etc, and also requires frequent updates. These factors
make it hard to verify or certify the security of the released software. To determine the
level of trust of the software components, we assign security labels to the relevant charac-
teristics of the application. We also assign security labels to the application data in order to
establish a direct relationship between the data and the trust of the software components.
We adopt a total ordering security lattice (viz., top � medium � low) modelling the labels
pertaining to both sensitive data and trusted characteristics. The top label denotes both
secret data and high-trust characteristics, the medium label denotes both medium-secret data
and medium-trust characteristics and the low label denotes public data and non-reliable
characteristics.

A component having characteristics considered unreliable by the application developer
is not able to manage secret data. This could cause a leak of its data toward the directly
connected components or toward the software components hosted in the same isolation
environment, i.e., container, virtual machine or SK domain. For instance, if the DBMS used by
DB is not reliable—either because it is malicious or because it has vulnerabilities—the data
of DB can leak toward the Disk, component owned by the Cloud Provider. Furthermore, if
DB is isolated in the same SK domain of API Gateway (assuming an unreliable Net Library),
the leak of data could flow from the DB to the Network Interface through the API Gateway.

We emphasise again that we aim at protecting the data confidentiality of applications
placed on the Cloud by finding safe partitionings, i.e., grouping the software components in
non-empty subsets that allow placement of the application in SK domains in such a way
that the data and trust of the components are homogeneous in every domain, avoiding
having less-trusted components share the environment with components that manage
sensitive data. For instance, we already discussed that AI Framework is a library of AI

Learning considered not reliable; it may contain malicious code or its vulnerabilities may
be exploited by an external attacker. Placing all the software components in the same
domain exposes the data of the application to be read by AI Framework and sent outside
such domain. Partitioning the application components to isolate their data and exploiting
the SKs’ isolation mitigates those kinds of threats.

To support the application operator’s decision, we aim at determining the expected
migration costs of the software components. Migrating the software components could be
needed after the deployment of the partitioned applications due to events such as bug
discovery or data declassification that bring a change in the labelling of the application.
With the new labelling, the partitioning might not be safe anymore. For instance, a bug dis-
covered in the TLS Library declassifies its trust from top to medium and the Authenticator must
be migrated to a different domain to preserve the data confidentiality of the application.

For these reasons, every software component is also annotated with its migration cost,
represented as an integer number. The migration cost represents how many hours of work are
needed to change the communication link of each software component during a migration
that changes the status of the link from intra-domain to extra-domain and vice versa. For
instance, the User Configuration needs 10 person hours to change its communication links.

To evaluate the expected costs of migration, we need to know how data and character-
istics can change the label over time. Application operators may determine the probability
distribution of the change over time by their experience or by exploiting statistical analyses
from the open-source community [53].

Table 2 shows a probability distribution to change the label for each data and charac-
teristic of the application.

Future Internet 2023, 15, 224 9 of 38

Table 2. Probability distributions to change the label for each data type and characteristic.

DATA/CHARACTER PROBABILITY (%)

Top Medium Low

Network Data 0 0 100

Crypted Data 0 0 100

User Preferences 30 50 20

User Requests 30 50 20

IoT Measurements 70 20 10

IoT Events 70 20 10

IoT Commands 80 10 10

TLS Library 70 20 10

From Provider 10 30 60

AI Framework 20 30 50

DBMS 50 30 20

Net. Library 10 20 70

Data Library 30 40 30

For instance, we can assume that in the future there is a 20% probability of discovering
a side channel not easy to exploit in the TLS Library, reducing its trust from top to medium.
Alternatively, there is a 10% probability of discovering a vulnerability in the cryptography
algorithm of the same library, which reduces its trust to low. We represent this by assign-
ing to the TLS Library 20% as the probability of changing its label to medium, 10% as the
probability of changing its label to low and s 70% as the probability of remaining top.

From Table 2, we can also deduce that the application operator does not exclude the
possibility to consider reliable the Cloud provider in the future. Indeed, the From Provider

characteristic has a 30% probability of changing to medium trust and a 10% probability of
changing to top trust. Network Data and Crypted Data will be always considered low data as
they have a 100% probability of remaining low. This means that the application operator
assumes that the data arriving from the network and the data stored on the disk will never
be secret.

4. A Declarative Solution: SKnife
This section describes the methodology implemented in SKnife to determine the minimal

safe partitioning of an application for the deployment onto an SK by exploiting simple exam-
ples excerpted from the motivating example of Section 3.3. The model code (Section 4.1) is
presented and discussed inline within the main text. The declarative implementation of
our methodology (Sections 4.2 and 5) is instead presented through code listings featuring
line numbers to facilitate a more thorough discussion.

Werecall that a Prolog program is a finite set of clauses of the form a :- b1, . . . ,
bn stating that a holds when b1 ∧ · · · ∧ bn holds, where n≥0 and a, b1, . . . , bn are atomic
literals. Clauses with an empty condition are also called facts. Prolog variables begin with
upper-case letters, lists are denoted by square brackets and negation is by \+. With pname/n
is indicated a predicate with name pname and its arity n. Prolog programs can be queried,
and the Prolog interpreter tries to answer each query by applying SLD resolution and by
returning a computed answer substitution instantiating the variables in the query.

4.1. Declarative Modelling Applications and Labelling

Application developers model their applications through suitable Prolog facts and
clauses, as

Future Internet 2023, 15, 224 10 of 38

application(AppId,Hardware,Software).

where AppId is the application identifier, Hardware is the list of hardware components in-
teracting with the application and Software is the list of software components to place on
the SK.
Example. The iotApp1 application of our example is declared by the fact

application(iotApp1,[network,disk],[userConfig,appManager,
authenticator,aiLearning,apiGateway,db]).

�
Software and hardware components are declared as in

software(SwId,Data,Characts,Cost,[LinkedHW,LinkedSW]).
hardware(HwId,Data,Characts,[LinkedHW,LinkedSW]).

where SwId and HwId are the unique identifiers of each component, Data is the list of names
of the data managed by the component, Characts is the list of names of the component
characteristics, LinkedHW is the list of linked hardware components and LinkedSW is the list of
linked software components. The only difference is the components definition Cost, which
is the integer value representing the migration cost of the software.
Example. The db and disk components are declared as

software(db,[iotMeasurements,userPreferences,cryptedData],
[dbms],50,([disk],[userConfig,appManager])).

hardware(disk,[cryptedData],[fromProvider],([],[db])).

�
Application developers must also declare a security lattice formed by ordered labels

and they have to label the relevant data of the application and the relevant characteristics
of the components. The higher the label of the data, the higher the secrecy of the data.
Similarly, the higher the label of a characteristic, the higher the trust in the characteristic. We
call the labels assigned to the data secrecy labels and the labels assigned to the characteristics
trust labels.

Every data type and characteristic can be labelled using

tag(Name, Label).

where Name is the name of the data or characteristic to be labelled and Label is the assigned
label. Obviously, the labels must be part of the lattice. We call labelling the set of all pairs
〈Name, Label〉 where all data and characteristics have been assigned a security label.
Example. The label of the data and the characteristics of the Disk are declared as

tag(cryptedData, low).
tag(fromProvider, low).

which represents the cryptedData data with a low secrecy label and the fromProvider charac-
teristic with a low trust label. �

The probability of changing the label for a data type or characteristic is declared as

tagChange(DC,label,P).

representing how the data or characteristic DC changes to label with probability P. To have
the full distribution for DC we need facts for every label of the security lattice and the sum
of the probabilities of those facts must be 1.
Example. The probabilities of changing the label of the data and the characteristics of the
Disk are declared as

Future Internet 2023, 15, 224 11 of 38

tagChange(cryptedData, top, 0.0).
tagChange(cryptedData, medium, 0.0).
tagChange(cryptedData, low, 1.0).
tagChange(fromProvider, top, 0.1).
tagChange(fromProvider, medium, 0.3).
tagChange(fromProvider, low, 0.6).

which represents the cryptedData data with a probability of 100% to have a low secrecy label
and the fromProvider characteristic with a probability of 60% to remain low, 30% to change
to medium and 30% to change to top. �

4.2. Safe Partitioning

Our methodology assigns to every component a pair of labels, one indicating its
secrecy level and one indicating its trust level. A component is trusted if its trust label
is greater than or equal to its secrecy label; otherwise, it is considered untrusted. All the
comparisons between labels are based on the ordering of the security lattice. A trusted
component is able to manage its data without the risk of leaking them.

The label assignment to a component is performed by the predicate labelC/4 of
Listing 1, using the lists of data and characteristics of the component and the labelling of
the application.

Listing 1. The labelC/4 predicate.

1 labelC(Labelling,Ds,Cs,DType,CType)):-
2 dataLabel(Labelling,Ds,DLabels),
3 highestType(DLabels,DType),
4 characteristicsLabel(Labelling,Cs,CLabels),
5 lowestType(CLabels, CType).

The secrecy label is determined by the highest label of its data in order to consider the
most critical data managed by the component. The trust label is determined by the lowest
label of its characteristics because the worst characteristic could compromise the trust of
the component, e.g., a component using a simple logging library and a certified encryption
software could be endangered by a bug in the former.

A component without relevant characteristics is considered reliable and its trust label
is the highest of the security lattice. We choose this level of granularity (i.e., the developer
labels the data and characteristics instead of directly labelling the components) to have
a better insight into the application and to have a more accurate understanding of the
situations in which the application is non-safely partitionable.

Untrusted components can leak their data to directly linked components. If such
components have a trust label lower than the leaked data they can propagate the leakage
through their links. If such data reach a hardware component, then an external leak occurs.
An external leak is a path from an untrusted software component to a hardware component
where all the components of the path have a trust label lower than the secrecy label of the
first software component of the path. The presence of such paths indicates the potential
for data leakage from an untrusted component toward the outside of the SK that is not
avoidable by the partitioning.

Recall that an application is called safely partitionable when there is no leakage out-
side the SK, i.e., all its hardware components are trusted and all its untrusted software
components do not incur any external leaks.

The predicate hardwareOk/2 of Listing 2 checks that all the hardware components of the
application are trusted, which avoids hardware attacks that cannot be contrasted by the
SK partitioning.

Future Internet 2023, 15, 224 12 of 38

Listing 2. The hardwareOk/2 predicate.

6 hardwareOK(Labelling,[H|Hs]):-
7 hardware(H,Ds,Cs,_),
8 labelC(Labelling,Ds,Cs,(TData,TChar)),
9 gte(TChar,TData),

10 hardwareOK(Labelling,Hs).
11 hardwareOK(_,[]).

The predicate recursively scans the list of hardware components to check their labelling.
Initially, information about a single component is retrieved (line 7), and then the labelling
of the hardware component is determined (line 8). The predicate checks for the component
trustability (line 9), where gte/2 checks if the trust is greater than or equal to the secrecy.
Finally, hardwareOk/2 recurs on the rest of the list (line 10) until it is empty (line 11).

Similarly, the predicate softwareOk/2 of Listing 3 checks that no software component
(line 13) that is untrusted (line 14) has an external leak toward an untrusted hardware
component (line 15).

Listing 3. The softwareOk/2 predicate.

12 softwareOk(Labelling,LabelledSoftware):-
13 \+(member((Sw,TData,TChar),LabelledSw),
14 lt(TChar,TData),
15 externalLeak(Labelling,[Sw],[],TData,LabelledSw)).

5. Determining the Minimal Safe Partitioning

In this section, we first show how SKnife determines a minimal safe partitioning of
an application onto an SK. We then also present a technique to support the application
operator when the application is non-safely partitionable.

5.1. Minimal Number of Domains

As aforementioned, we initially consider the number of domains in a partitioning P as
its cost, as shown in Equation (1), where |P| indicates the cardinality of the partitioning:

Cost(P) = |P| (1)

Solving the partitioning problem with such a cost corresponds to determining a safe
partitioning Pmin with the minimum number of domains. Given an application a, a labelling
L and a security lattice L,

SKnife(a,L, L) = Pmin (2)

Pmin = argmin
i
|Pi| (3)

Such a partitioning is unique (see proof in Section 5.2) and its cost depends on the num-
ber of labels of the security lattices. Note that, the minimum number of domains needed
to safely partition an application is equal to the number of label configurations to satisfy
the data-consistency and reliability properties. By counting all possible configurations,
an upper bound to the minimum number of domains is L2

s . We will prove later how, by
construction, SKnife determines the minimal safe partitioning.

5.2. Declarative Strategy for the Minimal Safe Partitioning

We use the notation P |= L to indicate that a partitioning P satisfies a labelling Lwhen
the partitioning is safe with L.

Safe partitionings split safely partitionable applications into a set of data-consistent
and reliable domains.

The software components of a safely partitionable application can be split and placed
on SK domains. A domain is a triple (DTData, DTChar, HostedSw) where DTData is the secrecy

Future Internet 2023, 15, 224 13 of 38

label of the domain, DTChar is the trust label of the domain and HostedSw is the list of the
software components hosted by the domain. Inside a domain, the software components
share the same environment. To avoid placing components in an environment containing
data that they are not able to manage, a domain must be data-consistent, as defined in
Equation (4)

∀software(Sw, Data, Characteristics, _) ∈ HostedSw :

labelC(Data, Characteristics, (CTData, _))→ DTData = CTData
(4)

meaning that in a domain there is no software component with a secrecy label different
from the domain secrecy label, i.e., all the software components hosted by a domain have
the same secrecy label of the domain. This property avoids placing a software component
in a domain that contains data more sensitive than those the component is supposed to
deal with.

Another aspect to consider is that untrusted components bring out the risk of leaking
sensitive data to other components of the domain or to linked components outside the
domain. In order to isolate such components, the domains must be reliable, as defined in
Equation (5)

∀software(Sw, Data, Characteristics, _) ∈ HostedSw :

labelC(Data, Characteristics, (CTData, CTChar))→ CTData ≥ CTChar

∨
∀software(Sw, Data, Characteristics, _) ∈ HostedSw :

labelC(Data, Characteristics, (CTData, CTChar))→ CTChar = DTChar

(5)

meaning that all the software components of a domain are either trusted or have the same
trust label as the domain.

Domains hosting only trustable software components are considered secure from data
leaks. Every component can manage its data and can exchange it outside the domain
without the risk of leaks, according to the trust assigned by the developer. Untrusted
components must be strongly isolated, and they can share a domain only with other
untrusted components having the same trust label, in order to have a homogeneous level
of trust inside the domain and mitigate the danger of a data leak.

The top-level sKnife/3 predicate (Listing 4) finds the safe partitioning of a safely
partitionable application. After retrieving the application information (line 17), it performs
two main steps. First, it checks whether the application is safely partitionable (lines 18–20)
and then, it creates the set of data-consistent and reliable domains, splitting the software
component across them (line 21), starting from an empty partitioning ([] of line 21).

Listing 4. The sKnife/3 predicate.

16 sKnife(AppId,Labelling,Partitioning) :-
17 application(AppId,Hardware,Software),
18 hardwareOK(Labelling,Hardware),
19 softwareLabel(Labelling,Software,LabelledSoftware),
20 softwareOk(Labelling,LabelledSoftware),
21 partitioning(LabelledSoftware,[],Partitioning).

The partitioning/3 predicate is listed in Listing 5 and it has the task of splitting the
labelled software components, placing them in data-consistent and reliable domains. The
predicate recursively scans the list of labelled software components (LabelledSoftware) to
place every component starting from a partitioning (Partitioning) that will be updated
in the resulting partitioning (NewPartitioning). The domains of the resulting partitioning
are data-consistent and reliable by construction. Every software component is placed in a
domain with the same secrecy label to satisfy the data consistency of the domain.

Future Internet 2023, 15, 224 14 of 38

Listing 5. The partitioning/3 predicate.

22 partitioning([(S,TData,TChar)|Ss],Partitioning,NewPartitioning) :-
23 partitionCharLabel(TChar,TData,TCD),
24 select(((TData,TCD),Ds),Partitioning,TmpPartitioning),
25 DNew =((TData,TCD),[S|Ds]),
26 partitioning(Ss,[DNew|TmpPartitioning],NewPartitioning).
27 partitioning([(S,TData,TChar)|Ss],Partitioning,NewPartitioning):-
28 partitionCharLabel(TChar,TData,TCD),
29 \+member(((TData,TCD),_),Partitioning),
30 DNew=((TData,TCD),[S]),
31 partitioning(Ss,[DNew|Partitioning],NewPartitioning).
32 partitioning([],P,P).

Trusted components are placed together in domains with the trust label named safe,
indicating that all the hosted components are trusted. Untrusted components are placed in
the domain with the same trust label, in order to create reliable domains. If the domain
needed by a component is not in the starting partitioning, it is created with the correct
labels and added to the partitioning.

partitioning/3 has two main clauses (lines 22 and 27) and the empty software list case
that leaves the partitioning unmodified (line 32). The first case describes the situation in
which a software element can be placed on a domain already created. After determining
the labelling of the hosting domain (line 23), the library predicate select/3 checks if such a
domain is already created in the partitioning (line 24) and extracts it. Then, an updated do-
main is created by adding the current software component (line 25). Finally, partitioning/3
recurs on the rest of the software list, giving as the starting partitioning the old partitioning
with the updated domain ([DNew|TmpPartitioning] of line 26).

The second clause of the predicate (line 27) describes the situation in which the domain
that has to host the software component is not already in the input partitioning. The initial
step to determine the hosting-domain labelling is the same as the previous clause (line 28).
Then, there is an explicit check that such a domain is not already in the partitioning (line 29).
At this point, the new domain is created (line 30) and it is included in the partitioning
during the recursive call ([DNew | Partitioning] of line 31).

Figure 2 sketches the steps followed by our methodology to determine the
minimal partitioning.

Input Model Component
Typing

Check on
untrusted

components

Check
external

leaks

Software
partitioning

• Data consistent
• Reliable

Figure 2. Overview of SKnife methodology.

As a safe partitioning example, the output of SKnife is represented by the four domains

• ((top,safe),[appManager,db,authernicator]),
• ((medium,safe),[userConfig]),
• ((low,safe),[apiGateway]),
• ((top,low),[aiLearning]).

where each domain is represented by their triple (DTData, DTChar, HostedSw), where DTData

and DTChar are a pair of labels (or safe) and HostedSw is a list of software components.
In the following, we outline a proof to demonstrate that SKnife computes the minimal

safe partitioning of the input application, if any.

Proof of Partitioning Minimality. As aforementioned, SKnife’s main predicate fails if the
application is non-safely partitionable. This is checked by hardwareOk/2 of Listing 2 and
softwareOk/2 of Listing 3. The minimum number of domains is not fixed for all possible
applications, because it depends on the number of security types of the lattice and on the
labelling of the application to be placed.

To prove that the result of SKnife is the minimal partitioning, it is enough to prove that
the predicate partioning/3 of Listing 5 creates the minimal partitioning. We sketch the proof
of minimality by defining the invariant of the partioning/3 predicate, which maintains the

Future Internet 2023, 15, 224 15 of 38

safety of the partitioning. Then, we show by induction that the invariant is preserved and
that the resulting partitioning is minimal and unique.

A partitioning is a set of domains. We denote a domain as a triple (d, c, sw) where d
is the secrecy label given by data, c is the trust label given by characteristics and sw is the
list of software components hosted by the domain. The predicate partioning/3 implements
a function

partitioning : S× P→ P

where S is the software components set and P is the partitioning set.
We indicate with λ the function that gives the labelling of a software component and

φ the function that gives the labelling of the domain needed by a software component. The
function partitioning has the following invariant:

∀(d, sa f e, sw) ∈ P : ∀s ∈ sw λ(s) = (d, c) c ≥ d φ(s) = (d, sa f e) (6)

∀(d, c, sw) ∈ P ∧ c 6= sa f e : ∀s ∈ sw λ(s) = (d, c) c ≤ d φ(s) = (d, c) (7)

∀(d, c, sw), (d′, c′, sw′) ∈ P : d = d′ ∧ c = c′ =⇒ sw = sw′ (8)

∀(d, c, sw) ∈ P : sw 6= ∅ (9)

Equations (6) and (7) indicate the labelling of software components and domains to
satisfy the data-consistent and reliable-domain properties. Equation (8) indicates that no
domains with the same labelling are admitted. Equation (9) indicates that empty domains
do not exist.

We can prove by induction that the function partitioning creates the minimal partitioning.
Base Case

partitioning([], P) = P

an empty list of software components does not modify the partitioning.
Induction Step

Pi = partitioning([swi : sws], Pi−1)

Pi =

Pi−1 \ {(d, c, sw)} ∪ {(d, c, {sw ∪ swi})} ifφ(swi) = (d, c) ∈ Pi−1

Pi−1 ∪ {(d, c, {swi})} otherwise

We assume, by the inductive hypothesis, that the invariant holds up to the i-th step, i.e.,
for the domain of components [sw1, . . . , swi]. It is easy to see that at step (i + 1) the current
swi+1 is suitably placed into an existing domain (first clause of partitioning/3) or inserted
into a new one (second clause of partitioning/3) by following the rule above. Assume that
after this step, the invariant does not hold, i.e., that the resulting domain is non-minimal.
Then, as swi+1 was correctly sorted, it means that some of the software in [sw1, . . . , swi]
were not. This implies that the invariant did not hold in some of the previous steps, which
contradicts the inductive hypothesis.

Note that the minimal partitioning is unique. At any step i, the software swi must go
in a domain having d and c equal to those of φ(swi). Given that we do not admit domains
with the same labelling (Equation (8)), there is only one domain having the labels required
by swi. Thus, there is a unique way to determine the partitioning.

5.3. Labels Suggestions

Not all existing applications are safely partitionable, precluding the possibility of
finding a safe partitioning. To assist application developers in these situations we show
how SKnife can suggest relaxed labellings of application data or characteristics that make

Future Internet 2023, 15, 224 16 of 38

the application safely partitionable. These suggestions reduce the secrecy or increase the
trustability of components, relaxing the labelling of an application in order to find a safe
partitioning. This feature is intended to help the review of an application, preventing the
risk of leaking the confidentiality of data.

The basic version of SKnife either finds the minimal partitioning or fails if there is a
risk of a data leak given by untrusted components. To support the suggestions feature, we
suitably modified SKnife to individuate the source of a failure and to retry the partitioning
after relaxing the labelling of such a source.

Listing 6 lists the main code of the labelling-suggestion feature. The main predicate
of the refinement prototype is sKnife/3 (line 33). It has as the first variable the application
identifier AppId, as in the base version. The second variable is the list of relaxed labelling
NewTags, pairs of data/characteristic names with new labels. The third variable Partitioning

is the safe partitioning found with the relaxed labelling. Note that this predicate does not
compute a unique solution. Indeed, for every query, a different relaxed labelling with the
associated safe partitioning is computed. This allows SKnife to give the developer different
suggestions.

Listing 6. The sKnife and eligiblePartitioning predicates.

33 sKnife(AppId, NewTags, Partitioning) :-
34 application(AppId, Hardware, Software),
35 eligiblePartitioning(Hardware,Software,NewTags,Partitioning).

36 eligiblePartitioning(H,S,T,P):-eligiblePartitioning([],H,S,T,P).

37 eligiblePartitioning(Tags,Hardware,Software,Tags,Partitioning):-
38 partitioningResult(Tags,Hardware,Software,Partitioning,ok).
39 eligiblePartitioning(Tags,Hardware,Software,NewTags,Partitioning):-
40 partitioningResult(Tags,Hardware,Software,_,ko(E,DT,CT)),
41 tagsOK(Tags,ko(C,DT,CT),TmpTags),
42 eligiblePartitioning(TmpTags,Hardware,Software,NewTags,

Partitioning).

The eligiblePartioning/4 predicate (line 36) initialises the relaxed labelling as an empty
list []. The eligiblePartioning/5 predicate (lines 37–42) has two clauses. The first one
determines an eligible partitioning, indicated by the ok fact (line 38). The second one
acknowledges that the application is non-safely partitionable with the current labelling,
indicated by the ko(C, DT, CT) fact (line 40). The information given by this fact is about
the untrusted component C involved in the data leak and its pair of labels DT and CT. That
information is used to relax the labelling, by the tagsOK/3, which generates alternative new
labels (TmpTags) to be added to the previous one (Tags) predicate (line 41). These labels are
generated by increasing the characteristic labels of the component C and decreasing its
data labels. Then, the new labels are used to determine an eligible placement, querying
recursively eligiblePartioning/5 (line 42). Note that an eligible partitioning is eventually
determined. In the worst-case scenario, the data labels are relaxed to the lowest security
label (i.e., low) and the characteristic labels are relaxed to the highest security label (i.e., top).
For the sake of presentation, the full code is omitted.

The predicates that check if an application is safely partitionable are hardwareOk/2 and
softwareOk/2. These predicates are modified in order to return the fact ko(C, DT, CT) for
every component responsible for a failure when the application is non-safely partitionable.

5.4. Motivating Example Revisited

In this section, we will solve the partitioning problem of the architecture iotApp1 of
the motivation example of Section 3.3 given a suitable set of labels for every data type and
characteristic. Then, we will consider the slightly different iotApp2 architecture, showing
that it is non-safely partitionable, and we will apply the relaxed labelling feature of SKnife.
In both cases, the application architecture, the (software and hardware) components and
the security lattice can be expressed as per the modelling of Section 4. The data and

Future Internet 2023, 15, 224 17 of 38

characteristics are labelled as indicated by the letters between brackets in Figure 1 using
the tag/2 predicate.

5.4.1. Finding the Minimal Partitioning

To find the minimal partitioning of iotApp1 we can simply query the sKnife/3 predicate
after retrieving the starting labelling, as in

startingLabelling(StartingLabelling),
sKnife(iotApp1,StartingLabelling,Partitioning)

Initially, SKnife labels all the application components as depicted in Figure 3, where
a pair of labels is assigned for each component, one for data and one for characteristics.
For instance, App Manager is labelled top for its data (the T above the component) and top

for its characteristics (the T below the component). Then, SKnife checks if the application is
safely partitionable.

L

T

Authenticator

T

T

App Manager

T

L

AI Learning

T

M

User Config.

M

T

DB

T

L

API Gateway

L

L

Network
Interface

L

Disk

L

IoT
Users

Figure 3. Labelling of application components.

The application is safely partitionable because the hardware components manage
only low data and a path from AI Learning (the only untrusted component) to the hardware
components able to leak top or medium data does not exist .

Figure 4 sketches the obtained partitioning. The safe partitioning is composed of four
domains, three with trusted components (D1–D3) and one with an untrusted component
(D4). It is a minimal partitioning because we have at least three software components with
different secrecy labels and only one untrusted component and it is not possible to divide
those components into fewer than four domains that are data-consistent and reliable.

As aforementioned, SKnife outputs only a solution because the minimal safe partition-
ing is unique, i.e., there is no partitioning of the application with a lower or equal number
of data-consistent and reliable domains.

Future Internet 2023, 15, 224 18 of 38

T

Authenticator

T

T

App Manager

T

L

AI Learning

T

M

User Config.

M

T

T

L

API Gateway

L

D1: (low, safe) D2: (medium, safe) D3: (top, safe) D1: (top, low)

DB

T

Figure 4. Minimal safe partitioning.

5.4.2. Relaxing the Labelling

To show the relaxing labelling feature we consider the architecture iotApp2 with an
additional link between the User Configuration and the Disk. This link creates a path from
the AI Learning to the Disk that can leak the top data IoT measurements and medium data User

Preferences, making the application non-safely partitionable. This happens because AI

Learning is an untrusted component and can leak its data via its explicit links. The linked
component User Configurations has the trust label medium and it is not reliable to manage
top data; thus, IoT measurements can be leaked to the Disk with the newly added link. In this
situation, it is not possible to find a safe partitioning.

To use the relaxing labelling feature on the application iotApp2 we can query sKnife/3

predicate as sKnife(iotApp2, S, Partitioning). As expected, the check performed by
softwareOk/2 finds a path with an external leak and individuates all the components in-
volved in the path, triggering the retry behaviour explained in Section 5.3.

For clarity, we only show the results of the query for the suggestion variable S, avoiding
displaying the safe partitioning generated by applying the suggestions. The obtained results are

S=[(iotMeasurements,low),(userPreferences,low)];
S=(aiFramework,top);
S=(dataLibrary,top);
S=(iotMeasurements,medium);
S=(fromProvider,top);
S=(iotMeasurements,low).

For this specific situation, we can see that a solution is to reduce the security of IoT
Measurements and User Preferences managed by AI Learning, cutting the path toward the
Disk. When AI Learning is analysed, the suggestion is to label the data low. When the second
component of the path, User Configuration, is analysed, the suggestion is to reduce IoT

Measurements to medium. Finally, when the last component of the path—Disk—is analysed, the
suggestion is to reduce IoT Measurements to low. The alternatives increase the trust of each
component of the path to cut the possible leak, increasing the characteristics AI Framework,
Data Library and From Provider to top.

These suggestions can support application developers in changing the data labelling
if it is acceptable to change the secrecy of IoT Measurements by reducing it. Otherwise, the
suggestions could lead to changing the characteristics involved in the leak, for instance,
using a more reliable Data library for the component User Configuration.

6. Partitioning with a Look Ahead on Migration Costs

We mentioned before that reducing the number of domains corresponds to reducing
the used resources and avoids degrading the performance. In this section, we want to
consider another type of cost aside from the number of domains.

Future Internet 2023, 15, 224 19 of 38

After the deployment of an application, changing the isolation of the components dur-
ing the execution could bring unexpected costs, for example, the downtime of components
that must be stopped and redeployed or the work time to change the explicit channels from
intra-domain to extra-domain. Unfortunately, there are situations in which the labels of
data or characteristics must be changed given the determined circumstances. Data labels
can change due to new privacy regulations that can classify or declassify categories of data.
Regarding the characteristics, an exploitable vulnerability of a library can be discovered
that drastically reduces its trust. Then, the deployed partitioning could not be safe any-
more with the changed labelling and the data confidentiality protected by the isolation is
compromised. In those situations, the software must be migrated to different domains to
preserve data confidentiality, at the cost of such a migration.

For example, consider the motivating example deployed as per the safe partitioning
calculated in Section 5.4. Assume that a bug in the TLS Library, a characteristic of the
component Authenticator, is discovered. This event can reduce the library security label
from top to medium, making this software component untrusted and the partitioning not
safe anymore. To avoid leaks of data, the application operator should calculate the new
safe partitioning, stop the application (or at least the components that change domain),
work on the communication code of the components that change domain and re-deploy
the application. In Figure 5 we show the partitioning change from the starting partitioning
P0 to the final partitioning P1, indicating the communication links of the Authenticaton

component. The downtime of the application and the work on the communication code
are a cost for the application developer that can be predicted and optimised with the
partitioning.

P0

P1

Figure 5. Partitioning change due to Authenticator labelling change.

What if the application was deployed with the partitioning P1 from the start? This
partitioning is not minimal with the initial labelling, but it is safe. The Authenticator

component is isolated in a domain and from the point of view of a safe partitioning its
labelling does not matter. What really changes from partitioning P0 to P1 are

• the number of domains, four to five,
• the link connecting the Authenticator and the App Manager components, which is inter-

domain in P0 and extra-domain in P1, and

Future Internet 2023, 15, 224 20 of 38

• the cost of changing the partitioning when the event of TLS library changes its la-
bel from top to another one; this cost is 50 in P0 (given by summing the costs of
Authenticator and App Manager) and 0 with P1.

Indeed, the partitioning P1 is safe for both the starting labelling and for a labelling
with the component Authenticator untrusted. Thus, with P1 as the starting partitioning, the
label change does not require stopping the application for changing the deployment and
the cost of working on the communication links of Authenticator and the App Manager is 0.

This analysis is on the basis of our refined cost model that captures the future cost of
migrating software components from one partitioning to another.

6.1. A Refined Probabilistic Cost Model

We start by illustrating the cost of migrating from one partitioning to another and then
we define the probabilistic model that describes the labelling change.

6.1.1. Migration Cost

Two partitionings P1 and P2 differ in the distribution of software components in their
domains and the status of their links, from inter-domain to extra-domain and vice versa.
The cost CP1P2 of migrating from P1 to P2 is defined in Equation (10):

CP1P2 = ∑
P1.l 6=P2.l
l=〈s1,s2〉

s1.c + s2.c (10)

where we represent the link l as a pair of connected software 〈s1, s2〉 and its status in the
partitioning P as P.l. The notation s.c is adopted to express the migration cost c of the single
software s.

6.1.2. The Probabilistic Model

To estimate the probability of a migration from a partitioning P1 to a partitioning P2
we define a probabilistic model.

For every data type and characteristic dc, we introduce a discrete random variable

Xdc = l ∈ L

representing the event that the data or characteristic dc has the label l of the security lattice,
forming the element of a labelling 〈dc, l〉. Every variable Xdc has its probability mass
function pXdc defined in Equation (11):

pXdc(li) = P(Xdc = li) = pi ∀li ∈ L (11)

representing the probability pi that the data or characteristic dc has label li. The following
holds:

∑
i

pi = 1

We now introduce a second random variable

Yi = Li

representing the probability that the labelling is the labelling Li; thus, every

〈data, l〉

and
〈characteristic, l〉

has l specified and contained in the security lattice L.

Future Internet 2023, 15, 224 21 of 38

Every variable Yi has its probability mass function defined in Equation (12)

pYi (Li) = P(Yi = Li) = ∏
dc

P(Xdc = l̄), 〈dc, l̄〉 ∈ Li (12)

which represents that the probability of a specific labelling is given by the joint probabilities
of its labelled data and characteristics.

Finally, we introduce the random variable

Zk
se = Ls →k Le

representing the event that the application starts with the labelling Ls and evolves into the
labelling Le with at most k labels changed (considering that 0 ≤ k ≤ |L|) and the number
of labels changed is given by Ls \ Le.

Having the limit k to the number of possible changes admitted during the evolution
of a labelling is not unrealistic. Considering the components’ characteristics, a label change
can represent a bug found in a library and waiting for a bug in another library to change
the deployment is implausible. If we consider the data, it can happen that a group of data
can be classified (or declassified) by new privacy laws or by changes in the agreement with
clients. However, it is unlikely that all the data change labels, and it is more unlikely that this
happens simultaneously with a bug discovery. For those reasons, having the parameter k
decided from the start is reasonable and the probabilistic model takes into account every k
from 1 (one label change admitted) to the number of data types and characteristics (every
label can change).

The probability mass function for every variable Zk
se is defined in Equation (13).

pZk
se
(L0,Li, k) = P(Zk

se = L0 →k Li) =

P(Ls = L0) · P(Le = Li | Ls = L0 ∧ |L0 \ Li| ≤ k)
(13)

In this setting the initial labelling is given; thus, for every labelling Lj the first term
has the probability

P(Ls = Lj) =

{
1 if Lj = L0

0 if Lj 6= L0

To define the probability of the final labelling from the starting one and given k

P(Le = Li | Ls = L0 ∧ |L0 \ Li| ≤ k)

we, first of all, discriminate the case of remaining in the starting labelling L0 from all
the others

P(Le = L0 | Ls = L0 ∧ |L0 \ L0| ≤ k) = P(Y0 = L0)

This represents the probability that a labelling does not change and it is independent of the
value of k.

For all the other labellings Li different from the starting one we use the conditional
probability formula

P(A|B) = P(A ∩ B)
P(B)

where
A =: (Le = Li) ∧ (Le 6= L0)

and thus, the event that the final labelling is the Li but not the starting one. A is the set of
all the labellings Li with probability

P(A) = P(Yi = Li) · (1− P(Y0 = L0))

Future Internet 2023, 15, 224 22 of 38

to be the final labelling.
The event B is

B =: Ls = L0 ∧ k ≤ |L0 \ Li|

thus, the event that we have a specific starting labelling L0 and a fixed number of the
maximum labels k different from L0 to Li. B is the set of all the labellings Lj that has at
most k different labels from L0:

Lj ∈ B = {Lj : |L0 \ Lj| ≤ k}

Those events have the probability

P(B) =

{
∑j P(Yj = Lj) ∀Lj ∈ B
0 ∀Lj /∈ B

The intersection between the events A and B is

A ∩ B =

{
Li if Li ∈ B for i 6= 0
∅ otherwise

and its probability is

P(A ∩ B) =

{
P(Yi = Li) if Li ∈ B for i 6= 0
0 otherwise

Putting everything together we have

P(A ∩ B)
P(B)

=

P(Yi=Li)·(1−P(Y0=L0))

∑j P(Yj=Lj)
Lj ∈ B ∀Lj ∈ B for i, j 6= 0

0 otherwise

To resume, the mass probability function pZk
se
(L0,Li, k) is defined in Equation (14).

P(Zk
se = L0 →k Li) =

P(Yi=Li)·(1−P(Y0=L0))

∑j P(Yj=Lj)
Li ∈ A ∩ B ∀Lj ∈ A ∩ B

P(Y0 = L0) Li = L0

0 otherwise

(14)

This distribution represents the probability of transitioning from the starting labelling
to another, assuming that at most k labels have changed. The probability of remaining in
the same labelling is fixed for every k and the probability of reaching another labelling is
guided by the probability of every label (Xdc variables).

The sum of this distribution over all possible Li is 1 (note that i = j), as shown in
Equation (15).

∑i P(Yi = Li) · (1− P(Y0 = L0))

∑j P(Yj = Lj)
+ P(Y0 = L0) =

(1− P(Y0 = L0)) ·
∑i P(Yi = Li)

∑j P(Yj = Lj)
+ P(Y0 = L0) =

(1− P(Y0 = L0)) · 1 + P(Y0 = L0) =

1− P(Y0 = L0) + P(Y0 = L0) = 1

(15)

Future Internet 2023, 15, 224 23 of 38

6.1.3. Partitioning Migration

When a labelling changes to Le, the starting partitioning P0 can satisfy the new la-
belling or not. In the former case, there is no need to change the partitioning. In the latter
case, the partitioning must be changed, migrating to the new partitioning Pi. The best
migration is defined in Equation (16):

P0 →Le Pi : min
Pi

CP0Pi Pi |= Le (16)

stating that if the partitioning P0 does not satisfy the new labelling Le, the software is rear-
ranged in the new partitioning Pi that satisfies Le and has the minimum cost of migration
from P0.

We want to highlight two facts about the best partitioning. First, the Pi with the
minimum cost of migration is not unique; there could be multiple partitionings that satisfy
the new labelling and are the best migration. Then, when P0 |= Le the best migration is to
stay in P0 because the cost will be always 0.

The probability of migrating from the partitioning P0 to the partitioning Pi given the
starting labelling L0 is defined in Equation (17),

P(P0 → Pi) = ∑
Le

P(L0 →k Le) s.t. P0 →Le Pi (17)

which represents the sum of the probabilities of changing the labelling from L0 to Le with
Pi as the best migration that satisfies Le.

Given that the best migration is not always unique, the sum of the migration probabil-
ities is not 1.

Another important aspect to highlight is that the application could be non-safely
partitionable for every possible labelling, making the migration impossible.

6.1.4. Future Cost

Fixing the maximum number of changes k and given a starting partitioning P0 that
satisfies the initial labelling L0, its cost is defined in Equation (18):

Cost(P0) = 〈|P|, FutureCost(P0)〉
FutureCost(P0) = ∑

Le

P(L0 →k Le) · CP0Pi s.t. P0 →Le Pi
(18)

where FutureCost is the expected cost of migrating the partitioning P0 over all the possible
labelling, considering the migration toward the partition Pi that satisfies the labelling as
the best migration. The fact that the best migration is not unique does not bring a problem
with the expected cost: only the value of the cost is considered and the partitioning with
the best migration is not relevant.

We give some intuitions for the complexity of calculating the FutureCost of all the
partitioning that satisfy the initial labelling. The FutureCost search space of a single
partitioning depends on

∑
Li

and the number of labellings l is exponential in the number of data and characteristics:

l = |L|dc

representing all the possible values that the labels of a labelling can assume.
The number of partitionings satisfying the initial labelling depends on the application

architecture. We consider the worst-case scenario where all the possible partitionings satisfy

Future Internet 2023, 15, 224 24 of 38

the initial labelling. The number of partitionings p is exponential in the number of software
components n decreased by the partitioning dimension i:

p = ∑
i=lb...n

(
n
i

)
= ∑

i=lb...n

n!
i!(n− i)!

representing the sum of all the subsets of n with dimension i from lb (the lower bound of
the number of domains needed) to n (every component is in a different domain).

Thus, the overall search space is the combination of all the partitionings that satisfy
the initial labelling and the number of possible labellings. To reduce this search space
and be able to calculate the FutureCost of the partitioning of an application, we use two
configurable parameters:

• d: the maximum number of domains admitted and
• k: the number of possible changes admitted during the evolution of a labelling.

The first element of the FutureCost pair is the number of domains of a partitioning.
It does make sense to have an upper bound from the start to reduce the SK overhead.
This upper bound is represented by d. The search space of the number of partitionings p
becomes

p = ∑
i=lb...d

(
n
i

)
= ∑

i=lb...d

n!
i!(n− i)!

which is also exponential in the number of software components, but the decrease in the
possible subsets is considerable. However, having a low value of d reduces the possibility
of satisfying some of the labelling changes, increasing the probability of having a non-safely
partitionable application.

Concerning the limit to the number of label changes k, it is straightforward that having
a low value reduces exponentially the number of labellings reachable from the starting one,
reducing the calculation of the FutureCost. We emphasise a property of our probabilistic
model. After fixing k, the probability of reaching a specific labelling is guided by the
single distribution of each label given by the variables Xdc, i.e., the most probable reachable
labelling is the one with the most probable values for each label.

In Section 7 we assess how d and k impact the time to search safe partitionings and the
probability of having a non-safely partitionable application.

6.1.5. Look-Ahead Safe Partitionings

Resolving the partitioning problem with the second cost model consists in determining
the list Pc of future cost for all the possible partitioning satisfying the starting labelling L0
having up to d domains and limiting the number of label changes to k.

We propose the prototype ProbSKnife to find the list Pc. Given an application a, a lattice
L and the distribution for every random variable Xdc,

ProbSKnife(a,L0, L, k, d, Xdc) = Pc

where every element of Pc is

pc ∈ Pc = 〈Pi, Cost(Pi)〉 Pi |= L0 ∀i = lb . . . d

where lb is the lower bound of the number of domains needed to partition the application.

6.2. Probabilistic SKnife

ProbSKnife is a declarative prototype that builds on SKnife to determine safe parti-
tionings and contains new Prolog predicates to determine the migration costs and new
labellings. Moreover, it includes a Python script to execute multiple Prolog queries, parse
the outputs and aggregate the results.

Future Internet 2023, 15, 224 25 of 38

The Python code allows us to simplify the execution flow of ProbSKnife and it is more
suited than Prolog to calculate the probabilistic model and the future cost. The exponential
dimension of the calculation makes it infeasible to use a pure Prolog prototype, so our
choice is to mix our declarative modelling and the determination of partitionings, costs and
evolving labelling written in Prolog and the execution flow and expected cost processing
written in Python.

To find all the partitionings that satisfy a labelling with a limit on the number of
domains, we use the refined predicate sKnife/4, listed in Listing 7.

Listing 7. The sKnife/4 predicate.

43 sKnife(AppId,Labelling,DLimit,Partitioning) :-
44 application(AppId, Hardware, Software),
45 hardwareOK(Labelling,Hardware),
46 softwareLabel(Labelling,Software, LabelledSoftware),
47 softwareOk(Labelling,LabelledSoftware),
48 partitioning(LabelledSoftware,0,DLimit,[],Partitioning).

The new variable DLimit (d in the above formalisation) represents the maximum num-
ber of domains admitted for a partitioning. This variable is used to find a safe partitioning
(line 48), together with the initial number of domains (0).

The partitioning/5 predicate is listed in Listing 8, with the main differences between
the previous version of Listing 5 coloured in cyan. As before, the predicate has two main
clauses that scan the list of labelled software components. The first one (lines 49–54) deter-
mines the domain labels needed by the software component (line 51) and inserts a software
component in a domain already created in the actual partitioning (Partitions) (lines 52–53),
without increasing the number of domains of the new partitioning ([PNew|TmpPartitions]).
The second clause (lines 55–62), after determining the domain labels needed by the software
component (line 57), creates a new domain (P) hosting only the software component (line
59). Then, the number of domains of the partitioning is incremented (line 60) and it is
checked that it is less than or equal to the domain limit (line 61).

Listing 8. The partitioning/5 predicate.

49 partitioning([(S,TData,TChar)|Ss],Ndom,DLimit,Partitions,NewPartitions):-
50 software(S,_,_,_,_),
51 partitionCharLabel(TChar,TData,TCP),
52 select(((TData,TCP),P), Partitions,TmpPartitions),
53 PNew=((TData,TCP),[S|P]),
54 partitioning(Ss,Npar,PLimit,[PNew|TmpPartitions], NewPartitions).
55 partitioning([(S,TData,TChar)|Ss],Ndom, DLimit,Partitions,NewPartitions) :-
56 software(S,_,_,_,_),
57 partitionCharLabel(TChar,TData,TCP),
58 %\+ member(((TData,TCP),_), Partitions),
59 P=((TData,TCP),[S]),
60 NewNdom is Ndom + 1,
61 NewNdom =< DLimit,
62 partitioning(Ss,NewNdom,DLimit,[P|Partitions],NewPartitions).
63 partitioning([],_,_,P,P).

Note that the two clauses are not mutually exclusive, due to the missing check in the
second clause about the presence in the partitioning of the domain needed by the software
component (commented line 58). This creates a backtracking point in the Prolog engine search,
covering all the possible partitionings with different queries that retrieve all the partitionings
of an application that satisfy a specific labelling and have a limited number of domains.

The cost/3 predicate is listed in Listing 9 and is used to calculate the cost C of migrating
from the partitioning P1 to the partitioning P2. For each partitioning, the list of links is
created to determine the status of every link (lines 65–66). The cost is then calculated by

Future Internet 2023, 15, 224 26 of 38

using the predicate linksCost/3 (line 67), which checks the link with different statuses and
sums the migration cost of every software.

Listing 9. The cost/3 predicate.

64 cost(P1,P2,C):-
65 links(P1,P1Links),
66 links(P2,P2Links),
67 linksCost(P1Links,P2Links,C).

The last predicates we present are used to calculate the labellings with at most K

differences from the starting one, listed in Listing 10.

Listing 10. The labelling/2 and labelling/4 predicates.

68 labellingK(K,L):-
69 dataCharList(DCs),
70 labellingK(DCs,K,L,_).

71 labellingK([DC|DCs],K,[(DC,Lb,P)|Labelling],Diff):-
72 labellingK(DCs,K,Labelling,Diff),
73 tagChange(DC,Lb,P),
74 tag(DC,Lb).
75 labellingK([DC|DCs],K,[(DC,Lb,P)|Labelling],NewDiff):-
76 labellingK(DCs,K,Labelling,Diff),
77 tagChange(DC,Lb,P),
78 \+tag(DC,Lb),
79 NewDiff is Diff + 1,
80 NewDiff =< K.
81 labellingK([],_,[],0).

The top-level predicate is labellingK/2. By specifying the parameter K, the resulting
labelling L is a list of elements (DC,Lb,P) representing the name of the data or characteristic
(DC), its label (Lb) and the probability (P) of having that label. This predicate retrieves the list
of all data and characteristic DCs (line 69) and then calls the sub-predicate with it (line 70).
The predicate labellingK/4 recursively creates a labelling starting from an empty list and
initialising the number of differences from the starting one at 0 (line 81). Then, it either
includes a pair of data/characteristics and labels of the starting labelling (first clause of
line 71) or include a new pair, incrementing the number of differences (second clause of
line 75).

ProbSKnife is usable through a Python script that queries the Prolog code and, by
parsing the results, builds the probabilistic model and calculates the future cost of the
partitionings. The usage of this script is as follows

python3 main.py APPID [-d DLIMIT] [-k K] [-f] [-l] [-h]
APPID identifier of the application
DLIMIT an integer
K an integer
-f shows full results in tables
-l shows partitioning labels
-t shows the timestamp of operations
-h shows the help

The main arguments of the program are the application identifier used in the Prolog
definition (APPID), the desired maximum limit of domains (DLIMIT) and the maximum
number of label changes from the starting one (K).

The code of the Python program is listed in Listing 11, omitting the logging and
timestamp calculations. The first Prolog query retrieves the starting labelling and finds the
maximum values for K and DLimit (line 83). Then, the labellingK/2 predicate is queried to
retrieve all the labellings with K different labels from the starting one. For each of them, the

Future Internet 2023, 15, 224 27 of 38

probabilistic model (the random variables Yi and Zk
se) is calculated (line 84). To find all the

possible partitionings that satisfy the starting labelling, the sKnife/4 predicate is queried
(line 85). For each partitioning p (line 86) all the labellings are scanned (line 11). All the
partitionings with at most DLimit domains and that satisfy each labelling are calculated by
the sknife/4 predicate and the cost from p is calculated by the cost/3 predicate (line 93).

If a labelling makes the application non-safely partitionable (line 94), the probability
of reaching this labelling is accumulated to the total probability of impossible migration
(line 96). Otherwise, all the results—partitioning, costs, labellings and probabilities—are
recorded (lines 99–102).

Listing 11. The Python program of ProbSKnife.

82 (appId,D,K,tables,timestamp) = checkArgs()
83 (StartLabelling,D,K)=checkApp(appId,K,D)
84 (labellings,Already)=queryLabellings(appId,StartLabelling,K)
85 partitionings=queryAllPartitionings(appId,StartLabelling,D)
86 for p in partitionings:
87 labs = []
88 parts = []
89 costs = []
90 probs =[]
91 impossible=0.0
92 for labelling, prob in labellings:
93 pcs = queryPCost(appId,p,labelling,D)
94 if(pcs is None):
95 #probability that labelling is not satisfiable
96 impossible+=prob
97 continue
98 for (part,cost) in pcs:
99 labs.append(labelling)
100 parts.append(part)
101 costs.append(cost)
102 probs.append(prob)
103 (sumProb,expCost)=buildResults(labs,parts,costs,probs)

Finally, the future cost of p is calculated (line 103) by grouping the results by labelling,
taking the minimum cost and multiplying it by the labelling probability. Summing up for
all the labellings, we have the future cost as formulated in Section 6.1.

The output of ProbSKnife is the list of all the partitionings satisfying the initial labelling
with up to DLimit domains, their cost in terms of the number of domains and future cost
and the total probability of reaching a labelling that makes the application non-safely
partitionable.
Example. Listing 12 shows the ProbSKnife output example for a Cloud application with
K = 1 and DLimit = 5. The probability of reaching labellings that make the application
non-safely partitionable does not depend on the initial partitioning; it is the same once K
and DLimit are fixed. The output shows four safe partitionings, the minimal one (P1) with
four domains and three others with five domains (P2–P4) with their future costs. Now it is
up to the application operator to choose the starting deployment between one partitioning
with fewer domains (P1) but a future cost of about 3.68 h and one (P2) with more domains
but a future cost of 0 h. �

Listing 12. ProbSKnife for the Cloud application with K = 1 and DLimit = 5.

P1 [[appManager,authenticator,db],[apiGateway],[aiLearning],[userConfig]] cost: (4, 3.6789741961).
P2 [[db],[apiGateway],[aiLearning],[appManager,authenticator],[userConfig]] cost: (5, 0.0).
P3 [[authenticator,db],[apiGateway],[aiLearning],[appManager],[userConfig]] cost: (5, 2.6278387115).
P4 [[appManager,db],[apiGateway],[aiLearning],[authenticator],[userConfig]] cost: (5, 6.3068129076).

Impossible prob: 0.17518924743

Even with our motivating example, which is relatively small for the sake of presenta-
tion, determining by hand the safe partitionings with a limited number of domains is not a

Future Internet 2023, 15, 224 28 of 38

trivial operation. Calculating the future cost of each partitioning that satisfies the initial
labelling is even harder. Considering the above example, limiting K to 1 has a space of 13
possible labellings of which the probability of reaching them from the starting one must be
calculated. Moreover, after fixing a starting partitioning, to determine the migration with
fewer costs given each possible labelling is also a non-trivial operation. For these reasons,
we argue that our approach and prototype ProbSKnife are supportive of the deployment of
multi-component applications onto technology based on SKs.

7. Experimental Assessment

In this section, we report the experimental assessment of ProbSKnife concerning the
performance and the future cost impact of the parameters K and DLimit, used to reduce
the complexity of the solution search space. As aforementioned in Section 2, to the best of
our knowledge, there are no proposals that employ information-flow security to determine
eligible partitionings onto SKs. Thus, we focused our assessment on the performance of
ProbSKnife and the determination of costs and probabilities.

In particular, our goal is to answer the following questions:

Q1 How much does K impact the creation time of the probabilistic model?

Q2 How much do K and DLimit impact the execution time of ProbSKnife?

Q3 How much do K and DLimit impact the safe partitioning costs?

Q4 How much do K and DLimit impact the probability of not having a safe partitioning?

To answer these questions, we ran experiments for every possible value of K (1–13) and
DLimit (4–6) on the Cloud application of the motivating example. The experiments were
executed on a machine with the processor Intel(R) Xeon(R) Gold 5120 CPU @ 2.20 GHz,
counting 12 vCPUs, 32 GB of RAM and 50 GB of storage with Ubuntu 20.04.5 LTS as the
operating system. Knowing that the minimal safe partitioning has four domains, running
the experiments with a smaller DLimit is useless because there is no safe partitioning
that satisfies the initial labelling. The Cloud application has six software components,
which is the upper bound for the number of domains of a safe partitioning. Thus, running
experiments with DLimit greater than six is also useless. Concerning the K parameter, we
have to consider that two of the application’s data types, Crypted Data and Network Data,
have probability 1 to stay low, so we have similar results for K equal to 11, 12 and 13 given
that the probability that those two data types change label is 0. Here we emphasise that our
motivating example is relatively small for the sake of presentation. An application with a
larger number of components, data and characteristics has larger values for DLimit and K
to explore.

ProbSKnife can annotate the output with the execution time of labelling and future cost
calculations, and we used such annotation for answering the questions above.

All the experiments were executed sequentially and we collected all the data for this
section from the annotated output of ProbSKnife.

The metrics used to evaluate ProbSKnife’s performance and to show the quantitative
results about future costs, for each value of K and DLimit, are:

• the average execution time to calculate the labelling probabilities, in seconds, calcu-
lated over the execution times of the three DLimit values at varying K,

• the execution time to calculate the partitionings and the future costs, in seconds, from
the moment to determine the starting partitionings to the end of ProbSKnife execution,

• the future cost, in work hours, given directly by the ProbSKnife output, and
• the probability of having a non-safely partitionable application, also given directly by

the ProbSKnife output.

7.1. Experimental Results

We started by taking the execution time of the probabilistic model creation as K varies.
The execution times include the queries to the labellingK predicate and for every labelling,

Future Internet 2023, 15, 224 29 of 38

the probability of being in a specific labelling (random variable Yi) and the probability of
reaching a labelling from the starting one (random variable Zk

se) are computed. Figure 6
shows the average execution time in seconds on a logarithmic scale (y-axis) at varying
values of K of each probabilistic model (x-axis).

2 4 6 8 10 12
K

0.055

0.128

0.512

2.082

7.246

20.946

47.875

92.235

195.693
Ex

ec
ut

io
n

Ti
m

e
(s

)

Figure 6. Execution times for computing labelling probabilities at varying K.

Increasing K, the execution time grows exponentially, from 55 milliseconds of K equal
to 1 to over 3 min of K greater than 11. As aforementioned, for K equal to 11, 12 and 13 the
labellings are the same and the difference in execution time is reduced drastically for those
values of K.

Concerning the total execution time, we collected the data from each experiment and
grouped them by DLimit. The execution times were obtained by timing the ProbSKnife
script after the creation of the probabilistic model. Figure 7 shows the average execution
time in seconds on a logarithmic scale (y-axis) at a range of values of K of each probabilistic
model (x-axis). The three lines represent the experiments as DLimit varies from four to six.
In this plot, the execution time grows exponentially as K varies until K is equal to 11, being
on the order of a few seconds for K equal to one and reaching over 8 h (about 28,000 s) for
K equal to 13. The three highest values of K have a negligible difference in time, on the
order of a few seconds. Concerning the DLimit lines, the execution time for DLimit equal
to four is always the lowest, for DLimit equal to five is always the intermediate one and for
DLimit equal to six is always the greatest.

2 4 6 8 10 12
K

1

10

100

1,000

10,000

100,000

Ex
ec

ut
io

n
Ti

m
e

(s
)

DLimit = 4
DLimit = 5
DLimit = 6

Figure 7. Execution times for computing expected costs at varying K and DLimit.

Future Internet 2023, 15, 224 30 of 38

To analyse the partitioning costs we divided the collected data by DLimit to show
the future cost as K varies. For each DLimit Figures 8–10 show the future cost in work
hours (y-axis) at varying values of K of each probabilistic model (x-axis). The number of
domains of each partitioning is annotated in the legend as nd. In the future cost calculation,
the results with K equal to 11, 12 and 13 have the exact same values. As aforementioned,
this happens due to the data with a probability of 1 of maintaining the same label. We
generated three plots with the future cost of a partitioning having the same colour in all the
figures; for instance, the minimal partitioning [[appManager,authenticator,db],[apiGateway],

[aiLearning],[userConfig]] is always represented with a blue line.

2 4 6 8 10 12
K

8

10

12

14

16

Co
st

 (h
ou

rs
)

[[appManager, authenticator, db], [apiGateway], [aiLearning], [userConfig]] (nd=4)

Figure 8. Future costs at varying K for 4 domains.

The plot with DLimit equal to four (Figure 8) represents the future cost of only the
minimal partitioning. We proved in Section 5 that the solution with the minimum number
of domains is unique. The future cost of such a partitioning grows linearly with K, starting
from 6.8 with K equal to one and arriving at a future cost of 16.1 with K equal to 11, 12 and
13.

The plot with DLimit equal to five (Figure 9) represents the future cost of four different
partitionings, the minimal one with four domains and the other with five domains. Two
partitionings (the blue and the orange one) have a future cost that grows linearly until
K is equal to seven, then it remains stable around 15 h. The blue lines stay under the
orange one until that K, and then they switch, with the blue one being the more costly
for the highest values of K. The other two partitionings have the same behaviour from
K equal to seven onward, but the stabilisation value is around 3 h. With low values of
K, the red partitioning starts at 2.6 h, grows slightly until K is equal to three, reaching a
future cost of 3.5 h, and decreases until K is equal to five, becoming stable at 2.7 h of future
cost. The purple partitioning starts from zero cost, grows slightly until overcoming the red
partitioning at K equal to seven and stabilises around a future cost of 2.8 h. In comparison
with the previous plot, the blue partitioning has the same behaviour as before but the
values of future cost are always 2 or 3 h less.

The plot with DLimit equal to six (Figure 10) represents the future cost of five different
partitionings, the previous four and the greatest partitioning with all the software compo-
nents isolated in different domains. To draw this plot the red partitioning has a line slightly
bigger than before to avoid hiding the green partitioning because both have a future cost
equal to 0 for all the K values. The purple line has the same behaviour as before, but with a
future cost value always slightly (0.2 to 0.6 h) less. Differently from before, the orange line
is always under the blue line, having the same kind of growth in the cost as K grows but

Future Internet 2023, 15, 224 31 of 38

with smaller values, from the minus 1 hour with K equal to one until minus 2 with K equal
to eight, where it stabilises in both plots.

2 4 6 8 10 12
K

0

2

4

6

8

10

12

14

Co
st

 (h
ou

rs
)

[[appManager, authenticator, db], [apiGateway], [aiLearning], [userConfig]] (nd=4)
[[db], [apiGateway], [aiLearning], [appManager, authenticator], [userConfig]] (nd=5)
[[authenticator, db], [apiGateway], [aiLearning], [appManager], [userConfig]] (nd=5)
[[appManager, db], [apiGateway], [aiLearning], [authenticator], [userConfig]] (nd=5)

Figure 9. Future costs at varying K for at most 5 domains.

Finally, we present the results for the probability of having a non-safely partitionable
application as K varies. As before, we grouped the data by different DLimits. Figure 11
shows the probability of reaching a non-partitionable application (y-axis) at varying values
of K of each probabilistic model (x-axis). We drew a line for every value of DLimit with
a different size to have a better distinction between the three lines when the probability
is similar. Indeed, for DLimit equal to five and six the probability of having a non-safely
partitionable application is the same for every K. All three lines start from a probability of
0.175 with K equal to one and they grow to stabilise with K equal to seven, the blue line at
probability 0.535 and the other two at probability 0.516. Then, the probability grows with
tiny values until K is equal to 11, reaching, respectively, 0.538 and 0.519. As before, when K
is equal to 11, 12 and 13 all the lines have the same values.

2 4 6 8 10 12
K

0

2

4

6

8

10

12

14

Co
st

 (h
ou

rs
) [[appManager, authenticator, db], [apiGateway], [aiLearning], [userConfig]] (nd=4)
[[db], [apiGateway], [aiLearning], [appManager, authenticator], [userConfig]] (nd=5)
[[authenticator, db], [apiGateway], [aiLearning], [appManager], [userConfig]] (nd=5)
[[appManager, db], [apiGateway], [aiLearning], [authenticator], [userConfig]] (nd=5)
[[db], [apiGateway], [aiLearning], [authenticator], [appManager], [userConfig]] (nd=6)

Figure 10. Future costs at varying K for at most 6 domains.

7.2. Discussion of the Results

We discuss now the question

Future Internet 2023, 15, 224 32 of 38

Q1: How much does K impact the creation time of the probabilistic model?

We have to consider that the number of labellings with at most K different labels
from the starting labelling grows exponentially as K grows, as discussed in Section 6.1.
This behaviour is confirmed by the data shown in Figure 6: the time needed to calculate
the probability of each labelling grows exponentially as K grows. With a probabilistic
model that is not parameterised with K it could be difficult for ProbSKnife to determine the
probabilistic model in a reasonable amount of time. An application with a large number of
data types and characteristics has difficulties calculating all the possible labellings, making
it hard to calculate the future cost of the initial partitionings. As aforementioned, choosing
a low value of K in advance is reasonable given that, in general, the number of labels
that change simultaneously is low. We can conclude that having K as a parameter in our
methodology can reduce drastically the complexity of the search space for all possible
labellings, thus reducing the execution time to create the probabilistic model.

2 4 6 8 10 12
K

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Pr
ob

ab
ilit

y

DLimit = 4
DLimit = 5
DLimit = 6

Figure 11. Probability of non-safely partitionable application with varying K and number of domains.

To summarise, the average execution time to create the probabilistic model is exponential with
K for the number of labels that can change (11 in our motivating example), with a minimum of
0.055 seconds with K equal to one and about 195 seconds with K equal to 13.

To answer the question

Q2: How much do K and DLimit impact the execution time of ProbSKnife?

We should add a consideration to the previous one. The maximum number of domains
admitted DLimit reduces the number of ways to partition an application and, thus, the
number of safe partitionings that satisfy a labelling. Indeed, only one partitioning with
DLimit equal to four satisfies the starting labelling (Figure 8). There are four partitionings
when DLimit is equal to five (Figure 9) and there are five partitioning when DLimit is equal
to six (Figure 10). The number of initial partitionings is the reason behind the difference
in the execution times of ProbSKnife, as for different values of DLimit there are different
numbers of future costs to calculate. The behaviour of the three lines is the same and they
have about the same distance for every point of the plot. This distance is given by the
number of partitionings. In particular, the orange line (DLimit equal to five) and the green
line (DLimit equal to six) show the time to calculate the future cost of one partitioning,
given that they have only one partitioning of difference.

Concerning the behaviour of the execution time, we reach the same conclusion as for
the previous question: the value of K increases exponentially the space of possible labellings
and ProbSKnife looks for the partitioning with the minimum cost for every labelling, thus
increasing the execution time. To summarise, we conclude that increasing K increases the

Future Internet 2023, 15, 224 33 of 38

execution time exponentially and increasing DLimit increases the execution time by the
number of partitionings that satisfy the starting labelling. This number depends on the ap-
plication; in the worst-case scenario it is also exponential, as discussed in Section 6.1. Thus,
choosing a low value for DLimit exponentially reduces the execution time of ProbSKnife
and also decreases the impact on the performance of the separation kernel technology.

To summarise: the average execution time to calculate the initial partitionings and their
future costs is exponential with K for the number of labels that can change (11 in our motivating
example) and linear with the number of initial partitionings (in the worst case, exponential with
DLimit). Our results have a minimum of 0.87 seconds with K and D equal to one and about 28,000
s with K and D at their maximum values, respectively, 13 and six.

From the point of view of execution time, the best choice seems to be the lowest possi-
ble values for K and DLimit, but we have also to consider their impact on the partitioning
costs. In this regard, we now answer the question

Q3: How much do K and DLimit impact the safe partitioning costs?

Having a low value of DLimit reduces the choice for the starting partitioning. Figure 8
shows that having DLimit equal to four has only one partitioning satisfying the starting
labelling, the minimal partitioning. Its future cost grows with K because the number of
labellings to be satisfied that need a different minimal partitioning grows.

The situation is more interesting with DLimit equal to five, as depicted in Figure 9,
where the choice is among four partitionings. The minimal partitioning cost is less than
before because when a labelling is not satisfied, the software can also be migrated to
partitionings with five domains, with a lower cost than partitioning with four domains.
Obviously, the orange partitioning will always be a bad choice, as it is the most costly,
with five domains. The choice of the starting partitioning depends on the selected K; the
application operator should decide whether to minimise the number of domains—having a
higher future cost—or have one more domain with a lower future cost. For example, with
K equal to one, the choice is between the purple partitioning (five domains and 0 future
cost) and the blue one (four domains and 3.68 future cost).

The last scenario, with DLimit set to six, is depicted in Figure 10. There is one
partitioning more than before, the green one, that is the partitioning where all the software
components are isolated in different domains. This partitioning is always safe and always
has zero future cost because there is no labelling that forces migration of the software
components, but it has the highest number of domains.

For applications with a high number of software components, it is not affordable
to isolate all the components and also, in this example, it is not the best choice. The red
partitioning has one domain less and the same zero future cost. This happens because
changing the partitioning from the red one to the green one has zero cost, so labellings that
are not satisfied by the red partitioning are enough to migrate the software to the green
one, increasing the number of domains but without paying an additional cost in working
on the software communication.

The idea behind the choice of the starting partitioning is the same as before: once K
is picked, the application operator should decide how many domains to use at the start,
knowing that the migration could require up to six domains to have the minimal cost.

In conclusion, having a low value of K brings lower future costs because the probability of
reaching an unsatisfiable labelling is less. Instead, having a low value of DLimit brings higher
future costs because there is less choice for the starting partitioning and for the migration.

In summary, fixing DLimit equal to four, the future cost of the minimal partitioning is 6.8
work hours, the lowest value, when K is equal to one. As K grows over seven the future cost is
stabilised at about 16.1 work hours. Fixing DLimit equal to five, the future cost of the minimal
partitioning is 3.7 work hours, the lowest value, when K is equal to one. As K grows over seven the
future cost is stabilised at about 14.8 work hours. For partitioning with five domains, the behaviour
depends on the application architecture and we record as the minimum future cost 0 work hours
with K equal to one and 2.7 with K equal to 13. Finally, fixing DLimit equal to six, the future cost
of the minimal partitioning is 3.7 work hours, the lowest value, when K is equal to one. As K grows

Future Internet 2023, 15, 224 34 of 38

over seven the future cost is stabilised at about 14.6 work hours. For partitioning with five domains,
the behaviour depends on the application architecture as before and we record a minimum future
cost of 0 work hours for every K. The partitioning with full isolation, having six domains, always
has zero future cost.

Finally, we have to answer the question

Q4: How much do K and DLimit impact the probability of not having a safe partitioning?

A labelling does not have a safe partitioning when the application is non-safely
partitionable or DLimit is less than the possible configuration of software component labels.
We recall that an application is non-safely partitionable when it has untrusted hardware
or when there is an untrusted path toward the hardware. When K grows the number of
labellings grows exponentially; thus, the probability of having a non-safely partitionable
application also grows. This is shown in Figure 11; the three lines grow with K. The growth
is bigger at the start, then decreases around K equal to seven. This happens because it is
enough to have a few bad labels to have a non-safely partitionable application that can be
mitigated with several others. For instance, to make a hardware component untrusted it is
enough to have one low characteristic and to make it trusted again all the data need to be
low as well.

The lower bound of domains to satisfy all the possible labellings is six. In general,
the probability of finding non-satisfiable labellings grows until DLimit reaches the lower
bound. For this reason, the figure shows that having the lowest value of DLimit (four)
increases the probability of finding non-satisfiable labellings. With DLimit equal to five
this does not happen because the labellings that are satisfiable only by six domains make
the application non-safely partitionable. Thus, the orange and green lines are overlapping.

To summarise, having a low value of K brings a lower probability of not finding a safe
partitioning. When the starting labelling makes the application safely partitionable, having
few changes does not increase drastically the probability of making it safely partitionable.
Instead, having a low value of DLimit brings a higher probability of not finding a partitioning
that satisfies a labelling until the lower bound on the number of domains is reached.

To summarise, the probability of not having an application safely partitionable is the lowest
with K equal to one for every DLimit, being about 0.175. With K equal to 13 the probability reaches
the maximum of 0.538 with DLimit equal to four and 0.519 both with DLimit equal to five and six.

As a final remark, our methodology has the benefit of(i) determining secure deploy-
ments of multi-component applications and (ii) proposing different solutions to allow the
application operator to choose the trade-off between SK impact and future deployment
changes. The main drawback of our methodology resides in the high execution time to
handle instances in which applications have several components and a high number of data
types and characteristics. To overcome this drawback we give the opportunity to select the
K and DLimit parameters to reduce the execution time. According to our experiments:

• Low values of K are suitable to handle problem instances that are likely to incur in a
few label changes (e.g., 1–3). In such cases, selecting a low value of K can drastically
reduce the execution times, contain future costs and reduce the probability that an
application will not be safely partitionable in the future.

• The decision on setting the value of DLimit is less immediate. Low values are suitable
to reduce ProbSKnife’s execution time. Instead, high values reduce the future costs and
the probability of incurring in a non-safely partitionable application. Assuming that
the application deployment is not a latency-sensitive operation, it is advisable to run
different instances of ProbSKnife with different DLimit values in order to find the best
solution that fits the specific needs of each specific situation.

8. Concluding Remarks and Future Work

This article introduced a declarative methodology to determine safe partitionings of
Cloud applications in order to support their secure deployment onto separation kernel
technologies, i.e., trusted execution environments.

Future Internet 2023, 15, 224 35 of 38

The methodology is implemented in two Prolog prototypes

• SKnife, which determines the minimal eligible partitioning, the partitioning with the
minimum number of domains that satisfies the initial labelling, and

• ProbSKnife, which determines all the eligible partitionings up to a user-defined limit
of domains and calculates their future migration cost based on the probability of
changing the application labelling.

We introduced the threat model of our considered scenario, which considers unreliable
infrastructure providers and external attacks able to compromise the data confidentiality
of an arbitrary multi-component application running on Cloud–IoT nodes. Then, we
showed how we employ information-flow security to determine eligible partitionings of
the application in order to support the deployment onto separation kernel technologies
to tackle such threats. We showed how SKnife finds the minimal eligible partitioning and,
after introducing our probabilistic cost model, we showed how ProbSKnife determines the
eligible partitionings and their future cost parametrised by K—the maximum number of
label changes—and DLimit— the maximum number of admitted domains. Finally, we
discussed the execution time and the future cost of ProbSKnife varying K and DLimit through
experimental assessment.

The results of our experiments show that the execution time of ProbSKnife is exponential
in the number of label changes and that bounding K to low values is crucial to have a solution
in a reasonable time, reducing it from 8 hours with K = ∞ to milliseconds with K = 1, 2.

Moreover, the results emphasise how it is necessary to have a way to fine-tune the
maximum number of admitted DLimits. Too-low values of DLimit reduce the SK impact
and the execution time of our prototype. On the other hand, low values of DLimit reduce
the number of possible starting deployments and increase the probability of changing the
deployment in the future.

To conclude, we highlight three possible directions for future work to enhance
our methodology.

Software engineering-based suggestions Currently, we deal with non-safely partition-
able applications by suggesting relaxed (data or characteristic) labellings. An interest-
ing alternative is to use software engineering techniques to determine modifications
of the application architecture in order to avoid data leaks without changing the
overall application behaviour. By introducing standard components or architecture
patterns, the isolation of untrusted components could be improved and the data
could be declassified before sending it to the untrusted components.

Future cost determination ProbSKnife computes the exact value of the future cost for all
initial safe partitionings. This can be very time-consuming for applications with sev-
eral components or dealing with a high number of data types and characteristics. An
interesting line for future work is to determine an ordering of the partitioning’s future
costs, without actually computing their values exactly. We are devising an iterative
method that determines boundaries on the probability of migration of partitionings,
thus reducing the boundaries at each iterative step in order to contain the execution
times.

Mathematical optimisation As a last line for future work, we are investigating how to
formalise our considered problem as a mixed-integer linear programming problem.
This would enable comparing our approach with established optimisation schemes,
both from qualitative (viz., application modelling, readability) and quantitative (viz.,
execution times, solution costs) viewpoints.

Author Contributions: Conceptualization, A.B. (Alessandro Bocci), S.F., R.G., G.-L.F. and A.B. (An-
tonio Brogi); methodology, A.B. (Alessandro Bocci), S.F., R.G., G.-L.F. and A.B. (Antonio Brogi);
software, A.B. (Alessandro Bocci) and S.F.; validation, A.B. (Alessandro Bocci); formal analysis,
A.B. (Alessandro Bocci), S.F., R.G., G.-L.F. and A.B. (Antonio Brogi); investigation, A.B. (Alessandro

Future Internet 2023, 15, 224 36 of 38

Bocci), S.F., R.G., G.-L.F. and A.B. (Antonio Brogi); resources, R.G. and A.B. (Antonio Brogi); data
curation, A.B. (Alessandro Bocci); writing—original draft preparation, A.B. (Alessandro Bocci) and
S.F.; writing—review and editing, A.B. (Alessandro Bocci), S.F., R.G., G.-L.F. and A.B. (Antonio Brogi);
visualization, A.B. (Alessandro Bocci); supervision, S.F., R.G., G.-L.F. and A.B. (Antonio Brogi); project
administration, A.B. (Antonio Brogi), R.G. and G.-L.F.; funding acquisition, S.F., R.G., G.-L.F. and A.B.
(Antonio Brogi). All authors have read and agreed to the published version of the manuscript.

Funding: This research has been partly funded by the projects Energy-aware management of software
applications in Cloud-IoT ecosystems (RIC2021PON_A18), funded with ESF REACT-EU resources by the
Italian Ministry of University and Research through the PON Ricerca e Innovazione 2014–20 and hOlistic
Sustainable Management of distributed softWARE systems (OSMWARE), UNIPI PRA_2022_64, funded by
the University of Pisa, Italy, and it was partially supported by the Swedish Foundation for Strategic
Research (SSF) through the framework project TrustFull.

Data Availability Statement:

Conflicts of Interest:

References
1. De Donno, M.; Tange, K.; Dragoni, N. Foundations and evolution of modern computing paradigms: Cloud, iot, edge, and fog.

IEEE Access 2019, 7, 150936–150948.
2. Kaufman, L.M. Data Security in the World of Cloud Computing. IEEE Secur. Priv. 2009, 7, 61–64.
3. Shaikh, F.B.; Haider, S. Security threats in cloud computing. In Proceedings of the International Conference for Internet

Technology and Secured Transactions 2011, Abu Dhabi, United Arab Emirates, 11–14 December 2011; pp. 214–219.
4. Mthunzi, S.N.; Benkhelifa, E.; Bosakowski, T.; Guegan, C.G.; Barhamgi, M. Cloud computing security taxonomy: From an

atomistic to a holistic view. Future Gener. Comput. Syst. 2020, 107, 620–644. https://doi.org/https://doi.org/10.1016/j.future.20
19.11.013.

5. Jangjou, M.; Sohrabi, M.K. A comprehensive survey on security challenges in different network layers in cloud computing. Arch.
Comput. Methods Eng. 2022, 29, 3587–3608.

6. Chen, L.; Xian, M.; Liu, J.; Wang, H. Research on virtualization security in cloud computing. In IOP Conference Series: Materials
Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 806, p. 012027.

7. Asvija, B.; Eswari, R.; Bijoy, M. Security in hardware assisted virtualization for cloud computing—State of the art issues and
challenges. Comput. Netw. 2019, 151, 68–92.

8. Bennett, K.W.; Robertson, J. Security in the Cloud: Understanding your responsibility. In Cyber Sensing 2019; SPIE: Bellingham,
WA, USA, 2019; Volume 11011, p. 1101106.

9. Almorsy, M.; Grundy, J.C.; Müller, I. An Analysis of the Cloud Computing Security Problem. arXiv 2016, arXiv:abs/1609.01107.
10. Tianfield, H. Security issues in cloud computing. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), Seoul, Republic of Korea, 14–17 October 2012; pp. 1082–1089.
11. Rushby, J.M. Design and Verification of Secure Systems. In Proceedings of the Eighth Symposium on Operating System Principles

SOSP 1981, Pacific Grove, CA, USA, 14–16 December 1981; pp. 12–21.
12. Intel Trust Domain Extensions (TDX). Available online: https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-trust-domain-extensions.html (accessed on March 2023).
13. AMD Secure Encrypted Virtualization (SEV). Available online: https://developer.amd.com/sev/ (accessed on March 2023).
14. Arm Confidential Compute Architecture (CCA). Available online: https://www.arm.com/why-arm/architecture/security-

features/arm-confidential-compute-architecture (accessed on March 2023).
15. Sabt, M.; Achemlal, M.; Bouabdallah, A. Trusted Execution Environment: What It is, and What It is Not. In Proceedings of the

2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 57–64. https://doi.org/10.1109/
Trustcom.2015.357.

16. Bocci, A.; Guanciale, R.; Forti, S.; Ferrari, G.L.; Brogi, A. Secure Partitioning of Composite Cloud Applications. In Proceedings of
the Service-Oriented and Cloud Computing—9th IFIP WG 6.12 European Conference, ESOCC 2022, Wittenberg, Germany, 22–24 March
2022; Lecture Notes in Computer Science; Montesi, F., Papadopoulos, G.A., Zimmermann, W., Eds.; Springer: Berlin/Heidelberg,
Germany, 2022; Volume 13226, pp. 47–64. https://doi.org/10.1007/978-3-031-04718-3_3.

17. Trach, B.; Oleksenko, O.; Gregor, F.; Bhatotia, P.; Fetzer, C. Clemmys: Towards secure remote execution in FaaS. In Proceedings of
the 12th ACM International Conference on Systems and Storage, SYSTOR 2019, Haifa, Israel, 3–5 June 2019; Hershcovitch, M., Goel, A.,
Morrison, A., Eds.; ACM: New York, NY, USA, 2019; pp. 44–54. https://doi.org/10.1145/3319647.3325835.

18. Alder, F.; Asokan, N.; Kurnikov, A.; Paverd, A.; Steiner, M. S-FaaS: Trustworthy and Accountable Function-as-a-Service
using Intel SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop, CCSW@CCS 2019,
London, UK, 11 November 2019; Sion, R., Papamanthou, C., Eds.; ACM: New York, NY, USA, 2019; pp. 185–199. https:
//doi.org/10.1145/3338466.3358916.

https://doi.org/https://doi.org/10.1016/j.future.2019.11.013
https://doi.org/https://doi.org/10.1016/j.future.2019.11.013
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.amd.com/sev/
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1007/978-3-031-04718-3_3
https://doi.org/10.1145/3319647.3325835
https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1145/3338466.3358916

Future Internet 2023, 15, 224 37 of 38

19. Brenner, S.; Kapitza, R. Trust more, serverless. In Proceedings of the 12th ACM International Conference on Systems and Storage,
SYSTOR 2019, Haifa, Israel, 3–5 June 2019; Hershcovitch, M., Goel, A., Morrison, A., Eds.; ACM: New York, NY, USA, 2019; pp.
33–43. https://doi.org/10.1145/3319647.3325825.

20. Qiang, W.; Dong, Z.; Jin, H. Se-Lambda: Securing Privacy-Sensitive Serverless Applications Using SGX Enclave. In Proceedings of
the Security and Privacy in Communication Networks—14th International Conference, SecureComm 2018, Singapore, 8–10 September
2018; Proceedings, Part I, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering; Beyah, R., Chang, B., Li, Y., Zhu, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 254, pp. 451–470.
https://doi.org/10.1007/978-3-030-01701-9_25.

21. Brenner, S.; Wulf, C.; Goltzsche, D.; Weichbrodt, N.; Lorenz, M.; Fetzer, C.; Pietzuch, P.; Kapitza, R. Securekeeper: Confidential
zookeeper using intel sgx. In Proceedings of the 17th International Middleware Conference, Trento, Italy, 12–16 December 2016;
pp. 1–13.

22. Zheng, W.; Wu, Y.; Wu, X.; Feng, C.; Sui, Y.; Luo, X.; Zhou, Y. A survey of Intel SGX and its applications. Front. Comput. Sci. 2021,
15, 153808.

23. Zhao, C.; Saifuding, D.; Tian, H.; Zhang, Y.; Xing, C. On the Performance of Intel SGX. In Proceedings of the 2016 13th
Web Information Systems and Applications Conference (WISA), Wuhan, China, 23–25 September 2016; pp. 184–187. https:
//doi.org/10.1109/WISA.2016.45.

24. Arfaoui, G.; Gharout, S.; Traoré, J. Trusted Execution Environments: A Look under the Hood. In Proceedings of the 2014 2nd
IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, Oxford, UK, 8–11 August 2014; pp.
259–266. https://doi.org/10.1109/MobileCloud.2014.47.

25. Lind, J.; Priebe, C.; Muthukumaran, D.; O’Keeffe, D.; Aublin, P.; Kelbert, F.; Reiher, T.; Goltzsche, D.; Eyers, D.; Kapitza, R.; et al.
Glamdring: Automatic Application Partitioning for Intel SGX; USENIX: Berkeley, CA, USA, 2017.

26. Brumley, D.; Song, D. Privtrans: Automatically partitioning programs for privilege separation. In Proceedings of the USENIX
Security Symposium, San Diego, CA, USA, 9–13 August 2004; Volume 57.

27. Gudka, K.; Watson, R.N.; Anderson, J.; Chisnall, D.; Davis, B.; Laurie, B.; Marinos, I.; Neumann, P.G.; Richardson, A. Clean
application compartmentalization with SOAAP. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1016–1031.

28. Wu, Y.; Sun, J.; Liu, Y.; Dong, J.S. Automatically partition software into least privilege components using dynamic data dependency
analysis. In Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE),
Silicon Valley, CA, USA, 11–15 November 2013; pp. 323–333. https://doi.org/10.1109/ASE.2013.6693091.

29. Bittau, A.; Marchenko, P.; Handley, M.; Karp, B. Wedge: Splitting Applications into Reduced-Privilege Compartments; USENIX
Association: Berkeley, CA, USA, 2008.

30. Liu, Y.; Zhou, T.; Chen, K.; Chen, H.; Xia, Y. Thwarting memory disclosure with efficient hypervisor-enforced intra-domain
isolation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
12–16 October 2015; pp. 1607–1619.

31. Watson, P. A Multi-Level Security Model for PartitioningWorkflows over Federated Clouds. In Proceedings of the 2011 IEEE
Third International Conference on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2011;
pp. 180–188. https://doi.org/10.1109/CloudCom.2011.33.

32. Sewell, T.; Winwood, S.; Gammie, P.; Murray, T.C.; Andronick, J.; Klein, G. seL4 Enforces Integrity. In Proceedings of the
Interactive Theorem Proving: Second International Conference, ITP 2011, Berg en Dal, The Netherlands, 22–25 August 2011;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 6898, pp. 325–340.

33. Andronick, J. From a Proven Correct Microkernel to Trustworthy Large Systems. In Proceedings of the FoVeOOS, Paris, France,
28–30 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6528, pp. 1–9.

34. Dam, M.; Guanciale, R.; Khakpour, N.; a, H.; Schwarz, O. Formal verification of information flow security for a simple arm-based
separation kernel. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security 2013, Berlin,
Germany, 4–8 November 2013; pp. 223–234.

35. Heitmeyer, C.L.; Archer, M.; Leonard, E.I.; McLean, J.D. Formal specification and verification of data separation in a separation
kernel for an embedded system. In Proceedings of the 13th ACM Conference on Computer and Communications Security 2006,
Alexandria, VA, USA, 30 October–3 November 2006; pp. 346–355.

36. Rubinov, K.; Rosculete, L.; Mitra, T.; Roychoudhury, A. Automated partitioning of android applications for trusted execution
environments. In Proceedings of the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016;
pp. 923–934.

37. Sabelfeld, A.; Sands, D. A Per Model of Secure Information Flow in Sequential Programs. High. Order Symb. Comput. 2001,
14, 59–91.

38. Elsayed, M.; Zulkernine, M. IFCaaS: Information Flow Control as a Service for Cloud Security. In Proceedings of the 2016 11th
International Conference on Availability, Reliability and Security (ARES), Salzburg, Austria, 31 August–2 September 2016; pp.
211–216.

39. Alpernas, K.; Flanagan, C.; Fouladi, S.; Ryzhyk, L.; Sagiv, M.; Schmitz, T.; Winstein, K. Secure serverless computing using
dynamic information flow control. Proc. ACM Program. Lang. 2018, 2, 118:1–118:26. https://doi.org/10.1145/3276488.

https://doi.org/10.1145/3319647.3325825
https://doi.org/10.1007/978-3-030-01701-9_25
https://doi.org/10.1109/WISA.2016.45
https://doi.org/10.1109/WISA.2016.45
https://doi.org/10.1109/MobileCloud.2014.47
https://doi.org/10.1109/ASE.2013.6693091
https://doi.org/10.1109/CloudCom.2011.33
https://doi.org/10.1145/3276488

Future Internet 2023, 15, 224 38 of 38

40. Datta, P.; Kumar, P.; Morris, T.; Grace, M.; Rahmati, A.; Bates, A. Valve: Securing Function Workflows on Serverless Computing
Platforms. In Proceedings of the WWW, Taipei Taiwan, 20–22 April 2020; pp. 939–950.

41. Bocci, A.; Forti, S.; Ferrari, G.L.; Brogi, A. Declarative Secure Placement of FaaS Orchestrations in the Cloud-Edge Continuum.
Electronics 2023, 12, 1332. https://doi.org/10.3390/electronics12061332.

42. Oak, A.; Ahmadian, A.M.; Balliu, M.; Salvaneschi, G. Language Support for Secure Software Development with Enclaves. In
Proceedings of the IEEE Computer Security Foundations Symposium (CSF 2021), Dubrovnik, Croatia, 21–25 June 2021.

43. Kadioglu, S.; Colena, M.; Sebbah, S. Heterogeneous resource allocation in Cloud Management. In Proceedings of the NCA 2016,
Boston, MA, USA, 31 October–2 November 2016; pp. 35–38.

44. Hinrichs, T.L.; Gude, N.S.; Casado, M.; Mitchell, J.C.; Shenker, S. Practical declarative network management. In Proceedings of
the WREN, Barcelona, Spain, 21 August 2009; pp. 1–10.

45. Forti, S.; Ferrari, G.L.; Brogi, A. Secure Cloud-Edge Deployments, with Trust. Future Gener. Comput. Syst. 2020, 102, 775–788.
46. Forti, S.; Paganelli, F.; Brogi, A. Probabilistic QoS-aware Placement of VNF chains at the Edge. Theory Pract. Log. Program. 2022,

22, 1–36.
47. Sahita, R.; Caspi, D.; Huntley, B.; Scarlata, V.; Chaikin, B.; Chhabra, S.; Aharon, A.; Ouziel, I. Security analysis of confidential-

compute instruction set architecture for virtualized workloads. In Proceedings of the 2021 International Symposium on Secure
and Private Execution Environment Design (SEED), Washington, DC, USA, 20–21 September 2021; pp. 121–131.

48. Sabelfeld, A.; Myers, A.C. Language-based information-flow security. IEEE J. Sel. Areas Commun. 2003, 21, 5–19. https:
//doi.org/10.1109/JSAC.2002.806121.

49. Home Assistant. Available online: https://www.home-assistant.io/ (accessed on March 2023).
50. IFTTT. Available online: https://ifttt.com/ (accessed on March 2023).
51. AWS IoT Greengrass. Available online: https://aws.amazon.com/it/greengrass/ (accessed on March 2023).
52. Azure IoT Edge. Available online: https://azure.microsoft.com/en-us/services/iot-edge/ (accessed on March 2023).
53. Dey, T.; Ma, Y.; Mockus, A. Patterns of Effort Contribution and Demand and User Classification Based on Participation Patterns

in NPM Ecosystem. In Proceedings of the Fifteenth International Conference on Predictive Models and Data Analytics in
Software Engineering. Association for Computing Machinery PROMISE’19, Athens, Greece, 19–20 August 2019; pp. 36–45.
https://doi.org/10.1145/3345629.3345634.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics12061332
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://www.home-assistant.io/
https://ifttt.com/
https://aws.amazon.com/it/greengrass/
https://azure.microsoft.com/en-us/services/iot-edge/
https://doi.org/10.1145/3345629.3345634

	Introduction
	Related Work
	Specialised Hardware for Cloud Security
	Partitioning and Separation
	Information-Flow Security
	Declarative Approaches

	Preliminaries
	Threat Model
	Problem Formulation
	Motivating Example

	A Declarative Solution: SKnife
	Declarative Modelling Applications and Labelling
	Safe Partitioning

	Determining the Minimal Safe Partitioning
	Minimal Number of Domains
	Declarative Strategy for the Minimal Safe Partitioning
	Labels Suggestions
	Motivating Example Revisited
	Finding the Minimal Partitioning
	Relaxing the Labelling

	Partitioning with a Look Ahead on Migration Costs
	A Refined Probabilistic Cost Model
	Migration Cost
	The Probabilistic Model
	Partitioning Migration
	Future Cost
	Look-Ahead Safe Partitionings

	Probabilistic SKnife

	Experimental Assessment
	Experimental Results
	Discussion of the Results

	Concluding Remarks and Future Work
	References

