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Abstract: Malware authors apply different techniques of control flow obfuscation, in order to create
new malware variants to avoid detection. Existing Siamese neural network (SNN)-based malware
detection methods fail to correctly classify different malware families when such obfuscated malware
samples are present in the training dataset, resulting in high false-positive rates. To address this issue,
we propose a novel task-aware few-shot-learning-based Siamese Neural Network that is resilient
against the presence of malware variants affected by such control flow obfuscation techniques. Using
the average entropy features of each malware family as inputs, in addition to the image features,
our model generates the parameters for the feature layers, to more accurately adjust the feature
embedding for different malware families, each of which has obfuscated malware variants. In
addition, our proposed method can classify malware classes, even if there are only one or a few
training samples available. Our model utilizes few-shot learning with the extracted features of a
pre-trained network (e.g., VGG-16), to avoid the bias typically associated with a model trained with a
limited number of training samples. Our proposed approach is highly effective in recognizing unique
malware signatures, thus correctly classifying malware samples that belong to the same malware
family, even in the presence of obfuscated malware variants. Our experimental results, validated
by N-way on N-shot learning, show that our model is highly effective in classification accuracy,
exceeding a rate >91%, compared to other similar methods.

Keywords: Siamese neural network; meta-learning; malware classification; code obfuscation;
few-shot learning

1. Introduction

Malware producers are ever more motivated to create new variants of malware, in
order to gain profits from unauthorized information stealth. According to the malware
detection agency AV Test (https://www.av-test.org/en/statistics/malware/ (accessed on
1 July 2021)), 100 million new variants of malware were generated from January to October
2020, which translates as roughly three thousand new malware daily.

In particular, we have witnessed the fast growth of mobile-based malware. An NTSC
report published in 2020 (https://www.ntsc.org/assets/pdfs/cyber-security-report-2020
.pdf (accessed on 15 June 2021)) reported that 27% of organizations globally have been
impacted by malware attacks sent via Android mobile devices. In recent times, we have seen
malware producers employ techniques such as obfuscation [1–3] and repackaging [4–6],
mostly through the change of static features [7–9], to avoid detection. In response to the
trend in the growth of mobile-based malware attacks, numerous Artificial Intelligence
(AI)-based defense techniques have been proposed [10–15].

We argue that there are two main issues to be addressed in the existing state-of-the-art
of AI-based mobile malware attack defense.

The first issue is that most of the existing research tends to focus on learning from
common semantic information about the generic features of malware families, and building
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feature embeddings [16–18]. In this context, ’feature embedding’ means the features
contained in a malware binary sample, which provide important clues as to whether the
malware image—generated from the hexdump utility that displays the contents of binary
files in hexadecimal, from which feature embedding is created—is malicious or not: if
malicious, what type of malware family it belongs to is assessed, to build the right set
of response strategies. These existing works often treat the fraction of the code changed
by the obfuscation and repackaging as a type of noise [19], and thus tend to ignore the
effect of the modification: this is largely because the code changed by the obfuscation
and repackaging techniques displays a similar appearance when malware visualization
techniques are applied [20–22]. Using common semantic information as data input points
to be fed into a deep neural network cannot capture the unique characteristics of each
malware family signature: thus, they will not be able to accurately classify many variants
arising from the same malware family [10,23–25], especially if an obfuscation technique
is applied.

The second issue with the existing approaches is the demand for large data input,
with which to find more relevant correlations across the features: such input is unable to
detect and classify malware families trained with a limited number of samples (e.g., newly
emerging variants of malware) [26].

To address these two important issues, we propose a novel task-aware few-shot-
learning based Siamese neural network, capable of detecting obfuscated malware variants
belonging to the same malware family, even if only a small number of training samples
are available.

The contributions of our proposed model are as follows:

• Our task-aware meta-learner network combines entropy attributes with image-based
features for malware detection and classification. By utilizing the VGG-16 network
as part of the meta-learning process, the weight generator assigns the weights of the
combined features, which avoids the potential issue of introducing bias when the
training sample size is limited;

• For the hybrid loss to compute the intra-class variance, the center loss is added
alongside the constructive loss, to enable positive pairs and negative pairs to form
more distinct clusters across the pairs of images processed by two CNNs;

• The results of our extensive experiments show that our proposed model is highly
effective in recognizing the presence of a unique malware signature, despite the
presence of obfuscation techniques, and that its accuracy exceeds the performance of
similar methods.

We organized the rest of the paper as follows. We examine the related work in
Section 2. We describe how control-flow-obfuscated malware variants are created, and we
address why the generic SNN approach cannot detect such obfuscated malware variants in
Section 3. We provide the details of our proposed model, along with the details of the main
components, their roles and responsibilities, and an overview of the algorithm involved,
in Section 4. In Section 5, we describe the details of the dataset, feature extraction, and
the experimental results with analysis. Finally, we provide the conclusion to our work,
including the limitations of our proposal, and future work directions, in Section 6.

2. Related Work

In this section, we review two lines of research relevant to our study: few-shot-learning-
based malware detection and feature embedding applied for malware detection.

2.1. Entropy Feature in Feature Selection

Entropy value serves as a metric for feature selection, quantifying the information
each feature contributes to the target variable or class. Selecting features with the highest
information gain can enhance model performance and reduce overfitting. Huang et al. [27]
utilized the entropy function defined on sparse signal x to recover such signals: minimizing
it with an appropriate p-value yielded sparse solutions and improved signal recovery
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rates. Additionally, Finlayson et al. [28] demonstrated that quadratic entropy values,
being smoother and typically having a single minimum, offer the most efficient approach.
This method aids full-color shadow removal, by comparing edges in the original and
invariant images, followed by re-integration. Moreover, Allahverdyan et al. [29,30] suggest
that entropy minimization can lead to basic forms of intelligent behavior. Specifically,
Kolouri et al. [29] employed entropy minimization to bolster classifier confidence, while
entropy regularization ensured that predictions remained close to unseen attributes in
zero-shot tasks.

2.2. Meta-Learning in Cyber Threat Intelligence

Machine learning has made significant strides in intrusion detection, network pro-
tection, anomaly detection, and identifying known threats; however, traditional machine
learning struggles with accurately recognizing unknown attacks. Meta-learning, encom-
passing “zero-shot”, “one-shot”, and “few-shot” learning, addresses this by detecting new
malicious samples, using limited or no samples, relying on existing knowledge correla-
tions. The goal is to quickly develop accurate and generalizable models with minimal
data training.

Yang et al. [31] outlined the application of meta-learning in network security, highlight-
ing its rapid development and promising potential. Zoppi et al. [32] suggested adopting
meta-learners, which create ensembles of base-learners, to reduce misclassifications com-
mon in supervised learning. Base-learner results partially form meta-data, which, along
with other features, is provided to the meta-layer for the overall classification. Despite
ensemble learning’s high accuracy, it suffers from complexity and reduced efficiency dur-
ing model training. In a comprehensive study, Zoppi et al. [33] compared meta-learning
methods to other approaches for detecting unknown attacks, evaluating major classifier
families using the same methodology. Although their research did not cover “few-shot
learning” methods, it highlighted the potential of meta-learning in detecting unknown
attacks, such as zero-day exploits. Zhou et al. [34] proposed a Siamese CNN encoding
network, designed to measure input sample distances based on optimized feature repre-
sentations. This intelligent detection algorithm, applied to anomaly detection in large-scale
industrial CPS data with few labeled samples, showcases the efficiency of an end-to-end
training method based on “few-shot learning”.

2.3. Few-Shot Learning for Malware Detection

One-shot learning is a method of utilizing prior knowledge to learn a generic feature
with a few image samples. This method has been widely applied in several applications:
for example, in the field of image classification and recognition, speech recognition, and
using the Siamese neural network and prototypical network. Sun et al. [35] proposed a
static method of analyzing assembly language operation code through the visualization of
malicious code. More recently, Hsiao et al. [14] developed an end-to-end framework based
on a Siamese neural network, to detect malware. Moustakidis et al. [36] attempted the
transformation of raw data using fuzzy class memberships, which then fed into the Siamese
neural network, to defend against the intrusion attack. While these researchers achieved
competitive results, utilizing different feature extraction techniques, they were limited to
learning semantic feature embedding, to distribute tasks more effectively; however, the
description of the semantic information of the raw binary files that they used was not
clear, and it was difficult to see how these were used for feature embedding. It appeared
to be unrealistic to expect a model learned for a generic feature from rare categories to
capture the common attribute of malicious code. Tang et al. [37] proposed a high-level
malware class feature with a meta-learner, and evaluated that their proposal was effective
at detecting malware with distinct features: however, their research did not consider the
distance between the positive pairs and the negative pairs; therefore, the problem with the
precise capture of the distance across intra-class variance still existed. Many existing state-
of-the-arts proposed by these existing few-shot learning models tend to employ contrastive
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loss, which we believe does not contribute towards shrinking the intra-class variance: to
resolve this issue, the positive and negative pairs must be effectively separated by the
hyperplane. Based on this concept, we propose a hybrid loss function with a center loss
combined with a constructive function, to improve the positive and negative pairs interval
and the inter-class variance.

2.4. Feature Embedding for Malware Detection

Feature embedding techniques have been widely used in many applications, such
as face and speech recognition, because they can be purposely designed for a specific
function, and to capture the critical semantic information which may appear at any position
of an image (or sentence): based on these principles, Sun et al. [35,38–42] adopted feature
embedding techniques into malware detection. It has been proven that the embedded
N-grams of opcodes [43] abbreviated from operation code—also known as instruction
machine code—and graph embedding [38,40,44] can efficiently capture unique malicious
components; however, conducting the opcodes and graph embedding is time-consuming,
and their generalizability limited (e.g., graph embedding tends only to work well in
learning the static features). Using these techniques, a unique behavior presented in a
malware family, that is critical to capturing the variant of that malware family, often tends
to be regarded as noises, while only the common known behaviors of malware families
are captured by the CNN model: for example, work by Microsoft in collaboration with
Intel demonstrated the setting of the practical value of the image-based transfer learning
approach for static malware classification [42]. To address this problem, Sun et al. [35]
proposed a model that learned the unique information specific to a malicious code; however,
it did not achieve a competitive result when only a small number of training datasets were
available. Tran et al. [45] evaluated the performance of malware detection for zero-day
attack malware, using matching and prototypical networks. The matching network used
the softmax over the cosine distance, with two embedding functions, and the memory
cached the common pattern of malware feature representation. While these works focused
on the semantic feature embedding of malicious code, most of them were limited to working
well on many training samples: these existing models tended to be effective at capturing
malware samples when the common attribute of malicious code was distinct, but often did
not consider when there were slight differences in features of the malware, as is the case
with many obfuscated malware variants.

3. Preliminary
3.1. Control Flow Obfuscation

Malware obfuscation is a technique that is applied by malware authors to create new
malware variants, in order to avoid detection without creating a completely brand-new
malware signature. Among the many different obfuscation techniques, we focused on
control flow obfuscation, which involves creating a new malware variant by reordering
the control flow of functional logic from the original malware program [1]. This type of
obfuscation technique makes the compiled malicious code appear to be different from the
existing malware signature so that it can easily avoid detection. Our model can detect three
different types of control flow obfuscation.

3.1.1. Function Logic Shuffling

This technique alters the control flow path of a malware program, by shuffling the
order of function calls without affecting the semantics (i.e., purpose) of the original mal-
ware program: while the functionality between the original malware and the obfuscated
version remains the same, the changing of appearance in the compiled code can result in
the appearance of the malware image changing, and detection accuracy decreasing. An
example is shown in Figure 1, where the order of function logic MyClass_2 and MyClass_3
is changed.
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Figure 1. Function Logic Shuffling.

3.1.2. Junk Code Insertion

In this technique, the malware author inserts much (junk) code that never gets exe-
cuted, whether after unconditional jumps, calls that never return, or conditional jumps
with conditions that will never be met. The main goal of this technique is to change the
control flow path, in order to avoid detection or to waste time for the reverse engineer
analyzing useless code. An example of a junk code insertion is shown in Figure 2, where a
junk code, MyClass_J, is added in between two normal function calls.

Figure 2. Junk Code Insertion.

3.1.3. Function Splitting

With this technique, the malware author applies the function splitting method, where
a function code is fragmented into several pieces, each of which is inserted into the control
flow. This technique splits the function into n code fragments, or merges pieces of unrelated
codes, to make the changes in the compiled code, which also results in the malware image
appearance changing. An example of a function splitting is shown in Figure 3, where
two splits from MyClass_2 are generated, and randomly added among other function calls.
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Figure 3. Function Splitting.

Though the functionality between the original malware and obfuscated versions (e.g.,
malware variants) stays the same, a malware code applied with control flow obfuscation
can easily avoid detection from many anti-virus programs [1]. To address this issue, we
propose a model resilient against the presence of many variants of malware created as a
result of applying the control flow obfuscation technique. Our proposed method utilizes
the information gain calculated through the entropy features associated with each malware
variant. In our proposal, the entropy features measure the amount of uncertainty of a given
probability distribution of a malware program that is not affected by the order of functional
logic of the malware program.

3.2. Generic Approach and Issues

In the last few years, few-shot learning technology, for example, the Siamese neural
network (SNN), which uses only a few training samples to get better predictions has
emerged. An SNN contains two identical subnetworks (usually convolutional neural
networks)—hence the name ’Siamese’. The two CNNs have the same configuration, with
the same weights, W ∈ Rd, where W depicts the model’s parameters, while Rd depicts the
distance embedding to calculate two samples inputted from each subnetwork, respectively,
and the value of the distance indicates whether they are closed to each other, as the value
increases or decreases in the Euclidean space. The updating of the hyperparameters is
mirrored across both CNNs, and is used to find the similarity of the inputs, by comparing
its feature vectors.

Each parallel CNN is designed to produce an embedding (i.e., a reduced dimensional
representation) of the input. These embeddings can then be used to optimize a loss function
during the training phase and to generate a similarity score during the testing phase.

The architecture of Spiking Neural Networks (SNNs) contrasts significantly with tradi-
tional neural networks, which rely on extensive datasets to learn the prediction of multiple
classes. The latter’s requirement for total retraining and updating with each addition or
removal of a class presents a challenge. SNNs instead learn through a similarity function,
testing whether two images are identical. This innovative architecture empowers them to
classify new data classes without the need for additional network training. Furthermore,
SNNs demonstrate greater robustness against class imbalance, as a small number of images
per class is enough to enable future recognition. The corresponding notations are listed as
Table 1.
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Table 1. Notations in task-aware meta learning-based Siamese neural network.

Notation Description

fp The log probability calculated by the d(i)w

fq The log probability calculated by the 1− d(i)w
xi The malware image feature of ith samples
yi

t The class t of ith samples
θt The feature layers’ parameters

Wi I-th feature layer in F ’s weights
Wi

sr The shared parameters for all malware families
Wi

ts The task-specific parameters for each malware family
ci The center point of each class
Le The embedding loss

Lb,c The binary cross entropy loss with center loss
di

w The distance feature of a pair of images
yd The label of pairs of images
Fw The convolutional filter with parameters w
β The hyper-parameter

Figure 4 illustrates the working of a generic SNN, its goal being to determine if two
image samples belong to the same class or not: this is achieved through the use of two
parallel CNNs (CNN1 and CNN2 in Figure 4) trained on the two image samples (Image
1 and Image 2 in Figure 4). Each image is fed through one branch of the SNN, which
generates a d-dimensional feature embedding (h1 and h2 in Figure 4) for the image: it
is these feature embeddings that are used to optimize a loss function, rather than the
images themselves. A supervised cross-entropy function is used in the SNN for the binary
classification, to determine whether two images are similar or dissimilar, by computing
[h2 − h1] and processing it by a sigmoid function.

Figure 4. Overview of a Siamese neural network.

Mathematically, the similarity between a pair of images (x1, x2) within Euclidean
distance (ED) is computed in an SNN using the following equation:

dw(x1, x2) = ‖Fw(x1)− Fw(x2)‖2, (1)

where the Fw indicates the feature representation for the inputted feature matrix. Generally,
the model gw: Rn to Rd is parameterized by the weights w, and its loss function is calculated
using the following equation:

Lb = − 1
N

N

∑
i=1

[yi
d fp(d

(i)
w ) + (1− yi

d) fq(d
(i)
w )], (2)

where yd = {y1
d, y2

d, . . . , yi
d} ∈ {0, 1} denotes the ground truth label of image pairs (xi, xj),

and dw represents the Euclidean distance (ED) between two images at the i-th pair. Note
that the most similar images are supposed to be the closest in the feature embedding
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space: though this approach would work well for finding similarities/dissimilarities across
distinct image objects, it would not work well for obfuscated malware samples.

Recall that an obfuscated malware—for example, x1—changes some part of the original
malware code, x2: when these two are converted as a feature representation—for example,
Fw(x1) and Fw(x2)—the feature values in the feature representation will look very different,
which is how obfuscated malware avoids detection by anti-virus software. Inadvertently,
the different values in the feature representation make the distance across obfuscated
malware images very different from one another (i.e., dw(x1, x2) is large). Eventually, when
a similarity score is computed and compared, using the loss (i.e., Lb) based on the distance
calculation (i.e., dw(x1, x2)), they appear to be different malware families—though, in fact,
they all belong to the same malware family.

4. Task-Aware Meta Learning-Based Siamese Neural Network

We now introduce our task-aware meta-learning-based SNN model, which provides a
novel feature embedding better-suited to control-flow-obfuscated malware classification.
We start with the overview of our proposed model, and the details of the CNN architecture
that is used by our model, followed by how task-specific weights are calculated using
factorization. Finally, we discuss the details of the loss functions our model uses to address
the challenges of weight generation with a limited number of training samples.

4.1. Our Model

As shown in Figure 5, our model utilizes a pre-trained network and two identical
CNN networks. We use a pre-trained network (VGG-16) to compute more accurate weights
for entropy features. Similarly, each CNN takes image features to calculate weight for
the image features, and to generate feature embedding using the task-specific weights
and shared weights of both the entropy and the image features. The feature embeddings
produced by the two CNNs are used by the SNN to calculate the similarity score across
intra-class variants, using a new hybrid loss function.

Figure 5. Overview of our proposed model.

Within each CNN, there are two sub-networks: a task-aware meta-learner network
and an image network, as shown in Figure 6. The task-aware meta-learner network starts
by taking a task specification (e.g., an entropy feature vector), and generates the weights.
At the same time, the image network (e.g., a typical CNN branch of an SNN) starts by
taking the image feature and convoluting it, until a fully connected layer is produced.
The last fully connected layers use the weights generated by the task-aware meta-learner
network, along with the shared weights, to produce a task-aware feature embedding space.
Embedding loss for inter-class variance is calculated for back-propagation, until the CNN
is fully trained for all input images.
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Figure 6. CNN architecture of our proposed model.

Mathematically, this can be written as the following equation:

y = F (x; θ = {G(t), θ f }), (3)

where the SNN F takes malware images x as inputs, and produces a task-aware feature
embedding that is used by the SNN to predict the similarity y ∈ {1, 0} between an image
pair inputted to two CNNs. Each CNN is parameterized by the weights θ, which are
composed of generated parameters from T and the share parameters θs in the SNN F that
is shared across all malware families. The task-aware meta-learner network T creates a
set of weight generators gi, i = 1 . . . k, to generate parameters for k feature layers in F ,
conditioned on et. The overall approach of our proposed model can also be summarized
using Algorithm 1:

Algorithm 1: Pseudo-code of our proposed algorithm.

Binary cross-entropy with center loss:Lb,c;
Additional supervision loss :Le;
Input : Entropy graph feature Fent, texture feature Ft, support set s, query set q,

pair label yi
d, sample label yi

t, hyper-parameters β , initialized centers ci
Output : [Predicted similarity]
Training stage:
(1) Initializing the parameters for our proposed models, and the task-specific
weights Wi for the weight generators in the task-aware meta-learner network gi,
using the weight factorization Equation (5);

(2) To input the malware texture features Ft and the 4096 features of entropy value
Fent extracted by the pre-trained network (e.g., VGG-16); note that these are
integrated with the support set s of our proposed model;

(3) The weighted features from Equation (5) are fed into the embedding loss,
according to the one-shot label generated from the target label;

(4) Calculating the Euclidean distance (ED) of features in the two branches of SNN,
through the hybrid loss function;

(5) Back-propagation and update parameters by Adam optimizer.
Testing Stage:
while not reach to iterations do

Extract features of samples in the query set q, and feed them the one-shot
accuracy.

Accuracy = 100×correct/iterations
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4.2. Task-Aware Meta-Learner

Our task-aware meta-learner provides two important functionalities: one is generating
optimized task-specific weights, using the entropy values extracted from a pre-trained deep
learning model (e.g., VGG-16); the other function is to work with the image network, to
compute the new weights, based on the shared weights and the task-specific weights, so
that the embedding loss is accurately calculated, in order to capture the relative distance
across inter-class variance (e.g., the features of the image). These functions are necessary,
because some malware samples (e.g., zero-day attack samples) are usually much smaller
than the number of images required for training an SNN model.

Using the entropy values, our meta-learner recognizes a specific malware signature
present in the entropy, so that later it uses this knowledge to find whether some malware
samples are derived from the same malware family or not (e.g., obfuscated malware). The
entropy values are extracted from the VGG-16 when entropy graphs are inputted.

We use entropy graphs to recognize a unique malware signature belonging to each
malware family. To illustrate the use of an entropy graph as a task specification, four
samples of malware images are shown in Figure 7. Figure 7a,b are two obfuscated malware
samples from the same Wroba.wm family. Similarly, Figure 7c,d of the name Agent.ad are
from the same Agent family. One can see that the entropy graphs within the same family
share a similar pattern, while there are visible differences in the entropy graphs between
two different malware families.

(a) Sample 1 of Wroba.wm class (b) Sample 2 of Wroba.wm class

(c) Sample 1 of Agent.ad class (d) Sample 2 of Agent.ad class

Figure 7. Examples of entropy graphs of two malware families.

Our task-aware meta-learner utilizes the entropy values extracted from the entropy
graph, to train our proposed model to recognize if an image pair is similar or dissimilar (i.e.,
belong to the same malware family or not)—see Algorithm 2. To obtain an entropy graph,
a malware binary file is read as a stream of bytes, and is separated into a few segments.
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The frequency of unique byte value is counted, and computes the entropy, using Shannon’s
formula, as follows:

Ent = −∑
i

∑
j

M(i, j)logM(i, j), (4)

where M is the probability of an occurrence of a byte value. The entropy obtains the
minimum value of 0 when all the byte values in a binary file are the same, while the
maximum entropy value of 8 is obtained when all the byte values are different. The entropy
values are then represented as a stream of values that can be reshaped as an entropy graph.
The entropy graph is then converted as a feature vector inputted through the convolutional
extractor of a pre-trained network (e.g., VGG-16 [46]). The summary of the steps involved
in the entropy graph is described in Algorithm 2:

Algorithm 2: Pseudo-code of entropy graph
Input : f : malware binary file; l: segment length; n: the number of files
Output : entropy graph matrix m
while not reach to n do

1. read l bytes from f , and defined as segment s;
2. for i = 0 to 255 do
3. compute the probability pi of i appearing in s;
4. compute the Shannon entropy

Generate entropy graph m

4.3. Weight Generator via Factorization

In the generic SNN approach, the feature extractor only uses the image feature: this
approach, however, is no longer effective in the detection of obfuscated malware, where
multiple obfuscated malware samples contain almost identical image features.

The problem is further complicated when only a few samples (i.e., less than five
malware samples) exist (i.e., not enough malware feature information to use for classifi-
cation, as very few variations of malware samples can be collected from a small number
of malware samples). To address this issue, we present a new novel weight generation
scheme based on the work presented by [47]. In our proposed model, the weight generator
G(., .|φ) receives, as input, the entropy vectors Wave of a class, in addition to the image

vectors Z′ = {z′i}
N
i=1

′

of the N′ training samples of the corresponding class: this results in a
weight vector w′ = G(Z′, Wave).

In our model, the weight generator scheme is incorporated in the fully connected
(FC) layer, to solve the non-linear issue that exists in the relationship between the entropy
feature and the malware image. By integrating the weight generator into the FC layer, the
weights of the features extracted before the FC layer can then be integrated better into
calculating new and more optimized weights for the whole model. We generate weights by
creating a weight combination. The weight combination produces the composite features
that encode the non-linear connection in the feature space: this is done by multiplying
the entropy features and image features together, such that the composite features learn a
feature-embedding resistance to different obfuscated malware variations. Note that the
dimension of the weight generator gi on the FC layer must be matched with the dimension
of the weight size of the ith feature layers in F, so that the weights Wi ∈ Rm×n can be
decomposed using the following equation:

Wi = Wi
sr ·Wi

ts, (5)

where Wi
sr ∈ Rm×n is the average entropy feature vector for each malware family {t1, . . . tN},

and Wi
ts ∈ Rn is the task-specific image feature vector for each malware. With such factor-

ization, the weight generators only need to generate the malware-specific parameters for
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each malware family in the lower dimension, and learn one set of parameters in the high
dimension shared across all malware families.

4.4. Loss Function

Our proposed model uses two different types of loss functions. Embedding loss is used
by our task-aware meta-learner network to compute a loss across the inter-class variance
(e.g., the features in the feature embedding space of a CNN branch), while a hybrid loss
is used by the differencing layer of the SNN, to compute the similarities across inter-class
variants between an image pair.

4.4.1. Embedding Loss for Meta-Learner

The feature representation of the entropy graph of a malware class can be easily
influenced by binary loss: this is because the use of binary loss can only give the probability
of the distribution of distances between positive and negative image pairs, and cannot
estimate the probabilities of distances between positive and negative image pairs across
different malware variations, thus not being able to correctly classify similar pairs of images
across obfuscated malware samples (i.e., not being able to learn a discriminative feature
during the training procedure). To address this issue, we added a secondary cross-entropy
loss, not only to learn the discriminative feature, but also to address the effect of overfitting
caused by contrastive loss. This embedding loss is defined using the following equation:

Le = −
1
N

N

∑
i=1

T

∑
t=1

log[
exp(F(xi; θt)) · yi

t

∑T
j=1 exp(F(xi; θt))

], (6)

where xi represents the ith sample in the dataset of the size N. The one-shot encoding
applied to the input based on the labels is indicated by yt ∈ {0, 1}t, while T indicates the
number of tasks during training (e.g., either in the whole dataset or in the minibatch).

4.4.2. Hybrid Loss for Our SNN

To calculate the similarity score for our proposed model, we propose a hybrid loss
function comprised of a center loss and a constructive loss. The center loss proposed by
Wen et al. [48] is a supplement loss function to the softmax loss for the classification task,
which can learn to find a sample that can act as the center image of each class, and try to
shorten the distance across the training samples of similar features by moving them to be as
close to the center of the sample as possible. This center loss can be calculated as follows:

Lc =
1

2N

i=1

∑
N

∥∥∥d(i)
w − ci

∥∥∥2

2
, (7)

where ci denotes the center of class i, while d(i)w denotes the features of the Euclidean
distance. The objective function stands for the squared Euclidean distance. Intuitively, the
center loss encourages instances of the same classes to be closer to a learned class center.

This approach, however, does not address the issue of moving apart from the training
samples of dissimilar features. To address this issue, we propose the hybrid loss function
integrated with the pairwise center, to better project the latent task embedding et = T(t)
into a joint embedding space that contains both the negative and positive center points.

We have adopted a metric learning approach, where the corresponding learned feature
is closer to the joint feature embedding for positive inputs of a given image pair, while the
corresponding learned feature is far away from the joint feature embedding for negative
inputs of a given image pair:

min L = β min Le + Lb,c, (8)

where β is the hyperparameter to balance the two terms; in our study, we set it at 0.8.
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5. Experiments

In this section, we describe the details of the datasets we used for the experiments,
the model configuration, and the results of our experiments. The results were obtained by
running the experiments on a desktop with a 32 GM RAM, Nvidia Geforce RTX 2070(8 GB),
and Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz.

5.1. Andro-Dumpsys Dataset

We used the Andro-Dumpsys dataset obtained from [49], which has been widely used
for malware detection. The original dataset consists of 906 malicious binary files from
13 malware families. As illustrated in Table 2, the number of malware variants and the total
number of samples from different malware families varied. Almost half of the malware
families had no more than 25 malware samples, while some only had 1 sample, as they
were most likely the new malware detected lately (e.g., Blocal and Newbak). In addition to
the original dataset, we also generated three additional synthetic malware variants, each
of which was applied using the different control flow obfuscation techniques described
earlier: function logic shuffling; junk code insertion; and function splitting, respectively.
Two samples from each additional malware variant, a total of 6 additional samples for each
malware family, were added to the original dataset.

Table 2. Andro-Dumpsys Dataset with synthesis samples.

No. Family Number of Variants Number of Samples
(+3 Synthetic) (+6 Synthetic)

1 Agent 39 (42) 150 (156)
2 Blocal 1 (4) 1 (7)
3 Climap 1 (4) 5 (11)
4 Fakeguard 1 (4) 10 (16)
5 Fech 1 (4) 3 (9)
6 Gepew 4 (7) 112 (118)
7 Gidix 6 (9) 108 (114)
8 Helir 1 (4) 15 (21)
9 Newbak 1 (4) 1 (7)
10 Recal 2 (5) 25 (31)
11 SmForw 23 (26) 166 (172)
12 Tebak 10 (13) 93 (99)
13 Wroba 23 (26) 108 (114)

Figure 8 illustrates a snippet of how obfuscated malware is created by applying a junk
code insertion. In this example, we created a dummy array that acts as a junk code, which
we added in between two function calls from the original malware code. We applied a
similar approach to the other two types of control flow obfuscation.

Figure 8. Example of inserting a junk code.
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We also increased the image sample size, so as to have at least 30 samples for every
malware family, using a data augmentation technique (e.g., applying random transforma-
tions, such as image rotations, re-scaling, and clipping the images horizontally). The details
of the augmentation parameters are shown in Table 3. In particular, ZCA whitening is an
image preprocessing method that leads to transformation of the data, such that the covari-
ance matrix is the identity matrix, leading to decorrelated features, while the fill_mode
argument with “wrap” simply replaces the empty area, and follows the filling scheme.

Table 3. Parameters of data augmentation.

Parameters Values Description

rescale 1./255 Resizing an image by a given scaling factor.
zca_epsilon 1e−6 Epsilon for ZCA whitening.
fill_mode wrap Points outside the boundaries of the input are filled accord-

ing to the given mode.
rotation_range 0.1 Setting degree of range for random rotations.
height_shift_range 0.5 Setting range for random vertical shifts.
horizontal_flip True Randomly flips inputs horizontally.

5.1.1. Image Feature

We used the same technique proposed by [50] to produce image features. To produce
image features, we first read the binary malware as a vector of 8-bit unsigned integers,
which were then converted into 2D vectors. We used the fixed width, while the height
was decided according to the size of the original file. Finally, the 2D vector was converted
into the gray images, using the color range [0, 255]. Note that the gray images at this
stage were different dimensions according to the varying heights and widths in which size
biases could occur in the fully connected layer: to address this issue, we used the bilinear
interpolation method, as suggested by [51], to produce our image feature in uniform to the
size of 105 × 105.

5.1.2. Entropy Feature

To obtain the entropy feature of each malware family, we took each byte of the malware
binary file as a random variable, and counted the frequency of each value (00h-FFh). More
concretely, the byte reads from the binary file were divided into several segments. For each
segment, we first calculated the frequency of each byte value pj(1 ≤ j ≤ m), and then we
calculated the entropy yi of the segment. The entropy values were then represented as a
stream of values that could be reshaped as an entropy graph, with the size of 254× 254× 1.
These entropy graphs were then converted as a 4096-dimensional feature vector inputted
through the convolutional extractor of the VGG-16 architecture [46].

5.2. Model Configurations

The task-aware meta-learner network T (t) was a two-layer FC network with a hidden
unit size of 512, except for the top layer, which was 4096 for input. The weight generator gi

was a single FC layer with the output dimension the same as the output dimension of the
corresponding feature layer in F . We added a ReLU function to the output of gi in cases
where processed malware images were used as inputs, and the convolutional part was
configured as the 4-layer convolutional network (excluding pooling layers), following the
same structure as [52]. In addition, the ReLU function and batch normalization were added
afterwards by the convolution layer and the FC layer. The total number of parameters in
our proposed model is 40 million. The overview of our network configurations is described
in Figure 9.
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Figure 9. Network Configurations.

5.3. Results

We set the batch size to 32, and we used Adam as the optimizer, with an initial
learning rate of 10−4 for the image network and the weight generators, and 10−5 for
the task embedding network. The network was trained with 50 epochs, which ran for
approximately 2 h. As Figure 10 illustrates, both train and validation loss stabilized after
50 epochs, confirming that the training had been done by this stage.

Figure 10. Loss during training on epochs.

The testing process conducted M times of N-way on N-shot learning tasks, where
Q times of correct predictions contributed to the accuracy, calculated by the follow-
ing formula:

Accuracy = (100 ∗Q/m)%. (9)

5.3.1. N-Way Matching Accuracy

The evaluation of N-way learning at each test state was carried out for one-shot and
five-shot. For N-way one-shot learning, we chose an anchor image from one class of test,
and then randomly selected N classes of images to form the support set X = {xi}N

i=1, where
x1, ∀x ∈ X; the selected image’s class was the same as the anchor image x̂, and the other
images in the support sets were from different classes. The similarity score between x̂
and other images was calculated using our model. Specifically, if the similarity score of
the feature vector of x1, which could be represented as S = {si}N

i=1, was the maximum
of S, then the task could be labeled as a correct prediction; otherwise, it was regarded as
an incorrect prediction. For N-way five-shot learning, we randomly selected N unseen
classes and six instances, in which five instances of each class were randomly selected as
the support set, X = {x1, . . . , xi}N

i=5, and the remaining instances of each class formed the
query set: its prediction procedure was the same as the test in the one-shot.
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The matching accuracy of N-way accuracy for the one-shot and five-shot are illustrated
in Figure 11. We randomly used 50 pairs of images, 25 containing positive image pairs
and 25 containing negative image pairs, to test the effectiveness of our proposed model.
As shown in the N-way one-shot result in Figure 11a, 19 out of 25 positive image pairs
were matched correctly, while there were 6 true negatives (i.e., 2 positive pairs not matched
correctly). Similarly, 23 of 25 negative pairs matched correctly, while there were 2 false
positives (i.e., 2 negative pairs matched incorrectly). For the N-way five-shot results (shown
in Figure 11b), the accuracy of matching was higher, as almost 22 out 25 pairs matched
correctly for both positive and negative pairs, and there were 3 incorrectly matched results.

Figure 12 shows the projection of the embeddings space, using the two-dimensional
principal component analysis (PCA) technique, where each orange point dictates the dis-
tance of a positive pair, while each blue point dictates the distance of a negative pair.
Figure 12a shows the embedding space before training, while Figure 12b projects the em-
bedding space after training. After training, we could clearly see two distinct clusters—one
around the distance calculated for all positive pairs, and the other for negative pairs: this
confirmed that our proposed model had learned well, so as to distinguish the similarities
among positive pairs and negative pairs and separate them far apart.

N-way one-shot N-way five-shot

Figure 11. Matching Accuracy.

(a) Initial Stage (b) Trained Stage

Figure 12. PCA visualization for classification performance.

5.3.2. Benchmark against Similar Methods

Table 4 shows the result of benchmarking our proposed model against the current
state-of-the-art, especially the Matching network and Prototypical network, as well as the
original Siamese network. Our model surpassed the performance of the Matching Network
and Prototypical Network by 2.4% and 1.8% on the one-shot learning on the 5-way. The
difference between our results of one-shot and five-shot was 3.1%, 1.9%, and 1.4% on the
5-way, 10-way, and 15-way, respectively. Our proposed five-shot result outperformed all
three exiting models by 1.4%, 5.9%, and 5.4% on the 5-way, 10-way, and 15-way, respectively.
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Table 4. Comparison of classification performance of different few-shot learning approaches for
Andro-Dumpsys datasets.

1-shot

Ref Method 5-way 10-way 15-way

[53] Matching network 85 ± 2.2% 84 ± 2.4% 76 ± 2.6%
[54] Prototypical network 86 ± 1.7% 82 ± 1.7% 81 ± 1.9%
[52] Siamese network 82 ± 2.5% 69 ± 2.3% 64 ± 2.6%

Task-aware SNN 88 ± 2.2% 86 ± 2.2% 82 ± 2.4%

5-shot

Ref Method 5-way 10-way 15-way

[53] Matching network 89 ± 2.1% 86± 2.1% 78± 2.3%
[54] Prototypical network 89 ± 1.2% 85± 1.4% 82 ± 1.5%
[52] Siamese network 85 ± 2.0% 72 ± 2.2% 69 ± 2.7%

Task-aware SNN 91± 1.8% 88± 2.1% 83 ± 2.1%

5.3.3. Distance Measure Effectiveness

We also examined the effectiveness of our proposed model in distance measurement,
by using the AUC (area under the curve) ROC (receiver operating characteristic) curve.
The AUC–ROC curve is commonly composed of two performance measures: the true-
positive (FPR) rate and the false-positive rate (FPR) rate. The equations related to these two
performance measures of the AUC–ROC curve are shown as follows:

FPR(P∗) :=
∫ 1

p∗
f0(p)dp,

TPR(P∗) :=
∫ 1

p∗
f1(p)dp.

(10)

where the f0(p) is denoted by the probability of a density function for the predictions p(x)
produced by our proposed model. The negative pairs are labeled as 0, and f1(p) is the
probability from the positive pair that is labeled as 1. The given discrimination threshold
P is the integrals of the tails of these distributions according to the true-positive rate and
false-positive rate. Based on the two parameters TPR and FPR, the AUC–ROC curve is
defined as follows:

AUC− ROC =
∫ 1

0
TPR(FPR)D(FPR). (11)

where the AUC measures the entire two-dimensional area underneath the entire ROC curve
(i.e., integral calculus) from (0,0) to (1,1). For example, a model whose predictions are 100%
wrong has an AUC of 0.0, while a model whose predictions are 100% correct has an AUC
of 1.0. Using this concept, we demonstrated the result predicted by the saved weights of
one-shot and five-shot, respectively, of the learned model on the test set, including 5-way,
10-way, and 15-way. These AUC–ROC curves are shown in Figures 13 and 14, which
illustrate that the β value at 0.8 provided the best performance when it was tested on
one-shot N-way learning.

This result also confirms that the hybrid multi-loss function can reduce the distance
between the same classes, and enlarge the distance between different classes. Additionally,
it does not change the attribute of the feature in the feature space, so the optimization of
this layer will never negatively affect the deeper network layers. This hybrid loss function
can also compute classification accuracy with a learned distance threshold on distances.
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Figure 13. One-shot performance with hyperparameter changing.

(a) ROC of 5-way one-shot (b) ROC of 10-way one-shot

(c) ROC of 15-way one-shot (d) ROC of 5-way five-shot

(e) ROC of 10-way five-shot (f) ROC of 15-way five-shot

Figure 14. AUC–ROC curves under the N-way N-shot.
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As shown, our result is on a set of points in the true positive rate–false positive rate
plane. The results achieved an AUC–ROC equal to 0.92, 0.91, and 0.80, respectively, under
the 5-way, 10-way, and 15-way on the one-shot learning. We further conducted the AUC–
ROC on the five-shot learning. Our proposed model also obtained better performance than
the generic SNN, with 95.6, 90.7, and 86.8% at 5-way, 10-way, and 15-way, respectively. As
expected, the accuracy of both one-shot and five-shot dropped as the number of N-way
increased with higher intra-class variance.

Note that our model always performed better, as shown in these graphs, as the AUC–
ROC areas (i.e., the areas up to the blue line) of our proposed model were larger compared
to the generic SNN.

6. Conclusions

We propose a novel task-aware meta-learning-based Siamese neural network to ac-
curately classify different malware families even in the presence of obfuscated malware
variants. Each branch of the CNNs used by our model has an additional network called
the “task-aware meta-learner network” that can generate task-specific weights, using the
entropy graphs obtained from malware binary code. By combining the weight-specific
parameters with the shared parameters, each CNN in our proposed model produces fully
connected feature layers, so that the feature embedding in each CNN is accurately adjusted
for different malware families, despite there being obfuscated malware variants in each
malware family.

In addition, our proposed model can provide accurate similarity scores, even if it is
trained with a limited number of samples. Our model also uses a pre-trained VGG-16
network in a meta-learning fashion, to compute accurate weight factors for entropy features.
This meta-learning approach essentially solves the issues that are associated with creating
potential bias due to not having enough training samples.

Our model also offers two different types of innovative loss functions that can more
accurately compute the similarity scores within a CNN and the feature embeddings used
by two CNNs.

Our experimental results show that our proposed model is highly effective in recog-
nizing the presence of unique malware signatures, and is thus able to correctly classify
obfuscated malware variants that belong to the same malware family.

We are planning to apply different types of malware samples (e.g., DDoS attack [55]
and ransomware families [56–59]) and other data samples (e.g., finding similar abnormali-
ties in medical X-ray images [60]), to test the generalizability of our model.
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