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Abstract: Recommending points of interest (POI) is a challenging task that requires extracting compre-
hensive location data from location-based social media platforms. To provide effective location-based
recommendations, it is important to analyze users’ historical behavior and preferences. In this
study, we present a sophisticated location-aware recommendation system that uses Bidirectional
Encoder Representations from Transformers (BERT) to offer personalized location-based suggestions.
Our model combines location information and user preferences to provide more relevant recom-
mendations compared to models that predict the next POI in a sequence. Based on our experiments
conducted on two benchmark datasets, we have observed that our BERT-based model surpasses
baselines models in terms of HR by a significant margin of 6% compared to the second-best per-
forming baseline. Furthermore, our model demonstrates a percentage gain of 1–2% in the NDCG
compared to second best baseline. These results indicate the superior performance and effectiveness
of our BERT-based approach in comparison to other models when evaluating HR and NDCG metrics.
Moreover, we see the effectiveness of the proposed model for quality through additional experiments.

Keywords: points of interest; BERT; transformer; deep neural network; recommender systems

1. Introduction

The popularity of mobile communication and the internet is leading us toward an era
of mobile networks. This popularity has also made it easier to determine the geographic
location of users through smart devices such as mobile phones and iPads. As a result,
location-based social networks (LBSNs) are becoming increasingly popular, with well-
known sites such as Foursquare [1] and Gowalla [2]. Users can check-in at any location
and time on major social networking sites, rate or comment on points of interest (POI), and
create their social network to exchange POI with others with similar interests.

The rapid increase in mobile internet users and the volume of available information
has created a conflict between limited network resources and growing user demands. To ad-
dress this challenge, there is a need to explore algorithms that can accurately and efficiently
extract users’ behavioral patterns, analyze their interests, and provide personalized POI
recommendations. Recommender systems [3,4] are specialized software that analyze users’
preferences, behaviors, and interactions to generate personalized suggestions, such as
POI in our context. By incorporating a recommender system, we can optimize network
resources, address the challenges posed by the growing information volume, and enhance
user satisfaction.

Developing a POI recommendation system based on LBSNs is particularly challenging
compared to building standard recommendation algorithms. This is due to the multifaceted
contextual data involved in POI recommendations, including users’ check-in time, social
network, geographical location, and more. Moreover, users’ interests can shift over time
and vary across locations. A significant challenge is data sparsity, which arises from the
limited number of POI visited by users. To provide personalized POI recommendations, it
is essential to effectively integrate POI data and develop robust models that account for the
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multifaceted contextual information, users’ evolving interests, and data sparsity challenges
inherent in LBSNs.

Deep neural network-based models [5] have achieved state-of-the-art success in var-
ious domains and applications, including social networks, health science, news, and
entertainment. Among these models, Transformer-based [6] architectures have become
more utilized in recent years. These architectures employ self-attention mechanisms [6] to
differentially weight the significance of each component in the input data. In this study,
we propose a POI recommendation model based on Bidirectional Encoder Representa-
tions from Transformers (BERT) [7], an advanced neural-network based model based on
Transformer architecture.

BERT has demonstrated exceptional accuracy in a range of natural language processing
(NLP) tasks, such as general language understanding, classification, summarization, and
translation [8]. The model is trained simultaneously in both Masked Language Modeling
(MLM) (50%) and Next Sentence Prediction (NSP) (50%) tasks. This inspired us to adapt this
model for building a POI recommendation system. We chose BERT due to its extensive training
on vast data sources such as Wikipedia and the Toronto Books Corpus, enabling it to predict
“masked” items (e.g., POIs in our research). Moreover, BERT effectively handles sequential
data and time-ordered user sequences with high accuracy [9,10]. In our context, sequential
modeling allows us to predict users’ next actions based on their historical preferences.

In this work, we develop a recommendation model based on the BERT architecture
and name it BERT4Loc (BERT for Location). The steps of our work are summarized as
follows: (1) We prepare users’ histories from the dataset by arranging each user’s history as
a time-sorted list of POI; (2) we replace some of these POI with a [MASK] token, using the
MLM task; (3) we train our model on POI datasets, such as Yelp and Foursquare, to predict
the correct values of the masked POI. Through this process, our model learns the useful
representations that exist between different POI.

There are some state-of-the-art recommender systems that have been proposed to
address the challenges associated with POI recommendations. Some notable methods
include matrix factorization-based techniques [11], recurrent neural networks (RNN) [12],
and adversarial models [13]. Matrix factorization methods, such as GeoMF [11], incorporate
geographical information to improve recommendations, while RNN-based models, such
as ST-RNN [12], exploit the temporal dynamics of users’ check-in behavior. Adversarial-
based models, such as Geo-ALM [13], capture the complex interactions between users and
locations through a fusion of geographic features and generative adversarial networks.
In recent years, there has been a number of innovative advancements in location-aware
recommendation systems [14–17], which are inspirations for this work.

Despite the effectiveness of previous methods, accurately capturing the complex rela-
tionships between users and POI, as well as addressing data sparsity, remains challenging.
In our proposed BERT4Loc model, we offer a promising solution by leveraging the ad-
vanced capabilities of BERT in handling sequential data. Additionally, we incorporate
contextual information from users and items to overcome the data sparsity challenge. Our
primary objective is to provide more accurate and personalized POI recommendations,
enhancing the overall recommendation quality.

The rest of the paper is organized as follows: Section 2 describes related work. Section 3
presents the proposed methodology. Section 4 describes the experimental setup. Section 5
discusses the results and analysis. Finally, Section 6 concludes the paper.

2. Related Work

This section covers some state-of-the-art works in this line of research.
The recommender systems assume that the users who share behavioral preferences are

more likely to form connections with each other. Social recommender systems target social
media [18] such as Facebook, Instagram, and Twitter. SocialMF [19] is a social recommender
system that learns the users’ preferences using the basic matrix decomposition model and
then builds the profile by using the information of user’s friends. SoReg [20] is another
social recommender that solves the overfitting problem in SocialML. TrustSVD [21], another
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social recommender system, models the implicit behavioral data and social relationship of
users. By incorporating implicit information about the user’s network, this model brings
the user’s feature representation closer to actual application scenarios.

In 2016, Google proposed the Wide&Deep [5] approach, which has generated a lot
of interest in recommendation systems. This model has inspired several other models,
including DeepFM [22], Deep & Cross [23], NFMs (Neural Factorization Machines) [24],
AFMs (Attentional Factorization Machines) [25], DIN (Deep Interest Network) [26], and
others. Sequential recommender systems [27], based on deep neural networks, also model
the real-life interactions between users’ actions before and after they have consumed an
item. For example, in a location recommendation station, when a person visits a place, it is
more appropriate to recommend other POI that are nearby and related to the user’s current
and past-visited POI.

With recent progress in NLP, sequential recommendation models have also advanced.
From the initial Markov Chain [28], through to the following RNNs, Convolutional Neural
Network (CNN) models, and now the popular Transformer [7], there has been a lot of
progress. The SASRec [29] sequence recommendation model is based on the self-attention
mechanism used to model past user behavior and retrieve top-k recommendations. Re-
cently, Transformer architecture [26] has been used to understand better the items that the
user has clicked on by capturing the underlying sequential signals.

BERT has also been adapted for recommendation tasks, as seen in BERT4Rec [10],
a Transformer-based recommender model that treats the sequence of user actions as a
text sequence. Another approach combines BERT with the Neural Collaborative Filtering
(NCF) framework [30], resulting in improved item recommendation performance. In a
related work, a BERT-based hybrid collaborative filtering system [31] is developed to learn
user and item embeddings, demonstrating enhanced performance compared to traditional
collaborative filtering methods. Furthermore, BERT has been extended for sequential
recommendation [32] by incorporating temporal contexts. One such study integrates time-
aware attention mechanisms with BERT to capture sequential patterns in users’ historical
interactions. In our study, we extend the application of BERT in recommender systems
specifically for POI recommendations. Our model incorporates additional item (POI)
information and user features, including social relationships. Trained on a real-world
dataset, our model is capable of providing real-time POI recommendations.

There are some works that have been proposed for POI recommendations in recent
times. For example, Nguyen et al. [15] proposed a cross-cultural recommendation system
for tourism services, outperforming existing methods in terms of accuracy. There is also a
POI recommendation system [14] that considers both user preferences and geographic fac-
tors, achieving significantly better performance than previous approaches. The OurPlaces
platform [16], another POI recommender system, enables cross-cultural sharing of spatial
experiences and improves tourism recommendations, surpassing a baseline in terms of
accuracy. iTouSPOT [33] is another framework that enhances next POI recommendations
in LBSNs by capturing fine-grained user temporal preferences and utilizing sequential
contextual information. A related study [17] on topological recommendations employed
user influence in social networks and their rating data to enhance personalized recommen-
dations. A more advanced related study [34] deployed a hierarchical attention network,
considering user influence and community redundancy, to improve cascade prediction in
online platforms.

All these works have been the motivation for the current research.

3. Methodology

In this section, we describe our methodology.

3.1. Data Collection

We gather and process data related to various POIs, including their location, category,
and related metadata. Additionally, we also consider user data, such as their historical
visits, ratings for POI, and demographic information. We transform raw data into a format
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more suitable for sequential modeling. For the POI data, we extract relevant features, such
as the category of the POI and its geographic location. Similarly, from user data, we extract
features such as a user’s past visiting history, their ratings for previously visited POI, and
their demographic information.

3.2. POI Recommendation Model

We develop a model to understand the interaction between users and POI. We formal-
ize the problem and introduce our training objectives in this section. The notations used in
this table are given in Table 1.

Table 1. Notations Used.

Notation Description

U Set of users
V Set of items (POI)
Su List of interactions of user u with items
nu Number of interactions of user u
vu

t Item at the relative time step t for user u
Kv Set of keywords describing item v
K Set of side (metadata) information related to the items
K∗ Set of all possible keyword combinations
EV Embedding of the POI (item) identifier
EP Embedding for the position of items in the sequence
N Input sequence length
h0

t Sum of item embedding et and the positional embedding pt
kt Embedding of the keywords Kvt of item vt
L Number of Transformer layers
hL

t Last hidden state of the Lth Transformer layer
BPR Bayesian Personalized Ranking

X Number of sampled negative items in uniform distribution

Let U =
{

u1, u2, . . . , u|U|
}

be a set of users and V =
{

v1, v2, . . . , v|V|
}

be a set

of items. The list of interactions of user u ∈ U is denoted by Su =
{

vu
1 , vu

2 , . . . , vu
n
}

,
where user u has interacted with item vu

t ∈ V at the relative time step t. Each item v ∈ V
is associated with a set of keywords Kv =

{
k1, k2 . . . , k|Kv |

}
that describe the item v.

We refer to set K as the metadata related to the item. Given the history Su and the additional
metadata Ku∗

vt for every vu
t ∈ Su, the POI recommendation task is to predict the next

item vn
u
u+1 in the sequence of a user’s interactions. We adapted the deep bidirectional

self-attention model BERT [7] for the sequential recommendation task, resulting in our
BERT4Loc model. Our modifications in the original BERT4REC models are the following.

The original BERT4Rec model has two embeddings: (i) an embedding EV ∈ R(|V|×d)

of the POI (item) identifier, and (ii) an additional embedding EP ∈ RN×d for the position
of the items in the sequence for the Transformer blocks. We include an additional keyword
embedding to the Transformer layer and we also consider modification of the loss function.

Adding an additional keyword embedding to the Transformer layer: Our first modifica-
tion to the BERT4Rec is that we modify the Transformer layer and add an additional embedding
kt of the keywords Kvt of item vt, representing the metadata as additional information.

Integrating Bayesian Personalized Ranking (BPR) for computing loss instead of Binary
Cross-Entropy (BCE): Our second adaptation in the BERT4Loc model involves a change
in the training process. Instead of the original BCE loss function employed by BERT4Rec,
we integrate the BPR [35] for computing loss. The BCE function uses negative sampling
to differentiate between items a user has and has not interacted with. BCE treats the
unobserved user–item pairs as negative instances, which may not always reflect the user’s
actual preferences. BPR is a ranking loss function, which is designed for scenarios involving
implicit feedback. We chose BPR over BCE due to the BPR method’s effectiveness in
handling implicit feedback and optimizing ordinal preferences, making it more suited for
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our recommendation task. The modified BERT4Loc architecture is shown in Figure 1 and
consists of three different layers:

• Embedding layer: This layer learns a representation of the inputs, including the POI
(business) ID and the associated metadata (e.g., business category), and transforms this
representation into continuous vectors or “embeddings”. These embeddings capture
the semantic meaning and characteristics of the inputs, providing dense information
for the upcoming layers. The resulting embeddings are then passed to the Transformer
Layer for further processing.

• Transformer layer: This layer consists of a stack of 12 Transformer blocks, each with
12 self-attention heads. The mechanism of self-attention allows the model to weigh the
importance of each item in a sequence relative to the others. Each layer takes in a list
of token embeddings and produces the same number of embeddings on the output
(with transformed feature values). The output of the final Transformer block is passed
to the projection layer.

• Projection layer: This layer takes the refined embeddings from the Transformer Layer
and maps them into the item space. It uses a SoftMax layer to probabilistically rank all
potential recommendations. We employ the Cloze task [36] as our training method.
This method randomly masks certain items in the interaction sequence, prompting
the model to predict these “hidden” (POI) items. The model learns to anticipate user
behavior, preparing it to make future recommendations.
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3.3. Training

BPR loss function is utilized during the training phase of the BERT4Loc model. BPR is
a pairwise ranking loss which tries to ensure that for each user the items that they have
interacted with are ranked higher than items they have not interacted with. BPR is more
suited in scenarios with implicit feedback, where we only know if a user has interacted
with an item but lack explicit ratings (like or dislike, for example). Implicit feedback is
prevalent in many real-world recommendation scenarios, such as item views, clicks, or
purchase history.
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3.4. Prediction and Recommendation

During the prediction process, we compute preference scores for POI items for users and
recommend the items with the highest scores. This prediction process considers the user’s
historical data and the features of the POI. The score essentially reflects how much a particular
user might prefer or like a certain POI. Finally, for a given user, we rank all POI based on the
predicted preference scores. We then recommend the top-scoring POI to the user.

4. Experimental Setup

In this section, we elaborate the experiment setup.

4.1. Data Set

We utilized the Yelp Dataset [37], which is available on Yelp’s website. The dataset
contains 1.6 million reviews and 500,000 tips from 366,000 users for 61,000 businesses. It also
includes 481,000 business attributes, such as hours, parking availability, and ambiance, as
well as check-ins for each of the 61,000 businesses collected over time via a social network
of 366,000 people, resulting in a total of 2.9 million social users. Specifically, the dataset
comprises data for 61,184 businesses, 1,569,264 reviews, and 366,715 users.

We also used the Foursquare Dataset [1] to address the recommendation problem.
From this dataset, we obtained approximately 43,108 unique geographical locations for our
experiment. We considered 18,107 users with a total of 2,073,740 check-ins, focusing on
users with at least 10 check-ins.

For user features from both datasets, we considered user ID, user reviews, ratings, and
timestamps of user interactions. For location (item) features, we used location ID, location
name, and city name. The user ID and business ID serve as primary information related to
users and businesses (locations), respectively. Metadata related to users includes stars, text
(review), and interaction timestamps, while metadata related to items consists of business
names. We included these pieces of information for training, but our model is generalizable
and can accommodate more metadata if available.

The features of both the datasets used in this work are given in Table 2.

Table 2. Datasets features used.

Dataset Unique
Locations Users Check-Ins Minimum Check-Ins

per User
Features

(User)
Features

(Locations)

Yelp 61,184 366,715 1,569,264 N/A

User ID,
User Reviews,

Ratings,
Timestamps

Location ID,
Business Name,

Category

Foursquare 43,108 18,107 2,073,740 10

User ID,
User Reviews,

Ratings,
Timestamps

Location ID,
Location Name,

Category

In this work, we converted all numerical ratings or the presence of a review into an
implicit feedback score of 1 (i.e., the user interacted with the item). We then grouped
interaction records by users and constructed interaction sequences for each user by sorting
the records by timestamps.

We performed an analysis of some of the data. Figure 2 calculates the distribution of
ratings and computes the average length of reviews in the Yelp dataset. Figure 2 shows
that most of the reviews have lengths of 100, 200, and 400, which is likely due to the fact
that these are common values for people to use when writing reviews. Many people may
have a certain amount of information they want to convey in their review and may find
that these lengths allow them to do so effectively.
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Next, we show the word cloud of positive reviews for both datasets in Figure 3.
The word cloud of positive reviews shows that some of the most common words used in
positive reviews are “food”, “place”, “great”, “good”, and “nice one”. These are, in general,
words that people commonly use to describe positive experiences with restaurants and
other food-related businesses.
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We also created a word cloud for all the negative reviews in the dataset (i.e., those with
a rating of 1 or 2) and do not find any useful patterns. So, we performed the sentiment
analysis using the VADER [38] library for the reviews data from both datasets and reported
the distribution of positive, negative, and neutral sentiments on reviews, which ranges from
−1 (most negative) to 1 (most positive), as seen in Figure 4. The sentiment analysis, while
not directly related to recommendation systems, is used here to examine user reviews data.
Such information provides valuable insights that can help businesses improve their products,
services, and customer relationships. Based on the sentiment distribution histogram in
Figure 4, we can observe that there are some negative sentiments expressed by reviewers, but
the majority of the sentiment polarities fall between neutral and 75% positive.
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Figure 5 displays the distribution of reviews and star ratings across major cities in
the Yelp dataset. Our analysis found that Las Vegas had the highest number of ratings.
However, when looking at the distribution of five-star ratings for different cities (as shown
in Figure 5), they are almost equal.
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4.2. Evaluation Methodology

For our experiments, we used a time-based splitting criterion for both datasets. In time-
based splitting, the test set indexes are greater than those of the validation set, which are
greater than those of the training set. As an example, if a dataset contains at least twenty
ratings for each item and user, the available ratings can be divided into train, validation,
and test sets. The test set contains the user’s most recent six ratings, while the validation
set contains the user’s previous four ratings. The train set for this dataset is comprised of
all previous ratings (at least ten).

In our work, we sorted the data by the timestamp of user interaction in descending
order and split them accordingly. We used the leave-one-out data splitting method where,
for each user, we held out the last item of the behavior sequence as the test data, treated the
item just before the last as the validation set, and utilized the remaining items for training.
We use the following evaluation metrics in this paper.
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Precision is a measure for computing the fraction of relevant items out of all the
recommended items. We average the metric for each user u to obtain the final result.
Precision is shown in Equation (1).

Precision@k = 1
|U| ∑

u∈U

|R̂(u)∩R(u)|
|R̂(u)| (1)

where Ru represents the ground-truth set of items that user u has interacted with and∣∣R̂(u)∣∣ represents the item count of R̂(u).
Recall is a measure for computing the fraction of relevant items out of all relevant

items. Recall is defined in Equation (2).

Recall@k = 1
|U| ∑

u∈U

|R̂(u)∩R(u)|
|R(u)| (2)

Hit Ratio (HR) is a way of calculating how many ‘hits’ are in a k-sized list of ranked
items. If there is at least one item that falls in the ground-truth set, it is called a hit. HR is
defined in Equation (3).

HR@k = 1
|U| ∑

u∈U
δ
(

R̂(u) ∩ R(u) 6= ∅
)

(3)

where δ(.) is an indicator function; δ(.) = 1 if it is a hit and 0 if otherwise. ∅ denotes the
empty set.

Normalized Discounted Cumulative Gain (NDCG) is a measure of ranking quality,
where positions are discounted logarithmically. It accounts for the position of the hit by
assigning higher scores to hits at top ranks. It is defined as in Equation (4).

NDCG@k = 1
|U| ∑

u∈U
( 1

∑
min(|R(u)|, K)
i=1

1
log2(i+1)

K
∑

i=1
δ(i ∈ R(u)) 1

log2(i+1) ) (4)

where δ(.) is an indicator function.
We consider the top-k values, where k is 10, 20, and 50. We compared the performance of

various recommender systems in top-k metrics, including Precision, Recall, F1-score, Hit Rate
(HR), and Normalized Discounted Cumulative Gain (NDCG), with their respective Mean
and Standard Deviation (Mean ± SD) values. The results were reported for both datasets.
Regarding the calculation of Mean values, we took the average of the performance metric
values across all users or items in the test set. For example, to calculate the Mean Precision,
we first calculated the Precision value for each user or item in the test set, and then took the
average of these values. The Standard Deviation (SD) was calculated to measure the variability
of the performance metric values across all users or items in the test set.

4.3. Baselines

To evaluate the performance of our models, we compared them with a range of
different approaches for recommendation systems. These baselines were chosen based on
the most commonly used methods in recommender system research. By comparing our
models to these baselines, we were able to assess their effectiveness and identify areas for
improvement. These baselines are given below.

BERT4Rec [10]: Sequential Recommendation with Bidirectional Encoder Representa-
tions from Transformer, which employs the deep bidirectional self-attention to model user
behavior sequences.

MultiVAE [39]: Variational Autoencoders for collaborative filtering extends the varia-
tional autoencoders (VAEs) for implicit feedback. This model uses a non-sampling method
by default, so we also did not use any negative sampling in this method. We simply use
cross-entropy loss for this method as the loss function type.

ENMF [40]: Efficient Neural Matrix Factorization without sampling for recommenda-
tion is based on a matrix factorization architecture that learns from the whole training data
to make recommendations. We use cross-entropy as the loss function for this model.
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SASRecF [41]: A Feature-level Deeper Self-Attention Network for sequential recom-
mendation that integrates heterogeneous features of items into feature sequences with
different weights through an attention mechanism. We chose the BPR as the loss function.

RepeatNet [42]: A Repeat Aware Neural Recommendation Machine for session-based
recommendation that uses an encoder–decoder architecture to address repeat consumption
in the session-based recommendation task. We chose the BPR as the loss function.

SLIM [43]: Sparse Linear Methods for Top-N recommendations introduce a linear
model that learns to predict the similarity between items in a sparse manner. This method
provides a compact and interpretable model for top-N recommendations. We use the BPR
loss function for this model.

NCF [44]: Neural Collaborative Filtering is a general framework for collaborative
filtering that combines matrix factorization and a multi-layer perceptron to learn the user–
item interaction patterns. For this model, we use the cross-entropy loss function.

GRU4Rec [28]: Session-based Recommendations with RNNs; Gated Recurrent Units
(GRU) model the sequential behavior of users in session-based recommendations. We use
the BPR loss function for training.

FPMC [45]: Factorizing Personalized Markov Chains for next-basket recommendation
combines matrix factorization and Markov chains to model user behavior and generate
personalized recommendations. We use the BPR loss function for this model.

4.4. Hyperparameters Setting

In our experimental setup, we fine-tuned our BERT4Loc model with a set of carefully
chosen hyperparameters. We used the uncased version of the BERT-base model because
it offers a strong foundation for NLP tasks. This model has been widely adopted due to
its ability to capture contextual relationships and meaning in text, making it suitable for a
range of applications such as sentiment analysis, question answering, and text classification.
We fine-tuned the model for the recommendation task. The loss function used in training
was BPR, and we trained the model for 20 epochs with a learning rate of 0.001. We used
a train_batch_size and eval_batch_size of 16 and set the attention dropout probability to
0.5. Additionally, we set the mask_ratio to 0.2 to reduce overfitting. We experimented
with different hyperparameters to optimize the model’s performance. The maximum
sequence length was set to 200, which was the maximum number of POI visited by a user
in our dataset. To ensure a fair comparison, we fine-tuned all the baseline models to their
optimal hyperparameter settings. We used Google Colab as the programming platform and
connected it to Google Drive to store and access our data. During training, we created small
batches of data to fit all the data into memory. Each batch took approximately 20–25 min
for training, and the complete training process with the full dataset took several hours.

5. Results and Analysis

In this section, we present the results and analyze the performance of our model.

5.1. Overall Results

The comparison between our model and all the baselines is shown in Table 3.

Table 3. Performance comparison of various recommender systems on top-k metrics, including
Precision, Recall, F1-score, Hit Rate (HR), and Normalized Discounted Cumulative Gain (NDCG),
with their respective Mean and Standard Deviation (Mean ± SD) values. The results are reported for
both datasets. Bold means best result.

Model Top-k Precision
(Mean ± SD)

Recall
(Mean ± SD)

F1-Score
(Mean ± SD)

HR
(Mean ± SD)

NDCG
(Mean ± SD)

Yelp Dataset

BERT4Loc 10 0.56 ± 0.04 0.45 ± 0.05 0.50 ± 0.05 0.82 ± 0.06 0.42 ± 0.03
20 0.52 ± 0.03 0.60 ± 0.07 0.56 ± 0.05 0.91 ± 0.04 0.51 ± 0.03
50 0.49 ± 0.02 0.78 ± 0.09 0.60 ± 0.06 0.92 ± 0.03 0.71 ± 0.03

BERT4Rec 10 0.61 ± 0.04 0.43 ± 0.05 0.50 ± 0.05 0.65 ± 0.05 0.52 ± 0.01
20 0.57 ± 0.03 0.49 ± 0.06 0.54 ± 0.06 0.72 ± 0.04 0.67 ± 0.03
50 0.43 ± 0.03 0.72 ± 0.08 0.54 ± 0.06 0.86 ± 0.05 0.70 ± 0.03
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Table 3. Cont.

Model Top-k Precision
(Mean ± SD)

Recall
(Mean ± SD)

F1-Score
(Mean ± SD)

HR
(Mean ± SD)

NDCG
(Mean ± SD)

Yelp Dataset

MultiVAE 10 0.28 ± 0.03 0.27 ± 0.04 0.27 ± 0.03 0.63 ± 0.05 0.33 ± 0.02
20 0.23 ± 0.02 0.39 ± 0.05 0.29 ± 0.03 0.78 ± 0.06 0.32 ± 0.03
50 0.18 ± 0.02 0.48 ± 0.07 0.26 ± 0.03 0.87 ± 0.05 0.33 ± 0.03

RepeatNet 10 0.26 ± 0.02 0.13 ± 0.03 0.17 ± 0.02 0.20 ± 0.03 0.18 ± 0.02
20 0.21 ± 0.01 0.24 ± 0.04 0.22 ± 0.03 0.23 ± 0.03 0.20 ± 0.02
50 0.18 ± 0.01 0.41 ± 0.06 0.25 ± 0.03 0.34 ± 0.04 0.24 ± 0.03

SASRecF 10 0.22 ± 0.02 0.14 ± 0.03 0.17 ± 0.02 0.12 ± 0.02 0.12 ± 0.01
20 0.20 ± 0.02 0.18 ± 0.04 0.19 ± 0.03 0.16 ± 0.03 0.15 ± 0.02
50 0.19 ± 0.01 0.22 ± 0.04 0.20 ± 0.02 0.22 ± 0.03 0.16 ± 0.02

ENMF 10 0.12 ± 0.01 0.14 ± 0.03 0.13 ± 0.02 0.20 ± 0.0 0.17 ± 0.02
20 0.11 ± 0.01 0.19 ± 0.03 0.14 ± 0.02 0.19 ± 0.03 0.18 ± 0.02
50 0.10 ± 0.01 0.20 ± 0.04 0.13 ± 0.02 0.24 ± 0.03 0.20 ± 0.02

SLIM 10 0.33 ± 0.03 0.32 ± 0.04 0.32 ± 0.03 0.55 ± 0.05 0.29 ± 0.02
20 0.28 ± 0.02 0.40 ± 0.05 0.33 ± 0.03 0.68 ± 0.06 0.31 ± 0.03
50 0.23 ± 0.02 0.55 ± 0.07 0.32 ± 0.03 0.80 ± 0.05 0.35 ± 0.03

NCF 10 0.41 ± 0.04 0.35 ± 0.05 0.38 ± 0.04 0.64 ± 0.06 0.25 ± 0.02
20 0.35 ± 0.03 0.45 ± 0.06 0.39 ± 0.04 0.76 ± 0.05 0.30 ± 0.03
50 0.29 ± 0.02 0.65 ± 0.08 0.40 ± 0.05 0.86 ± 0.04 0.38 ± 0.03

GRU4Rec 10 0.39 ± 0.03 0.27 ± 0.04 0.32 ± 0.03 0.61 ± 0.05 0.28 ± 0.02
20 0.34 ± 0.02 0.38 ± 0.05 0.36 ± 0.03 0.74 ± 0.05 0.33 ± 0.03
50 0.27 ± 0.02 0.54 ± 0.07 0.36 ± 0.04 0.82 ± 0.05 0.37 ± 0.03

FPMC 10 0.30 ± 0.03 0.21 ± 0.03 0.25 ± 0.02 0.47 ± 0.04 0.22 ± 0.02
20 0.25 ± 0.02 0.29 ± 0.04 0.27 ± 0.03 0.58 ± 0.05 0.24 ± 0.02
50 0.20 ± 0.01 0.37 ± 0.05 0.26 ± 0.03 0.68 ± 0.06 0.27 ± 0.04

Foursquare Dataset

BERT4Loc 10 0.54 ± 0.03 0.42 ± 0.04 0.48 ± 0.04 0.81 ± 0.05 0.40 ± 0.03
20 0.50 ± 0.03 0.58 ± 0.06 0.54 ± 0.04 0.89 ± 0.04 0.49 ± 0.03
50 0.47 ± 0.02 0.76 ± 0.08 0.58 ± 0.05 0.91 ± 0.03 0.69 ± 0.03

BERT4REC 10 0.59 ± 0.03 0.40 ± 0.04 0.48 ± 0.04 0.63 ± 0.05 0.50 ± 0.01
20 0.55 ± 0.03 0.47 ± 0.05 0.51 ± 0.03 0.70 ± 0.04 0.65 ± 0.02
50 0.41 ± 0.02 0.70 ± 0.07 0.52 ± 0.05 0.84 ± 0.05 0.68 ± 0.03

MultiVAE 10 0.27 ± 0.03 0.25 ± 0.03 0.26 ± 0.02 0.61 ± 0.05 0.32 ± 0.02
20 0.22 ± 0.02 0.37 ± 0.04 0.28 ± 0.02 0.76 ± 0.05 0.31 ± 0.03
50 0.17 ± 0.02 0.46 ± 0.06 0.25 ± 0.02 0.85 ± 0.04 0.32 ± 0.03

RepeatNet 10 0.25 ± 0.02 0.12 ± 0.02 0.16 ± 0.02 0.19 ± 0.03 0.17 ± 0.02
20 0.20 ± 0.01 0.23 ± 0.03 0.21 ± 0.02 0.22 ± 0.03 0.19 ± 0.02
50 0.17 ± 0.01 0.39 ± 0.05 0.24 ± 0.02 0.33 ± 0.04 0.23 ± 0.03

SASRecF 10 0.21 ± 0.02 0.13 ± 0.02 0.16 ± 0.02 0.11 ± 0.02 0.11 ± 0.01
20 0.19 ± 0.02 0.17 ± 0.03 0.18 ± 0.02 0.15 ± 0.03 0.14 ± 0.02
50 0.18 ± 0.01 0.21 ± 0.03 0.19 ± 0.02 0.21 ± 0.03 0.15 ± 0.02

ENMF 10 0.11 ± 0.01 0.13 ± 0.02 0.12 ± 0.02 0.19 ± 0.03 0.16 ± 0.02
20 0.10 ± 0.01 0.18 ± 0.03 0.13 ± 0.02 0.18 ± 0.03 0.17 ± 0.02
50 0.09 ± 0.01 0.19 ± 0.03 0.12 ± 0.02 0.23 ± 0.03 0.19 ± 0.02

SLIM 10 0.32 ± 0.03 0.30 ± 0.03 0.31 ± 0.02 0.54 ± 0.05 0.28 ± 0.02
20 0.27 ± 0.02 0.38 ± 0.04 0.32 ± 0.02 0.67 ± 0.05 0.30 ± 0.03
50 0.22 ± 0.02 0.53 ± 0.06 0.31 ± 0.02 0.79 ± 0.04 0.34 ± 0.03

NCF 10 0.39 ± 0.03 0.33 ± 0.04 0.36 ± 0.03 0.63 ± 0.05 0.24 ± 0.02
20 0.34 ± 0.03 0.43 ± 0.05 0.38 ± 0.03 0.75 ± 0.04 0.29 ± 0.03
50 0.28 ± 0.02 0.63 ± 0.07 0.39 ± 0.04 0.85 ± 0.03 0.37 ± 0.03

GRU4Rec 10 0.38 ± 0.03 0.26 ± 0.03 0.31 ± 0.02 0.60 ± 0.04 0.27 ± 0.02
20 0.33 ± 0.02 0.36 ± 0.04 0.34 ± 0.02 0.73 ± 0.04 0.32 ± 0.03
50 0.26 ± 0.02 0.52 ± 0.06 0.35 ± 0.03 0.81 ± 0.04 0.36 ± 0.03

FPMC 10 0.29 ± 0.02 0.20 ± 0.03 0.24 ± 0.02 0.46 ± 0.03 0.21 ± 0.02
20 0.24 ± 0.02 0.28 ± 0.03 0.26 ± 0.02 0.57 ± 0.04 0.23 ± 0.02
50 0.19 ± 0.01 0.36 ± 0.04 0.25 ± 0.02 0.67 ± 0.03 0.26 ± 0.03

Based on the results shown in Table 3, BERT4Loc and BERT4REC show the highest preci-
sion, recall, and F1-score among all models. These models demonstrate a strong performance
across all top-k values (10, 20, and 50). BERT4Loc achieves the highest HR and NDCG for
all top-k values, indicating that it is highly effective in ranking relevant items for users. The
comparison between BERT4Rec and BERT4Loc reveals that BERT4Loc performs better in
location-aware recommendation scenarios. BERT4Rec is designed to take in user–item fea-
tures without considering contextual features, and we consider the contextual information in
BERT4REC in this experiment; nevertheless, BERT4Loc with its default design to leverage rich
contextual features makes more accurate recommendations. In our experiments, we provide
the same input features to all baseline models; a model’s ability to naturally incorporate rich
contextual features can give it an advantage in providing better recommendations.

MultiVAE, RepeatNet, SASRecF, and ENMF models show relatively lower perfor-
mance compared to BERT4Loc and BERT4REC. Their precision, recall, and F1-score values
are lower, indicating that these models are less accurate in predicting the top-N items for
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users. The HR and NDCG metrics also indicate that these models are less effective in
ranking relevant items.

SLIM, NCF, GRU4Rec, and FPMC models show moderate performance in comparison
to the other models. Their precision, recall, and F1-score values are better than MultiVAE,
RepeatNet, SASRecF, and ENMF but lower than BERT4Loc and BERT4REC. The HR and
NDCG metrics for these models are also intermediate, indicating that they have moderate
effectiveness in ranking relevant items.

The superiority of our BERT-based model is attributed to its design, which has the fol-
lowing distinctive attributes: (1) it considers the side information from the POI items in the
item encoder; (2) it considers the contexts in the user model to better capture the sequential
correlation of a user’s POI history; and (3) it is based on sequential recommendation, which
implicitly consider both the short- and long-term interests of users.

Inherently, our model is based on the BERT architecture, which is a deep bidirectional
self-attention model that can capture item relations on both sides, left and right, whereas
other sequential recommendation models (in these experiments) only consider users’ histor-
ical sequences from left to right. In real situations, a user’s behavior depends on the user’s
current interests, which can evolve in a highly dynamic manner. Therefore, considering
only previous items is insufficient in terms of accuracy. Our model can predict the next
item by extracting user historical patterns based on the relationship between rated items in
the history data of target users (item sequences).

We also observe the highest scores of BERT4LOC based on the HR and NDCG metrics,
which show that BERT4Loc performs well in ranking relevant items for users in both
datasets. For the remaining models, their performance may vary between the two datasets
due to the differences in data characteristics. Some models might be more sensitive to the
data sparsity or the distribution of user–item interactions, which could lead to variations in
their performance metrics. Due to similar patterns in the results and for brevity reasons,
we will report the results of the next experiments solely for the Yelp dataset.

5.2. Ablations

Ablation experiments help understand the impact of different parts of a model by
comparing performance with and without certain components. In this experiment, we used
this approach to estimate the importance of user and item features in our BERT4LOC model.

The bar chart in Figure 6 shows the ablation study. We observe that if we remove any
feature set, the NDCG score, which measures the model quality, goes down. We observe the
biggest drop in NDCG score when we remove both user and item features. This shows that
these features are not just important on their own, but also when used together. The chart
also hints that user activity features might be slightly more important than the others.
Overall, we conclude that all feature sets are important for the BERT4LOC model to work
well. This comparison demonstrated that each feature set significantly contributes to the
model’s effectiveness, hence validating our model’s design choices.
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is the model without user activity features, BERT4LOC-D- without user demographic features,
BERT4LOC-C- without item categorical features, and BERT4LOC-U&C- without both user and item fea-
tures.

5.3. Effectiveness of Different Sampling Techniques

We test the effectiveness of different sampling techniques that are mostly used in
recommender systems [46,47] in this experiment and show results In Figure 7, we try the
following sampling methods:

• Full ranking: evaluating the model on all sets of items.
• Uniform X (uni-X): uniformly sample X negative items for each positive item in the

testing set, and evaluate the model’s performance for these positive items with their
sampled negative items.

• Popularity X (pop-X): sample X negative items for each positive item in the testing
set based on item popularity, and evaluate the model’s performance for these positive
items with their sampled negative items.

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

• Uniform X (uni-X): uniformly sample X negative items for each positive item in the 
testing set, and evaluate the model’s performance for these positive items with their 
sampled negative items. 

• Popularity X (pop-X): sample X negative items for each positive item in the testing 
set based on item popularity, and evaluate the model’s performance for these positive 
items with their sampled negative items. 
To provide a high-level summary of these results, we take the average of the top-k 

values (10, 20, and 50) to show the precision, recall, HR, NDCG, and F1 scores. 

 
Figure 7. Average performance of BERT4Loc using different sampling techniques. 

Figure 7 shows the average performance of BERT4Loc using different sampling tech-
niques: full ranking, uni-100, and pop-100. We consider the sample size of 100 based on 
earlier experiments to choose an appropriate size. 

According to the results, the uni-100 technique consistently outperforms both full 
ranking and pop-100 in terms of average recall, precision, F1-score, HR, and NDCG. This 
suggests that uni-100 is the most effective sampling technique among the three. Full rank-
ing exhibits a moderate performance compared to the uniform sampling technique. It has 
higher average scores (though marginal) than popularity sampling but lower than uni-
form sampling. This indicates that although full ranking provides relatively accurate rec-
ommendations, it may not be as effective as uniform sampling. Popularity has the lowest 
average scores across all metrics, indicating that it is the least effective sampling technique 
in this experiment. This is because it samples negative items based on item popularity, 
which may lead to some random recommendations and lower-accuracy scores. 

Overall, we find that given the dataset size and computational resources, using uni-
form sampling proves to be more effective than both full ranking and popularity sampling 
for BERT4Loc. 

5.4. Effectiveness of the Length of the Recommendation List 
We assess the recommendation accuracy for the top-k values (k = [10, 100]) using F1-

score (harmonic mean of precision and recall), HR, and NDCG, as shown in Figure 8. 

Figure 7. Average performance of BERT4Loc using different sampling techniques.
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Figure 7 shows the average performance of BERT4Loc using different sampling tech-
niques: full ranking, uni-100, and pop-100. We consider the sample size of 100 based on
earlier experiments to choose an appropriate size.

According to the results, the uni-100 technique consistently outperforms both full
ranking and pop-100 in terms of average recall, precision, F1-score, HR, and NDCG.
This suggests that uni-100 is the most effective sampling technique among the three.
Full ranking exhibits a moderate performance compared to the uniform sampling technique.
It has higher average scores (though marginal) than popularity sampling but lower than
uniform sampling. This indicates that although full ranking provides relatively accurate
recommendations, it may not be as effective as uniform sampling. Popularity has the lowest
average scores across all metrics, indicating that it is the least effective sampling technique
in this experiment. This is because it samples negative items based on item popularity,
which may lead to some random recommendations and lower-accuracy scores.

Overall, we find that given the dataset size and computational resources, using uni-
form sampling proves to be more effective than both full ranking and popularity sampling
for BERT4Loc.

5.4. Effectiveness of the Length of the Recommendation List

We assess the recommendation accuracy for the top-k values (k = [10, 100]) using
F1-score (harmonic mean of precision and recall), HR, and NDCG, as shown in Figure 8.
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The plot in Figure 7 shows the effectiveness of the length of the recommendation list
for top-k (k = [10, 100]) values using F1-score (harmonic mean of precision and recall), HR,
and NDCG. We can observe that the model’s accuracy improves as the value of k increases.
However, after a certain point (k = 50), the accuracy of the recommendations begins to
decrease. This decrease in accuracy can be attributed to the fact that there may not be
enough relevant items after a certain threshold of recommendations.

As the recommendation list becomes longer, it becomes more challenging for the
model to provide accurate and relevant recommendations. Consequently, the precision
and recall values start to decline, which in turn leads to a decrease in the F1-score, HR,
and NDCG scores. Therefore, it is crucial to find an optimal value of k that balances the
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trade-off between the number of recommendations and the accuracy of the model. Based
on the plot, it seems that k = 50 is an optimal point where accuracy is maximized before it
starts to decline.

5.5. Comparison of Cold-Start Approaches

Our BERT4LOC model can combat the cold-start issue inherent to recommendation
systems. It does so effectively by considering the contextual information related to the
users’ preference and POI items’ data. The model employs rich embeddings from user–item
features to grasp the nature of POI and relies on the BPR loss function to interpret implicit
feedback and thereby observe user preferences. This consolidation of different strategies
enables our model to provide relevant recommendations, despite limited user or item data.

To evaluate the performance of our model in cold-start scenarios, we conducted
experiments using three different approaches: collaborative filtering, content-based filtering,
and a hybrid approach; these are well-known recommender system approaches, as reported
in the literature [3,48]. For collaborative filtering, we used a matrix factorization approach
to recommend items based on similar users or items. For content-based filtering, we used
the textual description of the items to recommend similar items to the user. For the hybrid
approach, we combined the matrix factorization and content-based filtering approaches.
We evaluated the performance of these approaches in the cold-start scenario, where there is
limited information about new users or items.

As we can see from Table 4, BERT4LOC outperforms the other models in all evaluation
metrics in the cold-start scenario. It has the highest recall, precision, F1-score, HR, and
NDCG, indicating that it is the most effective model in recommending items for new
users or items with limited information. This is probably because BERT4LOC leverages
the power of Transformer-based architectures, which can handle sequential data and
contextual relationships effectively. By integrating both location information and user
preferences, BERT4LOC can provide more personalized and relevant recommendations,
even in situations where there is limited information about the user or the item.

Table 4. BERT4Loc (cold-start scenario). Bold means best score.

Model Precision Recall F1-Score HR NDCG

Collaborative filtering 0.38 0.45 0.41 0.79 0.35
Content-based filtering 0.29 0.34 0.31 0.72 0.27

Hybrid approach 0.47 0.53 0.49 0.86 0.42
BERT4LOC 0.78 0.49 0.60 0.92 0.71

5.6. Example of BERT4LOC

As an example, we will now present how the BERT4LOC works.
Consider a group of tourists visiting a city, e.g., New York, for the first time. The tourists

have a mobile app that uses BERT4LOC to recommend the next POI based on their activi-
ties. The tourists start their day at the Statue of Liberty (POI1), move on to Times Square
(POI2), and then visit the Metropolitan Museum of Art (POI3). BERT4LOC processes this
sequence of interactions and predicts the next POI they would most likely be interested
in visiting. BERT4LOC would also consider many more factors, such as user preferences,
item characteristics, and various contextual information. Based on similar user behavior
in the past, BERT4LOC can predict Central Park (POI4) as the next destination. So, the
application recommends Central Park to the tourists, and the tourist can decide to follow
this suggestion. This example shows how BERT4LOC leverages the sequential pattern of
user–POI interactions, enabling more personalized and efficient recommendations.

6. Discussion

Impact: Our study proposes a new approach for location recommendation, BERT4Loc,
which combines the strengths of both collaborative filtering and content-based filtering
techniques. Our approach shows promising results in terms of accuracy and efficiency in
location recommendation.
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The BERT4Loc approach has several benefits over traditional location recommenda-
tion techniques. First, it takes into account the user’s context and preferences, including
historical check-ins, the user’s profile, and location attributes, to provide more accurate
recommendations. Second, BERT4Loc is similar to a hybrid approach, which means it
combines the strengths of collaborative filtering and content-based filtering. This approach
makes it more robust and capable of handling cold-start scenarios. Finally, BERT4Loc
is built on top of BERT, a state-of-the-art language model which can learn complex pat-
terns and relationships among user, location, and context data, resulting in more accurate
recommendations.

Limitations: Despite its promising results, our approach has some limitations. One lim-
itation is that it requires a significant amount of training data to achieve high accuracy.
This can be a problem for location-based services that do not have a large user base or
have limited data. Another limitation is that the approach may not work well for rare
or new locations that have limited data. In such cases, the model may fail to capture
the patterns and relationships among the user, location, and context data, resulting in
inaccurate recommendations.

During the development and fine-tuning of our model, we used an iterative approach.
This included running multiple trials and fine-tuning on the Transformer models based
on the results. We were able to continuously optimize the model parameters, identify any
potential issues, and adjust our strategies as a result of this process. Because determining
the optimal model parameters and architecture is not always straightforward, such an
approach is commonly used in machine learning and deep learning projects. It will also be
worthwhile to train the model using more recent datasets.

Future directions: There are several potential directions for future research on the
BERT4Loc approach. One direction is to explore the use of more advanced deep learning
models, such as graph neural networks or more foundation models [49,50], to improve the
accuracy and efficiency of location recommendations. Another direction is to investigate
the use of other types of data, such as social network data or sensor data, to enhance the
performance of the BERT4Loc model.

Numerous other possibilities remain to be explored. We need to evaluate our model
using additional datasets. A worthwhile direction is to incorporate rich POI features
into the model, such as those related to the location, such as coordinates, weather, and
neighborhood. Another interesting direction for future work would be to incorporate more
information into the user encoder of the model to enable explicit user modelling when
users are logged in multiple times.

BERT and LaMDA (Language Model for Dialogue Applications) [51] are both based on
the Transformer architecture. BERT improves understanding of individual search queries,
while LaMDA focuses on enhancing dialogue understanding and generating coherent
responses. The application of LaMDA can be further explored for building such a POI
recommendation system.

The distinguishing feature of BERT is its bidirectional self-attention mechanism, which
allows it to determine the context of a word by simultaneously examining all other words
in a sentence. However, several other transformer models may also be viable, depending
on the specific requirements of a recommender system. OpenAI’s [51] GPT-2 and GPT-3
models, for example, follow a unidirectional, left-to-right architecture, and these models
can be tested for producing recommendations in the location-awareness domain.

Additionally, different types of attention mechanisms, such as local or sparse atten-
tion [52], should be considered. These may provide different benefits than full self-attention
in BERT. Moreover, changes to the model architecture itself, such as incorporating convolu-
tional or recurrent layers in conjunction with self-attention, might prove advantageous.

Finally, it is important to evaluate the BERT4Loc approach for real-world datasets
and compare its performance with other state-of-the-art techniques to gain more insights
into its strengths and weaknesses. Despite these limitations, we believe that our approach
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can be further improved and extended in future research to address the challenges and
opportunities in location-based services.

7. Conclusions

The BERT architecture has been extremely successful in terms of language comprehen-
sion. We introduce a BERT for location-aware recommendations in this paper. Our model
is built on top of the BERT architecture, which includes a user encoder, a POI item en-
coder, and a task for preference prediction and recommendation. We treat the problem
of recommending POI to a user as a sequential problem, with the task of predicting the
user’s next POI. Experimental results on real-world datasets demonstrate that our model
has is capable of producing POI recommendations. The results highlight the potential of
incorporating language models in recommendation systems. However, there are limitations
to our approach, such as the dependence on large amounts of data for training and the
potential for overfitting. Future directions include exploring additional features and data
sources to improve model performance and evaluating the scalability of the model for
larger datasets.
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