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Abstract: As a narrowband communication technology, long-range (LoRa) contributes to the long
development of Internet of Things (IoT) applications. The LoRa gateway plays an important role in
the IoT transport layer, and security and efficiency are the key issues of the current research. In the
centralized working model of IoT systems built by traditional LoRa gateways, all the data generated
and reported by end devices are processed and stored in cloud servers, which are susceptible to
security issues such as data loss and data falsification. Edge computing (EC), as an innovative
approach that brings data processing and storage closer to the endpoints, can create a decentralized
security infrastructure for LoRa gateway systems, resulting in an EC-assisted IoT working model.
Although this paradigm delivers unique features and an improved quality of service (QoS), installing
IoT applications at LoRa gateways with limited computing and memory capabilities presents con-
siderable obstacles. This article proposes the design and implementation of an “EC-assisted LoRa
gateway” using edge computing. Our proposed latency-aware algorithm (LAA) can greatly improve
the reliability of the network system by using a distributed edge computing network technology
that can achieve maintenance operations, such as detection, repair, and replacement of failures of
edge nodes in the network. Then, an EC-assisted LoRa gateway prototype was developed on an
embedded hardware system. Finally, experiments were conducted to evaluate the performance of the
proposed EC-assisted LoRa gateway. Compared with the conventional LoRa gateway, the proposed
edge intelligent LoRa gateway had 41.1% lower bandwidth utilization and handled more end devices,
ensuring system availability and IoT network reliability more effectively.

Keywords: LoRa gateway; edge computing network; internet of things; embedded system;
distributed computing

1. Introduction

LoRa is one of the low-power wide-area network (LPWAN) technologies. The charac-
teristics of LPWAN include long-range communication, short packets, low power, and low
bandwidth [1]. As a result, LoRa can enable energy-efficient connectivity for many widely
dispersed end-point IoT devices. In many IoT applications, such as environmental moni-
toring and smart cities, the LoRa gateway acts as a bridge that transmits messages from
the end device to the cloud processing center. As the Internet of Things grew, so did the
number of apps that support real-time latency. Due to the huge amount of computing data
generated by IoT end applications, effectively reducing the latency of latency-sensitive IoT
applications is a huge challenge for LoRa gateways currently. In addition, LoRa gateways
provide services for data transfer between end-point IoT devices and cloud computing.
This information is subsequently analyzed and saved on the cloud. Consequently, the LoRa
gateway’s computation and storage capabilities are underutilized, and are subject to certain
potential dangers. The difficulties include enhancing the effectiveness and safety of the
LoRa system.
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With the development of IoT and communication technology, more and more sensor
devices are connected to the IoT in various ways, and a large amount of data is generated
as a result. This massive amount of data causes several issues, including excessive latency,
necessitating a larger bandwidth. Transmission of data between cloud centers and IoT
devices will result in significant delays. Edge computing may deliver services at the net-
work’s edge to minimize latency and provide edge data processing power and security [2].
Edge computing became popular as a result of the installation of servers at the edge [3].
Edge computing employs a decentralized strategy that allows application processing and
task execution to occur locally. In this manner, the network traffic issue is reduced. In
edge computing, access to resources is provided at the network’s edge [4], close to end
devices, which has a significant influence on bandwidth and minimizes communication
latency [5]. With the development of edge computing technology, the processing power
of traditional cloud computing can be partially migrated to the LoRa gateway. This de-
centralized strategy may aid in preventing the falsification of data when applied to the
LoRa gateway. Consequently, an EC-assisted LoRa gateway is anticipated to enhance both
computing performance and security.

The issue of job scheduling in the LoRa gateway using edge computing is an essential
subject of debate. A lot of research has focused on the job scheduling of edge computing
resources in recent years. Nonetheless, the majority of past initiatives have encountered
two significant limitations, namely a lack of practicability and a lack of generalizability.
Existing simulation-based systems, for instance, are inapplicable to the majority of real-
world circumstances. Most present solutions are appropriate for a limited range of IoT
applications but cannot be generalized to compute-intensive and time-sensitive applications.
Moreover, several algorithms are engaged in sophisticated offloading procedures that
demand a considerable amount of decision time, thereby rendering the schemes unfriendly.
The main research contributions of this paper are as follows.

First, we built a LoRa gateway with edge computing on the Zynq SoC platform, which
is called the EC-assisted LoRa gateway.

Then, based on the characteristics of the LoRa network, we used the delay awareness
algorithm with high-availability edge computing to monitor and maintain the edge node
failures through a distributed method. On the one hand, we want a reverse tile gateway
that can run locally or together with existing network server systems. In order to build
a resource-concentrated and latency-aware IoT application, we have been developing a
decentralized method for grouping edge nodes in a distributed pattern.

In addition, in order to improve the network reliability of the Internet of Things in the
distributed deployment mode, we have constructed a distributed edge node group for the
end nodes in the network, and performed maintenance operations such as detection, repair,
and replacement on each node in the group.

Finally, in order to enable the new algorithm LAA to run on the LoRa gateway, we
modified the ARM-based embedded Linux operating system in the LoRa gateway to
generate an image.ub that is compatible with third-party lib libraries and plugins. The
experimental results indicated that the EC-assisted LoRa gateway can achieve the same
performance while using fewer resources than a traditional LoRa gateway.

The rest of the paper is organized as follows. Section 2 discusses related work, and
Section 3 describes a design for an EC-assisted LoRa gateway. Then, the experiments and
their results are elaborated on in Section 4. Section 5 concludes this article.

2. Related Work

For the growth of IoT services, efficiency and security challenges become crucial. A
total of 75.44 billion devices will be linked globally by 2025 as a result of the expansion
of 5G and the fast development of the IoT, generating vast quantities of data [6]. The
fast growth of IoT devices, as well as the massive data traffic generated at the network’s
edge, imposed new strains on the current centralized cloud computing architecture due to
bandwidth and resource constraints. As a possible option, edge computing has garnered



Future Internet 2023, 15, 194 3 of 14

considerable interest. Furthermore, edge computing is closer to the edge side of IoT than
cloud computing, which can provide computing services close to the end devices, and
therefore can provide data pre-processing and part of machine learning model training
services [7]. Incorporating edge computing into the LoRa gateway remains conceptually
and technically problematic owing to the diverse needs and limited resources of IoT devices.

2.1. LoRa Gateway and System

As described in Section 1, LoRa communication exhibits distinctive characteristics,
such as simple and cost-effective networking, robust interference resistance, and unparal-
leled advantages in large-scale low-power networking and IoT services in remote areas,
where cellular base stations are inaccessible. The fundamental structure of a LoRa com-
munication system is illustrated in Figure 1, where end devices transmit data packets to
gateways, which in turn route them to network servers via either cellular networks or
Ethernet. The focus of this paper is investigating how to leverage distributed computing to
maximize the gateway capabilities at the edge for data processing, and thereby alleviate the
burden on cloud computing centers. The hardware design of both the terminal devices and
the LoRa gateway can be customized to accommodate different types of sensor interfaces
and service requirements.
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At the LoRa communication level, several implementations of LoRa systems were
proposed in [8], including XisLoRa, Chirp Stack, and the Things Network (TTN). The
communication architecture design proposed in [8], which was targeted at different ap-
plications for uplink and downlink, has provided inspiration for the design approach in
this article.

In the field of distributed computing, Danish et al. [9] and Lin et al. [10] both proposed
applying the technology of the blockchain to LoRa networks. However, their proposed
approach was to deploy blockchain technology in the cloud, which would not be effective in
reducing the load pressure on the cloud, but would rather increase the processing workload
of the cloud. The LoRa gateway’s edge computing capabilities would not be activated.
Liu et al. [11] proposed a LoRa system based on edge computing which migrates some of
the access control command instructions from the cloud server to the LoRa gateway, thus
effectively relieving the burden of cloud processing. Ozyilmaz and Yurdakul [12] proposed
a LoRa system based on blockchain technology. This system would give different devices
with different computing and storage capacities different ways to manage their data. High-
capability LoRa gateways can download the whole blockchain, but low-capability LoRa
gateways can only obtain block headers.

Regarding the distributed applications of LoRa, most of the existing literature (e.g., [13,14])
focuses on utilizing deep learning techniques for processing the collected data on LoRa gate-
ways and end devices, with applications in areas such as fall detection and agriculture.
However, there is relatively little research on the massive uplink end device access and
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multi-task downlink publication to end devices using LoRa. LoRa gateways typically only
provide data relay services between end devices and cloud services, with limited utilization of
resources beyond their communication functions. To use edge computing in LoRa gateways,
the system architecture of LoRa gateways must be refactored, and the computing resources
must be evaluated.

2.2. Edge Computing Network

To support creative IoT applications for edge devices and allow the success of the
EC-assisted IoT paradigm, the academic community and industry have suggested a vast
array of EC designs and technologies. In this category are cloudlets (small servers), ve-
hicular (or portable) EC (VEC), and edge cloud. These technologies primarily aid in the
deployment of applications in challenging environments with rapid temporal variation.
In addition, there are mobile edge computing (MEC) and mobile cloud computing (MCC)
technologies that enable the implementation of extensive computing applications on local
IoT smart devices. This is achieved by offloading a significant percentage of programs to
the devices themselves.

Due to the diverse nature of the resources accessible to edge nodes, IoT applications
confront several obstacles, including the need for flexibility, low latency, high bandwidth,
error-handling capabilities, and capacity. Computing at the network’s edge offers adaptive
resources that allow distributed computing and safeguard data from errors typical of a
centralized system. Some research, such as on cloudlets [15], femtoclouds [16], and edge
computing, has emphasized the incorporation of mobile device resources. When a device
detects edge support, it transfers the majority of its processing to a cloudlet rather than
building task-specific components [17]. The concept of cluster computing in femtoclouds
necessitates centralized management by expert controllers [18]. By distributing specialized
servers to satisfy end users’ needs in a particular place, edge computing makes this feasible.
The mechanisms for clustering-based methods are detailed in [19–21].

The previously mentioned studies have tended toward a centralized strategy for
the structure and administration of different resources, such as operating systems and
applications [22]. To meet deadlines on time, it is necessary to use a decentralized method.
This decentralized strategy delivers resources at the network’s edge [23].

When an IoT application is operating on a collection of edge networks, it is crucial for
the edge computing to be dependable and fault-tolerant [24]. Due to the vast range of edge
devices, networks, and data processing methodologies, it is a significant challenge to create
reliable network services and effective fault-tolerant solutions in edge computing networks.
Refs. [25–27] have conducted research on methods for fault detection and correction in
edge nodes.

As we have seen, many researchers have attempted to deploy distributed computing
methods in LoRa gateways and use various techniques to address the edge computing node
failure problem, but these methods typically use centralized control for error handling,
which often results in significant resource waste and communication delays [26]. In contrast
to previous studies, the main significance of this study lies in leveraging LoRa gateways to
share the distributed computing load, and in providing an efficient method for accessing
and managing large-scale LoRa nodes as distributed edge nodes, which effectively reduces
the burden on cloud computing processing and system energy consumption. As a result,
this study provides a good edge computing approach for wireless IoT systems that utilize
large-scale edge sensing LoRa nodes in applications such as smart forestry and agriculture.

3. Design of the EC-Assisted LoRa Gateway
3.1. LoRa Gateway Hardware System Design Based on Zynq SoC

The LoRa gateway hardware system is based on a XINLIX Zynq7000 processor. Zynq
SoC architecture combines the software programmability of a processor with the hardware
programmability to form a dual-core ARM Cortex-A9 processor and a conventional FPGA
logic component, providing unparalleled system performance, flexibility, and scalability.
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The communication module of the LoRa gateway uses the LoRa SX1278 baseband chip,
which features a small size, low power consumption, long transmission distance, and high
interference immunity. The LoRa gateway can receive, process, store, and forward the data
of end devices. By assigning LoRa gateway edge computing capability, it can effectively
enhance data processing capability and reduce data transmission delays. The proposed
EC-assisted LoRa gateway hardware system architecture is shown in Figure 2.
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As shown in Figure 2, the main modules connected to the PS resource include the
sensor interface, the system debugging interface, the storage module, the communication
module, the Ethernet interface, etc. The storage module mainly includes QSPI FLASH,
DDR3, and eMMC, which are used to store the running memory, system files, application
files, and data files. The wireless communication method for uplink in the system is via
3G, 4G, or LTE modules, which are connected to the network server, while the wireless
communication for downlink relies on four LoRa modules, which are connected to numer-
ous end devices. The communication interface between the LTE module and the Zynq is
USB, and the communication interface between the LoRa module and the Zynq is UART
pass-through. Furthermore, the system also includes interfaces for sensor information
acquisition and debugging. In order to connect to multiple serial devices, we utilized
multiple AXI_UARLITE IP core ports in our system. We developed the software for multi-
threaded design, communication interface development, and distributed computing using
the Xilinx Software Development Kit (SDK) environment. The program was compiled
using appropriate tools to generate an executable file that was subsequently executed on
the Zynq platform.

Algorithmic IP cores for data processing have been integrated into the PL side based
on edge requirements to further improve the efficiency of edge computing. However, the
end device access and management calculations in this article were run on the dual-core
ARM Cortex-A9 on the PS side.

3.2. Edge Computing in the LoRa Gateway

Using the LoRa gateway with edge computing capabilities, two modules were trans-
ferred from the network server to the LoRa gateway. Through network control (NC), which
processes application packet data, and JS, which manages the connection operations of the
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end devices using connection operations, the LoRa gateway generated and stored contex-
tual data for the end devices. Conversely, the LoRa gateway required certain contextual
data to perform application packet processing tasks.

As shown in Figure 3, when the LoRa gateway receives a network request from an
end device, it first verifies the legitimacy of the request. Then, the LoRa gateway creates
session data for the end device, including DevAddr, two session keys, and some metadata.
The LoRa gateway requests and creates a new block with a transaction containing these
data. In the meantime, the LoRa gateway must produce and transmit a join accept message
to the end device. The end device’s successful acceptance of the join accept message shows
that the join operation was successful. It may be sent from the network server to the
LoRa gateway because the NC module is placed in the LoRa gateway, which is utilized for
application data processing.
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Uplink Data Processing: When an end device reports application data, the NC pro-
cessing module in the LoRa gateway divides the application into three parts: metadata,
encrypted data, and the message integrity code (MIC) value. Then, the NC module checks
the integrity of the application data by extracting the DevAddr field from the metadata
and querying the session data of the end device to verify the authenticity of the MIC. If
the MIC value of the application packet does not match, the packet is rejected. After the
verification is passed, the LoRa gateway transmits the encrypted data applied by the end
device to the network server. At the same time, the LoRa gateway must send an acknowl-
edgment message (ACK) to the end device, confirming that the application packet has been
successfully received.

Downlink Data Processing: When sending data to the end device, the network server
first creates a new connection and encrypts the application data sent down. The encrypted
data are then sent from the network server to the LoRa gateway. The LoRa gateway contains
the downlink device application data packets, and the MIC value information is generated
and calculated by the LoRa gateway, which is encapsulated in the NC module. When the
end device reports data, the LoRa gateway obtains the target information of the end device,
while the downlink application packets are sent to the end device through the wireless
channel of the LoRa module.

LoRa gateways that are deployed on near-end devices can improve the efficiency of
cloud computing processing in the system by means of edge computing. Among them, the
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LoRa gateway mainly handles the parsing and encapsulation of application packets from
end devices and MIC calculations, which are no longer handled by the central cloud server.
On the one hand, the computing resources in the LoRa gateway can be fully utilized to
relieve the computing pressure in the cloud server, and at the same time, the LoRa gateway
can perform pre-processing operations on the application data reported by the end devices,
such as the verification of MIC, without affecting the processing of the cloud server or the
transmission function of the application data.

3.3. Distributed Task Execution Mode in the LoRa Gateway

The symbols applied in this paper are shown in Table 1.

Table 1. Symbols applied in this article.

Symbol Description

ENk The LoRa gateway tasks to be processed
ik The LoRa gateway receives the task transmitted by the ith edge node
uk The LoRa gateway presently allocated tasks

ucar The LoRa gateway task load at time t
uneed The LoRa gateway needed task load at time t

ak Size of task-related data
ek Processing deadline for task
teδi CPU time required for a subtask to be completed at edge node e
δn The nth subtask
Ni Instructions required to complete a subtask
δp Execution rate of edge nodes
Y Amount of edge nodes executing subtasks

RENk The resources presently allocated for task ENk at time t
∑ R The total resources allotted to the task at time t

DENk The current resource requirement of the task at time t
SENk Task share all available resources

E The group of nodes connected to the edge network
Rrs Requirements for the level of reliability between nodes and their neighbors

Ge
i (EN) The task in the ith end nodes group that need to be completed are EN

Eo Organizer of edge nodes
Q Network of edge nodes
G Edge node group

∑ EN The resource designed to handle EN
∑ aei The ith edge node requires processing resources

T The full processing time required to complete all subtasks δi
tEN The time needed to complete task EN in processing

We set the characteristics of ENk = {ik, uk, ak, ek}, where ik denotes the ith edge node
with the execution request. uk denotes the workload, ak denotes the size of task-related
data, and ek denotes the deadline of the task. The task ENk = {δ1, δ2 . . . . . . δn}, without any
limitations. These subtasks may be undertaken concurrently on several edge nodes without
a specific order. In Table 1, the significant equation variables are shown. The required
resources are provided in (ek) time to complete the task faster than its objective, in order to
process an edge node network subtask and ensure a fair procedure. For the sake of this
paper, we will consider each task’s required CPU time as a resource. For one subtask of
the task ENk, Ci millions of instructions (MI) were required. The following subtasks δi will
be loaded.

uδi =
n

∑
i=1

Ci (1)
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On the basis of speed δp, the CPU time (teδi ) required for processing the ENi on the
edge of the network e is shown below.

teδi =
uδi
δp

(2)

For the ENk consisting of n subtasks, the LoRa gateway processes the tasks on Y edge
nodes in a distributed manner. RENk(t) denotes the resources (CPU time) required to
process the tasks at the edge nodes at time t. ∑ REN(t) will be:

∑ REN(t) =
∫ t

0
RENk(t)dt (3)

Uk denotes the resources required to complete all the tasks of a single edge node, UR
denotes the resources allocated to the tasks processed by the edge node at the current
moment t, and the remaining required resources Uneed are denoted as follows.

Uneed = Uk −UR (4)

The current resource demand was given by DEN(t) at time t. For the kth ENk at
time t, SEN(t) describes all resources that are currently accessible. The resources for ENk
employed in the edge network distribution process associated with the cloud are defined
as the degree of fairness f dENk(t) of kth ENk at time t.

f dENk(t) =

∫ t
0 RENk(t)dt∫ t

0 max{DENk(t), SENk(t)}dt
(5)

The degree of network fairness f dENk(t) = 1 indicates that all needed network
resources have been allotted to perform the kth ENk at time t. Less than 1 in disparity
f dENk(t) indicates an unfair execution.

For competent administration, we propose that significant jobs at the edge be spread
over a group Ge

i (EN), where i denotes the number of groups and e denotes edge nodes. EN
is associated with a group job that has to be executed. As an organizer, Eo is a representation
of an edge node that will receive and process the ENk. The edge node of the organizer will
interact with other edge nodes in the group to complete the assigned task and provide
output to the end nodes.

In the Eo edge node group, each edge node acquires the available LoRa gateway
resources based on the task. Our proposed latency-aware algorithm (LAA) executes in
a decentralized way. An edge node joins the edge node group when it accepts handling
a task, so that the action may be completed in distribution mode. To enable distributed
processing of the Eo, the Eo node will broadcast to the edge environment Q to establish a
Ge

i (EN).
Our proposed LAA algorithm is shown in Algorithm 1. First, in steps 3–7, The Eo

will broadcast a grouping message for adding edge nodes to the pair queue Q. After the
grouping is completed, in steps 9–15, the LoRa gateway will perform tasks on the edge
node elements added to the queue Q. Then, in steps 18–21, the nearby edge nodes in the
grouping are monitored and are included in the group when the nearby nodes are available.
Throughout the process, the task processing is cyclically performed on all edge nodes that
join the group.
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Algorithm 1. Pseudocode of the LAA algorithm.

Algorithm LAA: Distributed Latency-Aware Task Processing Algorithm

Input: Eo, G(EN), Q, Q f ree, ∑ EN, ∑ aei;
Output: Ge

i (EN)
1: for Eo ∈ Q do
2: Q f ree ← Eo ;
3: Eo send a request to join u(u ∈ Q);
4: Eorz response neighborhood edge node u′(u′ ∈ Q)
5: for u′ ∈ Q do
6: Q f ree ← u
7: end for
8: while f dENk 6= 1 do
9: if Q f ree 6= φ then
10: for ei ∈ Q f ree do
11: if ∑ EN ∩∑ aei 6= φ then
12 ei pull δi
13: ∑ EN = ∑ EN −∑ aei
14: Ge

i (EN)← ei
15: end if
16: end for
17: else
18: for ei ∈ G(EN) do
19: if (en ∈ ei) ∩ G(EN) == φ then
20: ei send Rrs to en
21: G(EN)← en

22: end if
23: end for
24: end if
25: end while
26: Ge

i (EN)← G(EN)
27: end for
28: return G(EN)

4. Experiments
4.1. Experimental Setup

The LoRa gateway was built on an FPGA-based embedded hardware system using the
industrially specialized Xilinx Zynq CPU board and Cortex-A9 SoC. With this gear, edge
computing is feasible. In the central cloud, our system comprised four LoRa gateways and
two network servers. Many customizable client applications were deployed on the server
that could make direct connections to the LoRa gateway. The end devices were deployed
for experimental testing using the SX1278-based LoRa communication module. The end
device can typically connect multiple sensors for data collection and upload the collected
data to the LoRa gateway.

In Experiment 1 (test join requests from end devices), 100–2200 simulated end devices
submitted join requests continually to the LoRa gateway. Each LoRa gateway controlled
between 25 and 550 end devices. Each end device operated at random intervals ranging
between 10 min and 2 h. If the end device received a join request and accepted the message,
the join operation was deemed successful. After 300 s, if no application had been received,
the join request failed. The registration messages for end devices are usually very short,
and a large number of device accesses can create pressure on the edge computing system
in terms of registration information parsing.

In Experiment 1, the evaluation metric used to reflect the real-time performance of the
gateway during the registration of a large number of devices was the time it takes for the
end node to register with the network service.

Experiment 2 (test application data upload of end devices) emulated between 100 and
2000 end devices. Each LoRa gateway could support between 25 and 400 end devices. All
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steps for end device assembly were completed. Therefore, the end devices could perform
data uploading normally. Each end device was able to select a time interval of 15–20 s
for continuous data reporting. The network server sent an ACK to each package to signal
that the uplink data were received properly. If the end device did not receive an ACK
within 30 s after the upload, the transmission of the application data package was deemed
unsuccessful. After the time interval or a failure, the endpoint continued to transmit.
A large number of end device data packets were transmitted with a full load (payload
255 bytes), and by adopting the design proposed in this paper, the performance of the edge
gateway was fully utilized.

Experimental metric 2 utilized two performance indicators: system throughput and
CPU utilization. System throughput refers to the number of successfully transmitted data
in a unit of time by network devices or ports (the maximum data rate that devices can
receive and forward without dropping frames). It is an actual value used to measure
network performance. CPU utilization is the percentage of CPU resources occupied by
running programs, representing the status of the machine running programs at a specific
time. Throughput and CPU utilization at their limits can assess whether the utilization of a
LoRa network’s overall processing and forwarding capabilities has reached its maximum,
and whether the fairness of network transmission is ensured.

Experiment 3 (testing the EC-assisted LoRa gateway versus the traditional LoRa
gateway) simulated the operation of 100–2200 end devices. During the experiment, four
LoRa gateways were deployed to provide data processing services for the end devices.
Each LoRa gateway could interact with the end devices in the coverage area and obtain the
application information reported by the end devices. Then, a comparative experiment was
carried out using the conventional LoRa system technique. In a traditional LoRa gateway
system, the JS and NC modules are deployed in a central cloud implementation. As seen
in Figure 4, the central cloud must thus handle all application packages. Our comparison
demonstrated the enhanced performance of the LoRa gateway with EC-assisted support.
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In Experiment 3, we evaluated the overall network processing and forwarding capa-
bility of the LoRa gateway using the metric of bandwidth occupation, which represents the
efficiency of receiving and sending messages on the gateway’s bandwidth per second.

In conclusion, the evaluation encompassed the gateway’s capacity for accommodat-
ing large-scale LoRa nodes and processing their uplink data, and the enhancement in
bandwidth utilization achieved by EC-assisted LoRa gateways compared to conventional
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gateways. Through these experiments, the beneficial effects of the proposed approach
were assessed.

4.2. Results and Analysis

Figure 5 provides statistical information on the processing time for access requests.
The black dashed line represents the maximum acceptable delay for an end device to
receive and accept the message. It may be adjusted to meet certain needs. The join request
was deemed unsuccessful if the time barrier was exceeded. Once the number of end
devices reached 2000, the mean latency began to exceed the barrier. According to the
findings, nearly 75% of end devices could effectively receive and accept messages with a
5 s constraint and 1800 end devices.
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Figure 6 depicts the system throughput and CPU utilization of the LoRa gateway and
network server while processing application packets from the end devices. The throughput
continued to increase until the number of end devices reached 1200, due to underutilized
resources. At the same time, CPU usage increased. Once the number of end devices ap-
proached 1200, the system throughput stabilized and decreased slightly. This was because
as the number of end devices continued to increase, the system became overloaded and the
consumption of various resource switches caused a degradation in system performance,
thus affecting system throughput. Similarly, the variation in CPU utilization reflected this.
The NC module in the LoRa gateway consumed about seven CPU cores. The rest of the
cores were occupied by modules used for the operating system and signal processing. How-
ever, the processing burden on the network server was alleviated, as the packet processing
was now handled by the LoRa gateway with edge computing capabilities.

As the number of end devices increases, the LoRa gateway and network server de-
mand increasing CPU resources. As a result of all packages and invalid packages being
processed and checked by the LoRa gateway, the network server’s CPU use was decreased
in comparison to the prior LoRa system, in which the network server was responsible
for handling all packages. As demonstrated in Figure 7, in addition to conserving CPU
resources, the bandwidth of the transmission link between the LoRa gateway and a network
server was also preserved. Compared to the conventional LoRa system, 1000 end devices
required about 41.1% less bandwidth. As the number of end devices increased, the gap
continued to expand linearly. One of the advantages of conserving resources is that the
saved resources may be used for more genuine packets, protecting them from invalid
or malicious traffic. We built edge intelligence algorithms in the LoRa gateway, which
were able to validate the effectiveness of end devices and perform specific data processing,



Future Internet 2023, 15, 194 12 of 14

effectively reducing the transmission bandwidth of the LoRa network and reducing the
energy consumption.
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5. Conclusions

This article proposed the design and implementation of a LoRa gateway with edge
computing, which is called an “EC-assisted LoRa Gateway”. Then, an EC-assisted LoRa
gateway prototype was developed on an embedded hardware system, and we proposed
a new distributed computing model and used the latency-aware algorithm (LAA) for
task processing at the edge nodes in the system, which effectively reduced the latency of
task processing and improved the reliability and stability of the network. Experiments
demonstrated the efficacy of our approaches, with the suggested LAA algorithm achieving
the greatest edge node improvement and performance. We showed the highest performance
that the EC-assisted LoRa gateway is capable of achieving: compared to a conventional
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LoRa system, the EC-assisted LoRa gateway reduces CPU usage and bandwidth use
without compromising system throughput.

In our future work, we plan to further advance research in edge computing. The
current proposal did not address issues related to energy efficiency or the detection and
repair of failures in edge nodes. In the future, these issues may be considered for achieving
high network availability in the context of IoT ecosystems. Furthermore, the experiments
presented in this paper were conducted using a simulated LoRa transmission interface, time,
and rate, and not with actual massive LoRa end devices. Therefore, future experiments
will focus more on the deployment of actual massive wireless modules and data testing to
extend the research to a wider range of wireless transmission scenarios.
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Z.H.; project administration, Z.H. All authors have read and agreed to the published version of
the manuscript.
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