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Abstract: Advanced Driver Assistance Systems (ADASs) are crucial components of intelligent vehi-
cles, equipped with a vast code base. To enhance the security of ADASs, it is essential to mine their
vulnerabilities and corresponding exploitation methods. However, mining buffer overflow (BOF)
vulnerabilities in ADASs can be challenging since their code and data are not publicly available. In
this study, we observed that ADAS devices commonly utilize unencrypted protocols for module
communication, providing us with an opportunity to locate input stream and buffer data operations
more efficiently. Based on the above observation, we proposed a communication-traffic-assisted
ADAS BOF vulnerability mining and exploitation method. Our method includes firmware extraction,
a firmware and system analysis, the locating of risk points with communication traffic, validation,
and exploitation. To demonstrate the effectiveness of our proposed method, we applied our method
to several commercial ADAS devices and successfully mined BOF vulnerabilities. By exploiting these
vulnerabilities, we executed the corresponding commands and mapped the attack to the physical
world, showing the severity of these vulnerabilities.

Keywords: advanced driver assistance systems; buffer overflow vulnerability; communication traffic;
intelligent vehicles

1. Introduction

Advanced Driver Assistance Systems (ADASs) equip vehicles with abundant capabili-
ties, including blind spot monitoring, automatic emergency braking, pedestrian collision
warning, and lane departure warning, thereby augmenting driving safety and improv-
ing driving experiences. The incorporation of numerous third-party machine learning
libraries and other components into the code has made ADAS devices intricate software-
and hardware-integrated systems, featuring voluminous code and varying implementa-
tion levels of diverse components. Consequently, the expanding functionalities of ADASs
spawn a series of software vulnerabilities and pose challenges in terms of mining and
exploitation.

Compared to infotainment systems and communication modules, such as Telematics-
Box, vulnerabilities in ADASs pose a higher security risk. ADASs typically have external
interfaces and are connected to a vehicle’s power control system. Once a vulnerability is
discovered, attackers can remotely hijack all vehicles equipped with the affected ADAS,
resulting in disaster for both vehicle manufacturers and drivers. Additionally, once ADAS
products are released, manufacturers often do not update the operating system, resulting
in the kernel versions of most ADAS devices being outdated compared to the latest version.
This leaves known vulnerabilities in the system open to direct exploitation, further elevating
the security risk.

It has been shown that Advanced Driver Assistance Systems (ADASs) are vulnerable to
various attacks that not only compromise their functionality but also pose significant risks
to the physical world. For instance, an attacker could tamper with sensor inputs [1], such
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as radar or lidar, leading to false detections or blocking the system’s ability to accurately
recognize obstacles [2]. By exploiting vulnerabilities in ADAS control algorithms, attackers
can potentially manipulate steering, braking, or acceleration functions, endangering the
lives of those in the vehicle and pedestrians [3]. Furthermore, software vulnerabilities
enable adversaries to gain unauthorized access to the ADAS network and inject malicious
commands or modify crucial system parameters, compromising the overall integrity and
safety of the vehicle [4,5].

Buffer overflow (BOF) is a prevalent software vulnerability in ADASs that occurs
when an application writes beyond its pre-allocated size during program execution. It can
be used to launch denial-of-service attacks or to gain higher-order access privileges [6].
According to [7], BOF threats are the most growing and severe form of vulnerability in
software today, and they have become an increasingly critical issue in network security. The
code size of ADAS devices is massive, and ADAS devices use many third-party libraries
whose quality varies. Therefore, BOF vulnerabilities are inevitable in ADASs.

In the realm of both traditional Internet and Internet of Things (IoT) devices, applica-
tion programs commonly rely on open-source components and libraries. These components
can be scrutinized through an examination of the corresponding open-source code to iden-
tify potential security risks such as BOF. Furthermore, open-source code can be evaluated
using static code analysis tools, enabling automatic code scanning without the need for
manual review. However, in the case of ADASs, manufacturers treat their environment and
code as confidential commercial secrets, making it difficult to access data, code, and pri-
vate communication protocols. Therefore, the BOF vulnerability mining of ADAS devices
requires alternative approaches.

Analyzing BOF vulnerabilities in ADASs presents significant challenges. Firstly,
obtaining the corresponding binary program from the device is difficult without publicly
available documentation and source code. Decompiled code is only an approximation of
pseudo-code, and most symbols, such as variables and function names, may be compressed
and optimized. Furthermore, due to compiler optimization, some decompiled pseudo-code
can be incomplete. Decompiled pseudo-code only reflects the program’s behavior and
is unsuitable for directly recompiling binary files, making it challenging to conduct BOF
vulnerability mining using static code scanning tools.

Secondly, the code base for ADASs is huge, and, hence, a manual analysis is time-
consuming. The scale of these code bases can encompass millions of lines of code, which
makes it arduous for humans to fully comprehend the intricate interdependencies and link-
ages between different components of the code. Additionally, uncovering and evaluating
potential vulnerabilities in code necessitate an in-depth understanding of the program-
ming language, architecture, and intended system behavior. Moreover, a manual analysis
requires an exhaustive inspection of every line of code, which is time-intensive, especially
considering the several iterations required to ensure the complete coverage of the code base.
Moreover, a manual analysis is susceptible to human error, and it can be time-consuming
to identify subtle or concealed vulnerabilities that may escape human observation.

1.1. Related Work

It is known that BOF attacks have been causing serious security problems for decades;
over 50 percent of today’s widely exploited vulnerabilities are caused by BOF, and the ratio
is increasing over time [8]. BOF-based attacks remain one of the most prevalent exploits to
date, and as such, they are mostly an unsolved problem [9].

Due to the limited memory resources and generality of programming languages and
operating systems, BOF poses unique risks to IoT devices. For example, a recent study
evaluated the vulnerability to BOF attacks on operating systems in IoT, precisely executing
the application on FreeRTOS and analyzing multiple attack methods [9]. This is because
IoT devices typically do not choose substantial capacity memories to save power. However,
the smaller the buffer, the easier it is to overflow. In addition, most programs used for IoT
are written in C or C++, neither of which has a “garbage collection mechanism” to meet
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extra memory requirements, which also increases the risk of BOF vulnerabilities. At the
same time, these languages allow pointers, making it easier for hackers to determine
the location of critical code in memory. For example, in 2018, researchers found a BOF
vulnerability in the httpd component of Tenda routers, allowing attackers to conduct
denial-of-service attacks by reverse-tracking the operation functions [10].

Moreover, IoT devices’ operating systems and program dependency libraries are
standard commercial products, and different manufacturers develop and maintain their
codes. These code libraries may have vulnerabilities in different versions. Many embedded
devices share the same operating system, application program libraries, and TCP/IP
protocol stacks, and it could affect multiple devices if these shared components have
vulnerabilities. For example, the chain of causes for Heartbleed is the input not being
appropriately checked, which leads to too much data read—precisely, a massive number of
bytes are read from the heap [11]. This affects many IoT devices using OpenSSL, which
could lead to the leakage of sensitive information, such as private keys and user credentials.

As a particular type of IoT device, the components of intelligent connected vehicles
share many similarities with traditional IoT devices, such as the reuse of customized
systems and dependent libraries and most software being written in C/C++. These charac-
teristics determine the high probability that vulnerabilities exist in these components. Many
research results from various institutions also prove this point. In 2021, Tencent’s Keen
Security Lab conducted cybersecurity research on the intelligent connectivity system of
Mercedes-Benz cars [4]. They discovered five vulnerabilities in the Head Unit and Hermes,
including a BOF vulnerability. In 2017, Mickey Shkatov and two other researchers from
McAfee announced at the Defcon 25 conference that they had found two separate BOF
vulnerabilities in the remote information processing control units (TCUs) of Ford, BMW,
Infiniti, and Nissan vehicles [12].

However, there remains a critical gap in the research on the mining and exploitation
of BOF vulnerabilities in ADASs. Most academic research on ADASs focuses on the
vulnerability of sensors and AI algorithms. For instance, Ben et al. showed that projecting
non-depth objects in front of ADASs’ cameras can cause Tesla Model X and Mobileye 630
systems to misperceive them as physical obstacles, resulting in unexpected actions [1].
However, Cao et al.’s LiDAR spoofing attack model put forward a potential safety threat to
intelligent connected vehicles by tampering with the LiDAR system’s input to the ADAS
[2]. Thus, more research on vulnerability mining and exploitation for ADAS devices must
be carried out.

ADAS devices have richer storage and processing capabilities than traditional IoT
devices, using closed-source and proprietary protocols for communication. These situations
are more likely to lead to BOF vulnerabilities. Most private protocols are unencrypted,
allowing for the extraction of specific fields/features from traffic, which can help to quickly
identify BOF vulnerabilities.

1.2. Contribution

The complex software environments of ADASs and their components, along with
their large code base and extensive reliance on third-party components, make the process
of mining and exploitation of BOF vulnerabilities challenging. In this work, we observed
that ADAS devices commonly utilize unencrypted protocols for module communication.
This provided an opportunity for us to extract information and features from raw com-
munication traffic, enabling us to locate input stream and buffer data operations more
efficiently. We achieved this by filtering out known protocols based on the captured device
traffic, allowing us to more accurately locate data structures, input data passing, and buffer
operations during the decompilation process. This approach reduces the workload of
manual code auditing in the mining of BOF vulnerabilities. Based on the above situa-
tions, we proposed a communication-traffic-assisted ADAS BOF vulnerability mining and
exploitation method.

In detail, our contributions are as follows:
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1. We propose a method for mining and exploiting vulnerabilities in ADASs by ana-
lyzing their communication traffic. Our approach involves capturing and analyzing
communication traffic, extracting feature fields, decompiling business applications,
and locating data structures using these feature fields. By checking cross-references of
the data structures, we can restore the entire data passing chain and analyze the data
passing operations and buffer operations within this chain. Using these analyses, we
can identify BOF vulnerabilities in ADASs.

2. To demonstrate the effectiveness of the proposed method and the severity of these
vulnerabilities, we employed our method on several ADAS devices and mined the
BOF vulnerabilities. Furthermore, we conducted a series of operations on a vehicle
and captured the corresponding CAN messages. Subsequently, we replayed the com-
munication traffic via the ADAS device and observed whether the vehicle repeated
these operations. By exploiting the BOF vulnerabilities, we could execute console
commands to replay CAN messages and map the attack to the physical world. Our
experiment proves that BOF vulnerabilities in ADASs could interfere with the regular
operation of intelligent connected vehicles.

1.3. Organization

This paper is organized as follows: First, we present basic knowledge on buffer
overflow, the composition of ADAS software, and communication traffic characteristics
(Section 2). Next, we propose a communication-traffic-assisted method for BOF vulnera-
bility and exploitation (Section 3). Then, we conduct experiments on commercial ADAS
products and actual vehicles to verify the method’s feasibility (Section 4). Finally, we
summarize the entire article (Section 5).

2. Preliminaries
2.1. BOF Vulnerability

BOF occurs when a computer fills a buffer with more data than its capacity, causing the
overflowed data to overwrite legitimate data. The root cause of BOF attacks is an inherent
flaw in modern computers that do not explicitly distinguish between data and code and
can only rely on forward-compatible patches to mitigate the resulting damage [13].

There are two types of BOFs: heap overflow and stack overflow [14]. Both result from
programs writing data to the heap/stack without correctly controlling the data size, but they
differ in data structure and their role in program execution. Due to the stack’s particular
structure and role, stack overflow can more directly disrupt or control the program flow. In
contrast, the heap structure is often more closely related to the system and version, making
it more difficult to exploit.

Unmitigated BOFs commonly result in segmentation faults, causing the operating
system to terminate the corresponding program, leading to program crashes and denial
of service. By combining with return-oriented programming (ROP), constructing jump in-
structions, and gaining control of the operating system, arbitrary code/command execution
can be achieved. In 1988, Robert Morris’s Morris worm virus exploited a BOF vulnerability,
causing more than 6000 network servers worldwide to crash [15].

As a specialized type of embedded system, it is hard for an ADAS to avoid BOF
vulnerabilities. Once these vulnerabilities are detected, the reliability and security of ADAS
devices will inevitably be compromised.

2.2. Software Environment of ADASs

By analyzing the software environment of ADASs, we constructed a more targeted
BOF exploitation. For example, the position of the system function in libc is involved in the
ROP construction of the RCE process. The position of the system function varies in different
versions of libc. The software components of ADASs mainly include operating systems,
runtime environments and dependent libraries, and artificial intelligence algorithms. In our
research on market devices, we found that the operating systems of most devices usually
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run on manufacturer-customized Linux systems or QNX systems, with Linux versions
mostly between 2.6 and 4.13 and QNX between 6.5 and 7.1. Table 1 presents the operating
systems and kernel versions of five commercial models of ADASs.

Table 1. Version information of the operating system and libc.

Devices Operating System and Kernel Version Libc Version

ADAS-1 QNX Neutrino 6.6.0 SP1 ldqnx-arm.le.so.2.1.0
ADAS-2 Linux cid 4.1.27-PLK #1 SMP PREEMPT x86_64 GNU/Linux libc-2.22

ADAS-3 Linux (none) 4.14.0-xilinx #52 SMP PREEMPT armv7l
GNU/Linux libc-2.18

ADAS-4 Linux (none) 4.9.0-xilinx-svn403 #1 SMP PREEMPT armv7l
GNU/Linux libc-2.26

ADAS-5 Linux Ambarella 4.14.139 #1 SMP PREEMPT aarch64 Flexible
Linux libc-2.28

Software operating environments and dependencies mainly include two types. One is
the most fundamental operating environment that the operating system provides, such
as libc. The libc information is our main focus in security research and plays a vital role
in exploiting buffer overflow vulnerabilities. Table 1 lists the libc version information
of five commercial ADAS devices. Another type is the third-party component Software
Development Kits (SDKs) that the application depends on. This type often varies among
different manufacturers and lacks a unified quantifiable indicator. For example, SAIC’s
immotors ADAS uses the NVIDIA Xavier development environment, while Tesla’s Autopi-
lot has entirely independently developed related suites and does not use such third-party
components.

Artificial intelligence algorithms are diverse, but when categorized, they mainly
include supervised algorithms such as pattern recognition, SVM, regression algorithms, de-
cision matrix algorithms, Ada-Boost, and unsupervised algorithms such as clustering [16].

2.3. Communication in ADASs

Through the study of over ten different commercial ADAS devices, we found that,
unlike traditional IoT devices, open-source components are less commonly used in ADASs.
Most ADAS programs choose to use commercial SDKs or to develop them entirely inde-
pendently. During port scanning or analyses of the devices, we found that, apart from a
few debugging ports (such as SSH and telnet), most open ports are related to the business
and are listened to by the related business programs. Figures 1 and 2 show two commercial
ADAS devices’ opening ports and corresponding listening programs.

Figure 1. Commercial ADAS devices’ port opening and corresponding program listening-1.
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Figure 2. Commercial ADAS devices’ port opening and corresponding program listening-2.

We captured working communication traffic from multiple commercial ADAS devices
and analyzed the traffic. We found that most communication traffic used the raw TCP
protocol without encryption rather than other mature application layer protocols (such as
HTTP and WebSocket). Figure 3 shows the communication traffic of a commercial ADAS
device, and the situation of other commercial devices is similar to that of this device. Based
on this, using traffic fields/characteristics to assist the binary static analysis is feasible. We
improved the efficiency of BOF vulnerability mining with the assistance of communication
traffic.

Figure 3. The communication traffic of commercial ADAS.

3. Traffic-Assisted BOF Vulnerability Mining and Exploitation Method in ADASs

This article proposes a traffic-assisted BOF vulnerability mining and exploitation
method in Figure 4 to tackle the complexities of BOF vulnerability mining in ADAS devices.
The first step is firmware extraction. Firmware extraction uses methods such as console
commands or the reading of flash chips, and this is discussed in Section 3.1. The next step
is a firmware and system analysis. We capture the communication traffic to obtain field-
s/features, collect system running information (such as listening status and background
processes), and locate the ADAS manufacturer’s application. This step is discussed in
Section 3.2. Next, we identify the BOF risk points and mine vulnerabilities using available
information, such as traffic. This step is discussed in Section 3.3. For detected BOF vulnera-
bilities, we validate their effectiveness, which is discussed in Section 3.4. Finally, Section 3.5
discusses the exploitation of BOF vulnerabilities, such as obtaining console access.
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Figure 4. Traffic-assisted BOF vulnerability mining process.

3.1. Firmware Extraction

Firmware is a type of software that is written into hardware devices to control their
application and system functions. We can obtain the corresponding binary files for the
business program by extracting and analyzing the firmware. Thus, we proceed with the
subsequent BOF vulnerability discovery.

There is no universal method for extracting firmware from devices. We list four
practical firmware extraction methods from ADAS devices: update package interception,
console command extracting, debug interface extracting, and flash dumping.

(1) Update package interception. We can capture the device-to-cloud communication
traffic through the automatic update function of the corresponding PC software for
the device. If the update package that we obtain is complete, we extract the complete
firmware from the update package by combining the reverse engineering results of
the client program.

(2) Console command extracting. We use a dictionary to brute-force Telnet/SSH login
passwords for devices that can be accessed through the console. If we crack the
password, we can log in to the console and use console commands to extract the
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corresponding binary file (such as dd) and transfer it back to the local machine
(such as scp).

(3) Debug interface extracting. If a debug interface (such as SWD/JTAG) exists on the
ADAS device, we use the testing interface to extract the firmware.

(4) Flash dumping. However, if none of the above methods can be used, we only remove
the flash storage chip from the device board, connect the programmer to read the chip
content, and write a program according to the file system to restore the binary file.

3.2. Firmware and System Analysis

In this section, we first decompress the extracted firmware and extract its files. If there
is still no console login permission, we brute-force the password hash in /etc/passwd.
Next, we proceed with three parallel tasks:

(1) Capturing and analyzing device communication traffic. In this step, we disguise our
computer as a device node and connect it to the in-vehicle Ethernet to capture the
communication traffic. Figure 3 shows part of the results. We write programs to
analyze the captured traffic, extract potentially useful fields or features, and prepare
for subsequent risk point localization.

(2) Logging in to the console and obtaining port listening and system process informa-
tion. If we obtain console login permission, we should log in to the device and view
the background processes in the system, especially the processes of third-party ap-
plications. This can help us to quickly locate the ADAS manufacturer’s developed
applications in the firmware.

(3) File analysis. If we still fail to obtain console permission, we must traverse the
decompressed firmware folder and manually search for the corresponding ADAS
manufacturer’s program. Generally, applications developed by ADAS manufacturers
appear in the form of libraries, modules, or executable files.

3.3. Locate Risk Points with Communication Traffic

BOF does not occur in all functions but typically happens in those that involve in-
put/output interactions or data passing. In this subsection, we use reverse engineering
with communication traffic to locate potential BOF vulnerabilities or risk points.

In the previous subsection, we acquired some fields/features of the communication traffic,
port listening and process information, and corresponding ADAS manufacturer applications.

In this subsection, we decompile the ADAS manufacturer program, use the field-
s/features to search for binary program data fields, and attempt to locate data structures
within the program. In addition, we determine the receiving and passing processes of data
by searching for library functions, such as socket, listen, and recv, based on the port
listening information and system-background process names.

As the definition of BOF indicates, failure to truncate user input appropriately is a
necessary condition for the vulnerability. Therefore, risk point identification focuses on two
aspects: (1) external input/output interaction and (2) whether the length is appropriately
controlled during parameter copying and passing. By locating data structures through
characteristic fields and checking for cross-references in the program while paying attention
to data copying or passing processes, such as gets, memcpy, and strcpy, we efficiently
detect BOF risk points or vulnerabilities.

3.4. Validation of BOF Vulnerability

If a BOF vulnerability is discovered, attempting to construct a POC program is possible.
When validating a BOF vulnerability, the most vital aspect is constructing an appropriate
payload for testing purposes. The payload is a block of data that contain adequate bytes to
attempt to overwrite or modify the target application’s buffer. Consideration is necessary
when building the payload, particularly regarding the number of bytes to be used: it needs
to be large enough to cover the buffer’s end while small enough to fit legally in the buffer. A
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too-small payload will be inadequate to control the program’s behavior, and if the payload
is too large, it may prevent the program from crashing.

To verify the existence of a BOF vulnerability, we need to create one or a series of
data packets. These packets correspond to the buffer’s length or size based on the length
requested in the program’s pseudo-code and the actual buffer’s size. We then use tools or
write a program to send these packets to the target application program from our computer.
The target application program typically has a BOF vulnerability if it crashes after receiving
the payload. If the payload fails to cause the application to crash, we must adjust it and
send it again until the vulnerability is discovered.

3.5. Exploitation of BOF

The validation of BOF vulnerabilities often only requires the construction of a data
packet of the corresponding size or length. However, this is not enough to facilitate
advanced exploitation and intrude into an ADAS more deeply. Generally, it is necessary to
combine IDA Pro or other decompiling tools to determine the buffer size and its relative
position. At the same time, one must use tools or manually write a payload to write
executable code into the program’s buffer. Additionally, the payload should contain special
jump instructions to overwrite the control flow pointer and redirect program execution to
the corresponding code for execution.

For example, typical BOF attack payloads include No Operation (NOP) slide and
return-oriented programming attacks. With a NOP slide attack, an attacker adds a chain of
NOP instructions before the malicious code, enabling them to slide to a specific location
in the buffer and then jump to execute the malicious code. Another technique is ROP,
where an attacker overwrites a return address to direct the program flow to a buffer section
containing “gadgets”—instruction sequences (e.g., shellcode) that the attacker assembles to
achieve arbitrary code execution.

4. Practical Results and Physical World Threats

This section applied the communication-traffic-assisted BOF vulnerability mining and
exploitation method to over ten commercial ADAS devices. As a result, we successfully
mined BOF vulnerabilities in two of them. Taking one of the commercial devices connected
to a minibus as a case study, we elaborated on the details from firmware extraction to
vulnerability exploitation based on the communication-traffic-assisted BOF vulnerability
mining and exploitation method. Moreover, we designed an advanced exploit leveraging
the communication traffic of the CAN protocol, demonstrating the disruptions in regular
operations of the vehicle by exploiting the BOF vulnerability in ADAS devices and thereby
confirming the effectiveness of our method.

4.1. Traffic-Assisted BOF Vulnerability Mining in ADASs

The first step is firmware extraction. We dismantled the binary data from the device’s
flash storage chip and used a programmer to read the chip. Then, we used binwalk to
extract and decompress the firmware, which allowed us to obtain the files in the firmware.

Afterward, we conducted a firmware and system analysis. We conducted a port scan
of the device and discovered that the device’s SSH port (TCP 22) was open and using a
username and password for login. We obtained the device’s login credentials using hashcat
to brute-force the /etc/shadow file extracted from the firmware. After logging into the
device, we examined the system’s port listening and corresponding processes, thus locating
the binary program. By confirming the source through various means, such as the program
name and digital signature, and combining it with the device’s network communication
flow, we determined that the “adas_app” program within the system directory was the
relevant business program.

The next crucial step was to locate the risk points with the communication traffic.
In this case, the “adas_app” program listens on two ports, 8080 and 8081. Combining
the ADAS communication flow fields, we identified the corresponding functions for each
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port. Port 8081 was the data receive/send port, while port 8080 was the command re-
ceive/send port. We recorded the corresponding port listening functions and examined the
parameter passing process to analyze the subsequent data flow and more specific business
processing functions.

Through a static analysis of the decompiled code of the monitoring section, we discov-
ered that the 8081 port was mainly responsible for receiving the data portion corresponding
to the command. We found no security vulnerabilities in this section. The 8080 port was
mainly responsible for processing incoming commands. The data structure corresponding
to the communication data packet of the 8080 port is shown below. The functions in this
section mainly perform validity checks on the “check” field and enter different processing
branches based on the “cmd” field.

#pragma pack (1)
typedef struct {

BYTE cmd; // CMD No
DWORD param; // exec param
DWORD version; // version id: 1.2.1/1.2.3
BYTE check; // 0xaa

}ADAS_CMD;
#pragma pack()

Specifically, in this business program (in Figure 5), when the “cmd” is 6, the program
will perform the following data processing operations:
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Figure 5. Business program decompiled code (stack overflow pseudo-code).

(1) Receive 12 bytes, take the first byte to represent the “type”, and multiply the fol-
lowing DWORD values, denoted as A, which represents the number of bytes to be
received next.

(2) Enter the corresponding function for data reception, and in this function, first, receive
A bytes, and then receive 4 bytes again as the data size, denoted as B.

(3) Receive B bytes of data.

During the execution of step (3), the program will allocate a receiving buffer in the
stack, and the length of the buffer is less than 2M. During this process, if a data packet is
artificially constructed and the value of the “B” field is set to be greater than 2M, the server
will wait for and receive the length of data we set, leading to a stack BOF.

It is not difficult to see that the program will take the values of A and B from the net-
work communication packet as the size of the buffer allocated subsequently. This defect can
be exploited through malicious packet construction to cause a BOF. We attempt to construct
a malicious packet of 0 × 1000000 bytes as a PoC program to trigger the corresponding
vulnerability and observe the program’s execution results. If a BOF vulnerability exists,
the business program will crash and exit, and the corresponding port listener will also be
released.

Before we executed the PoC program, we scanned the operating system (OS) opening
ports and observed the port listening status of the program, as shown in Figure 6.

We executed the PoC program and scanned the open ports of the OS again (red border
marked in Figure 7). The program’s corresponding ports were closed, and the processes
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corresponding to the ports had also exited, indicating that a denial-of-service attack was
successfully implemented.

Figure 6. Port open status before stack overflow.

Figure 7. Port open status after stack overflow.

4.2. Return-Oriented Programming and Remote Command Execution

Return-oriented programming is a technique by which an attacker can induce arbitrary
behavior in a program whose control flow they have diverted, without injecting any
code [17]. Its core idea is to control the stack call by exploiting stack BOF, thereby hijacking
the program control flow to execute specific machine language instructions, known as
“gadgets”. These gadgets can modify the return address of a function and redirect it to any
desired location, allowing attackers to execute unauthorized instructions and gain system
privileges for arbitrary code/command execution and various illegal operations.

In the previous subsection, we constructed a specific PoC to cause a denial-of-service
attack on the ADAS device’s business program. However, there is a better form of attack
than a denial-of-service attack. In this subsection, we attempt to write a specific shellcode
into a newly allocated buffer and use ROP techniques to control the EIP pointer, thereby
executing the shellcode and gaining console access to the device.

By analyzing the assembly code, we determined that the address where the program
writes data (see Figure 8) is 0x1490C bytes away from the return address on the stack (see
Figure 9), with enough length to accommodate a shellcode.
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Figure 8. Address where the program writes data.

Figure 9. Return address on the stack.

Next, we queried the protection mechanisms of this program (see Figure 10). The
checksec command results showed that this program only enabled Stack No-eXecute (NX)
protection. As a result, we can use an ROP chain to forge the stack structure, control the
program execution, and achieve the desired effect of any arbitrary command.

Figure 10. Program protection mechanism query result.

We construct specific data packets based on the above analysis to write the shellcode
into the newly allocated memory area and execute it. These actions allow us to gain console
access to the device and execute user-inputted commands, such as the id command to view
the UID and GID, and the whoami command to view the current username information,
as shown in Figure 11.

Figure 11. Successfully obtaining remote command execution permissions.

4.3. Physical World Threats

CAN is a vehicle bus standard designed to allow microcontrollers and devices to
communicate with each other within a vehicle without a host computer. The power control
instructions of vehicles are transmitted through CAN. However, the CAN protocol contains
no direct support for secure communications [18]. The ADAS system is connected to both
the in-car Ethernet and CAN simultaneously. If there is a BOF vulnerability in the ADAS,
hackers can use it to access the vehicle’s CAN and increase the attack surface of the vehicle.
We perform some actions on the vehicle (such as pressing the accelerator pedal) and capture
messages on the CAN bus at the same time. Afterward, we use an ADAS device to replay
these CAN messages and to observe whether the vehicle triggers the corresponding action
while replaying the messages. Suppose the vehicle takes the corresponding actions, which
indicates that the ADAS BOF vulnerability can interfere with the vehicle’s operation. This
attack extends the threat from the digital world to the physical world.

Figure 12 presents our experimental environments. We connect a PC to the ADAS
via an Ethernet interface (shown by the blue line) and use a CAN analyzer to connect the
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ADAS’s CAN interface to our PC. The purpose of the CAN connection is to capture the
communication traffic. The ADAS device is connected to the high-speed CAN bus.

Ethernet

Vehicle

USB

ECU ECU……ADAS

High speed CAN bus
CAN AnalyzerCAN Analyzer Attacker's PCAttacker's PC

Figure 12. Topology diagram of experimental environment.

In this research, by studying and analyzing multiple ADAS devices, we found that
ADAS devices are often deeply customized based on the Linux system. Most of them use the
Socket CAN module to communicate with the vehicle’s CAN bus (the corresponding inter-
face can be seen through the ifconfig command, as shown in Figure 13). The application
program calls this interface to send and receive CAN data frames.

Figure 13. ADAS device executing the ifconfig command.

We first connect the CAN analyzer to the ADAS’s CAN interface and start capturing
CAN messages using the corresponding software, as shown in Figure 14. During this
process, we perform mechanical operations from the driver’s seat, such as stepping on the
accelerator pedal. We then export the captured CAN messages and save them as a CSV file
during this process.

Figure 14. Collecting data from the vehicle CAN.

In Section 4.2, we gained console privileges through ROP and achieved RCE. Addi-
tionally, we know that the CAN protocol does not directly support secure communication.
In this situation, we exploited the BOF vulnerability on the ADAS to execute a program
(as shown in Figure 15) that reads CAN messages from the CSV file and sends them to
the vehicle via the SocketCAN module in the ADAS. After running the program to send
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CAN messages from the CSV file, we observed the vehicle’s reaction and confirmed that
the wheels turned (as shown in Figure 16).

This result proves the feasibility of obtaining device control through an ADAS BOF
vulnerability and sending CAN messages to a vehicle through an ADAS device. Moreover,
this means that hackers can disturb a vehicle’s operation with the use of an ADAS with
BOF vulnerabilities when the network is reachable. This extends the threat from the digital
world to the physical world. Our experiment relies on the assumption that the ADAS has
network accessibility. If an attacker connects to the in-car Ethernet using either T-box or
Bluetooth, it can result in a privacy breach for the users [19]. By employing the method
proposed in Section 4.2 to exploit the BOF vulnerability in the ADAS and gain control
privileges, the attacker can use the ADAS to remotely control the vehicle by sending CAN
commands. This can be achieved without physical contact with the vehicle and on the basis
of the analysis of the CAN protocol.

Figure 15. A program to send CAN frames through SocketCAN.

Figure 16. Changes in wheel position before and after sending CAN messages.

5. Conclusions

Researching ADAS security faces numerous challenges, including a huge code base,
varying code quality of different components, and strict confidentiality of related codes and
data. To address these challenges, this work proposes a method for mining BOF vulnera-
bilities in ADAS devices using a communication-traffic-assisted approach. This method
involves capturing communication traffic, extracting firmware, analyzing and locating
operating systems and applications, identifying risk points based on the communication
traffic, tracking data flow, and performing a static analysis. We utilized this method to
identify BOF vulnerabilities in commercial ADAS devices and employed ROP to achieve
remote command execution. Additionally, we developed a remote vehicle control proce-
dure through a reverse engineering analysis of CAN bus traffic and BOF vulnerabilities
and proved its feasibility on actual vehicles.
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It should be noted that current research often assumes accessibility to the ADAS’s local
area network, which may not be feasible in real attack scenarios. Merely relying on BOF
vulnerabilities for attacking vehicles is insufficient. It is essential to explore wireless access
methods to enhance the effectiveness of attacks. Future efforts will involve exploring more
feasible remote attack paths, such as integrating security research on T-Box or in-vehicle
entertainment systems, to establish a comprehensive attack chain. This approach aims to
enable wireless access to a vehicle’s internal network and gain control over the vehicle.
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