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Abstract: With the proliferation of video surveillance system deployment and related applications,
real-time video analysis is very critical to achieving intelligent monitoring, autonomous driving,
etc. Analyzing video stream with high accuracy and low latency through the traditional cloud
computing represents a non-trivial problem. In this paper, we propose a non-orthogonal multiple
access (NOMA)-based edge real-time video analysis framework with one edge server (ES) and
multiple user equipments (UEs). A cost minimization problem composed of delay, energy and
accuracy is formulated to improve the quality of experience (QoE) of the UEs. In order to efficiently
solve this problem, we propose the joint video frame resolution scaling, task offloading, and resource
allocation algorithm based on the Deep Q-Learning Network (JVFRS-TO-RA-DQN), which effectively
overcomes the sparsity of the single-layer reward function and accelerates the training convergence
speed. JVFRS-TO-RA-DQN consists of two DQN networks to reduce the curse of dimensionality,
which, respectively, select the offloading and resource allocation action, as well as the resolution
scaling action. The experimental results show that JVFRS-TO-RA-DQN can effectively reduce the
cost of edge computing and has better performance in terms of convergence compared to other
baseline schemes.

Keywords: mobile edge computing (MEC); non-orthogonal multiple access (NOMA); video offloading;
resource allocation; deep reinforcement learning (DRL)

1. Introduction

Along with the development of the communication infrastructure and embedded
systems, a number of cameras have been deployed around the world to collect environ-
mental information, including traffic monitoring, electronic health care, object tracking,
and smart robotics [1]. According to Cisco’s forecast, video streaming will account for 80%
of total Internet traffic by 2023 [2]. In particular, surveillance cameras can produce video
transmissions of nearly 25–30 frames per second. Low frame rate (1.25 Hz) moving image
sequences generate more than 100 Mb data per second. However, camera sensors have
limited computing ability and only support low-complexity recognition algorithms, which
means that the video recognition accuracy is limited. In addition, deploying a network
which only uses cameras to meet computing requirements is too costly for the system. To
obtain the information from a video, it is necessary to send the video frames taken by the
user equipments (UEs) to a data center with abundant calculation resources, and deal with
the desired scene information. However, the bandwidth, which is needed to efficiently
transmit, and the analysis accuracy of the video stream is prohibitive. In addition, video
analytics are also computation-intensive, and analysis of the video on the UEs and the
cloud data centers alone cannot meet the requirements of resource and delay. Although
many researchers have tried to solve this problem, the huge challenge of the video analysis

Future Internet 2023, 15, 184. https://doi.org/10.3390/fi15050184 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15050184
https://doi.org/10.3390/fi15050184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2917-1976
https://doi.org/10.3390/fi15050184
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15050184?type=check_update&version=3


Future Internet 2023, 15, 184 2 of 19

delay is due to a lack of effective performance. Mobile edge computing (MEC)-based video
analysis is the only feasible method to satisfy the demand for a large volume of video
streams in real-time.

As an emerging computing architecture, MEC can decentralize the computing ability
from centralized cloud centers to users and mobile devices, which are close to the edge
of the network [3]. Computing the task at the edge of the network can not only reduce
the delay and the load of bandwidth, but also reduce the risk of privacy leakage and
improve data security. Most of the existing articles on task offloading adopt an orthogonal
frequency division multiple access technology (OFDMA) [4], which can only provide
a single channel resource for the UEs and has low bandwidth resource utilization. To
improve the utilization of bandwidth resources, non-orthogonal multiple access (NOMA)
has been proposed [5]. Unlike orthogonal multiple access technology (OMA), NOMA can
accommodate more users via non-orthogonal resource allocation, that is, it can provide
services to multiple users on the same subchannel at the same frequency and time, thus
improving spectral efficiency [6,7]. Applying NOMA technology to the video offloading
process can effectively increase the capacity of the bandwidth resources, reduce the delays
of video stream offloading, and improve the user’s quality of experience (QoE) [8].

However, real-time video analysis is not easy. Offloading video to the edge for analysis
requires high demands on resources and latency, which needs to dynamically balance the
transmission and computation processes. Specifically, video analysis usually has a high
demand for resources. Analyzing the video frame by frame requires a large amount of
computing resources [9,10], which may easily lead to a long delay [11]. Moreover, the
complex network structure necessitates the consumption of several GBs of memory. Due
to the limitation of the computational resources of the edge, it is necessary to enact a
reasonable offloading decision and resource allocation to satisfy the demand of delay.
Generally, the offloading decision optimization problem is always combined with resource
allocation, which leads to a non-convex NP problem, where it is difficult to determine the
best way to allocate resources in a distributed environment.

Recently, deep reinforcement learning (DRL) has been widely used in many applica-
tions of mobile communication [12]. Using DRL to improve the performance of large-scale
dynamic video analysis is quite interesting, however, the video analytic system lacks an
effective mechanism to optimize the video configuration adaptively, which causes low re-
source utilization. Specifically, we use the video frame resolution as an example to illustrate
the impact of the video configuration on the accuracy and latency of video analysis. In this
paper, we divide the total time into several equal time slots and define “fps” as the numbers
of video frames for each time slot. Images with a higher resolution may be more accurate,
however, they may cause a long transmission delay. When the network bandwidth is time-
varying, translating video with a higher resolution may increase resource consumption and
cause high latency, while translating video with a lower resolution may reduce the network
utilization and the analysis accuracy. Therefore, it is necessary to propose an algorithm to
select the video frame resolution adaptively, according to the state of the network.

Based on the above discussion, this paper proposes the joint video frame resolution
scaling, task offloading, and resource allocation algorithm based on Deep Q-Learning Net-
work (JVFRS-TO-RA-DQN) to optimize video edge offloading and the resource allocation
decision. The key contributions of this paper are as follows.

• A two-layer NOMA-enabled video edge scheduling architecture is proposed, where UEs
are divided into different clusters of NOMA, and the tasks generated by UEs in the same
cluster are offloaded over a common subchannel to improve the offloading efficiency.

• An attempt is made to optimize the QoE of the UE by formulating a cost-minimization
problem composed of delay, energy, and accuracy in order to weigh up the relationship
between these three parameters.

• The JVFRS-TO-RA-DQN algorithm is proposed to solve the joint optimization problem.
The JVFRS-TO-RA-DQN algorithm contains two DQN networks; one is used to select
offloading and resource allocation action, and the other is used to select video frame
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resolution scaling action, which effectively overcomes the sparsity of the single-layer
reward function and accelerates the training convergence speed.

• The experimental results show that the JVFRS-TO-RA-DQN algorithm can achieve
better performance gains in terms of improving video analysis accuracy, reducing total
delay, and decreasing energy consumption compared to the other baseline schemes.

The rest of this article is organized as follows. In Section 2, we review the relevant
work carried out in other studies. Section 3 provides a description of the problem and the
scheduling model, and Section 4 depicts the details of our algorithm’s implementation. In
Section 5, the results of the simulation are analyzed, and finally, we summarize our work in
Section 6.

2. Related Works
2.1. NOMA-Enabled Task Offloading in MEC Scenarios

Video surveillance systems have been used extensively in various industries, and are
gradually becoming intelligent, for example, face recognition and object detection [13,14],
etc. Along with the rapidly growing number of video monitoring applications, it is neces-
sary to transfer and analyze an increasing amount of video data. MEC has great potential
in terms of reducing delays [15–18], and energy consumption [19–21] due to its intelli-
gence in computing and caching. It is possible to reduce the transmission burden and
latency by offloading the computation-intensive and latency-sensitive tasks to the MEC
server. In order to further optimize the spectrum resource allocation and achieve high
speed transmission and wide coverage, most studies combined NOMA and MEC. The
authors in [22] focused on the partial offloading and binary offloading problems under time
division multiple access and NOMA and tried to maximize the computing efficiency of
the system. The authors in [23] proposed the ultra-dense heterogeneous network (UDHN)
based NOMA-MEC system and studied the resource allocation problem of multi-SBS and
multi-users to minimize user energy consumption and task delay. The authors in [24]
focused on reducing the transmission delay and optimizing workload offloading allocation
in a downlink NOMA-based MEC system. To solve this problem, they designed a channel
quality ranking algorithm to obtain the optimal offloading decision. The authors in [25]
considered the random task arrival and the uncertainty of channel conditions, and they
proposed a decentralized DRL framework to solve the problem of power allocation, where
the state was based on local observations. In addition, NOMA technology is also applied
in many practical situations to improve spectrum utilization, such as robotics, unmanned
aerial vehicle (UAV), and smart healthcare scenarios, e.g., where multiple users offload
tasks to the MEC simultaneously. The authors in [26] proposed a communication enabled
indoor intelligent robots (IRs) service framework, which adopted the NOMA to support
the highly reliable communications. The efficiency and communication reliability of the IRs
was maximized using a DRL-based algorithm. The authors in [27] considered a framework
for computation offloading in which UAVs used NOMA and MEC techniques to serve
mobile users. They introduced federated learning and reinforcement learning to solve
the problem of privacy restriction between the UAVs. In order to satisfy the ultra-reliable
low-latency connectivity requirements of the remote-e-Health systems, the authors in [28]
considered applying a NOMA to the e-Health systems and proved that the NOMA exhibits
an excellent performance in the scenarios of fifth generation and beyond. These solutions
provide certain insights in to applying a NOMA to enable efficient task offloading in MEC
scenarios, while also providing a feasible scheme through which to solve the efficient
transmission of video data.

2.2. Video Analysis in MEC Scenarios

Due to the increasing demand of video surveillance applications for resources [29], of-
floading them to edge devices for computing has been widely studied by industry scholars.
Additionally, these studies focus on optimizing the target through intelligent offloading or
adaptive configuration. The authors in [30] observed ROI changes from the perspective of
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the UE, when they decoupled the rendering and offloading parts with fast object tracking
used locally in order to solve this problem. The authors in [31] investigated edge-end cloud
collaboration for real-time video analytics and designed an online algorithm to achieve
near-optimal utility by adjusting the quality of video frames generated on the UEs. The
authors in [32] designed a new video configuration decision-making system, which ex-
amined the influence of video content on the frame rate and the resolution of the video
stream. The authors in [33] optimized the video configuration and network bandwidth
resource allocation using the Lyapunov and the Markov approximation, which solved
the problems of resource limitation and network dynamic changes in edge-based video
analysis systems. To consider fairness and long-term system cost, as well as optimizing
the overall user QoE, the authors in [34] proposed an intelligent edge cache system to
solve the bandwidth requirement and delay tolerance of 3600 panoramic video footage.
To realize secure video sharing in vehicular edge computing, the authors in [35] designed
an attribute-based encryption algorithm with static and dynamic attributes, and utilized a
blockchain to record access strategies, which could ensure the data security and privacy of
the video footage. In order to improve the QoE of live-streaming video, the authors in [36]
first selected the candidate transcoding tasks by their contribution to popularity-weighted
video quality and assigned these tasks to MEC in a greedy manner. The authors in [37]
proposed a segment prefetching and edge caching algorithm to improve the QoE of Hyper
Text Transfer Protocol (HTTP) adaptive video streaming. They first proposed and analyzed
different segmentation prefetch strategies to dynamically adapt to the current conditions
of the network and the needs of service providers. Moreover, they presented segment
prefetching policies based on different approaches and techniques, and they studied their
performance and feasibility. However, for real surveillance video, the resolution can only
be selected downward. When the network resources are sufficient, we can then consider
selecting the higher resolution video using super-resolution techniques to obtain higher
video frame resolution and video analysis accuracy.

2.3. Video Offloading Based on DRL

In the last few years, the development of artificial intelligence (AI) technologies has led
to rapid progress of DRL in modeling, routing, and resource management with a model-free
environment. An adaptive video configuration network was pursued in [38] based on a
black-box approach, independent of a detailed analytical performance model. The authors
presented and designed an intelligent system named Cuttlefish, a type of smart coder
which can adapt to the needs of the users without using any pre-programmed models or
specific assumptions. The authors in [39] dealt with the problem of joint configuration
adaptation and bandwidth allocation in an edge-assisted real-time video analysis system.
They presented a novel approach which could select the configurations for multiple video
streams immediately based on the state of the network and the content of the video. To
work out the collaboration in the MEC network, an AI-based task allocation algorithm
was presented in [40], which was trained by using a self-play strategy. The algorithm
could detect a change in the network environment and adjust the resource allocation
decision simultaneously. The authors in [41] proposed a two-layer learning model based
on a DQN and a back propagation neural network to solve the joint decision of task
offloading, wireless channel allocation, and image compression ratio selection in video
analysis, and balance the accuracy of image recognition and processing delay. The authors
in [42] presented a new approach to allocating resources in MEC networks using a radio
map and DRL. Then, they presented a collaborative offloading and resource allocation
algorithm which was used to solve the problem of reducing system latency and energy
consumption. The authors in [43] considered the real-time video analytics of cameras based
on edge coordination. In order to realize highly energy-efficient video analysis in a digital
twin, a mobile device and edge coordination video analysis framework based on deep
reinforcement learning was proposed, which takes energy consumption, analysis accuracy,
and delay into consideration. However, using a DQN network to train the multi-parameter
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problem necessitates the calculation of the probabilities of various actions and the selection
of the action with the maximum probability, which leads to a high training delay and
reduces effectiveness. Therefore, it is worthwhile to study how the training efficiency can
be increased, and the precision of the network can be guaranteed.

3. System Model

The video edge scheduling model consists of two layers with different functional-
ities, the end layer and the edge layer, as shown in Figure 1. In the end layer, a set of
UEs is randomly distributed on the ground, which can be expressed as M = {1,2, . . . ,M}.
N = {1,2, . . . ,N} represents a set of clusters of NOMA, and K = {1,2, . . . ,K} denotes a set
of subchannels. All UEs in a NOMA cluster share one subchannel at the same time for
offloading, with each subchannel having an equal bandwidth. The UEs adopt a binary
offloading rule, that is, the task of each UE must be processed locally or offloaded to the
edge layer. The UEs continuously transmit video analysis tasks to the edge layer. In the
edge layer, a MEC server is integrated on a computation access point (CAP), which receives
the tasks offloaded to the edge layer, and the MEC server provides computing services
for tasks.

Figure 1. The video edge scheduling architecture.

The video stream calculation task of the UE m is expressed as Dm= {lm, cm, Tmax
m },

where lm represents the data size of the video stream task Dm, cm represents the total central
processing unit (CPU) cycles required for the video stream task Dm, and Tmax

m denotes the
maximum tolerance time for task Dm. After Tmax

m , task Dm will be declared the process
ended in failure. The data size lm of task Dm can be expressed as

lm = τ · η2
m, (1)

where τ represents the number of bits required for a pixel to carry information. η2
m indicates

the video frame resolution of task Dm.
Although the edge environment is constantly changing, the network state and video

data are stable within a short time range, therefore we split the time into discrete time
slots and each time slot has a duration. At the start of each time slot, the resources are
reconfigured according to the present state and historical trend to obtain the best resource
distribution status for the overall and long-term results. In the rest of this section, we
explain the NOMA-enabled transmission model (Section 3.1) and the edge computing
model (Section 3.2).
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3.1. NOMA-Enabled Transmission Model

We assume that each UE can only be grouped into one NOMA cluster [44]. We define
xm,n = 1 to indicate that UE m is assigned to the NOMA cluster n. On the other hand,
xm,n = 0 indicates that this assignment does not occur. Then,

N

∑
n=1

xm,n =

{
1, task Dm transmit to ES through NOMA cluster n,
0, task Dm is computed locally.

. (2)

Since the result obtained after video processing is very small, we do not consider the
process of sending the result back to the UEs, and only consider the process of offloading
the video stream to the MEC server. The uplink transmission rate of the UEs for the NOMA
scheme is

Rm =
1
K

W
N

∑
n=1

xm,n log2

1 +
pm,khm,k

σ2
k + ∑

j 6=m
pj,khj,k

, (3)

where W denotes the total transmission bandwidth, which may be bisected by K subchan-
nels; pm,k represents the transmit power of the UE m to the MEC server on subchannel k;
hm,k represents the channel gain between the UE m and the MEC server on subchannel k; σ2

k
indicates the noise power on the subchannel k. Then, the translation delay of UE m can be
expressed as

tU
m =

lm
Rm
· 1

ρm
, (4)

where ρm is the compression ratio of the video frame for UE m, which is determined by
video resolution and bit rate [45].

When the video stream task Dm is offloaded to the edge for computing, the energy
consumption generated by the UE m during transmission is

eU
m = pm,k · tU

m. (5)

3.2. Edge Computation Model

(1) Edge Computing: We denote F as the total computing capacity of the MEC server,
while κm is the ratio of computing capacity allocated by the MEC server to the UE m. Thus,
the computation delay of the task Dm offloaded to the MEC server is

tC
m =

cm

κmF
. (6)

The energy consumption generated by the UE m during edge processing is

eC
m = υ · (κmF)2 · cm, (7)

where υ = 10−27 is the effective switched capacitance of the CPU, determined by the CPU
hardware architecture.

(2) Local Computing: For task Dm computed locally, we use Floc
m to present the comput-

ing capacity of UE m. Thus, the latency of the task Dm processed locally is

tloc
m =

cm

Floc
m

, (8)

Thus, the energy consumption of the task processed locally is

eloc
m = υ ·

(
Floc

m

)2
· cm, (9)
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3.3. Problem Formulation

In order to optimize multiple conflicting goals equally, a common approach is to
give different weights to these conflicting goals, and then to weigh and sum the goals. In
this article, improving user accuracy and reducing processing latency are the basic goals.
According to the reference [46], the analytical accuracy ϕm of task Dm is expressed as the
ratio of the number of objects that are correctly identified to the total number of objects in a
video frame, which can be expressed as

ϕm = 1− 1.578e−6.5×10−3ηm , (10)

which is widely used in the relevant references [47–49].
Combined with Equations (4) and (6), the total latency generated by UE m offloaded

to the MEC server is composed of the transmission delay and computation delay, which
can be expressed as

to f f
m = tU

m + tC
m =

lm
Rm
· 1

γm
+

cm

κmF
, (11)

Combined with Equations (5) and (7), the total energy consumption generated by
UE m offloaded to the MEC sever is composed of transmission energy consumption and
computation energy consumption, which can be expressed as

eo f f
m = eU

m + eC
m = pm,k · tU

m + υ · (κmF)2 · cm, (12)

According to the assigned calculation model and communication model, the total
latency required for task Dm to be processed at t is expressed as

Tm =

(
1−

N

∑
n=1

xm,n

)
tloc
m +

N

∑
n=1

xm,nto f f
m , (13)

At the same time, the total energy consumption of the task Dm at t can be expressed as

Em =

(
1−

N

∑
n=1

xm,n

)
eloc

m +
N

∑
n=1

xm,neo f f
m , (14)

The states and video content are constantly changing, causing the offloading decision
and resource allocation strategies to need to be constantly adjusted to accommodate the
dynamics of our environment. When designing adaptive algorithms, our goal is to optimize
the cost function, consisting of delay Tm, energy consumption Em, and video analysis
accuracy ϕm, under long-term resource constraints. Based on the design of the utility
function in [47], the cost minimization function can be modeled as

min 1
m

M
∑

m=1
[ωtTm + ωeEm − (1−ωt −ωe)ϕm]

s. t. C1 : xm,n ∈ {0, 1}, ∀m ∈ M, n ∈ N

C2 :
N
∑

n=1
xm,n ≤ 1, ∀m ∈ M, n ∈ N

C3 : Tm ≤ Tmax
m , Em ≤ Emax

m , ∀m ∈ M
C4 : 0 ≤ pm,k ≤ Pmax

m , ∀m ∈ M, k ∈ K

C5 :
M
∑

m=1
κm ≤ 1, ∀m ∈ M

C6 : ηm ≥ ηmin
m , ∀m ∈ M

. (15)

In the cost function, ωt is the weight for the delay, and ωe is the weight for the energy
consumption, where ωt + ωe < 1. Constraint C1 in the objective function guarantees that a
UE can only be assigned to a NOMA cluster. Constraint C2 denotes that the UEs can only
select computed locally or offloaded to the MEC server. Constraint C3 ensures that the
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maximum total delay of UE m must be less than the tolerance time Tmax
m of task Dm, and

the total energy consumption of UE m cannot exceed the threshold Emax
m . Constraint C4

guarantees that the transmit power of UE m cannot exceed the threshold Pmax
m . Constraint

C5 ensures that the allocated computation capacity cannot exceed the total capacity of the
MEC server. Constraint C6 guarantees that the minimum video frame resolution of task
Dm must be higher than the threshold ηmin

m .
Two important challenges to solving this problem are the difficulty of the problem

itself, and the prediction of future network status, video content, and other information.
Since edge nodes typically run for months or years, in order to deal with the problem
of unpredictable future information, it is necessary to relax the constraints in each time
slot of the objective function to the average over a long period of time. In addition, the
optimization problem is a mixed integer nonlinear program which is hard to resolve even
if the future information is known. To address these two challenges, we need to design an
algorithm that provides the best offloading and resource allocation for video streaming
without being able to foresee future information.

4. Deep Reinforcement Learning-Based Algorithm

Based on the optimization target and constraints, the DRL-based algorithm is adopted.
In the rest of this article, we first define the state space, the action space, and the re-
ward function. Secondly, we present a more detailed description of the participant critic
algorithm framework.

4.1. Deep Reinforcement Learning Model

The deep reinforcement learning process reformulates the computational offloading
problem as a Markov Decision Process (MDP) model. A typical MDP model consists of a
tuple {S, A, P, R, γ} with five elements, where S represents the state space, A represents the
finite action space, P is the state transfer probability, R represents the reward function, and
γ ∈ [0, 1] is the discount factor for future rewards. Each element of the MDP model tuple
corresponds to the following meaning.

4.1.1. State Space

At time slot t, the state of the UEs includes basic information about the computational
task. The state space Sm,t ∈ St can be expressed as

Sm,t =
{

sm,t

∣∣∣sm,t = (lm, η2
m, hm,k, Tmax

m )
}

, (16)

where Sm,t denotes the state space at time slot t.

4.1.2. Action Space

At time slot t, the action of UE i is represented as

Am,t = {am,t|am,t = (αm, βm)}, (17)

It consists of two vectors: the task offloading and resource allocation vector αm, and
the video frame resolution scale vector βm. Vector αm contains two actions: the resource
allocation action xm,n, and the offloading decision action ∑N

n=1xm,n. xm,n represents whether
UE m is assigned to the NOMA cluster n, and ∑N

n=1xm,n represents whether task Dm needs
to be offloaded to the MEC server. Vector βm represents the action for the video frame
resolution compression ratio selection, where βm ∈ [0.5, 1.5].

In the MEC system network proposed in this paper, the MEC server distributes the
offloading and resource allocation policy to the UEs, however, the selection of the video
frames resolution should also be determined.
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4.1.3. Reward Function

The cost minimization function in this article contains multiple factors. Specifically,
our goal is to reduce latency and energy consumption, as well as improve video analysis
accuracy under long-term resource constraints. Therefore, the reward functions can be
designed based on the optimization problem.

We propose JVFRS-TO-RA-DQN, which contains two DQN networks. The first DQN
network selects the optimal offloading and resource allocation strategy, and the second
DQN network selects the appropriate video frame resolution scaling factor to ensure
the maximum accuracy of video analysis and to reduce the system delay and energy
consumption. A detailed description of the two reward functions is given below.

After performing the action Am,t, a reward rm,t will be obtained for the action Am,t + 1
that the edge server chooses to perform. The reward function is generally related to an
objective function, which aims to minimize the delay of the system in the context of task
offloading and resource allocation. However, the aim of reinforcement learning training is
to obtain the maximum long-term accumulation of rewards. Thus, the offloading reward
function of the UEs at time t can be designed as

ξm,t = −(ω1Tm + ω2Em). (18)

For UEs, it should be penalized if the accuracy of the next state is not within the
threshold after taking action αm,t. Therefore, the resolution scaling reward function is
designed as

ζm,t = (ωt + ωe − 1)ϕm, (19)

Finally, we use rm,t = ξm,t + ζm,t to represent the total reward of the system. By
maximizing the long-term cumulative reward rm,t, an efficient joint video frame resolution,
task offloading, and resource allocation strategy, which we abbreviate as JVFRS-CO-RA-
DQN in this paper, can be developed to achieve the minimization of system delay and
energy consumption while improving video analysis accuracy.

4.2. JVFRS-TO-RA-DQN Algorithm

In this section, we propose JVFRS-TO-RA-DQN to solve the problem of joint video
frame resolution scaling, task offloading, and resource allocation. The proposed algorithm
is based on DQN, which can study the offline historical data through the experience of
a simulation without requiring full environmental knowledge. The detailed algorithm is
shown in Figure 2.

According to the state of the system at present, the DQN algorithm maximizes the
predefined reward function by choosing an Am,t from a limited sum of actions.

In the process of training, apart from state Sm,t, action Am,t, policy π, and reward
function rm,t, the state-action value function Qπ(Sm,t, Am,t) determines the action Am,t of
the state Sm,t through a mapping function π(Am,t|Sm,t). If Qπ(Sm,t, Am,t) is updated at
each time step, then it is assumed that it will converge to the optimum state-action value
function Qπ’(Sm,t, Am,t). According to the Bellman equation, the evaluation of the quality of
a specific action in a given specific state can be expressed as

Qπ(Sm,t, Am,t) = (1− λ)Qπ(Sm,t, Am,t) + λ(rm,t + γmax
A′

Q(Sm,t+1, A′)), (20)

where λ represents the learning rate which reflects the rate of the algorithm adapting to a
new environment, where λ ∈ (0, 1]. Since the complexity of Equation (20) is exponentially
related to the number of state-action pairs, it is more difficult to solve Q values when the
state-action pairs increase. In order to accurately calculate the Q values, predicting the
values of Q between different state-action pairs is significant, and also represents the hinge
of the DQN algorithm.
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Figure 2. An illustration of the JVFRS-TO-RA-DQN architecture.

In contrast to using traditional tabular Q-learning for prediction, DQN has a special
replay memory structure to store the data generated after each step, including every step.
When the network is in training, it extracts some memory from the replay memory for
experiential learning. The replay memory has enough training data to fit the Q values of
different state-action pairs, which leads to

Qπ(S, A) ≈ Q̂(S, A, θ), (21)

where Q̂(·; θ) is a deep learning network function denoted by θ. Qπ(S, A) is updated by
minimizing the loss function, which is defined as

L(θ) = F
[(

rm,t + γmax
A′

Q(Sm,t+1, A′)−Q(S, A, θ)

)2
]

, (22)

The gradient descent algorithm is utilized to minimize the loss in Equation (22) and
therefore to update the weight θ, so as to make it possible to minimize the error between the
evaluation and the target. As a result, the neural network can predict more accurately as the
training process continues. The JVFRS-CO-RA-DQN algorithm is explained in Algorithm 1.
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Algorithm 1: JVFRS-CO-RA-DQN algorithm
Input: Dm, w, F, γ.
Output: αm, βm.

1: Initialize the evaluate network with random weights as θ

2: Initialize the target networks as a copy of the evaluate network with random weights as θ’
3: Initialize replay memory D
4: Initialize an empty state set S_Set
5: for episode = 1 to Max do
6: Initialize state Sm,t in Equation (16)
7: for t < T do
8: With probability ε to select a random offloading and resource allocation decision

αm,t; with probability δ to select a random resolution βm,t
9: Execute action αm,t, receive a reward ξm,t; execute action βm,t, receive a reward ζm,t
10: Combine αm,t and βm,t as Am,t, calculate rm,t with ξm,t and ζm,t, and observe the next

state Sm,t + 1
11: Store interaction tuple {Sm,t, Am,t, rm,t, Sm,t + 1} in D
12: Sample a random tuple {Sm,t, Am,t, rm,t, Sm,t + 1} from D
13: Compute the offloading target Q value and the scaling target Q value
14: Train the offloading target Q value and the scaling target Q value
15: Perform gradient descent with respect to θ

16: Update the evaluate Q-network and target Q-network
17: end for
18: end for

5. Experimental Results and Discussion

In this section, we evaluate the performance of JVFRS-CO-RA-DQN in terms of the
cost under different network conditions, the delay and analysis accuracy under different
minimum frame resolutions, and the convergence performance. We first describe the
parameter settings before delving into the simulation results.

5.1. Parameter Settings

In this study, we adapt Python 3.7 as the software tool to simulate the framework, and
the deep learning framework in JVFRS-CO-RA-DQN is PyTorch 1.4.0. The hardware is a
computer with Intel I7-13700HQ @ 2.5 GHz and 16-GB of memory. To verify the effective-
ness of the JVFRS-CO-RA-DQN algorithm proposed in this study, a network consisting of
one MEC, four NOMA clusters, and ten UEs is considered for experiments, with the UEs
randomly distributed within [0, 200] m from the MEC. The total communication bandwidth
W is 12 MHz. We define cm in correlation with the data size of the task as cm = cbit

m lm, where
cbit

m is 100 cycles/bit. The computational capacity of the MEC F is 12 GHz, the computa-
tional capacity of the UEs. Floc

m is [0.4, 2] GHz, the average energy consumption threshold
Emax

m is 15 J, and the number of bits required to carry information per unit pixel of video τ is
24. The minimum transmission power p of the UEs is 0.5 W, while the maximum tolerance
time tmax

m of task Dm is 30 ms. Based on the experimental data from the reference [46], we
adopt Equation (10) as the analytic accuracy function on both edge servers and the UEs,
and the video frame resolution is higher than 40,000 px (200 × 200). The parameters are
shown in Table 1.
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Table 1. Simulation parameters.

Parameters Value

Number of UEs, M 10
Number of NOMA clusters, k 4
The distance between the MEC server and UEs [0, 200] m
The total communication bandwidth, W 12 MHz
CPU cycles required for unit bit task, cbit

m 100 cycles/bit
The computational capacity of the MEC server, F 10 GHz
The computational capacity of the UEs, Floc

m [0.4, 2] GHz
Average energy consumption threshold, Emax

m 15 J
Required bits representing one pixel, τ 24
Maximum transmission power, p 0.5 W
Maximum tolerance time for task, tmax

m 30 ms
Minimum video frame resolution, ηmin

m 40,000 px (200 × 200)
Constant of the IoT device, υ 1 × 10−27

Compression ratio of the video frame for UE, ρm 74
Discount factor, γ [0, 1]
Batch size, Z 128
Replay buffer, B 100

5.2. Result Analysis

To assess its performance fairly, the proposed scheme was compared with four
baseline schemes:

(1) Local Computing Only (LCO): the video streams are processed totally at the UEs with
∑n=1 Nxm,n = 0, ∀m ∈M, which has a fixed video frame resolution.

(2) Edge Computing Only via OMA (ECO-OMA): the video streams are totally offloaded
to and processed at the MEC server with xm,n = 1, ∀m ∈M, n ∈ N, which has a fixed
video frame resolution.

(3) JVFRS-TO-RA-DQN via OMA (JVFRS-TO-RA-DQN-OMA): Unlike JVFRS-TO-RA-
DQN, task Dm generated by UE m are offloaded to the MEC server through OMA.
Each UE has an independent subchannel. We use ym to denote whether task Dm
offloaded to the MEC server, ym = 1 denotes that task Dm were offloaded to MEC
sever; otherwise, ym = 0.

(4) Task offloading and a resource allocation algorithm based on DQN via NOMA (TO-
RA-DQN-NOMA) [50]: Compared with JVFRS-TO-RA-DQN, TO-RA-DQN-NOMA
does not consider the change in video frame resolution, which means that it has a
fixed video frame resolution.

(5) Maximum accuracy algorithm via NOMA (MA-NOMA) [46]: Compared with JVFRS-
TO-RA-DQN, MA-NOMA implements maximum accuracy with the largest frame
resolutions in NOMA.

A comparison between the six algorithms is shown in Table 2.

Table 2. Algorithm comparison.

0–1
Offloading NOMA Resolution Delay and

Energy

LCO × × ×
√

ECO-OMA × × ×
√

JVFRS-TO-RA-DQN-OMA
√

×
√ √

TO-RA-DQN-NOMA
√ √

×
√

MA-NOMA
√ √ √

×
JVFRS-TO-RA-DQN-NOMA

√ √ √ √

We first take the experiment in a specific scene with k = 4, M = 10, F = 10 GHz,
W = 12 MHz and ηmin

m = 200 × 200 px. Then, we record the system delay under five
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different schemes. We take 1500 experiments and average the experimental data, which is
exhibited in Table 3. The average latency of the JVFRS-TO-RA-DQN scheme is 167.71 ms.
That is about 48.14% less than the JVFRS-TO-RA-DQN-OMA scheme, about 33.38% less
than the TO-RA-DQN-NOMA scheme, and about 59.01% less than the MA-NOMA scheme.

Table 3. The average latency of six schemes.

LCO ECO-OMA JVFRS-TO-RA-
DQN-OMA

TO-RA-DQN-
NOMA MA-NOMA Proposed

The bandwidth of
subchannel (MHz) 1.2 1.2 1.2 3 3 3

Average delay (ms) 644.54 801.49 323.42 251.77 409.66 167.71

The influence of different communication bandwidths on the cost function is shown in
Figure 3. We take 1500 experiments and average the experimental data in a scene with k = 4,
M = 10, F = 10 GHz, ηmin

m = 200 × 200 px and W ranging from 2 MHz to 12 MHz. Figure 3
exhibits the effect of different communication bandwidths on the cost in this scenario under
six schemes. First of all, the cost of all schemes decreases as the communication bandwidth
increases, except for that of the LCO scheme. This is because the LCO scheme transmits
only at the UEs, and a change in the network communication bandwidth does not affect it.
Additionally, the average cost of LCO schemes almost does not change. However, the cost
of other schemes decreases as the communication bandwidth increases because every UE is
able to allocate more bandwidth and the delay and energy consumption of communication
transmission is also reduced. The cost of the proposed algorithm is reduced by about
49.51% compared with the JVFRS-TO-RA-DQN-OMA scheme at W = 6 MHz, and by about
34.17% compared with the TO-RA-DQN-NOMA scheme at W = 6 MHz.

Figure 3. The effect of communication bandwidth on the cost.

Figure 4 depicts the effect of the different computational capacities of the MEC server
on the cost function. We take 1500 experiments and average the experimental data in a
scenario with k = 4, M = 10, W = 10 GHz, ηmin

m = 200 × 200 px and F ranging from 2 MHz
to 12 MHz. Due to the fact that the UEs do not utilize the computing resources of the
MEC server, the LCO schemes will not change as the computational capacity of the MEC
server increases. However, the other schemes are reduced as the computational capacity
of the MEC server increases since more computer source is allocated for MEC, with the
computation time also being shortened accordingly. It is obvious that the average cost is
mostly affected by other elements when the computational capacity of the MEC server is
much bigger than the computational capacity of the UEs.
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Figure 4. The effect of computational capacity of MEC on the cost.

Except for the delay and energy consumption, the video analytic accuracy is also
affected by the video frame resolution. We modify the minimum video frame resolu-
tions in this experiment to estimate the influence of resolution on accuracy. We take
1500 experiments and average the experimental data in a scenario with k = 4, M = 10,
F = 10 GHz, W = 10 GHz, and ηmin

m ranging from 200 × 200 px to 700 × 700 px. When
calculating the accuracy, we assume that the system can detect all objects when the video
frame resolution is 700 × 700 px. The video frame resolution is lower than 700 × 700 px,
and the optimized resolution is between the minimum and the maximum video frame
resolutions. The video frame resolution of the LCO scheme, the ECO-OMA scheme, and
the TO-RA-DQN-NOMA scheme is identified as the average of the minimum and the
maximum video frame resolutions.

Figure 5 shows the effects of different minimum frame resolutions on the average
delay. As illustrated in Figure 5, the average delay of all the algorithms increases as the
minimum video frame resolutions change, except for the MA-NOMA. This is because
the MA-NOMA always keeps the highest resolution, and the change of minimum frame
resolution does not affect it. The proposed algorithm maintains minimum average delay,
which means the proposed algorithm can adjust the resolution of video frame adaptively
to reduce the system average delay. The average delay of the JVFRS-TO-RA-DQN-OMA
scheme is higher than that of the proposed algorithm, which means that the delay of the
NOMA enabled MEC system is superior to that of the OMA.

Figure 5. The effect of minimum frame resolution on average delay.
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Figure 6 shows the effects of different minimum frame resolutions on video analytic
accuracy. It is demonstrated that the MA-NOMA algorithm always maintains the highest
level of accuracy, which is because the system can detect all objects when the video frame
resolution is 700 × 700 px. The analytic accuracy of the proposed algorithm is lower
than TO-RA-DQN-NOMA’s, for the proposed algorithm sacrifices the analytic accuracy to
reduce delay and energy consumption. The influence of delay and energy on the system is
gradually increasing when the minimum video frame resolution is larger than 500 × 500 px,
the video analytic accuracy is almost steady.

Figure 6. The effect of minimum frame resolution on video analytic accuracy.

We then depict the process of convergence with the TO-RA-DQN-NOMA algorithm
and the proposed algorithm in a scenario with k = 4, M = 10, F = 10 GHz, W = 12 MHz
and ηmin

m = 200 × 200 px. Figure 7 depicts the performance differences between the TO-
RA-DQN-NOMA algorithm and the proposed algorithm at different learning rates. On
the one hand, the proposed algorithm obtains correspondingly higher rewards than the
TO-RA-DQN-NOMA scheme. This is owing to the fact that different algorithms lead to
different offloading decisions, which means that the video frames offloaded to MEC are
different, while the average delay and video analysis accuracy are also different. Compared
with TO-RA-DQN-NOMA algorithm, the simulation data in Table 4 indicates that the
proposed algorithm has better performance than the TO-RA-DQN-NOMA algorithm, in
terms of video analytic accuracy. Moreover, the convergence rate of the proposed algorithm
is higher than that of the TO-RA-DQN-NOMA algorithm. Furthermore, it was discovered
that after training about 200 epochs, the learning rates of the proposed algorithm are 10−6

and 10−7, converging to a reward value. On the other hand, after training more than
400 epochs, the learning rates of the TO-RA-DQN-NOMA algorithm are 10−6 and 10−7,
converging to a reward value.

Table 4. The video analytic accuracy of the two schemes.

TO-RA-DQN-NOMA Proposed

Learning rate of 10−6 95.87% 98.74%
Learning rate of 10−7 95.96% 98.82%
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Figure 7. Convergence performance of the proposed algorithm and the TO−RA−DQN−NOMA
algorithm under different learning rates.

Figure 8 shows the convergence performance of the proposed algorithm under differ-
ent numbers of UEs. We take the experiment in a scene with k = 4, F = 10 GHz, W = 10 GHz,
ηmin

m = 200 × 200 px, M = 10, 15, and 20. The algorithm converges rapidly and steadily no
matter how many UEs there are. Furthermore, the average reward of 10 UEs apparently
exceeds that of 15 UEs. The average reward of 10 UEs converges to a reward for training
at approximately 120 epochs, the average reward of 15 UEs converges to a reward for
training at approximately 270 epochs, and the average reward of 20 UEs converges to a
reward value at over 400 epochs. This is due to the fact that more UEs are able to offload
computing tasks at a higher efficiency than when there are fewer UEs, which reduces the
energy consumption of UEs while enhancing the users’ QoE on the basis of latency, energy
consumption, and video analytic accuracy.

Figure 8. Convergence performance of the proposed algorithm with different numbers of UEs.

6. Conclusions

With the popularization of video surveillance applications and the diversification of
functional applications, real-time video stream analysis is of great value for intelligent mon-
itoring, smart cities, autonomous driving, and other scenarios. In this paper, we designed
a NOMA-enabled smart video analysis system with multiple UEs for the purpose of im-
proving the video analytic accuracy, reducing the average delay, and decreasing the energy
consumption. Aiming to optimize the QoE of UEs, we formulated a cost minimization
problem composed of delay, energy, and accuracy to weigh up the relationship between
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these three parameters. The cost minimum function was an NP-hard problem with high
dimensional nonlinear mixed integer programming, which was difficult to calculate the
optimal solution. The JVFRS-TO-RA-DQN algorithm was proposed to solve the above
problem. The proposed algorithm contains two DQN networks one was used to select
the offloading and resource allocation actions, and the other was used to select video
frame resolution scaling actions, which effectively overcame the sparsity of the single-layer
reward function and accelerated the training convergence speed. A large number of sim-
ulation experiments showed that the JVFRS-TO-RA-DQN algorithm can achieve better
performance in improving video analysis accuracy, reducing total delay and decreasing
energy consumption compared to other baseline schemes.
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