
Citation: Kenyeres, M.; Kenyeres, J.

Distributed Average Consensus

Algorithms in d-Regular Bipartite

Graphs: Comparative Study. Future

Internet 2023, 15, 183. https://

doi.org/10.3390/fi15050183

Academic Editor: Massimo Cafaro

Received: 14 April 2023

Revised: 12 May 2023

Accepted: 15 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Distributed Average Consensus Algorithms in d-Regular
Bipartite Graphs: Comparative Study
Martin Kenyeres 1,* and Jozef Kenyeres 2

1 Institute of Informatics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 07 Bratislava, Slovakia
2 Frequentis AG, Innovationsstraße 1, 1100 Vienna, Austria; jozef.kenyeres@frequentis.com
* Correspondence: martin.kenyeres@savba.sk

Abstract: Consensus-based data aggregation in d-regular bipartite graphs poses a challenging task
for the scientific community since some of these algorithms diverge in this critical graph topology.
Nevertheless, one can see a lack of scientific studies dealing with this topic in the literature. Motivated
by our recent research concerned with this issue, we provide a comparative study of frequently
applied consensus algorithms for distributed averaging in d-regular bipartite graphs in this paper.
More specifically, we examine the performance of these algorithms with bounded execution in this
topology in order to identify which algorithm can achieve the consensus despite no reconfiguration
and find the best-performing algorithm in these graphs. In the experimental part, we apply the
number of iterations required for consensus to evaluate the performance of the algorithms in randomly
generated regular bipartite graphs with various connectivities and for three configurations of the
applied stopping criterion, allowing us to identify the optimal distributed consensus algorithm
for this graph topology. Moreover, the obtained experimental results presented in this paper are
compared to other scientific manuscripts where the analyzed algorithms are examined in non-regular
non-bipartite topologies.

Keywords: bipartite graphs; consensus; data aggregation; distributed averaging; distributed
computing; information fusion; multi-agent systems; regular graphs

1. Introduction

This section, which provides theoretical insight into the subject topic, is divided into
five subsections, namely:

� Data Aggregation in Multi-Agent Systems: this subsection explains the importance of
data aggregation, contains its definition and four-step process, discusses the benefits
of its application, provides insight into multi-agent systems (MASs), and justifies the
application of data aggregation mechanisms in these systems;

� Distributed Consensus-Based Data Aggregation: in this subsection, we explain the
general meaning of the term consensus, its meaning in the context of MASs, and the
requirements for distributed consensus algorithms;

� Theoretical Insight into d-Regular Bipartite Graphs: this subsection provides the
definition of d-regular bipartite graphs, their graphical example, and examples of their
applications;

� Our Contribution: this subsection specifies our contribution presented in this paper
and justifies the benefit of this manuscript compared to related papers;

� Paper Organization: here, the paper structure is provided.

1.1. Data Aggregation in Multi-agent Systems

How to efficiently combine data from independent information sources is a com-
plicated issue in many contexts [1]. As the data volume around us grows every day,
understanding this impenetrable mass of data is becoming an increasingly difficult task

Future Internet 2023, 15, 183. https://doi.org/10.3390/fi15050183 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15050183
https://doi.org/10.3390/fi15050183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2430-1126
https://doi.org/10.3390/fi15050183
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15050183?type=check_update&version=1


Future Internet 2023, 15, 183 2 of 24

in the so-called big data era [2]. Therefore, many experts from various areas have been
dealing with this challenge over the last decades [3–6]. As seen in the literature [7–11],
data aggregation seems to be an appropriate technique to organize the mass of raw data
in a meaningful manner. In general, one can understand the term data aggregation as a
data/information mining process for searching, collecting, and expressing a set of raw data
from independent sources in a more transparent and summarized form [12]. In other words,
it is a commonplace procedure to simplify various daily processes in our technologically
developed era [13]. Data aggregation enables the effective identification of patterns (hard
to identify by a common user) in a processed dataset [14]. The final form of aggregated
data is conditioned by the purpose that the data are expected to be used for. Generally,
the process of data aggregation can be partitioned into four successive phases, namely [15].

� Phase 1: extracting data from independent sources;
� Phase 2: storing the extracted data;
� Phase 3: interpretation of the stored data;
� Phase 4: presenting the processed data in an appropriate form.

As seen in the literature [16–19], the application of data aggregation is beneficial
in various areas e.g., the financial sector, marketing, medicine, technical industries, etc.
In this paper, we consider a group of independent entities (referred to as agents) forming
MAS, where data aggregation is exploited in order to optimize the applications executed
in these systems in numerous aspects [20]. The agents in these systems are required to
communicate with each other and interact with their adjacent environment (see Figure 1
for the characteristic features of agents forming MAS) [11]. The primary task of MASs
is to efficiently and quickly solve difficult issues unmanageable for individual solvers.
This technology has applications in different areas, e.g., artificial intelligence, monitoring,
control, grid computing, military, electronics, manufacturing, etc. [21].

Figure 1. Characteristic features of agents forming multi-agent systems.

In this paper, we consider a scenario where agents of MAS are expected to indepen-
dently measure a physical quantity of one’s interest, and an algorithm for aggregating these
independent data is subsequently applied in order to determine an appropriate aggregate
function from these measured values (see Figure 2 for a general architecture of the data
aggregation in this scenario). Thus, data aggregation includes the process of forwarding a
summary of measured data instead of all the data. As discussed in [22], the aggregation of
sensor-measured values in scenarios such as this one can suppress many negative environ-
mental factors (e.g., pressure variations, temperature, noises, radiation, etc.) whereby the
quality of service (QoS) can be significantly optimized in many topical MASs. Moreover, its
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application can remove highly correlated or even duplicated sensor-measured values and,
thus, also optimizes the overall energy consumption.

Figure 2. Process of data aggregation in examined scenario.

In this paper, we focus our attention on distributed average consensus algorithms,
which represent a frequently applied solution for the aggregation of data in many tech-
nologies, e.g., wireless sensor networks, the Internet of Things, blockchains, etc., as shown
in [23–25].

1.2. Distributed Consensus-Based Data Aggregation

The consensus problem is a multi-disciplinary scientific field addressing how to
achieve general agreement on some fact among the entities of a given community/group
with different attitudes towards this fact [26]. As shown in the literature [27–32], the term
consensus is applicable in various areas, e.g., cryptocurrencies, economics, bioinformatics,
control of unmanned aerial vehicles (UAVs), load balancing, clock synchronization, etc.
In Figure 3, we show an example of a group of eight children with and without a consensus
on their opinions.

Figure 3. Group of eight children with and without consensus.

In computer science, the term distributed consensus can be understood as a process of
reaching an agreement among the agents of MASs with different initial values on a single
data value (for example, arithmetic mean, sum, extreme, etc.) [33]. Simply said, agents of
MASs are computerized devices (e.g., wireless sensor nodes) concurrently accomplishing
some goals by regularly exchanging necessary information with each other in order to
fulfill a specific task [34]. The agents of MASs are able to achieve the consensus only if
the same consensus algorithm is followed. As stated in [35,36], a consensus algorithm is
required to meet these three conditions (otherwise, the consensus among the agents of
MASs cannot be achieved):

� Agreement: all the non-faulty agents of MASs are required to agree on the same value
(resp. on a precise estimate of this value);
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� Validity: All the agents of MASs have to agree on a value suggested by the values of
these agents. In other words, none of the non-faulty agents in MASs can decide on a
value that is not suggested by the value of the agents in the system;

� Termination: the distributed consensus is achieved, provided that each non-faulty
agent in MASs is in the agreement with all the other ones.

In Figure 4, we depict an example of a network with the broken conditions discussed
above and the proper execution. Here, we assume that a distributed consensus algorithm
for finding the minimum from the measured dataset is applied.

Figure 4. Network with three broken conditions required to be met by consensus algorithms and
error-free execution—min-consensus is applied.

1.3. Theoretical Insight into d-Regular Bipartite Graphs

This subsection is concerned with d-regular bipartite graphs, one of this paper’s
primary points of interest. First, let us focus on their definition provided in Definition 1
and their sample topology shown in Figure 5.

Definition 1. A graph G is said to be d-regular bipartite if [37,38]:

� Definition of d-regular graphs: the degree of each vertex from V is the same and equal to d;
� Definition of bipartite graphs: its vertex set V is splittable into two disjoint subsets such that

two vertices from the same disjoint subset are not linked to one another.

Figure 5. Example of 3-regular bipartite graphs formed by fourteen vertices.

Thus, d-regular bipartite graphs are a graph type that is regular and bipartite, as seen
above. In other words, regular graphs can be understood as graphs with pre-defined degree
sequences and gain significant attention in terms of both the practical and theoretical views
[39]. Bipartite graphs are graphs where each edge belongs to an odd number of bonds and
are also often points of interest. As one can see in the literature [39–41], regular bipartite
graphs have found applications in various areas and contexts (e.g., finding the perfect
matching, quantum machine learning, Poincaréand log-Sobolev inequalities, etc.) over
the past decades. As further shown in [42–45], bipartite graphs are often used in social
networks to describe scenarios where a mutual connection exists only between two distinct
sets (e.g., supporting learning, majority opinion diffusion, the core–periphery problem,
joining a collaboration network, joining a bibliographic network, etc. ). As further seen
from the papers, regular graphs are also frequently applied in social networks. As shown in
[46], regular and irregular bipartite graphs also have applications in biology. The authors of
that paper present Nash equilibria for games that are played on these topologies. Moreover,
it is discussed in the paper that bipartite graphs can be applied to many interactions, such
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as plant–animal mutualisms, pollinator webs, seed dispersal, etc. As further seen from [47],
regular bipartite graphs also have applications in networks. The authors of that paper apply
the Cartesian and tensor product approaches as a tool to decompose bipartite circulant
graphs into numerous graph categories. In addition, the application of the mentioned
graph types is also seen in other areas such as medicine, linguistics, physics, etc. [48–50].

1.4. Our Contribution

As seen in the literature preview, there is a lack of papers concerned with an analysis
of distributed consensus algorithms in d-regular bipartite graphs even though this critical
graph topology can cause the divergence of an algorithm [51]. As mentioned earlier in this
paper, we focus our attention on a comparative study of frequently applied distributed
consensus algorithms in randomly generated d-regular bipartite graphs with various
connectivities. Namely, we chose the following algorithms for examination:

� Maximum-Degree weights (MD);
� Local-Degree weights (LD);
� Metropolis–Hastings algorithm (MH);
� Best-Constant weights (BC);
� Convex Optimized weights (OW);
� Constant weights (CW);
� Generalized Metropolis–Hastings algorithm (GMH).

More specifically, we examined these algorithms by applying a common metric for
performance evaluation with the assumptions that their execution is bounded by a stopping
criterion with various precisions, and the arithmetic mean from the initial inner states of
all the agents in MASs was estimated. As identified in our recent paper [52], MD and
LD do not converge in d-regular bipartite graphs as the third convergence condition is
broken in this topology. However, as shown in [53], the inner states of both algorithms
oscillate between two values instead of approaching infinitely high values (as shown in [52],
the divergence usually results in the second case). Despite the mentioned divergence,
it is, thus, meaningful to also include these two algorithms in our analyses since the
consensus can theoretically be achieved due to the mentioned oscillation and the application
of a stopping criterion. The primary intention of this paper was to identify the best-
performing distributed consensus algorithm and verify whether all the algorithms with
bounded execution can achieve the consensus in d-regular bipartite graphs. Moreover,
the experimentally obtained results are compared to related papers where these algorithms
are examined in non-regular non-bipartite graphs.

1.5. Paper Organization

This paper is organized into six sections, namely:

� Section 2—Related Work: this is divided into two subsections and consists of topical
and frequently cited papers addressing either consensus-based data aggregation in
subjected/closely related graph topologies or the algorithms chosen for evaluation in
non-regular non-bipartite graphs;

� Section 3—Theoretical Background: this is divided into three subsections and provides
the used mathematical model of MASs, a general definition of distributed consensus
algorithms, and the weight matrices of the examined distributed average consensus
algorithms;

� Section 4—Experiments and Discussion: this is formed by three subsections again, con-
sisting of the applied research methodology, experimental results, and a comparison
of our conclusions with conclusions presented in papers where the selected algorithms
are examined in non-regular non-bipartite graphs;

� Section 5—Conclusions: this provides a brief summary of the contribution presented
in this paper;

� Appendix A—Appendix: this contains tables with the experimental results in numeri-
cal form.
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2. Related Work

This section consists of two subsections, namely:

� Distributed Consensus Algorithms in d-Regular Bipartite Graphs: this subsection
introduces papers addressing consensus-based algorithms for data aggregation in
regular bipartite graphs and related graphs;

� Distributed Consensus Algorithms in non-Regular non-Bipartite Graphs: in this
subsection, we provide an overview of papers concerned with a comparison of the
chosen algorithms in non-regular non-bipartite graphs.

2.1. Distributed Consensus Algorithms in d-Regular Bipartite Graphs

As shown in the literature, only a few papers are concerned with distributed average
consensus algorithms in regular bipartite graphs even though this topology may prevent
some of these algorithms from functioning properly.

In [51], the authors examine MD and GMH in this graph topology and identify that
both MD and GMH with the optimal mixing parameter (LD) diverge in these graphs.
In [52], a novel distributed mechanism for detecting MD in regular bipartite graphs (and
ensuring its convergence after reconfiguration) is proposed and examined. In addition,
a comprehensive spectral analysis justifying the divergence of the algorithm is provided in
that paper. In [53], a comprehensive analysis of MD and GMH with the optimal mixing
parameter (LD) is presented. In the paper, it is shown how the inner states oscillate in
graphs of various connectivities, and it is further identified that the mean square error of
the estimates cannot drop below a certain threshold value. Surprisingly, this threshold
value is not conditioned by the graph connectivity, as identified in the paper. The paper [54]
is focused on a heterogeneous diffusion-based communication protocol that optimizes the
convergence rate of the average consensus algorithm. In that paper, the authors compare
their approach with concurrent ones in regular bipartite graphs (not only in this topology)
and identify that this approach outperforms other algorithms. As further seen in [55–
61], the authors of these papers assume distributed consensus algorithms in either (only)
bipartite, (only) regular, Ramanujan, triangular regular, strongly regular, distance regular,
irregular, or disconnected graphs with regular bipartite components. Thus, these papers
do not exactly address the same issue as we do in this paper. As shown above, no paper
addressing a comparative study of distributed average consensus algorithms in d-regular
bipartite graphs can be found in the literature. Therefore, our work represents a significantly
novel contribution compared to related work.

2.2. Distributed Consensus Algorithms in Non-Regular Non-Bipartite Graphs

In this section, we turn the readers’ attention to papers dealing with the chosen
algorithms for evaluation, in non-regular non-bipartite graphs in this case. This was
decided upon in order to compare the conclusion presented in this paper with conclusions
valid in non-regular non-bipartite graphs. Thus, our intention was to identify whether
there are any differences between the conclusions drawn in non-regular non-bipartite and
regular bipartite graphs.

The authors of [62] compared four distributed consensus algorithms (namely, MD, LD,
BC, and OW) by applying the asymptotic convergence factor: a commonplace measure to
quantify how fast an iterative algorithm converges to the global result, and its associated
convergence time. From the presented results, it can be seen that OW performed the
best since its values for these two metrics are the lowest (note that a lower value of
these metrics indicates that an algorithm was performed better). As further identified
in this study, BC was the second-best-performing, LD was the third, and MD achieved
the worst performance. The paper [63] is concerned with a comparison of MD, MH, BC,
and OW in symmetric, complete-cored symmetric, and K-cored symmetric star topologies
by applying several various metrics. The authors of this paper assume that the execution
of the algorithm was affected by quantization noise. From the presented results, it is
apparent that the OW was faster than the concurrent approaches, but not necessarily
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with the lowest error (also, BC’s error was high). In general, the worst performance
was observed to be achieved by MH in terms of the number of iterations for consensus.
The second-best-performing algorithm was MD, and BC was classified as the third-best
algorithm among the examined ones. Furthermore, it can be seen that only MD achieved
consensus in all the performed scenarios, but other approaches were also able achieve
consensus in the overwhelming majority of the scenarios. The authors of [64] show that OW
achieved the best performance in the asymptotic phase; meanwhile, LD was considered
to be superior in the transient phase. These identified facts allowed the authors of that
paper to blend these algorithms via signal-adaptive morphing coefficients. In [51], CW and
GMH with various mixing parameters were examined. In these papers, it was observed
that higher values of ε resulted in a higher performance of the algorithm in the case of CW.
In contrast, GMH achieved higher performance, provided that ε produced lower values
(for ε = 0, the algorithm performed the best). In [65], the performance of MD, MH, LD,
BC, and OW was evaluated in random geometric graphs, in which the algorithms were
applied to estimate the network size. From the presented results, it can be seen that OW
performed the best in terms of the asymptotic convergence factor and its associated time,
as also identified in [62]. In terms of the number of iterations required for consensus, OW
outperformed its concurrent approaches in almost all of the examined scenarios. Only
when the precision of the applied stopping criterion was low, and the best-connected
entity was selected as the leader, was LD the best-performing algorithm among the studied
ones. The worst performance was, in general, observed in the case of MD. In general, BC
achieved an average performance, as shown in the figures. If the best-connected entity
was selected as the leader, both OW and BC showed low estimation precision in the
transient phase. In addition, it is shown that a higher precision of the stopping criterion
led to a deceleration in every algorithm. Similarly, in [66], OW outperformed all the other
approaches if the algorithms were applied for distributed summing in random geometric
graphs and random graphs with various connectivities. This algorithm only achieved lower
performance in the early phases in sparsely connected graphs, where it was outperformed
by LD. In general, LD also showed high performance in all the examined scenarios (even
though it was not as good as OW). The worst performance was achieved by MD, similar
to the previous paper. Moreover, one can see from the presented results that an increase
in graph connectivity caused all the algorithms to accelerate. As further seen in [67–70],
OW outperformed concurrent approaches in various scenarios and by applying different
metrics for performance evaluation. Thus, this algorithm was the best-performing approach
in non-regular non-bipartite graphs, as identified in numerous papers.

3. Theorethical Background

This section is divided into three subsections:

� Applied Mathematical Model of Multi-Agent Systems: this subsection is concerned
with the applied mathematical model of MASs;

� General Definition of Average Consensus Algorithms: here, we provide general update
rules of distributed average consensus algorithms and their convergence conditions;

� Examined Distributed Consensus Algorithms: in this subsection, we introduce all the
algorithms chosen for evaluation in d-regular bipartite graphs.

3.1. Applied Mathematical Model of Multi-Agent Systems

In this paper, we model MASs as simple finite undirected unweighted graphs de-
termined by the vertex set V and the edge set E (i.e., G = (V,E)) [71,72]. We assume that
both sets are of finite size and time-invariant in our experiments. The first set (V) contains
all the graph vertices (each with a unique index), which represent agents in MASs (i.e.,
V = {v1, v2, .... vn,}). The cardinality of V (|V|) is determined by the graph order n or,
in other words, by the size of MAS. The edge set E consists of all the graph edges, which
are direct connections between two vertices (i.e., the distance between two vertices is one
hop, and these two nodes are referred to as neighbors). An edge linking vi and vj is unique
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and labeled as eij later in this paper. The parameter di represents the degree of vi, which is
the number of all the edges incident to vi. The maximum degree of G is labeled as [73]:

∆ = max
i
{di} (1)

In the spectral graph theory, there are many useful tools to describe graph connectivity,
as seen in [74,75]. One of the most common is the Laplacian matrix L : a diagonally
symmetric squared matrix with n2 entries that is defined as follows [76]:

[L]ij =


−1, if eij ∈ E
di, if i = j
0, otherwise

(2)

As shown in [77], many relevant graph properties can be easily studied via the Lapla-
cian spectrum (i.e., via the Laplacian eigenvalues and eigenvectors). The Laplacian spec-
trum is formed by a set of n eigenvalues sorted in descending order as follows:

SPEC(L) = {λ1(L), λ2(L), ..., λn−1(L), λn(L)} (3)

Here, λ1(L) is the largest Laplacian eigenvalue, while, λn−1(L) represents the second
smallest eigenvalue of the Laplacian spectrum and is known as the algebraic connectivity
of G.

As mentioned earlier, we analyzed the chosen algorithms in d-regular bipartite graphs—
see Figure 5 for an example of a 3-regular bipartite graph and Definition 1 for their defini-
tion.

3.2. General Definition of Average Consensus Algorithms

Average consensus is an essential issue in designing suitable algorithms for distributed
computing [70]. Over the past decades, average consensus algorithms have been widely ap-
plied in many distributed systems in order to accomplish various computing and controlling
tasks [78]. The principle of the mentioned algorithms is based on regular communication
among the agents forming MAS and updating their inner states according to neighbors’
information. The primary purpose of these algorithms is to estimate the arithmetic mean
from the initial inner states of all the agents in MAS, but they can also be applied for other
tasks after tiny modifications (sum estimation, network size estimation) [65,66]. The agents
in MAS executing a distributed average consensus algorithm are required to initiate their in-
ner states with a scalar value (e.g., a local sensor-measured value) and exchange their inner
states with their adjacent agents in an iterative manner [79]. More specifically, the agents
regularly exchange their current inner state with their neighbors and determine the inner
state for the next iteration by applying the update rule expressible (from a global view) as
the difference Equation (4) [70].

x(k + 1) = Wx(k) (4)

Here, x(k) is a column variant vector formed by the inner states of all the agents in
MAS at k-th iteration. The value of k = 0 represents the initial inner states. W is the weight
matrix of an algorithm whose spectrum is defined as follows [52]:

SPEC(W) = {λ1(W), λ2(W), ..., λn(W)} (5)

Similar to the Laplacian spectrum, λ1(W) refers to the largest eigenvalue of the weight
matrix W, λ2(W) represents its second largest eigenvalue, and λn(W) is its smallest eigen-
value. Distributed consensus algorithms differ from each other by the entries of this matrix.
As discussed in the mentioned paper, the weight matrix W conditions many algorithm
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aspects such as the convergence/the divergence, the convergence rate, the robustness to
potential threads, the distortion of the final estimates caused by various noises, etc.

From a local view, the difference equation from (4) can be reformulated as follows [62]:

xi(k + 1) =
n

∑
j
[W]ijxj(k) f or ∀vi ∈ V (6)

As further stated, the average consensus algorithms operate properly, provided that
the limit (7) exists.

lim
k→∞

x(k) = lim
k→∞

Wkx(0) =
1
n

11Tx(0) (7)

Here, 1 is an all-ones vector, whose entries are all equal to one, and 1T represents its
transpose [52]. The existence of this limit means that all the inner states asymptotically
converge to the value of the wanted aggregated function. Thus, a precise estimate of (for
example) the arithmetic mean from the initial inner states of all the agents in MASs can be
obtained by applying distributed consensus algorithms. As identified in [62], meeting the
three convergence conditions provided in (8)–(10) guarantees that this limit is sure to exist.

1TW = 1T (8)

W1 = 1 (9)

ρ

(
W− 1

n
11T

)
< 1 (10)

The parameter ρ is a spectral radius, i.e., the largest eigenvalue in the magnitude of
the corresponding matrix (see (11)) [80].

ρ(·) = max
i
{| λi(·) |: i = 1, 2, ...n} (11)

3.3. Examined Distributed Consensus Algorithms

In this subsection, we introduce seven distributed consensus algorithms (also referred
to as weights) chosen for evaluation in d-regular bipartite graphs. The selection of these
algorithms is justified by the fact that they have probably been the most frequently quoted
algorithms in their category over the past decades.

The first examined algorithm is MD, which is frequently applied and has easily
implementable weights with the Perron matrix [81]. Thus, all its non-diagonal entries are
equal to either zero or the mixing parameter ε (i.e., the inverted value of the maximum
degree of a graph ∆ in this case). Mathematically, their weight matrix W can be, thus,
expressed as follows:

[W]ij =


1
∆ , if eij ∈ E
1− di

∆ , if i = j
0, otherwise

(12)

As identified in our previous manuscript [52], both the largest λ1(W) and the smallest
eigenvalue λn(W) of the weight matrix W are always located on the unit circle in d-regular
bipartite graphs if (12) is applied. Furthermore, it is mathematically proven in our previous
paper that all the other eigenvalues of the weight matrix W, except for the two previously
mentioned ones, are situated inside the unit circle. These facts cause the algorithm to
diverge (as the third convergence condition is broken) in such a way that the values of the
inner states oscillate between two values (more specifically, between values approaching
the averaged initial inner states of the agents forming both the disjointed subsets). Fur-
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ther details about the divergence of MD in regular bipartite graphs can be found in the
mentioned manuscript.

In Figure 6, we depict the evolution of the inner state of one of the agents forming
MAS in both a regular bipartite/non-regular non-bipartite graph if MD is applied. As seen,
the inner state settles down in a non-regular non-bipartite graph; however, it oscillates in
the other case.

0 5 10 15 20 25 30 35 40 45 50

no. of iterations

1

2

3

4

5

6

7

in
n

er
 s

ta
te

non-regular non-bipartite

Evolution of One Agent - MD

regular bipartite

Figure 6. Comparison of evolution of inner state in regular bipartite/non-regular non-bipartite graph.

Another analyzed algorithm is LD, or, in other words, GMH with the optimal mixing
parameter (i.e., ε = 0). As identified in [51], the weight matrix W of this algorithm is identical
to the weight matrix W of MD in d-regular bipartite graphs, whereby this algorithm also
diverges in this critical graph topology. See (13) for its weight matrix W [62].

[W]ij =


1

max{di ,dj}
, if eij ∈ E

1−∑j′ [W]ij′ , if i = j

0, otherwise

(13)

In this paper, we also chose MH developed by Metropolis and Hastings et al., which
is known as one of the most common Markov Chain Monte Carlo methods to sample a
probability distribution in complicated scenarios [70,82]. As further seen, this scheme has
found a wide range of applications as a data aggregation mechanism over the last decades.
Note that the weight matrix W of this algorithm is identical to the weight matrix W of
GMH with the mixing parameter ε = 1 [51]. Mathematically, its weight matrix W is defined
as follows:

[W]ij =


1

max{di ,dj}+1 , if eij ∈ E

1−∑j′ [W]ij′ , if i = j

0, otherwise

(14)

Another examined algorithm is BC, which is an approach with the Perron matrix
based on Laplacian eigenvalues. Theoretically, these weights are considered to be the
fastest algorithm among those with the Perron Matrix, and their weight matrix W is defined
as [83]:

[W]ij =


2

λ1(L)+λn−1(L)
, if eij ∈ E

1− di
2

λ1(L)+λn−1(L)
, if i = j

0, otherwise

(15)

We also included OW in our analyses and experiments. In general, OW is the best-
performing algorithm among the distributed consensus algorithms [62]. These weights are,
therefore, often referred to as the fastest distributed linear averaging algorithm and are
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designed in such a way that their weight matrix W is optimized according to eigenvalues,
i.e.:

minimize ρ(W− 1
n

11T) = max{λ2(W),−λn(W)}

subject to W ∈ S, 1TW = 1T, W1 = 1
(16)

Here, W ∈ S represents the constraint on the sparsity pattern of the weight matrix W,
where S is defined as follows:

S = {W ∈ Rn×n | [W]ij = 0 if {i, j} /∈ E and i 6= j} (17)

In this paper, we also examine CW, an approach with the Perron matrix provided
in (18), where the mixing parameter ε takes value from the interval (19) [51]:

[W]ij =


ε, if eij ∈ E
1− diε, if i = j
0, otherwise

(18)

0 < ε <
1
∆

(19)

The last investigated algorithm is GMH, whose weight matrix W is defined as (20) [51].
Its mixing parameter ε is a variable again, taking the values from (21):

[W]ij =


1

max{di ,dj}+ε
, if eij ∈ E

1−∑j′ [W]ij′ , if i = j

0, otherwise

(20)

0 ≤ ε ≤ 1 (21)

At the end of this subsection, we provide the spectrum of the weight matrix W for all
the examined algorithms in 3-regular bipartite graphs with n = 30. As seen from Figure 7,
the smallest eigenvalue λn(W) of the weight matrix W is greater than minus one for each
examined algorithm, except MD and LD, as stated above in this paper.

Figure 7. Cont.
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Figure 7. Example of spectrum of weight matrix W of each examined algorithm.

4. Experiments and Discussion

This section is organized as follows:

� Research Methodology and Applied Metric for Performance Evaluation: in this sub-
section, we introduce the simulation tool used, we specify the used d-regular bipartite
graphs, and we provide the applied metric, the used stopping criterion, the method of
generating the initial inner states, and the examined setups of CW and GMH;

� Experimental Results and Discussion about Observable Phenomena : this subsection
consists of the experimentally obtained results depicted in 15 figures and a subsequent
discussion;

� Comparison with Papers Concerned with Examined Algorithms in Non-Regular Non-
Bipartite Graphs: here, we compare the contributions presented in this paper with
manuscripts addressing the examined algorithms in non-regular non-bipartite graphs.

4.1. Research Methodology and Applied Metric for Performance Evaluation

This subsection is concerned with the applied research methodology and metric
for performance evaluation of the analyzed distributed consensus algorithms. All the
experiments were carried out in Matlab2018b (Producer: MathWorks, Location: Natick,
MA, USA) using built-in Matlab functions and software designed by the authors of this
paper (downloadable at [84]). As mentioned earlier in this paper, we generated random
d-regular bipartite graphs with the graph order n = 30 and various degrees d. Specifically, d
took the following values in our experiments:

d = {2, 3, 4, 5, 10} (22)

Obviously, higher values of d result in better connectivity of generated graphs. In our
experiments, we only used connected topologies since the algorithms were unable to
estimate global aggregate functions in disconnected graphs (note that data can only be
separately aggregated in segregated components in disconnected topologies) [52]. For every
examined d, we generated 100 unique regular bipartite graphs in order to ensure the high
credibility of our presented contributions (executing experiments in numerous various
graphs is a common procedure in top-quality papers from the field [85–87]). Overall, we,
thus, examined the algorithms in 500 unique graphs in this paper.
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In order to evaluate the performance of the analyzed algorithms, we applied a com-
monplace metric used in top-quality papers in the field. Specifically, we quantified the
algorithms’ performance using the convergence rate expressed as the number of iterations
required for all the agents in MAS to achieve the consensus. In this case, the examined
algorithms were bounded by a stopping criterion to border their execution time. In this
paper, we applied the stopping criterion defined in (23), where P took the values from (24)
[65,66].

| max{x(k)} −min{x(k)} |< P (23)

P = {10−2, 10−4, 10−6} (24)

Clearly, for lower values of P , the final estimates were assumed to be more precise
but at the cost of decelerating the algorithms. Later in this paper, the precision 10−2 is
referred to as a low precision, 10−4 as a medium precision, and 10−6 as a high precision.
See Figure 8, where the maximum error of an estimate (expressed in percentages %) is
depicted for each applied precision. From the figure, we can see that the low precision
of the applied stopping criterion ensures that the error did not exceed 30%, the medium
precision guaranteed an error lower than 0.3%, and the high precision resulted in very
accurate estimates since its maximum estimation error was even lower than 0.003%.

Figure 8. Maximum error of used precisions of applied stopping criterion.

Note that we only calculated and depicted the averaged value of the applied metric
for each d and each precision of the applied stopping criterion in Section 4.2.

In order to simulate sensor-measured initial values, we generated the initial inner
states of all the agents in MAS as IID (independent and identically distributed) random
scalar values with the standard Gaussian distribution, i.e. [52]:

xi(0) ∼ N(0, 1), f or ∀vi ∈ V (25)

As stated above, both GMH and CW are easily modifiable algorithms since the entries
of their weight matrices W contain the mixing parameter ε [51]. In our experiments, it took
the values from (26) in the case of CW and (27) if GMH was applied.

ε = {0.1
1
∆

, 0.2
1
∆

, 0.3
1
∆

, 0.4
1
∆

, 0.5
1
∆

, 0.6
1
∆

, 0.7
1
∆

, 0.8
1
∆

, 0.9
1
∆
} (26)

ε = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (27)

Later in this paper, we refer to 0.1 1
∆ , 0.2 1

∆ , ... from (26) as MD 0.1, MD 0.2,... etc., and
0.1, 0.2 ... from (27) as GMH 0.1, GMH 0.2, ..., etc.

4.2. Experimental Results and Discussion about Observable Phenomena

In what follows, we focus our attention on the performance evaluation of the analyzed
algorithms in regular bipartite graphs of various connectivities in order to identify whether
all the algorithms can achieve the consensus and find the best-performing approach among
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those examined. In each connectivity graph, the algorithms were evaluated for three
different precisions of the stopping criterion (the precision is provided in the right upper
corner of each figure).

For d = 2 (see Figure 9 and Table A1 in Appendix A) and the low precision of the
applied stopping criterion, we can see that the best performance was achieved by GMH 0.1.
The second-best-performing algorithm for this precision was CW, with ε = MD 0.9. Both
BC and OW achieved the same performance (as for d = 2, their matrices were identical)
and were the third best among the analyzed algorithms. As further seen from the figure,
the worst of the examined algorithms was MH. In the cases of the medium/high precision
of the stopping criterion, GMH 0.1 outperformed all the other approaches again. Here,
BC and OW were, however, better than CW and were, thus, the second best among the
examined algorithms. The worst performance was observed for MH, like in the previous
analysis. Moreover, it can be seen that the best performance for CW was achieved with the
highest analyzed mixing parameter (i.e., ε = MD 0.9), and its performance declined with a
decrease in ε (this is valid for each precision of the stopping criterion). For low values of ε,
its performance was significantly lower than the other examined algorithms. In contrast,
GMH performed the best, provided that the lowest ε was applied (like for CW, this is valid
for each precision of the stopping criterion). In addition, it can be seen from the figures that
an increase in ε resulted in performance degradation of the mentioned algorithm.
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Figure 9. Convergence rate expressed as number of iterations required for consensus achievement in
2-regular bipartite graphs and for three precisions of applied stopping criterion.

For d = 3 (see Figure 10 and Table A2 in Appendix A), OW was the best-performing
approach for each precision of the used stopping criterion, unlike the previous analysis.
The second-best-performing algorithm, in this case, was GMH (however, with ε = 0.3), CW
with ε = MD 0.9 was the third best, BC was the fourth one, and MH was the worst approach
once again—these statements are valid for each precision of the stopping criterion for d =
3. In the case of CW, we can see that an increase in ε resulted in better performance of the
algorithm, and the highest convergence rate was obtained with ε = MD 0.9, like for d = 2.
In contrast, GMH did not achieve the highest performance with the lowest ε (like in the
previous analysis), but with ε = 0.3. In this case, we can see that an increase in ε ensured
the algorithm accelerated until the maximum convergence rate was achieved. Afterward,
a further increase in ε resulted in the deceleration of the algorithm.
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Figure 10. Convergence rate expressed as number of iterations required for consensus achievement
in 3-regular bipartite graphs and for three precisions of applied stopping criterion.

For d = 4 (see Figure 11 and Table A3 in Appendix A), the best-performing algorithm
for each precision of the stopping criterion was OW again. The second-best one for each
precision was GMH, but now with ε = 0.6 (note that the maximum was obtained for a
greater ε than for d = 3). Compared to the previous analysis, BC outperformed CW with
the optimal mixing parameter (for d = 4, CW performed the best with ε = MD 0.9) if
the precision of the stopping criterion was medium/high. However, if its precision was
low, CW performed better than BC, like in the previous analysis. MH was also the worst
algorithm regarding the number of iterations required for the consensus achievement in
these graphs like before. CW achieved the highest performance with the highest examined
ε, like for d = 2 and 3. However, GMH achieved the maximum convergence rate with ε =
0.6; therefore, with a higher value of the mixing parameter than for d = 3. Again, we can
see that an increase in ε resulted in a decrease in the number of iterations for consensus
until the maximum convergence rate was achieved, like for d = 3. Then, a further increase
in ε caused the performance of GMH to worsen.

In addition, for d = 5 (see Figure 12 and Table A4 in Appendix A), OW outperformed
the concurrent algorithms for each precision of the stopping criterion, like for the two
previously analyzed values of d. The second-best-performing algorithm for each precision
of the used stopping criterion was paradoxically MH, which was the worst approach for d
= 2, 3, and 4, as seen from Figures 9–11. Thus, GMH was the best performing with ε = 1 (i.e.,
MH), which is, theoretically, the slowest initial configuration in non-regular non-bipartite
topologies. For the low precision, the next in order was CW, but this algorithm performed
the best with ε = MD 0.8 in this case. The worst algorithm of the applied stopping criterion
for the low precision was BC: the fastest algorithm with the Perron matrix. However, for the
medium/high precision of the stopping criterion, BC outperformed CW with ε = MD 0.8.
The performance of CW increased with the growth of ε until the maximum convergence
rate was obtained. A further increase in ε caused the algorithm to decelerate. In the case of
GMH, increasing ε ensured a better performance of the algorithm.
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Figure 11. Convergence rate expressed as number of iterations required for consensus achievement
in 4-regular bipartite graphs and for three precisions of applied stopping criterion.
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Figure 12. Convergence rate expressed as number of iterations required for consensus achievement
in 5-regular bipartite graphs and for three precisions of applied stopping criterion.

In the largest examined graphs (i.e., d = 10, see Figure 13 and Table A5 in Appendix A),
OW achieved the highest performance for each precision of the applied stopping criterion
again. Here, BC performed well and was the second best performing in these graphs.
The third best was CW but with ε = MD 0.7 in this case. The best-performing configuration
of GMH was the configuration with ε = 1 (MH), which was, however, outperformed by
all the other concurrent approaches. As further seen from the figures, a decrease in ε
caused the performance of GMH to decline. In the case of CW, an increase in ε ensured
acceleration of the algorithm until the maximum convergence rate was achieved (note that
this maximum was achieved for lower ε than for d = 5). Afterward, a further increase in the
value of ε decelerated the algorithm, like in the previous analysis.
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Figure 13. Convergence rate expressed as number of iterations required for consensus achievement
in 10-regular bipartite graphs and for three precisions of applied stopping criterion.

As also seen from Figures 9–13, MD and LD algorithms diverging in regular bipartite
graphs were unable to achieve the consensus for each precision of the stopping criterion.
One can also observe that an increase in the precision of the stopping criterion caused all
the examined algorithms to decelerate. In addition, we see that an increase in d ensured
that the algorithms performed better (the only exceptions were GMH and MH).

In this paragraph, we summarize the results from Figures 9–13 for each examined
algorithm to identify the best-performing approach in d-regular bipartite graphs. We can
see from the presented results that the performance of MH was the worst in many scenarios.
Its high performance was only observed for d = 5—it was the optimal initial configuration
of GMH in these graphs (and also for d = 10). However, its performance significantly
degraded in the densest analyzed topologies (i.e., d = 10), and this algorithm was only
better than the other configurations of GMH in these graphs. As further seen from the
figures, BC performed poorly in many scenarios where the low precision of the stopping
criterion was applied. As further seen, its performance can be generally considered average.
However, for d = 2 (when its matrix was identical to the weight matrix W of OW) and
d = 10 (i.e., in the densest examined topologies), its performance was relatively pretty good.
In both these cases, its performance was the second best among the analyzed algorithms.
Overall, OW was the best-performing approach according to the presented experimental
results since it outperformed all the other algorithms for each precision of the used stopping
criterion except for the graphs with d = 2 (the performance was lower if the low precision
of the stopping criterion was applied). CW was one of the worst algorithms in terms of
the number of iterations required for consensus achievement. In addition, it was necessary
to know the value of d to identify the optimal configuration of this algorithm, which
was its other significant drawback. However, it performed relatively well in sparsely
connected graphs with the low precision of the stopping criterion. GMH outperformed
all its competitors in the sparsest graphs (i.e., d = 2), but its performance was significantly
degraded with an increase in connectivity (for d = 10, this was the worst algorithm among
those examined). Similar to CW, knowing d was also required for the optimal configuration
of this algorithm. What is most important is that all the examined algorithms except for
MD and LD can achieve the consensus in each d-regular bipartite graph regardless of
the precision of the applied stopping criterion. Thus, except for MD and LD, no other
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algorithm required the implementation of the mechanism presented in [52] or required to
be reconfigured.

4.3. Comparison with Papers Concerned with Examined Algorithms in Non-regular
Non-bipartite Graphs

In this section, we individually compare each of the examined algorithms in d-regular
bipartite graphs with their performance in non-regular non-bipartite graphs analyzed in
papers from Section 2.2.

MH was the worst algorithm in many examined scenarios, as seen from the figures.
However, for d = 5, it was the best configuration of GMH, which does not correspond
to theoretical assumptions from [51]. In these graphs, it performed well and was the
second-best-performing algorithm. It was also the optimal configuration of GMH for d =
10; however, its performance was very low in this case (it even decreased compared to the
performance in sparser graphs). This significant degradation of its performance in densely
connected graphs was not seen in non-regular non-bipartite graphs [65,66]. In general, we
can see that MH did not perform well in regular bipartite graphs, such as in non-regular
non-bipartite graphs [63,65,66].

BC performed well in the densest examined graphs, which confirms the conclusions
in non-regular non-bipartite graphs [66]. As identified in [63,65,66], BC usually performed
poorly in sparse non-regular non-bipartite graphs, but its performance was high in 2-
regular bipartite graphs (i.e., in graphs of the lowest examined connectivity). As shown
in [65,66], in non-regular non-bipartite graphs, BC performed much better if the precision
of the stopping criterion was not low. This statement was partially confirmed in regular
bipartite graphs. In general, this algorithm achieved an average performance, which was
also identified in non-regular non-bipartite graphs [62,63,65,66].

As already mentioned, OW can be considered the best-performing distributed average
consensus algorithm since it outperformed the other algorithms in almost every executed
scenario. The only exception was the graphs with d = 2, where this algorithm was beaten
by GMH (for each precision of the applied stopping criterion) and even by CW (if the
precision was low). This statement is supported by the conclusions from [64,66], where
this algorithm was identified as being slow in the transient phase—the sparse connectivity
of graphs caused this phase to take a longer time, and the low precision of a stopping
criterion ensured that the algorithms were stopped early on. In addition, our findings in
this paper correspond to the conclusions in regular bipartite graphs, where OW was mostly
the best algorithm [62,63,65–70]. As shown in [63,65,66], its performance was not good in
sparsely connected graphs or if the stopping criterion was operating at a low precision, like
in this paper.

According to the presented results, CW was one of the worst-performing algorithms,
which corresponds to its performance in non-regular non-bipartite topologies [51,62]. Its
higher performance was only seen for d = 2 and the low precision of the stopping criterion.
The theoretical assumption from [51] that higher values of ε ensure better performance of
the algorithm was only valid in sparser graphs. As seen from the figures, for higher values
of d, the value of ε guaranteeing its maximum performance was decreased.

Regarding GMH, this algorithm also achieved high performance, especially in sparsely
connected graphs (confirmed by [64]). Similar to CW, the theoretical assumption about
the optimal value of ε was not valid again—here, a lower value of ε did not ensure
better performance in denser regular bipartite graphs in contrast to non-regular non-
bipartite topologies [51]. As the graph connectivity grew, we can see that this algorithm
did not achieve its maximum performance with the lowest examined value of ε. In densely
connected graphs, we can see that higher connectivity caused a greater value of ε to
ensure maximum performance. Thus, our finding does not correspond to the theoretical
assumptions from [51] that a lower ε guarantees a better performing algorithm. In densely
connected d-regular bipartite graphs, MH, theoretically, slowest configuration of GMH, was
the optimal initial configuration of this algorithm, which does not correspond to conclusions
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in non-regular non-bipartite graphs [51]. As in the case of MH, the performance of this
algorithm significantly decreased for d = 10—this phenomenon was not observed in non-
regular non-bipartite topologies [51].

As seen in [65], all the algorithms performed better in graphs of higher connectivity.
This statement is also valid in regular bipartite graphs for each algorithm except for
GMH and MH, whose performance was significantly degraded in the densest examined
graphs compared to graphs of sparser connectivity. Furthermore, a higher precision of the
applied stopping criterion resulted in a lower convergence rate, which corresponds with
the conclusions in regular bipartite graphs [65].

5. Conclusions

In this paper, we present a comparative study of seven frequently applied distributed
consensus algorithms for averaging in d-regular bipartite graphs. We assumed that their
execution was bounded by a stopping criterion with various precisions, whereby diverging
algorithms can potentially achieve the consensus. From the presented results, it can be seen
that, generally, OW was the best-performing algorithm among those examined, whereby
the conclusions from non-regular non-bipartite graphs were also confirmed in this case.
This algorithm did not perform the best in 2-regular bipartite graphs (i.e., in the sparsest
examined graphs), where it was outperformed by GMH and CW (in this case, only for
the lowest precision of the applied stopping criterion). On the other hand, MH and CW
were classified as the worst-performing algorithms, which corresponds to conclusions from
papers addressing these two algorithms in non-regular non-bipartite graphs. Furthermore,
it was seen that each algorithm (except for GMH and MH) performed better for higher
values of d (i.e., in graphs of greater connectivity). In addition, one can see that a higher
precision of the applied stopping criterion caused each of the examined algorithms to
decelerate. Contrary to conclusions in non-regular non-bipartite graphs, we can see that,
surprisingly, GMH and CW did not achieve the optimal performance with the lowest value
of ε (in the case of GMH) and with the highest ε (if CW was applied) in d-regular bipartite
graphs of greater connectivity (this finding does not correspond to conclusions drawn in
non-regular non-bipartite graphs). In this paper, all the examined algorithms were tested
by investigating their convergence rate expressed as the number of iterations required for
consensus achievement. The applied stopping criterion, which guaranteed the bounded
execution of the algorithms, operated with three different precisions (note that the precision
affects this property). Thus, in this paper, we identified that OW performed the best in
d-regular bipartite graphs in terms of the number of iterations for consensus achievement,
i.e., the minimum number of iterations necessary for the criterion (23) to be met for the
first time. A similar/same metric is applied also in [63,65,66]. The superior performance of
OW was also identified in other papers [51,62,64,67–70], where consensus algorithms are
evaluated regarding various other properties, e.g., the asymptotic/per-step convergence
factor, their associated convergence time, the error of the estimates, the averaging time,
the mean square deviation, etc.

The final conclusion of this paper is that OW is recommended as the best-performing
algorithm for d-regular bipartite graphs. Even though it was outperformed by GMH in
graphs of low connectivity, we do not recommend GMH for this critical graph topology
since it is not possible to identify its optimal configuration without the knowledge of
d and its performance is significantly degraded in densely connected regular bipartite
graphs. Moreover, it was observed that MD and LD cannot achieve consensus in spite of
the application of a stopping criterion regardless of its precision—all the other analyzed
algorithms operate properly in d-regular bipartite graphs for each precision of the applied
stopping criterion.
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Abbreviations
The following abbreviations are used in this manuscript:

BC Best constant weights
CW Constant weights
GMH Generalized Metropolis–Hastings algorithm
IID Independent and identically distributed
LD Local-degree weights
MAS Multi-agent system
MD Maximum-degree weights
MH Metropolis–Hastings algorithm
OW Convex optimized weights
QoS Quality of service
UAV Unmanned aerial vehicle

Appendix A

Table A1. Number of iterations required for consensus achievement in 2-regular bipartite graphs.

MH BC OW CWbest GMHbest

Low 261.69 it. 196.75 it. 196.75 it. 193.47 it. 182.78 it.
Medium 418.54 it. 301.86 it. 301.86 it. 309.40 it. 292.16 it.

High 575.45 it. 407.27 it. 407.27 it. 425.36 it. 401.74 it.

Table A2. Number of iterations required for consensus achievement in 3-regular bipartite graphs.

MH BC OW CWbest GMHbest

Low 43.52 it. 39.03 it. 34.35 it. 36.31 it. 36.11 it.
Medium 70.10 it. 60.39 it. 50.88 it. 58.07 it. 57.67 it.

High 97.18 it. 81.85 it. 67.66 it. 80.48 it. 79.70 it.

Table A3. Number of iterations required for consensus achievement in 4-regular bipartite graphs.

MH BC OW CWbest GMHbest

Low 19.47 it. 19.43 it. 17.50 it. 19.31 it. 18.38 it.
Medium 31.02 it. 30.08 it. 25.44 it. 30.08 it. 28.83 it.

High 42.99 it. 40.68 it. 33.33 it. 41.16 it. 39.61 it.
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Table A4. Number of iterations required for consensus achievement in 5-regular bipartite graphs.

MH BC OW CWbest GMHbest

Low 13.12 it. 13.54 it. 12.40 it. 13.32 it. 13.19 it.
Medium 20.07 it. 20.58 it. 17.72 it. 20.69 it. 20.10 it.

High 27.27 it. 27.79 it. 23.11 it. 28.35 it. 27.27 it.

Table A5. Number of iterations required for consensus achievement in 10-regular bipartite graphs.

MH BC OW CWbest GMHbest

Low 14.56 it. 7.12 it. 7.05 it. 7.33 it. 16.11 it.
Medium 25.57 it. 10.21 it. 10.02 it. 10.82 it. 28.37 it.

High 36.86 it. 13.46 it. 13.03 it. 14.31 it. 41.03 it.
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