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Abstract: The Internet of Things (IoT) continues to attract attention in the context of computational
resource growth. Various disciplines and fields have begun to employ IoT integration technologies
in order to enable smart applications. The main difficulty in supporting industrial development
in this scenario involves potential risk or malicious activities occurring in the network. However,
there are tensions that are difficult to overcome at this stage in the development of IoT technology.
In this situation, the future of security architecture development will involve enabling automatic
and smart protection systems. Due to the vulnerability of current IoT devices, it is insufficient to
ensure system security by implementing only traditional security tools such as encryption and access
control. Deep learning and blockchain technology has now become crucial, as it provides distinct
and secure approaches to IoT network security. The aim of this survey paper is to elaborate on the
application of deep learning and blockchain technology in the IoT to ensure secure utility. We first
provide an introduction to the IoT, deep learning, and blockchain technology, as well as a discussion
of their respective security features. We then outline the main obstacles and problems of trusted IoT
and how blockchain and deep learning may be able to help. Next, we present the future challenges
in integrating deep learning and blockchain technology into the IoT. Finally, as a demonstration of
the value of blockchain in establishing trust, we provide a comparison between conventional trust
management methods and those based on blockchain.

Keywords: deep learning; Internet of Things security; distributed and decentralized system

1. Introduction

The Internet of Things (IoT) continues to attract attention, as it can effectively and intel-
ligently sense the environment through a series of smart devices and enable various smart
applications [1,2]. In particular, the IoT has been developed to enable smart applications,
such as smart cities, smart transportation, smart homes, smart vehicles, smart hospitals,
etc. [3,4]. It is expected that by 2026, more than 100 billion smart devices will be deployed,
which is unprecedented in computer history [5]. However, there are also a variety of
security concerns related to the enormous quantity of data streams transferring among
smart devices in the context of the deployment of IoT technologies [6]. The application of
traditional security protection measures, such as encryption, authentication, and access
control, has been deemed insufficient for systems with a large number of linked devices in
which each device them is subject to particular vulnerabilities [7,8]. For instance, the secu-
rity methodologies used in current IoT technologies and protocols, such as MQTT (Message
Queue Telemetry Transport), Z-Wave, ZigBee, RFID (radio frequency identification), etc.,
have become insufficient to warrant full confidence in their reliability, demonstrating that
such security mechanisms are likely to be defeated by new forms of attacks that cannot be
detected by existing solutions. Furthermore, identifying which solutions are acceptable for
securing IoT systems is difficult because of the challenges brought about by the emergence
of a wide range of heterogeneous and decentralized IoT devices [7].
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As a tremendous amount of data is being created by a variety of IoT applications, deep
learning has now become an effective solution for IoT security issues. Deep learning is a
well-known machine learning model built by artificial neural networks (ANNs) that aims
to mimic the human nervous systems by using layers of perceptrons [9]. ANNs have been
widely studied in recent years, as computational power has dramatically increased and
shown a strong ability to perform various tasks, e.g., image recognition, event prediction,
fault detection, etc. [10–12]. Typically, an ANN structure contains a number of layers, each
of which contains a number of nodes or “neurons”. Such nodes are assigned a learned
weight and can be stimulated by certain inputs. It has been proven that with enough
layers and nodes, an ANN is able to mine complex patterns among large-scale dataset. The
application of deep learning to IoT security is currently a new and active research field that
is being widely studied.

On the other hand, most existing security methods are based on a centralized system
architecture, which may not be suitable for large-scale IoT systems. One breach in such a
security design might leave the entire network vulnerable. Many of the security parameters
used in IoT devices rely on cryptographic algorithms that demand substantial resources [13].
Furthermore, since heterogeneous IoT system platforms have been studied, it is challenging
to build one security protocol that is compatible across all platforms. To address the security
issue in decentralized IoT systems, blockchain technology has been studied and adopted to
build secure IoT applications [14,15]. Transaction authentication on a blockchain does not
require the approval of a central authority, as is the case in centralized systems. Instead,
it relies on the approval of a number of participants within the system. Accordingly,
blockchain technology can reliably and transparently record transactions reliably owing
to its decentralized architecture. Considering the decentralized paradigm of IoT systems,
blockchain has emerged as a promising solution to ensure IoT security [16].

In general, deep learning and blockchain have become the most popular and promising
techniques for the development of secure and decentralized IoT systems. Furthermore,
researchers currently realize that these two technologies may have a complementary rela-
tionship when combined to implement a fully secure and smart IoT system. On one hand,
the capacity of deep learning for intelligent data analysis and decision making could make
blockchain applications more effective and feasible. On the other hand, blockchain has the
potential to aid deep learning by providing a large amount of data in a decentralized manner.

To the best of our knowledge, no literature survey of the application of both deep
learning and blockchain techniques for IoT security has been conducted to date. In this
work, we summarize the existing works on the application of deep learning and blockchain
to enable secure decentralized IoT systems. Furthermore, we discuss the importance and
future challenges of integrating deep learning and blockchain in IoT systems.

The main findings of this paper are summarized as follows.

• We provide a literature survey of security methods for the IoT, including deep learning
and blockchain. We also provide a summary of the primary benefits and drawbacks
of various methods.

• We discuss how deep learning and blockchain technology can overcome the current
difficulties associated with ensuring the safety and reliability of IoT devices.

• We highlight the contrast between decentralized blockchain-based security solutions
and deep learning methods.

The rest of this survey paper is organized as follows. In Section 2, we present an
overview of the scope of this survey. We detail the current deep learning IoT security
solutions and blockchain applications in IoT security in Sections 3 and 4, respectively. In
Section 5, we present a discussion and explored future challenges associated with deploying
deep learning and blockchain for IoT security.
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2. Overview of IoT Security

In this section, we review IoT security in detail, including its architecture, security
challenges, and requirements. We also review machine learning and blockchain applications
in IoT systems.

2.1. Internet of Things
2.1.1. IoT Architecture

The IoT refers to a collection of interconnected smart devices that may share and
receive data via wired or wireless networks [17]. Typically, the IoT is considered a system
of real-world devices, e.g., sensors, cameras, routers, etc. Some examples of IoT are shown
in Figure 1. Not only are these examples integrated with software that allows them to
receive, evaluate, and share data with other devices, but they also use such data to drive
other decisions.
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Figure 1. Overview of IoT architecture.

The majority of studies have outlined a three-tiered structure for the IoT, which
includes perception, network, and application layers, as shown in Figure 1). Typically, the
perception layer refers to smart edge devices (e.g., sensors, cameras, etc.), which can sense
or record the environment and generate and process data. In particular, the data from the
devices are converted to a digital format in this layer. This layer also picks up on variations
in the sensing environment’s physical parameters in near-real time. Some common threats
in this layer include eavesdropping, replay attacks, and timing attacks [18]. The network
layer is used to establish communications among individual smart devices. This layer
transfers data from the perception layer to the application layer. Due to its critical nature,
the transmission of genuine and unaltered data represents a significant problem in this
layer. The application layer, on the other hand, is used to develop applications to enable
the use of certain IoT services by users. The functionality of an IoT network is described in
Figure 1. The gateway acts as a conduit for the movement of information between physical
devices (such as sensors, cameras, etc.) and the application layer. Information gathered in
the perception layer can be sent to end users via the gateway or the Internet.

2.1.2. IoT Security Challenges

The nature of the interconnected structure of IoT systems is one of the major reasons
causes of risks of malicious attacks [19]. As shown in Figure 2, specific attacks are designed
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for each layer of the IoT architecture. According to the literature, the typical method for
ensuring security is ineffective, especially when it comes to user safety in IoT systems [20].
In addition, some deliberately designed attacks are able to not only compromise certain
devices in the IoT but also cause a series of failures as a a consequence, i.e., cascading
failures [21]. Therefore, it is important to secure every processing phase of the IoT before
data are fed to a higher layer [22].

Application Layer 

Network Layer 

Perception Layer

Phishing Attack
Sniffing Attack
Trust Management Attack
Malicious Code Injection Attack
Policy Inforcement 

Dos/DDoS Attack
Man In The Middle
Data Transit Attack
Spoofing Attack
Sinkhole Attack
Sybil Attack

Side Channel Attack
Botnet Attack
Mirai Attack
Replay Attack
Eavesdropping Attack

Figure 2. Attacks on IoT layers.

On the other hand, most existing IoT applications assume that there is a central server
that can remotely communicate and control the devices. Due to the pressure to quickly
launch applications in the market, security issues may be overlooked. For instance, the
software system of the applications must be improved, in addition to the security of lower
levels, such as hardware and firmware. Many devices in the IoT, on the other hand, are not
updated over time, which may lead to system vulnerability [23].

As a result, there is an urgent need for critical attention to current security concepts
regarding effective IoT security procedures. The main reasons for this urgency can be
summarized as follows. (i) With booming data and devices, various novel IoT applications
are explored promptly. Many of these applications may not have been systematically
analyzed for potential risks of malicious attacks and lack a proper design that is resilient to
system attacks. (ii) Conventional security approaches such as encryption, authentication
mechanisms, access control algorithms, etc., are becoming less effective in large-scale IoT
scenarios [24]. Novel technology may also enable novel attacks that are able to bypass
traditional security approaches. Furthermore, novel attacks may be able to attack some
parts of IoT applications that are not protected by traditional security measures. (iii) Most
existing IoT systems utilize a wide range of dependable and cost-effective smart devices.
Such devices are normally resource-limited. Hence, it becomes even more difficult to
implement security algorithms to detect or eliminate attacks [25].

2.1.3. Security Requirements for IoT

To achieve successful security methods, the following characteristics should be consid-
ered. The important security requirements are shown in Figure 3, which include confiden-
tiality, integrity, authentication, availability, non-repudiation, and authorization [21].

• Confidentiality: Sensitive and private information and data should never be disclosed
or inferred by malicious users [25];

• Integrity: As data are acquired, they should never be tampered with by an unau-
thorized user, especially if the communication is launched over an unsecured net-
work [26];



Future Internet 2023, 15, 178 5 of 28

• Authentication: The transmission and processing of the data should be able to be
verified following designed protocols in the IoT system [27];

• Authorization: Only users that are granted authorization should be able to access the
IoT system and data [28];

• Availability: All authorized users must have access to the services transmitted by IoT
systems. A compelling configuration of IoT systems should prioritize availability over
all other properties [29];

• Non-repudiation: This is a Bitcoin-type feature that allows users to gain access to ledgers
that can be used as proof in situations in which objects or users are required not to
dispute a procedure [30].

Confidentiality 

Data Integrity 

Authorization

Non-Repudiation

Availability 

IoT Security 
Challenges

IoT Security
Challenges

Authentication

Figure 3. Security requirements for IoT.

2.2. Deep Learning Methods for IoT Security

Approaches to deep learning can be separated into three types: supervised [31],
unsupervised [32], and hybrid [33] approaches. Typical supervised deep learning methods
include various kinds of neural networks, such as ANNs, convolutional neural networks
(CNNs) [34], and recurrent neural networks (RNNs) [35]. Typical unsupervised learning
methods include autoencoders (AEs) [36], restricted Boltzmann machines (RBMs) [37],
deep belief networks(DBNs) [32], etc. Hybrid methods normally combine supervised and
unsupervised approaches. Popular hybrid methods include models include generative
adversarial networks (GANs), ensemble deep learning (EDLN) methods, etc. [33]. As
previously mentioned, by using a large number of layers and designed activation functions,
deep learning is able to learn complex patterns among data, indicating that the performance
of current smart applications in the IoT has been significantly improved by deep learning
methods in comparison to more conventional machine learning methods [38].
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Deep-learning-enabled smart applications have been studied and developed in many
different areas including to secure IoT systems. For instance, by analyzing the radio
frequency data of numerous radio devices, it is possible to determine their individual
properties [39,40]. As an added bonus, encouraging conclusions have been drawn in the
area of security vulnerability monitoring [41]. The IoT is a network that links computers,
appliances, and other physical objects together [41]. Many modern IoT edge devices pro-
duce copious amounts of sensitive data in the course of their communication perception
duties [42,43]. We can use the information gathered from such devices to make better deci-
sions, boost output without sacrificing quality, and cut down on wasted energy. However,
there are still many challenges in conducting effective big data analysis over the IoT data
without violating users’ privacy [44]. Automatically recognizing patterns in processed
data and solving a number of data mining problems is made possible by deep learning
techniques and algorithms [45]. Overall, as deep learning has achieved exceptional suc-
cess through the analysis of IoT data streams, it is one of the most promising long-term
solutions [33].

2.3. Blockchain in IoT Security

A blockchain is a database of ledgers that allows users to record information such as
asset and transaction registries in a fully decentralized manner using a peer-to-peer (P2P)
network [14]. Typically, the blocks are linked together chronically, and each block stores
data for a certain period. Each data item, e.g., transaction, is written by a particular user in
the blockchain, i.e., a miner, following designed protocols and can be verified by all users
in the blockchain. A blockchain relies on cryptographic proof using mechanisms such as
elliptic curve cryptography (ECC) and SHA-256 hashing to guarantee data authenticity and
integrity [46]. The data in each block normally consist of a ledger, e.g., transaction log, and
a block header, e.g., a hash code, that links to the prior block. The blockchain records every
single trade ever made and facilitates global distributed trust across borders. Centralized
authority and services, sometimes known as “Trusted Third Parties”, are vulnerable to
being hacked, compromised, or otherwise adversely affected by external interference. Even
if they are trustworthy now, they may behave badly or become corrupt in the future.

The blockchain relies on a certain kind of user called a miner to create new blocks and
validate and record each transaction in the block. Normally, any user on the blockchain
can compete to be a miner of the blockchain by implementing certain computing tasks,
e.g., solving a math puzzle. In particular, to append a new block to the blockchain, miners
typically need to implement a designed task that involves finding a random number
(nonce) that leads the hash of the block header to be less than a certain target. Typically,
the blockchain adopts the longest chain rule, where the data stored in the longest chain
is considered to be valid. This is based on the assumption that the majority of the users
are honest and they will append new blocks to the block with valid data. For instance,
in Bitcoin, after six confirmations or blocks, the data in the blocks are confirmed because
the probability of the data being replaced is low enough. On the other hand, private
blockchains have been proposed. In a private blockchain, there are permitted nodes who
are trustworthy and communicate to reach a consensus. A private chain makes this process
much faster, but essentially, it relies on the truthfulness of the permitted nodes.

As demonstrated by the aforementioned designed protocols, the three most notable
features of a blockchain are decentralization, transparency, and immutability [47]. Due
to the decentralized nature of blockchains, no single entity can claim ownership over
the network. To clarify, immutability denotes that the data stored in the blockchain can
never be tampered with. Decentralization means that the system never needs a central
authorized party, e.g., a server. Transparency means that any user may view any other
user’s transactions simply by knowing their public address. These features enhance the
safety and utility of the blockchain.
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A common blockchain architecture is presented in Figure 4. There are two essential
parts of a typical block: the block header and the block body. The former can be considered
the identifier of the block, which typically contains a timestamp; a hash code of the data
in the block, e.g., transactions; the hash code of the previous block’s header; and a nonce
value. The latter normally holds the data, e.g., a list of transactions. The data are stored
in a Merkle tree structure. The Merkle root denotes the root of a hash tree with a hash of
all transactions at the leaves, serving as a summary of all transactions. The identifier for
a block is the hash of the block header. Additionally, the nonce value is found by miners
such that the block hash can satisfy certain requirements based on the consensus protocols.
For instance, in Bitcoin, every user can check that the hash of the block header is less than a
target. Finding valid nonce values is normally difficult and computationally intensive. This
is the so-called proof of work for miners, which reduces the possibility of miners recording
invalid or bogus data in the new block. The difficulty of mining can be adjusted. In Bitcoin,
the difficulty is adjusted every 2016th block so that the average of mining time for a block
in the next 2016 blocks is as close to 10 min as possible.

Clients

Miners Block
Generators

Validators

Clients

Blockchain

Digital Asset
Transactions Smart Contracts

Application Layer (Business Logic)

Distributed Computing Layer 

Transactions Replication 

Transactions Replication 

RPC REST API Web API

Platform Layer 

Infastructure Layer 

Nodes Storage Network

Blockchain Network

Network Nodes

Capability Based

Voting Based 

Compute - Intensive
Based

Consensus Protocol

Interoperability Based

Multi-Ledger
Based

Single-Ledger Based

Architecture 

Figure 4. Blockchain architecture.

Bitcoin is one of the first and most widely adopted blockchain applications. Many
of today’s most popular cryptocurrencies use the bitcoin blockchain as their foundational
platform and technology. With the introduction of the Ethereum blockchain, which includes
support for smart contracts, future blockchain applications have expanded exponentially. In
July of 2015, the Ethereum blockchain was released to the public. Since then, a slew of other
blockchain platforms with support for smart contracts has appeared. Hyperledger [48],
Eris [49], Stellar [50]], Ripple [51], and Tendermint [52] are just a few examples.

Other than Bitcoin, Ethereum’s blockchain can also keep track of historical data and,
more significantly, execute smart contracts. Nick Szabo is credited with being the first to
use the term “smart contracts” in 1994 [53]. To put it simply, smart contracts, in a basic form,
are user-created computer programs that are uploaded to and executed via the blockchain,
e.g., a scripting or programming language such as JavaScript. Ethereum is serviced by
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Ethereum virtual machines (EVMs), which function as the network’s miner nodes. These
nodes are able to reliably execute and enforce these programs or contracts in a secure
manner that is immune to tampering. Ether, Ethereum’s digital currency, is supported. Just
as in Bitcoin, users of Ethereum can send currencies to one another by means of regular
transactions that are recorded on the ledger; with bitcoin, a blockchain state is not required
for such transactions.

Smart-contract blockchain-empowered applications have also been adopted in various
fields, e.g., digital identification and voting, cryptocurrency exchange, system status analy-
sis, fraud and fault detection, etc. The demand for and studies of blockchain technology-
empowered applications are growing rapidly. Blockchain-empowered insurance solutions
such as that provided by SafeShare [54] represent one such example. Hyperledger Fabric
is also being used by IBM in the launch of its blockchain framework [48]. This platform,
unlike many others, allows for the creation of blockchain apps without the need for any
sort of coin. Banks, supply chains, and transportation businesses are all making commercial
use of IBM’s blockchain technology.

3. Deep-Learning-Empowered Security Solutions for IoT Systems

In his section, we introduce the implementation of deep learning to secure IoT systems
in a variety of ways, including intrusion detection, malware analysis, etc.

Table 1. Deep learning for abnormality and intrusion detection.

Refs. Techniques Dataset Accuracy Limitations

[55] CNN Bot-IoT 91.27% Wit the use of a batch size of 32 or 64, accuracy
suffers.

[56] FNN and SNN Bot-IoT 95.91%
Based on the normalization of features in the
Bot-IoT dataset, we can conclude that accuracy
would be less than 50% in practice.

[57] FNN and SVC Bot-IoT 99.414%

Shown to be less effective than alternative ap-
proaches in protecting against key-logging at-
tacks and data theft in both binary and multi-
class classification, with only 88.9% accuracy
achieved by the latter.

[58] BiLSTM Bot-IoT and
UNSW-NB15 98.91%

When faced with high volumes of network traf-
fic, IDS alarms and detection of complex attacks
suffer.

[59] DCNN and LSTM N-BaloT 97.84% Unable to detect emerging attacks.

[60] LSTM

N_BaIoT-2018,
CICIDS-2017,
RPLNIDS-2017,
and NSL-KDD

99.85% A longer training time is required for large
datasets.

[61] DNN 4 IoT datasets 99.75% Attack test limited to scanning, DoS, MITM,
and Mirai).

[62] LSTM, RF Smart Fall dataset LSTM: 93.4%; RF: 99.9% When compared to other approaches, LSTM is
widely regarded as having subpar accuracy.

3.1. Abnormality and Intrusion Detection

Several machine-learning-based strategies are still being used today to detect outliers,
anomalies, and intrusions in various IoT platforms [56]. For instance, traffic filtering is a
popular method to detect intrusions, which separates legitimate packets from malicious
packets using per-packet or batch analysis. Traffic classification is effective, but the process
generates more false positives than is typical, making the method less reliable than it would
otherwise be. Behavior-based models, on the other hand, are used in the process of locating
network intrusions. Both algorithms are adopted in the context of the IoT. For example,
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Meng [63] presented a trust-based model to detect intrusions in IoT systems. In contrast
to classic methods, the developed approach considers not only the nature and category of
traffic but also the level of trust that one has in a given device. As a method for detecting
intrusions in IoT networks, combining trust management and traffic classification was
suggested in the paper.

In light of the fact that traditional methods have been shown to be ineffective against
adversarial attacks, the authors of [56] implemented a type of deep learning called a self-
normalizing neural network (SNN) and a feed-forward neural network (FNN) to detect
intrusions. A new method of network intrusion detection and traffic analysis using an FNN
was proposed in [55]. Using the Bot-IoT dataset, the authors compared the performance
difference between FNN and SVM models. The results showed the proposed solution
was less effective at preventing key-logging attacks and theft of sensitive data via binary
classification.

As previously mentioned, deep learning has become an important tool in intrusion
detection systems (IDS), especially when it comes to heterogeneous IoT networks. The
typical structure of deep-learning-based IDS is shown in Figure 5. For instance, Kim et
al. [64] applied long short-term memory (LSTM), a type of Recurrent neural network (RNN),
to detect intrusions. In a similar study, Saeed et al. [65] considered the low computing
powers of IoT networks and developed a neural network in a two-tiered structure that can
efficiently detect anomalies without consuming a large amount of power. In particular,
the first layer in their neural network aims to teach the system normal operation, and the
second layer looks out for illegal memory access (IMA). Susilo et al. [55] used deep learning
methods such as CNNs. Zhao et al. [66] suggested intrusion detection by combining a deep
belief network (DBN) with a probabilistic neural network (PNN). These studies, to some
extent, do not adequately cover the entire spectrum of attacks, including zero-day exploits.

Preprocessing 

Dataset
Spilt

Feature extraction
Engineering/Dinmensionality

Reduction 

Preprocessing Deep Learning Model
Training Classification/Prediction 

Malicious
Benign

decision 

Anomaly Normal 

Testing Training 

Figure 5. IDS based on deep learning.
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With an increasing number of devices hooked up to the IoT, the danger of zero-day
attacks is introduced. In this context, Samy et al. [60] proposed the use of LSTM for
detection of unknown network attacks. They examined this method alongside four other
deep learning models and five IoT datasets: GRU, LSTM, CNN, CNN-LSTM, and DNN.
The proposed model requires an extremely large set of training data and considerable time
for training. Network traffic over IoT networks presents a risk, as discussed by the authors
of [67]. Several machine learning techniques were adopted for the testing in this work, such
as decision trees, naive Bayes, and deep learning.

On the other hand, the distributed and decentralized structure is a new challenge
for traditional security approaches. As stated in [58], typical IoT security approaches
mainly detect attacks on centralized systems, and the algorithm is normally launched on
either edge devices or a central server, which may limit the attack detection success rate,
especially detection of attacks launched in a distributed manner, e.g., distributed DoS in
IoT. To address this issue, the authors of [57] developed distributed convolutional neural
networks (DCNNs) for smart edge devices and deployed the LSTM model on the central
server to identify distributed attacks launched from either side.

Although deep learning has shown its strong ability, a major drawback of using a
deep learning approach is its high reliance on the sufficiency and quality of the data [59].
This was also demonstrated in [68], where the authors trained both a deep learning model,
i.e., LSTM, and machine learning algorithms, i.e., random forest and AdaBoost. The results
showed that by using a single dataset with a limited amount of data, the accuracy of LSTM
was lower than that of other machine learning models. However, this issue can be mitigated
by using a larger set of data and more informative data. On the other hand, some works
considered employing ensemble learning to help enhance the accuracy of deep learning
models. We provide a brief summary of the main studies included in this section in Table 1.

3.2. Detecting Threats and Taking Preventative Action

It is possible to launch multiple layers of attacks against IoT systems, one of which
is the hacking of discreet devices. For instance, major attacks, e.g., ransom attacks, can be
launched on one layer, and further attacks, e.g., sophisticated attacks, can be launched on
additional layers. The cryptographic primitives used by conventional attack mitigation and
detection methods are imperfect and prone to false positives. Therefore, many methods
have been attempted, e.g., K-NN, SVM, ANN, etc. Taking advantage of foggy conditions,
Diro and Chilamkurti proposed a deep-learning-based attack detection algorithm for the
IoT in [69]. The attack detection method is essentially launched in smart edge devices in a
distributed manner. The proposed method aims to implement deep learning models as
close to the network edge as much as possible such that the model can provide the output
quickly and accurately. Chilamkurti et al. [69] similarly proposed another distributed
deep-learning-based attack detection mechanism for the IoT. Based on fog computing
architecture, they put into place deep learning methods for attack detection. The proposed
method places an emphasis on dialogue between the fog and the objects. For optimal
resource utilization and minimal communication latency, a detection mechanism should be
deployed in the fog layer, where the learning module is also activated. Hafeez et al. [70]
developed an anomaly identification method based on the combination of the clustering
method and RNN models. With the help of deep learning, the method suggested in [71] can
spot DGAs. In particular, a series of models, e.g., LSTM, GRU, and CNN, was applied in
this study. For the purpose of multiparty computation and secure IoT devices, the research
effort reported in [72] presented a federated architecture that operates using a deep learning
technique. We provide a brief summary of the main studies included in this section in
Table 2.
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Table 2. Deep learning for detecting threats in the IoT.

Ref. Algorithm Results Limitations

[69]
Security for the IoT based on deep learning, with
support for both deep model (DM) and shallow
model (SM) attack detection

Accuracy: 99.20%
Precision: 95.22%

The dataset used in this work is representa-
tive of legacy network architectures devoid
of IoT traffic and related attacks.

[73]
IoT malware detection using a deep-learning-based
long-short-term memory (LSTM) algorithm trained
on Opcodes.

Accuracy: 98% The dataset used in this work was extremely
small.

[61] Recurrent neural networks for intrusion detection
using deep learning (RNN-IDS).

Accuracy: 97.09%
Precision: 83.28% A long testing time is required for detection.

[74]
Federated DL-based method for multiparty com-
putation that takes into account the safety of IoT
devices.

Accuracy: 56% The detection accuracy achieved by the al-
gorithm is unsatisfactory.

[75]
D’IoT, which is a proposed autonomous self-
learning system for identifying vulnerable IoT de-
vices.

Accuracy: 95.6%
Precision: 92.10%

The reliability of detection is poor. To im-
prove detection accuracy, a method of fea-
ture selection is required.

[73] A recurrent neural-network-based anomaly detec-
tion system. Accuracy: 98% It is not possible to factor in testing time.

[76]

A new technique for packet-level detection in
the IoT and networks was developed using deep
learning and bidirectional long short-term memory
(LSTM).

Accuracy: 99%
Precision: 98% Testing time was not calculated.

[77] Method for mobile malware detection using Q
learning for efficient offloading. Accuracy: 67% Predictability is too low.

[78] Model based on deep learning that uses LSTM to
detect bots by leveraging content and metadata. Accuracy: 90% The reliability of detection is poor.

[66]
Technique for detecting intrusions using deep learn-
ing based on the combination of a deep belief net-
work and a probabilistic neural network.

Accuracy: 99.14% The values of FPR, FNR, FDR, and FOR are
missing.

Regarding the identification of a compromised IoT, Nguyen et al. [75] presented a self-
learning system called D’IoT, which was tested on a self-generated dataset. HaddadPajouet
et al. [73] proposed the use of LSTM to search for Opcode-based IoT malware. To test the
efficacy of the proposed framework, Opcodes for running IoT applications built on the
ARM architecture were used. This approach uses text mining, a feature selection technique,
to extract a useful feature vector from Opcode. In addition, Diro et al. [69] incorporated
both deep and shallow learning models to identify an intrusion in the IoT. Pektacs et al. [62]
identified a botnet by conducting an analysis on the statistic data of the communications
among nodes in the IoT, e.g., packet info, transmission duration, etc. Using both content
and metadata, Kudugunta et al. [78] presented an LSTM-based method to identify bots.

Attacks on IoT devices can be identified by patterns in their operating codes (Opcodes),
as demonstrated by Azmoodeh et al. [79]. To distinguish between safe and harmful
programs, they first converted the Opcodes into a vector space and input the vector to the
deep learning model. In their study, a CNN with an Adaboost classifier was utilized as the
algorithm. In addition, McDermott et al. [76] adopted packet information and employed
a bidirectional LSTM to assess whether the packet was harmful. In particular, they used
traffic information from both the botnet and regular IoT in their experiment. Xiao et al. [77],
on the other hand, develop a Q-learning-based malware detection method for mobile
devices that does not require any prior knowledge of the mobile device’s trace generation
and bandwidth. The author investigated the static malware detection game and its Nash
equilibrium (NE) on a time-variant wireless network.
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3.3. Preventing Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks

It is believed that the IoT is a “Land of Opportunities for DDoS Attackers” [80]. The
number of attacks on IoT infrastructure has dramatically increased on a never-before-seen
scale. Mirai, one of these attacks, nearly brought the Internet to a halt by using com-
mon household items as bots to carry out DDoS attacks against a number of different
corporations. Babycams, printers, and webcams were among the affected items. Other
bots that resemble Mirai in [9]. Because of the sophisticated method that was used to
spread throughout the IoT network, the Mirai malware family caused significant damage
to Internet services. On the other hand, due to the wide variety of designs, develop-
ing a unified method to defend against DDoS attacks in the numerous IoT platforms is
extremely difficult.

Significant research accomplishments have been produced through the application
of a variety of strategies to resist DDoS attacks in the IoT. For instance, Shaaban et al. [81]
proposed a deep-learning-based DDoS attack detection approach using LSTM and GRU.
Compared to conventional ML models, their proposed system achieves superior results.
Using deep learning methods such as a stacked autoencoder and stacked restricted Boltz-
mann machine (RBM), Nugraha et al. [82] created an NIDS that detects intrusions based
on anomalies in network traffic. Van et al. [83] proposed a novel framework for detecting
botnets on TCP/UDP/IP packet flows that makes use of deep neural networks (DNNs)
and ladder networks. It presents superior results when compared to traditional methods
of detecting botnets. Hodo et al. [84] similarly adopted deep learning to mitigate both
DoS and DDoS attacked in the IoT. Likewise, Meng [63] employed a multilayer perception
(MLP) approach to detect DoS attacks in a common IoT platform, e.g., a sensor network.
Both shallow and deep learning methods were investigated in [64]. The authors used
probability estimates based on shallow learning methods to foretell intrusions. They tested
a convolutional LSTM deep neural network and found that it performed significantly better
than the shallow learning techniques they had previously used.

Priyadarshini et al. [85] developed a source-based method to defend against DDoS at-
tacks in fog computing. Their proposed work employs LSTM to identify legitimate and ma-
licious packets by analyzing the patterns in the time series data. Similarly, Sabeel et al. [86]
combined DNN and LSTM to detect unknown DoS and DDoS attacks. Doriguzzi et al. [87],
with the aim of reducing computation consumption, developed a lightweight and usable
CNN for DDoS detection called LUCID. CNN properties were used to detect whether
traffic flows were attacked or safe. Their results demonstrate the viability of their proposed
method for DDoS attack detection in operational settings with limited resources.

3.4. IoT Access Control and Authentication

Authentication is another crucial requirement for IoT security. Normally, before users
can access IoT applications and/or services, their actions have to be validated. Access
control is critical in both IoT and traditional networks. However, because of various
factors, e.g., network heterogeneity, network volume, device resource limitations, network
(IoT) security, etc., implementing access control can be difficult. Furthermore, the ability
to grant and suspend a user’s access to specific critical data contained within IoT apps
and services is critical. For example, Shi et al. [88] attempted to utilize the information
of human identity, as well as the recognition of human activities based on the channel
state information from WiFi signals, and developed a human physiological activity-based
user authentication method. In addition, the authors developed a three-layer DNN-based
authentication method that also takes human physiological activities as the input.

It should be noted that factors such as the sampling rate and training size consid-
erably influence the accuracy of authentication in DNN-based methods. For example,
Das et al. [89] attempted to use LSTM for authentication in power-constrained IoT net-
works. LSTM is used to analyze the flaws and vulnerabilities of hardware that affect signal
strength. The designed deep learning model is capable of identifying users by detecting
and exploiting these flaws. It is critical to assess such a solution in light of the adversary’s
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challenges. In addition, Chauhan et al. [69] presented an authentication method based on
an RNN for use in smart home applications in a similar manner. This method employs both
acoustics and voice commands. As their primary method of acoustic authentication, the
authors concentrated on developing a simple RNN system. The authors also compared and
contrasted the SVM-based approach and the LSTM approach for user authentication in a
smart home environment. These works explain why deep learning algorithms outperform
more commonly used ML algorithms in authentication tasks. Regarding accuracy, the
LSTM approach generally outperforms DNNs and regular RNNs in experimental scenarios.
Nonetheless, contrary to appearances, this contrast is only valid in the context of such
settings. Furthermore, each deep learning approach has its own set of drawbacks and
shortcomings that may affect how well it performs. These include, for example, the DNN’s
training size and the LSTM’s line of sight.

3.5. Dynamic Language-Based Malware Analysis in IoT

Another important field of application of DL for IoT is malware analysis. Haddad
et al. [73] proposed an RNN-based method for analysis of malware in the IoT. They con-
sidered applications for the IoT based on advanced RISC machines (ARM). In a similar
manner, Azmoodeh et al. [79] employed a deep convolutional network to investigate the
operational code (Opcode) sequence of an IoT subtype known as the Internet of Battlefield
Things (IoBT). In addition, Karbab et al. [90] developed a deep-learning-based malware
analysis framework for Android applications called MalDozer. Malicious and trustworthy
applications for the Android platform were used to validate the detection framework,
which is based on ANN. MalDozer’s fundamental building blocks are method calls to
the Android API and requests for permission to access resources. Su et al. [91], on the
other hand, proposed using image recognition as a DDoS virus detection method for IoT
networks. The creators of this method begin by collecting and categorizing two major
families of malware: Linux and Mirai. They attempted to convert the binary files of the IoT
applications into grayscale images, then applied the CNN on which to detect whether the
photographs were from malicious or benign software.

4. Decentralization in IoT Security

So far, we have reviewed the literature on implementing deep learning to address
variant IoT vulnerabilities. However, we realize that most conventional deep learning
methods are implemented on a centralized structure, such as a system containing a central
server [39], which presents a challenge due to the high communication overhead between
devices and the server. To enable deep-learning-based tools, data from geographically
dispersed IoTs is typically transferred from the asset and stored on a centralized computing
platform, which places a greater strain on communication networks, leaves more data
vulnerable to attacks, and compromises user privacy. To solve this problem, we need to
move away from centralized deep learning and toward a more distributed system that can
process sensing data close to the source, at the edge, and on IoT devices.

This transition is met with two major obstacles. First, many IoT applications are subject
to concerns and potential vulnerabilities regarding security and privacy. As a result, not
only accuracy but also speed, security, and privacy preservation are essential performance
metrics for decentralized deep learning. Second, the data collected by a variety of edge
devices or sensors may be heterogeneous, which means the data for a certain learning task
could be biased and inconsistent across devices [92]. This is common in practice because
such data are usually not evenly distributed or are non-independently and identically
distributed (non-IID). Certain sensors may only collect or focus on parts of global features
and hence may be only adept at parts of the learning task. Therefore, decentralized deep
learning methods must be resilient to non-IID data samples while learning the task.
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4.1. Blockchain Solutions and IoT Security

A blockchain and smart-contract-based IoT system was developed by Pan et al. [93].
The created architecture makes use of blockchain technology and a cryptocurrency system
to replace the regular cloud server in the IoT. IoT-related transactions and activities are
kept in blocks so that every user in the system is able to verify them. On the other
hand, smart contracts are implemented for actions in accordance with predetermined
policies and roles. The examination of the framework proved the extensive safety of IoT
applications. Latif et al. [94] proposed a blockchain-empowered IoT network architecture
that is strong, lightweight, and distributed. The architecture is reliable for various activities,
e.g., transaction recording, user authentication, access control, etc. Fan et al. [93] presented
a system in which IoT devices can verify each other’s identities and exchange data securely
thanks to blockchain technology. However, not all authentication methods for enhancing
the security of IoT data transfer were considered in the study.

In [95], Huang et al. presented an authentication system that makes use of blockchain
technology and networked identities. Blockchain anonymity was used to assess the sys-
tem’s block speed and performance time. Using a connection protocol, Zhang et al. [96]
proposed a blockchain system. The proposed protocol proved effective in ensuring the
security of IoT network endpoints. It also included a blockchain-based network protocol
to provide cryptographically secured authentication and validation of inter-IoT terminals
and access to platforms. According to Qian et al. [97], integrating AI with blockchain
helped further the objective of safe and scalable IoT systems. For large-scale data analytics
tasks in IoT applications, the proposed architecture provides precise, centralized, secure,
private, and low-latency options. Latency and insufficient computing power are addressed
to some extent but not fully. Agrawal et al. [98] presented a blockchain framework that
aims to continuously ensure the security of IoT systems without human intervention.
Gong et al. [99] studied different types of IoT computing devices using a fundamental four-
layer IoT blockchain modeling strategy, which includes perceptual, network, blockchain,
and application layers. As a proof of concept, they proposed testing a fully automated
trading device built on the Ethereum blockchain. As demonstrated by the developed model,
blockchain has enhanced the confidentiality, verifiability, and safety of IoT applications.

Considering privacy preservation in IoT, Lin et al. [100] designed a blockchain-based
thin-client system to address the IoT’s authentication and privacy issues. Because of the
suggested method, the issue of thin-client devices’ limited storage space can be remedied.
The trustworthiness of the plan was also verified by means of a comprehensive security
examination. However, further study is needed to completely grasp how smartphones
are impacted by the computational load of thin clients. Another blockchain technology
was introduced by Rathee et al., in [101], to ensure security and privacy. A wide range
of IoT systems can now be resistant to attacks because of the proposed blockchain-based
methods. Blockchain technology further makes it easier to implement IoT activities across
different domains and layers, e.g., from the fundamental (data collection) layer to the higher
(communication and applications) layers.

There are also many works focusing on using blockchain for the security of e-business
or financial IoT. For instance, Bernabe et al. [102] presented a blockchain-empowered sys-
tem for safeguarding financial and trading transactions in the IoT. The presented method
builds a peer neighborhood network to make the blockchain ledger easily fetched by all
users. After putting the suggested method through its paces, the universal peers, the size
of ledgers, and the weight of blocks can be effectively decreased. By more evenly spread-
ing work, it accelerated P2P financial dealings. Huang et al. [103] utilized a credit-based
blockchain platform for industrial IoT. The method makes use of a credit-based PoW proto-
col, guaranteeing the system’s reliability and the swiftness of transaction processing. The
Raspberry Pi framework was introduced, and a case study of an intelligent factory was car-
ried out using this mechanism. Likewise, Qian et al. [97] designed a blockchain-empowered
framework for securely managing interconnected devices. The suggested approach makes
it simple to assess applications, networks, and user perceptions independently, which is
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important because security problems might arise in any of these areas. Zhang et al. [104]
presented an IoT e-business concept. The model looked at the stages typically involved
in an e-business transaction, including preparation, agreement, and performance. When
asked how to make IoT e-business more widely available, the authors proposed using
a peer-to-peer transaction mechanism such as blockchain. Furthermore, they created a
smart-contract-based approach to facilitate the exchange of confidential financial data and
intellectual property between IoT e-businesses.

4.2. Applications of Blockchain in IoT

In this section, we introduce various applications for which Blockchain has been
deployed for IoT devices, as shown in Figure 6.

Internet of Vehicles
(IOV)

Smart Grid

Smart City 

Healthcare 

Industrial Internet 
of Things

(IIOT)

Supply chain
Management 

Sytems 

Blockchain

Figure 6. Application of blockchain in IoT.

Internet of Vehicles (IoV): Many of the security and trust difficulties with Internet-
connected vehicles could be resolved by implementing blockchain technology. Basic trust
and security characteristics, such as vehicle identity management, reputation, communi-
cation channel integrity, system automation, etc., need to be guaranteed by a successful,
dependable system [105,106]. Social IoV (SIoV) is one such common example [107]. Smart
contracts are adopted in this concept to implement tasks such as managing access, mon-
itoring activities, etc. As an added bonus, privacy management via smart contracts is
possible [108].

Managing Supply Chain: Blockchain-empowered IoT devices can help improve the
efficiency of the supply chain over the whole process, i.e., from the factory to the end user.
IoT has shown strong potential to improve supply chain systems. However, there is an
urgent demand to ensure the integrity and trustworthyness of data in such systems. Accord-
ing to to [109] and other sources, blockchain technology offers a definitive answer to this
problem [110]. Particularly, smart contracts allow us to effectively build a fully automated
supply chain management system without relying on any kind of centralized authority.
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Industrial Internet of Things (IIoT): Integrating smart edge devices into industries enables
monitoring and maintenance of all processes with no need for human intervention [111];
this is where blockchain comes in. The integration of blockchain can further improve the
reliability of the IIoT in terms of data trustworthiness, access control, privacy preservation,
and security [112,113].

Firmware Updates in IoT: The updating process of devices in IoT is also vulnerable to
disruption, and the flow of code execution can be altered. There are also difficulties in
distributing accurate firmware updates due to the restricted capabilities of IoT devices [6].
Another challenge is scalability; it is not feasible to manually update hundreds of endpoints.
The majority of firmware update procedures rely on asymmetric cryptography technolo-
gies, which are notoriously difficult and resource-intensive. Regarding its decentralized
structure, blockchain can effectively eliminate single points of failure [114,115].

Smart Healthcare: A significant part of modern medical practice involves implanting
sensors and other devices into patients for monitoring and diagnostic purposes. The IoT
enables integrated sensors to gather data from patients to be shared with the doctor, who
can then evaluate the patient’s condition remotely. By taking this route, the patient can
be freed from the hospital’s hierarchical structure while still maintaining close contact
with his or her physician. Strong interest exists in implementing such a cutting-edge IoT
framework to guarantee real-time monitoring of patients, given the aging population and
rising medical costs [11]. The Food and Drug Administration (FDA) and IBM Watson
Health have collaborated on the use of blockchain technology to secure oncology-related
data. They found that blockchain is able to store data collected from various sensors when
all necessary conditions are met [116]. The healthcare industry is likely to adopt blockchain
technology for safe storage of patient medical records. Blockchain can offer patients with
unchangeable record confirmation and confidence in such a way that sensitive patient
information can only be accessed by authorized personnel following designed protocols.

Smart Grid: Recent increases in electricity production can be attributed to the utilization
of cutting-edge IT methods that take into account consumer needs via the power grid. This
distribution network, also known as a “smart grid”, was developed to both increase the
reliability of service provided to final consumers and to reduce the wasteful use of energy
during generation [117]. It is a system in which power plants and consumers are linked
via a network to ensure that supply and demand are always in step [11,117]. Similar to
other IoT systems, security and privacy are also major concerns in a smart grid due to its
inherent complexity and dissemination of sensitive information [4,118]. As a result, setting
up a secure, non-centralized, distributed infrastructure is essential [119]. Blockchain is
able to benefit the smart grid in many aspects, e.g., both security and privacy guarantees,
improved scalability, efficiency, etc. Transactions are securely stored in the blockchain due to
its consensus protocol. Given the difficulty of altering or removing a block in the blockchain,
the system is reliable and secure once an electricity transaction has been recorded. There
is much less exposure to attacks than with a conventional, centralized data architecture
because there is no single point of failure. Electricity producers and consumers alike can
benefit from the increased clarity in pricing resulting from the widespread adoption of
blockchain-based trading infrastructure.

Smart City: The term “smart city” describes a community in which digital tools are
used for problem solving and management [120,121]. By using IoT, a smart city can provide
better service quality with lower computational overhead. In the meantime, blockchain has
been studied to enable decentralized smart city applications and integrate with cutting-edge
urban technology. A connected intelligent city network generates tremendous data through
IoT devices, which are then analyzed in distributed blockchain databases. Typical privacy
safeguards are not easily implemented in smart cities. One of the most practical solutions
in a smart city is lightweight privacy security that provides strong secrecy protection and
data utility power. In blockchain-based smart city initiatives, smart contracts are viewed as
a potential technological advancement [11].
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4.3. Blockchain Solutions for IoT Trust Issues

Authentication: To guarantee that no two nodes are fraudulently exchanging data with
one another, authentication is performed at both ends of the connection. When choosing
an authentication method in the IoT, it is important to take into account the system’s
hardware, connectivity, power consumption, and security requirements. Because of the
preinstalled nature of the keys, the symmetric key model is well-suited for low-resource,
low-security devices. When data storage on a device based on hardware needs to be
protected, hardware security modules (HSMs) are among the safest options. A trusted
platform module (TPM) is a widely used way to store asymmetric keys in unhackable
hardware. However, the models are not infallible because they can be tampered with by
malicious users. Blockchain, a distributed ledger technology, provides a practical alternative
because its data are immutable. As an internal network, a private blockchain can protect the
IoT from outside attacks. Successful blockchain authentication in the IoT was implemented
using the Authenticated Devices Configuration Protocol (ADCP) defined in [122].

Identity Management: For identification purposes, an identity produced by an identity
management system must be able to pass an external authentication process. Common
identity management architectures can be broken down into three types: standalone, fed-
erated, and centralized [123]. There are three main sorts of people involved in identity
management systems: the identity owner, the identity issuer, and the identity verifier.
Security flaws in traditional identity management systems such as those described above
arise because of the centralized manner of storing information [124]. With blockchain tech-
nology, several problems with present identity management systems can be solved [123].
Blockchain-based identity management solutions rely on decentralized identifiers (DIDs)
for the authentication of users’ online personas [124]. DIDs are digital identifiers that are
appended to credentials by an identity issuer and stored alongside those credentials in
a blockchain-based system [125]. In this scenario, blockchain supports universal access
to a shared ledger of records while simultaneously maintaining strict controls over who
can view or modify individual records. There are some existing identity management
platforms, e.g., uPort [126], Sovrin [127], ShoCard [128], etc., that allow users to create their
own identities on the Ethereum blockchain.

Data Integrity: There are a few widely used cryptographic protocols, e.g., the Secure
Hash Algorithm (SHA), Rivest–Shamir–Adleman (RSA), etc. However, IoT devices might
not have sufficient CPU capacity to perform such complex calculations. Additionally, be-
cause IoT nodes are not always running, adversaries have a window of time to compromise
information. The authentication and read–write safeguards proposed as a solution may
not be practical for all IoT applications. While software-based solutions such as multilevel
security (MLS) and hardware-based solutions such as TPM are possible, cryptographic
solutions such as TPM are also practical. However, these techniques may be subject to
limitations in various complex IoT systems. Although protocols such as that proposed
in [129] are used to protect the security of IoT systems, they were developed to fend off
specific types of threats. Given the immutability, distributed ledger, and decentralization
features of blockchain, the integrity of data in the IoT can be effectively guaranteed. In
particular, once the information is registered in the block and verified by the users, it is
nearly impossible for malicious users to tamper with that data [130]. On the other hand, the
IoT is an exciting new frontier for the integration of private blockchain distributed ledgers
to guarantee the veracity of collected data. Data from the IoT can be encrypted using smart
blockchain contracts [131].

Authorization and Access Control: Access control must be highly reliable in the IoT
because it involves ongoing queries and streaming data. The majority of methods for
authorizing and regulating access rely on a mechanism that makes access choices based
solely on information stored locally on the device. While device-determined policies offer
more leeway in authorization models, trusting them might be challenging because of their
reliance on local data. Integrating blockchain with current authorization methods provides
a promising solution, which enables a solid platform for trustworthy interactions between
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users and autonomous systems. Models such as those shown in [132] center primarily on
issues and solutions related to authorization and access control [133]. Using OAuth 2.0 and
blockchain, these approaches offer enhanced security and transparency. We provide a brief
summary of the IoT security challenges and blockchain solutions in Table 3.

Table 3. Blockchain solutions to IoT security challenges.

IoT Security Challenge Solutions via Blockchain

Interoperability Since blockchain operates in a decentralized and automated fashion, it is the foundation
upon which interoperability rests.

Data integrity Each node in the blockchain shares the same information and can validate it by refer-
encing prior records.

Authentication
Blockchain employs asymmetric cryptography in a decentralized fashion, with each
entity in the system assigned a unique hash ID that is shared publicly among all nodes,
fostering confidence among the network’s nodes.

Authorization and access control Ethereum blockchain-based smart contracts.

Identity management There are many applications for the immutability and distributed ledger technology
that blockchain provides.

4.4. Blockchain Security Flaws

In this section, we present the security challenges associated with applying blockchain
technology; the major challenges are shown in Figure 7.
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Figure 7. Blockchain security issues.

Order Dependency in Smart Contracts: In most cases, miners do not accept the order in
which transactions come and instead select a new order, leading to an issue with transaction
order for smart contracts that rely on the current values of storage variables [134].

Eclipse Attack: The victim’s incoming and outgoing connections are manipulated in an
eclipse attack, which distorts the true nature of the blockchain. Some forms of assault, such
as botnets, can be used to carry out such an attack [135].

Border Gateway Protocol Attack: The blockchain network’s routing information can be
compromised using an attack known as a border gateway protocol attack [136]. The goal of
this assault is to slow down the spread of data across a network. The other miners are left
behind because of the information vacuum that opens up.
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Handling Exception in Solidity: Many smart contracts are implemented in a program-
ming language called “Solidity”. It is possible to exploit flaws in this language due to
improper exception handling for certain actions. A Solidity “SEND” operation, for instance,
does not contain an exception handler in the event of a failure. Only Boolean values are
transmitted, which, for some purposes, may be adequate. Texas, the place of origin of
authorization phishing attacks, involves pretending to be the legitimate originator of a
series of transactions in order to steal sensitive information.

5. Discussion and Future Challenges

In this section, we discuss some open and challenging issues that must be considered
for further study.

5.1. Importance and Challenges of Integrating Blockchain Technology and Deep Learning

The emergence of blockchain allows deep learning applications to be applied in a
wider range of fields because of the security and decentralization features provided by
the blockchain. The blockchain can be considered a distributed, verified global database
accessible by all nodes on the network. If machine learning models were built and deployed
using blockchain technology, their development and deployment could be monitored in
real time. When applied to deep learning algorithms, blockchain technology eliminates the
effectiveness of data manipulation, model alterations, and other external attacks [137]. The
main advantages of integrating deep learning and blockchain is summarized in Table 4.

Table 4. Advantages of deep learning and blockchain integration.

Merits Type of Blockchain Description

Improved robustness Private/public
The combination of blockchain technology and deep learning can be
useful in business settings, where parties can work together in a trustless
and automated manner.

Automatic decision making Private

With the help of the decision traceability feature of deep learning models,
verifying that choice is a breeze. Furthermore, it ensures that the docu-
ments were not tampered with during the auditing process with human
involvement.

Joint decisions Private/public
By employing swarm robotics to blockchain technology, robots can obtain
access to a voting-based approach that can help them make an informed
decision based on the data they have collected.

Information assurance Private When fed consistent data from the blockchain, deep learning algorithms
can make better, more informed decisions.

It is possible that consumers could be compensated for providing data required to
train machine learning models thanks to the security mechanism provided by blockchain
technology. Expert systems equipped with domain-specific knowledge bases make up
the lion’s share of current AI efforts. However, researchers are honing effective machine
learning algorithms for application to real-world problems. When compared to deep
learning, which places an emphasis on data usage to train models and provide accurate
predictions, the blockchain stands out as a trustworthy, fault-tolerant technology. The
immutability of the blockchain also protects deep learning models or data from cyber
attacks and addresses concerns about data noise. In this study, we found that by integrating
blockchain technology with deep learning models, accurate predictions can be achieved in
a risk-free and trustworthy manner. Applications that are powered by deep learning can be
used to collect, analyze, and use mission-critical data with the help of a secure, immutable,
and distributed backbone provided by deep learning and blockchain.

However, it should be noted that there are still many challenges associated with
integrating blockchain and deep learning in current IoT systems. Without solving the
fundamental defects of blockchain, e.g., transaction efficiency, block size, power consump-
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tion, etc., many deep learning solutions are still in their nascent stages, representing only
proof of concept [138]. One of the fundamental concerns is that IoT devices might be
overwhelmed by running both blockchain and deep learning, both of which intensively
consume computation resources. Furthermore, most IoT applications require real-time
application, which exacerbates the case of applying both blockchain and deep learning.
Privacy adds another level of difficulty regarding both the data and deep learning models
in the IoT.

5.2. Challenges of Integrating Blockchain and IoT

With the incorporation of blockchain technology, there are a few security concerns that
should be noted. One of the main obstacles for businesses and developers is the dissimilarity
in the technologies’ underlying functioning principle and architecture (Figure 8). Thus, it is
essential to first identify the problems that could raise during the integration of these two
technologies.

Size of the Blockchain: Blockchain usually has vastly different operational and static
data sizes. For example, Bitcoin and Ethereum have grown to be between 250 GB and 1 TB
in size, respectively, making them prohibitively large in comparison to IoT systems. Due to
the limitation of computation resources and storage of current IoT devices, it is challenging
to integrate blockchain with IoT. Given its large file size, the widespread implementation
of blockchain in IoT infrastructure is limited. One possible solutions is to move the data
to cloud storage. However, cloud computing usually has a centralized structure, whereas
blockchain is decentralized, which might lead to framework conflicts.

Required Computing Power: Blockchain employs PoW and consensus algorithms to
provide high-security features such as immutability, robust authentication, etc., consuming
large amounts of computational resources and energy to execute these algorithms. However,
IoT devices employ lightweight protocols and processes that require little in the way of
power. Blockchain and IoT systems use two different protocols, and they could not be more
dissimilar in terms of the amount of computing power and energy required. Making them
work together is a difficult undertaking in and of itself.

Security: Integrating blockchain technology with IoT systems has been hailed by
several experts as a means of ensuring the safety of connected devices. However, the
data dependability of IoT devices becomes a major challenge as a result of this integration.
A typical blockchain only ensures the integrity of data in the absence of attacks. The
failure of hardware, the use of counterfeit hardware, the use of compromised networks and
hardware, etc., are all potential causes of data corruption in the IoT. Thus, it is important
and challenging to design security algorithms for the incorporation of blockchain into IoT
infrastructure.

Challenges of Identity Management: The management of one’s own identity is essential.
Weak data correlation, insufficient data, and outdated or erroneous data are just some of the
information collection issues related to identification records. Items such as automobiles,
houses, paintings, and digital publications all benefit from possession management for the
purposes of copyright management, property rights management, and traceability. The
blockchain can be used to record ownership in a way that is immutable. The blockchain
method ensures effective contract execution and the subsequent tracking of property
ownership. The blockchain method verifies ownership claims and establishes the existence,
validity, and uniqueness of choices by using hashing algorithms and timestamps to provide
immutable digital evidence such as video, text, and audio. Proper ownership must be
confirmed when it has been established.

Users’ Anonymity and Data Privacy: The potential application of blockchain technology
has been proposed as a viable remedy to tackle concerns surrounding data confidentiality
due to its intrinsic attributes of immutability, verifiability, and decentralized structure.
However, due to the limited capacity of the IoT, it might not be practical to run all the
privacy preservation algorithms to ensure the privacy of the data on an IoT-supported
blockchain. Thus, eliminating this complexity opens the door to attacks and compels us to
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make security concessions. Furthermore, while the immutability of data is improved by
the fact that all blocks in a blockchain contain identical information, this also raises privacy
concerns for users.

Transaction Efficiency: There is a major issue with the transaction speed of a blockchain
when integrating with IoT. It is universally acknowledged that IoT integration slows
down systems. IoT systems can generate massive amounts of data promptly, while the
pace of a blockchain may not be able to catch up. Popular blockchain systems, e.g.,
Bitcoin, can only process seven transactions per second. Ethereum, on the other hand, is
faster, and can process around 30 transactions per second. Ethereum 2.0 has promised
to increase the speed up to #100,000 transactions per second. On the other hand, several
studies have addressed this issue, e.g., by helping to estimate the transaction throughput
of the blockchain, increasing transaction throughput, etc. [139,140]. Nevertheless, the
speed of transaction processing is still likely to be insufficient, especially in large-scale IoT
applications.

Law and policy: Despite the blockchain method leading to numerous positive con-
sequences for society, lawmakers and authorities have come under fire. Blockchain has
run into a number of legal problems because of a lack of legal analysis [141]. A detailed
understanding of blockchain processing will be essential to support the design and imple-
mentation of legal regulations governing blockchain activities.

Blockchain Size Anoymity and Privacy
Of Users 

Required Processing
Power Security Speed Of Transactions

Blockchain and IoT
Integration Issues

Figure 8. Issues associated with the integration of IoT and blockchain.

5.3. Blockchain and IoT Integration Strategies

Integrated blockchain–IoT architecture can be classified into three parts. The basic IoT
model shown in Figure 9 is the simplest form of operation in which devices communicate
with one another across a local area network. Since it does not directly utilize the complex
computer methods of blockchain technology, this approach is typically the fastest to execute.
Currently, blockchain’s primary practical application is in the recording of digital exchanges
and conversations. This architecture is best for uses in which a lesser level of security and
faster communication are not crucial.

IoT–Blockchain Model: Blockchain is the sole means by which IoT gadgets can exchange
data with one another. We can use the security properties of blockchain to protect IoT
systems by implementing the architecture shown in Figure 9. Blockchain is used to capture
and keep all of the IoT system’s data and transactions, which can ensure the immutability
of the data.

Fog/Cloud Computing and Distributed Computing: Many issues with the resource con-
straints of IoT devices have been alleviated thanks to advancements in cloud and fog
computing [142], which form the basis of the IoT–blockchain model. Computing tasks such
as hashing, encryption, decryption, etc., can be offloaded from IoT devices and onto fog
and cloud infrastructure. Since blockchain necessitates a great deal of computing power,
electricity, and related resources to function, the integration of fog/cloud computing with
IoT technology becomes more relevant. IoT devices in the hybrid approach can either
talk to blockchain nodes directly or to fog/cloud nodes indirectly. This allows us to take
advantage of models combining the IoT with blockchain technology.
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Figure 9. Integration of IoT models.

6. Final Remarks

This study provides a thorough review of the advancements in security measures
for the Internet of Things (IoT) by applying deep learning and blockchain techniques.
Specifically, this study first elaborates on the fundamental characteristics of blockchain
and deep learning and further provides an in-depth analysis of the advantages of their
integration. This integration has been shown to improve data security and privacy in the
current IoT while also enhancing the quality of service. However, we also realize that
there are still many challenges associated with adopting blockchain and deep learning for
secure IoT systems. Due to the limitations of the current IoT and defects of blockchain and
deep learning, many solutions are still in their nascent stages, only representing proofs of
concept. The survey results reported herein are expected to provide valuable insights for
researchers to enhance their comprehension of the present research landscape and obstacles
associated with the integration of blockchain and deep learning technologies in securing
IoT systems.
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