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Abstract: The Industrial Internet of Things (IIoT) refers to the application of the IoT in the industrial
field. The development of fifth-generation (5G) communication technology has accelerated the
world’s entry into the era of the industrial revolution and has also promoted the overall optimization
of the IIoT. In the IIoT environment, challenges such as complex operating conditions and diverse
data transmission have become increasingly prominent. Therefore, studying how to collect and
process a large amount of real-time data from various devices in a timely, efficient, and reasonable
manner is a significant problem. To address these issues, we propose a three-level networking
model based on distributed sensor self-networking and cloud server platforms for networking. This
model can collect monitoring data for a variety of industrial scenarios that require data collection. It
enables the processing and storage of key information in a timely manner, reduces data transmission
and storage costs, and improves data transmission reliability and efficiency. Additionally, we have
designed a feature fusion network to further enhance the amount of feature information and improve
the accuracy of industrial data recognition. The system also includes data preprocessing and data
visualization capabilities. Finally, we discuss how to further preprocess and visualize the collected
dataset and provide a specific algorithm analysis process using a large manipulator dataset as
an example.

Keywords: data generation; Industrial Internet of Things (IIoT); data acquisition; distributed sensors;
feature fusion

1. Introduction
1.1. Background

In recent decades, the world economy has developed rapidly and entered the informa-
tion age. With continuous innovation in communication technology, the Industrial Internet
of Things (IIoT) has been growing rapidly. The IIoT integrates the industrial Internet,
next-generation information technology, and industrial systems. It can effectively reduce
production costs without compromising production efficiency, as shown in Figure 1. The
IIoT is considered the foundation of the future industrial system. However, along with the
increased productivity, the IIoT generates massive, high-dimensional, and heterogeneous
real-time data. This poses challenges, especially for large enterprises or companies, as
ineffective data processing can have detrimental impacts. To address these challenges,
advanced technologies are needed to promote efficient and reliable IIoT networks [1].
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These technologies encompass industrial data collection and storage, data conversion and
transmission, data preprocessing, data visualization, and data analysis [2–4].

Figure 1. In the context of the Industrial Internet of Things, large amounts of multidimensional data
have been generated.

The IIoT is driving the trend of processing data at the network edges to reduce latency
and improve efficiency. However, this also requires careful data management outside the
core data center to avoid data corruption and adverse effects. The continuous innovation
of distributed sensor network (DSN) technology further advances the development of the
IIoT. DSN technology overcomes many challenges posed by traditional on-site embedded
industrial gateways connecting to industrial sites. Moreover, DSNs are widely used due
to their significant advantages, such as flexible nodes, reliable transmission, multiple data
transmission paths, and simple network layout [5]. In multisensor information fusion
systems, both centralized and distributed architectures are commonly employed [6–9]. In a
centralized data fusion structure, sensor data are sent directly to the data fusion center for
processing, which minimizes information loss. However, it also has drawbacks, such as
complex data interconnection, poor reliability, and high computing and communication re-
source requirements. In a distributed fusion architecture, each sensor has its own processor
to process its own information and sends the processed data to the data fusion center for
fusion [10].

1.2. Challenges

The biggest challenge at present is that current technologies and schemes cannot
reasonably and effectively process the large amount of data generated in the industrial
field. There are two technical schemes for processing industrial data at this stage. The
first involves accessing industrial sites using embedded industrial gateways and collecting
data through serial ports and servers [11–13]. The second scenario involves using a data
terminal unit (DTU) to collect data and transfer them transparently to the cloud. However,
both data collection schemes have many drawbacks:

• High complexity of development: IIoT devices come with various I/O mechanisms
due to their different types and development protocols, leading to diverse interfaces
for communication between hardware and software. The communication between
different devices can result in varying data structures, posing challenges for data
integration and processing.

• Low development reuse rate: The lack of standardization in software and hardware is
a common challenge in the IIoT field. With diverse industrial environments, constant
efforts are required to develop and adapt new hardware and software solutions,
leading to resource waste and high costs.

• Poor maintainability and mobility: The reliance on gateways for data collection
and storage in the IIoT can result in limited independence between devices and
applications. This can lead to maintenance challenges in case of any issues.
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• Poor privacy: The hardware equipment was acquired from a manufacturer. However,
the cost was high and it is tightly integrated with the manufacturer’s platform, which
limits the user’s control over data management.

• Datasets are too simplistic: Collecting data from different sensors using multiple
devices can result in higher operating costs and more cumbersome processes.

In order to solve the above problems, this paper proposed a new technical scheme
based on the original scheme and combined with multisensor information fusion tech-
nology. The scheme is based on distributed sensor data generation and the fusion of
a smart cloud edge network. The scheme is equipped with a data generation device,
which is easy to install, has strong signal penetration, and has low delays and low energy
consumption. Compared with traditional data collection schemes, this method has the
following advantages:

• Low complexity of development:The data collection and transmission devices utilize
a unified I/O mechanism, development protocol, and data format type, which enables
efficient and accurate communication between the hardware and software due to the
same model being used.

• High development reuse rate: Users can adjust the peripheral devices of the equipment
to suit different industrial scenarios, without the need for a redevelopment of the
hardware, communications, and software.

• Good maintainability and mobility: The dataset generator has a small and easy-to-
install shape, with strong independence that eliminates the need for a gateway and
simplifies later debugging and maintenance of the data collection process.

• Good privacy: The hardware equipment used in this scheme is self-developed, giving
users complete control over the collection and transmission of datasets without any re-
strictions from intermediate manufacturers in terms of data storage and transmission.

• Diversity of datasets: The collection device is capable of collecting and storing data
information from various sensors simultaneously. Afterwards, mature synchronization
algorithms can be used to create a more standardized dataset.

1.3. Contributions

This paper presents a distributed sensor data generation and fusion system based on a
cloud edge network. The main contributions of this work can be summarized as follows:

• This paper presents a distributed sensor self-network, which challenges the traditional
edge sensor-central computer network method. It uses a three-level network approach
that integrates cloud server platforms to optimize the network structure. It solves the
problem of the high cost and low reliability of existing data collection schemes in the
current Industrial Internet of Things environment.

• The scheme realizes the real-time monitoring of industrial field data and visualizes
them in various dimensions, levels, and granularities. It helps enterprises make better
decisions and manage industrial sites.

• The system is equipped with an advanced data preprocessing system that can use
neural networks to clean, filter, and tag data. The system can generate complete
industrial datasets and make them public, which solves the problem of the current
lack of datasets in the Industrial Internet of Things.

The rest of this paper is structured as follows: In Section 2, we present the system model
of the distributed smart cloud edge network. Section 3 describes the system architecture of
the distributed sensor system. We then introduce the feature fusion of multisensor data
from distributed sensors in Section 4. In Section 5, we summarize the main contributions
and conclusions of this paper.

2. Related Works and Research Gaps

Multisensor information fusion technology has been widely adopted in industrial data
processing [14,15]. The use of data fusion for data collection and processing has proven to
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be an effective solution for improving datasets. Deep learning, a complex machine learning
algorithm, has made significant contributions to information fusion, data mining, and
related fields [16–27]. By implementing complex machine learning algorithms through deep
learning, improved performance can be achieved. Recently, deep learning has been utilized
in developing and processing industrial data. In [28], data fusion technology is employed
for processing industrial data, but the method does not guarantee an improvement in
dataset accuracy. In [29,30], an end-to-end processing method for industrial datasets based
on the convolution neural network is designed, but the method has a low convergence
rate and difficulty in processing large data. In [31], a data monitoring algorithm based on
the capsule neural network is presented, and in [32], a multiscale convolution recursive
neural network is used for multi-industry data monitoring. Finally, in [4], a new mobile
edge framework based on the Industrial Internet of Things is proposed.

3. System Model and System Architecture

The data acquisition and transmission model of the Industrial Internet of Things is
one of the hottest issues in the current research field [33]. We have broken away from the
traditional way of networking , the “edge sensor-Central computer”. As shown in Figure 2,
a three-level networking model of distributed sensor self-networking and networking
with cloud server platforms is presented. The model is composed of three parts: a dataset
collector, repeater, and server. In this model, the most important part is the data collection
module, which consists of two small modules. They are a wireless communication module
and a data fusion module.

Figure 2. System model based on cloud-edge-end network.

3.1. Wireless Communication Module

The sensor module consists of multiple distributed sensors that are heterogeneous in
nature. The module can gather data from various types of sensors, ensuring the reliability
and richness of the data. By preprocessing and fusing different types of data, we can achieve
more accurate results. For our study, we chose to use sound sensors and acceleration



Future Internet 2023, 15, 171 5 of 17

sensors, which we will experiment with, as outlined in [34]. To save channel resources and
reduce costs, the local preprocessing and classification of sensor signals are necessary. The
wireless signal s(k) received by the hotspot can be expressed as

s(k) = x(k) + e(k), k = 0, 1, · · · , N − 1, (1)

where x(k)is the collected data transmission signal, which transmits binary data and
artificial noise. The binary data signal is mainly composed of an amplitude modulation
(AM) signal, frequency modulation (FM) signal, two-phase shift keying (2FSK) signal, and
four-frequency shift keying (4FSK) signal. e(k) represents artificial noise in IDWSN and can
be described as alpha-stabilized noise [35]. The wireless communication module uses the
amplitude and phase of the electromagnetic wave to transmit information, including the
binary data transmitted. Radio electromagnetic waves are a form of transmission of signals
and energy that is used to transmit data between our sensors. The repeater receives the
energy of the electromagnetic wave and obtains the transmitted binary data by identifying
the amplitude and phase of the electromagnetic wave.

The advantage of the AM signal is that the receiving equipment is simple, but the
disadvantage is that the power utilization rate is low, the anti-interference ability is poor,
and the frequency band utilization rate is not high. The AM signal can be expressed as

w(t) = A cos[2π fct + φ(t) + φ0] (2)

where A represents the instantaneous amplitude of the signal, φ0 denotes the modulation
phase, fc stands for the carrier frequency, and θ is the carrier initial phase. The AM
modulation signal can be represented as

A = m0 + mt (3)

where mT is the baseband modulated signal of the signal, and m0 represents the dc compo-
nent of the signal. The FM modulation signal is represented as

A = 1. (4)

Digital modulation has better anti-jamming performance, stronger anti-channel loss,
and better security. Its baseband waveform can be expressed as

w(t) = ∑
n

ang(t− kT) (5)

where aNis the symbol parameter sent by the transmitter, g(t)represents the equivalent
filter module in the transmission process. MPSK signals can be written as

w(t) = Aej(2π fct+ϕi) (6)

where varphiI represents the phase modulation function and where the phase of the carrier
is proportional to the instantaneous value of the modulated signal. The modulation function
is given by

ϕi =
2πi
M

, i = 0, 1, . . . , M− 1. (7)

Multiamplitude shift keying (MASK) signals are a type of digital modulation technique
that uses multiple amplitude levels to represent digital data. This technique is commonly
used to transmit digital information over various communication channels, such as radio,
optical, and coaxial cables. MASK signals are widely employed in wireless communication,
satellite communication, digital TV broadcasting, and other similar applications. MASK
signals are represented as

w(t) = Aej(2π fct). (8)
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Multifrequency shift keying (MFSK) signals are a digital modulation technique that uses
multiple frequencies to transmit data. This technique is a form of frequency shift keying
(FSK), where each symbol is represented by multiple frequencies, enabling higher data
rates than traditional FSK. MFSK signals are widely used in various applications, including
radio communication, satellite communication, and digital audio broadcasting. MFSK
signals can be represented as

w(t) = ej(wct+2π fit) (9)

where fi represents the frequency of the modulation. The AM and FM spectra of single
tone modulation are shown in Figures 3 and 4.

Figure 3. AM spectrum of monotonic modulation.

Figure 4. FM spectrum of monotonic modulation.

Distributed sensors are equipped with more powerful data processing units, enabling
them to process data independently and filter out valid information. Additionally, they are
equipped with high-power transmission antennas that rely on WiFi networks to transfer
collected industrial data to a central computer in the cloud through a hotspot device. To
ensure the uninterrupted operation of the sensor network for an extended period without
replacing batteries, it is not practical for the collector to rely solely on battery power. We
must also employ advanced power technologies, such as solar panels and lithium batteries.

The wireless communication module is capable of transmitting networked information
and serves as the entry point for various smart terminals to access the Industrial Internet
of Things. It plays a vital role in connecting the perception layer and network layer of
the Industrial Internet of Things [36,37]. The wireless communication module serves as
the system terminal, belongs to the hardware link at the bottom, and is irreplaceable. We
connect a high-power external antenna to the wireless communication module to efficiently
transfer industrial data to cloud servers using the 5G network.

3.2. Data Fusion Module

The data fusion module is responsible for preprocessing sensor data by cleaning up
invalid binary data collected by sensors and integrating results from different sensors.
Multisensor information fusion technology is suitable for processing multimodal data
formats, enabling the fusion of different levels and forms of data information.

Multiple sensor information fusion (MSIF), also known as information fusion tech-
nology, initially had its roots in military applications. However, with the continuous
improvement and upgrade of industrial systems, this technology has been extended to the
civil field for use in medical diagnosis, mechanical fault diagnosis, air traffic control, remote
sensing, intelligent manufacturing, intelligent transportation, industrial intelligent control,
and criminal investigation. As a frontier technology, both military and civil systems are
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inclined to use data fusion technology for comprehensive information processing. In the
era of knowledge explosion, data fusion technology plays a critical role as it helps to avoid
the issue of rich data but poor information.

Data fusion is a multilevel automatic information processing process that utilizes
information from various sources, modes, times, places, and expressions to obtain an
accurate description of the perception object. Multisensor data fusion involves using
different sensor observation information to automatically analyze and synthesize the
observation information of multiple sensors obtained over time through a certain method
to obtain more effective information.

This data collection model is based on the data layer fusion of multisensor informa-
tion fusion technology. It involves collecting data from multiple sources, detecting and
analyzing the collected data signals, and then fusing the data from multiple sensors. The
Bayesian solution is used for data fusion, as shown in Figure 5, which requires that both
sensors have available information [38].

Figure 5. Schematic diagram of multisensor information technology in data layer fusion.

The probability density function can be expressed as

p
(

x(t) | Yt
1, Yt

2
)
=

p(y1(t) | x(t))p(y2(t) | x(t))
p
(

x(t) | Yt−1
1 , Yt−1

2

)
p
(

y1(t), y2(t) | Yt−1
1 , Yt−1

2

) (10)

where p(y1(t) | x(t)) and p(y2(t) | x(t)), respectively, represent the available information
of the two sensors. p

(
x(t) | Yt

1, Yt
2
)

represents the result of the data fusion of two sensors at

time t. p
(

y1(t), y2(t) | Yt−1
1 , Yt−1

2

)
represents the joint likelihood function of two indepen-

dent sensors. The joint likelihood function of two independent sensors is the product of the
likelihood functions of each sensor.

The most crucial step for fusion is to calculate the scores based on the data collected
by the sensor

p
(

x(t) | Yt
1
)

p
(

x(t) | Yt−1
1

) and
p
(
x(t) | Yt

2
)

p
(

x(t) | Yt−1
2

) (11)

Data layer fusion provides a wealth of accurate data and enables the easy extraction
of data details without losing any information. It is essential to effectively and intelligently
fuse the outputs of sensors to achieve optimal performance.

3.3. Hardware Architecture

As shown in Figure 6, the Inter-Integrated Circuit (I2C) is a communication protocol
used to transmit data between integrated circuits on a circuit board. The ESP32-S2 is a
low-power, WiFi-enabled microcontroller with a built-in 240 MHz Xtensa core, making it
suitable for IoT applications. The use of I2C+ESP32-S2 technology provides a reliable and
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efficient way to collect, preprocess, and visualize data in industrial settings, as illustrated
in Figure 7.

Figure 6. Schematic diagram of data acquisition in an industrial setting: IIC and ESP32-S2, with
STM32F103 chip as the core collector and ESP32-S2 as the repeater.

Field studies are important to ensure that the data collection system is able to meet
the needs of different industrial settings. The examples provided, such as industrial robot
failure monitoring, large manipulator actuator failure monitoring, distributed smart gear
box count monitoring, and the online working condition monitoring of a steam turbine
generator set, demonstrate the versatility of the system in different applications [39]. In
addition, the system can also be used in geographically challenging environments, where it
may be difficult for humans to monitor the industrial scenes manually.

The dataset generator is designed to create a customized shell based on specific condi-
tions. For instance, if the dataset is intended for underwater scene collection, the shell will
be adjusted to account for waterproof performance, density, and other physical character-
istics. Similarly, if the dataset is intended for the fault monitoring of a large manipulator
actuator, the housing’s fixed device will be upgraded to match the manipulator’s specifi-
cations. The dataset generator can be installed at a specific location on the arm without
disrupting its normal operation, and it can collect and transmit data as needed.

We evaluated several development board chips and ultimately chose the STM32F103
as the core chip for our dataset generator. The STM32F103 stands out for its powerful ARM
core microcontroller, which features either 64 or 128 K bytes of flash memory. Additionally,
the STM32F103 boasts low power consumption, built-in controllers, and other features
that make it an ideal choice for our project. It offers numerous communication interfaces,
including a Universal Serial Bus (USB) and a Controller Local Area Network (CAN), as well
as seven timers and two ADCs. It also features a dual timer that allows us to collect sound
signals at 4 KHz and acceleration signals at 800 Hz. Overall, the STM32F103 provides the
necessary capabilities for our dataset generator while also minimizing power usage and
maximizing functionality.
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Figure 7. We have conducted field research on such scenarios as industrial robot fault monitoring,
large mechanical arm actuator fault monitoring, distributed intelligent gearbox counting monitoring,
online condition monitoring of steam turbine generator set, etc.

To collect sound signals, analog signals are first converted using operational amplifiers
and then sampled through the MCU’s built-in analog converter. For acceleration signals,
an external three-axis acceleration sensor is used to collect and transmit data to the MCU
via the I2C communication protocol. After analyzing the requirements of our users, we
determined that the I2C protocol was sufficient for our needs. To support additional serial
port protocols, we also added support for the DTU transfer module. This module can
read data from subordinate devices and enable the system to interact with a wider range
of devices. For ease of operation and configuration, we chose the JSON format as the
configuration standard. This format is easy for users to read and modify and for programs
to analyze.

FreeRTOS is a leading real-time operating system (RTOS) developed by major chip
companies and distributed under the MIT open-source license. It offers excellent reliability
and ease of use and includes a core and various libraries for Internet of Things applications
across multiple industries.

While FreeRTOS is typically designed for use on a single core, the ESP32 processor is
a dual-core chip with both a Protocol CPU and an Application CPU. Since both cores are
identical and share the same memory, tasks can be run interchangeably between them.

The ESP32-S2 is an excellent choice for our data storage system, thanks to its long-
range transmission capability of up to 200 m, as well as its low power consumption and
excellent radio frequency performance. This repeater allows us to effectively transmit
data to the platform over medium and long distances, making it an ideal choice for our
dataset generator.

3.4. Software System

The software system plays a crucial role in processing, storing, and transmitting data.
Improving the efficiency of data processing and transmission can significantly enhance the
system’s overall performance and reduce costs.

The data processing module comprises several components, including an ultrasonic
receiver, a signal conditioning circuit, an A/D converter, a processing unit, and memory.
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The ultrasonic receiver converts mechanical waves with frequencies greater than 20 kHz
into another energy signal, possessing characteristics such as A high frequency, short
wavelength, small diffraction, and good directivity. The signal conditioning circuit is
responsible for converting the electrical signal from the slave sensor into a signal that
complies with the A/D converter’s input range. The A/D converter, as shown in Figure 8,
digitizes the analog signal. The data processing unit performs appropriate preprocessing
of the collected industrial data, filtering out unnecessary and redundant information and
sending valid information to the central computer [40].

To convert the sound and acceleration analog data into digital data, we use an AD
conversion module. The binary data are then sent to the buffer through the DMA pipeline,
where the CPU processes and stores it in FLASH. Finally, the WiFi module is utilized to
transfer data to the ESP32-S2 repeater and subsequently to the server for storage.

Figure 8. A/D and D/A conversion principle of data acquisition and storage process.

3.5. Data Preprocessing and Visualization

Data preprocessing is an essential step in data analysis, and it aims to clean, transform,
and normalize data to prepare it for further analysis. In industrial applications, preprocess-
ing techniques are used to reduce the impact of noise, missing values, outliers, and other
anomalies in the data. Coordinated filtering is a common technique for removing noise
from sensor data by taking the average of multiple sensor readings. K-means clustering
can be used to group similar data points together, making it easier to identify patterns and
anomalies. Singular spectral analysis is a method for decomposing time-series data into
their underlying components, which can be used to extract trends and patterns. An LIN
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interpolation algorithm can be used to fill in missing values in the data, which is important
for time-series data that have regular time intervals.

Visualization is another important aspect of data analysis, as it allows users to explore
and understand the data. The system shown in Figure 9 has a data visualization module
that allows users to interactively explore the data and generate visualizations, such as
charts, graphs, and heatmaps. Data visualization tools can be used to identify patterns and
relationships in the data and to communicate the results of the analysis to stakeholders.
By using these tools, users can gain a deeper understanding of the data and make more
informed decisions.

Figure 9. The system has the ability of data processing and display. This is the flow chart of dataset
data preprocessing and data visualization.

It is great to see that the system is equipped with a comprehensive data preprocessing
and visualization system. Data preprocessing is crucial to ensure that the collected data
are accurate, complete, and consistent. By filtering, sorting, and cleaning the collected
data, the system can generate high-quality datasets that can be used for further analysis.
Additionally, the system can synchronize multisensor information using the finite state
machine algorithm, which is a useful technique for integrating data from different sources.

The visualization system is also an important component of the system as it allows
users to monitor data in real-time and detect anomalies or issues with devices. With real-
time monitoring, enterprises can maintain their devices in a timely manner and optimize
their performance. Moreover, by making packaged datasets publicly available, users can
contribute to the community and promote collaboration in the industry.

Finally, the system model’s hardware independence is a significant advantage as it
reduces the cost of manufacturing for enterprises. Overall, the system’s data preprocess-
ing and visualization capabilities, combined with its hardware independence, provide a
powerful tool for enterprises to improve their operations and achieve better outcomes.

4. Specific Applications and Performance Analysis

DenseNet is a type of convolutional neural network that improves training by adding
a DenseBlock module. The DenseBlock module concatenates the outputs of all previous
layers to obtain the input for each layer. The architecture of DenseNet begins with a
convolutional layer with a 7 × 7 kernel size and stride 2, followed by max pooling with a
3 × 3 kernel size and stride 2 [41]. The network then alternates between DenseBlock and
transition layers. The last layer of the network is a global average pooling layer with a
7 × 7 kernel size [42], followed by a fully connected layer with 1000 units and a SoftMax
classification layer. The basic structure of DenseNet is illustrated in Figure 10.
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Figure 10. In the DenseBlock module, the output of all previous layers of this layer determines the
input of each subsequent layer. This is the basic structure of DenseNet.

As shown in the Algorithm 1,the transition layer in DenseNet is composed of three
parts: a batch normalization layer [43], a 1 × 1 convolution layer, and a 2 × 2 average pooling
layer. Its purpose is to reduce the number of feature maps. Unlike traditional convolutional
neural networks, which have L connections for an L-layer network, DenseNet’s DenseBlock
module allows the output of the previous layer to be used as input for each subsequent
layer [44]. This means that the input for each layer is a concatenation of the outputs of all
previous layers, resulting in a narrower network and fewer parameters. This is one of the
key advantages of DenseNet over traditional neural networks.

We propose an innovative feature fusion network [45], based on previous research,
and present its architecture in Figure 11. Our network extends the original model by
including several feature fusion layers. These layers are designed to combine the deep and
shallow information from the input multisensor data [46] , in varying degrees, to expand
the amount of feature information and enhance recognition accuracy.

Figure 11. This paper introduces a new approach to feature fusion using a DenseNet-based network.
The proposed network structure incorporates both shallow and deep information from the input
multisensor data. Specifically, the feature fusion layer is designed to combine these two types of
information in different proportions, allowing for a more flexible and effective feature representation.



Future Internet 2023, 15, 171 13 of 17

Algorithm 1: Steps of Feature Fusion Based on DenseNet.
Input: Data sequence
Output: Data sequence after feature fusion

1 Put the feature matrix into the feature fusion network, set the number of
convolution channels n and the number of convolution layers N in DenseBlock;

2 Convolution of input data tensorConvolution Layer: Kernel size [7 × 7];
3 Maximum Pooling: Core size [3 × 3];
4 DenseBlock: Alternating connection between DenseBlock and the transition layer;
5 Transition Layer: BN layer, [1 × 1] Convolution Layer and [2 × 2] Average pool

layer;
6 Global Average Pool: [7 × 7];
7 Full Connections: 1000;
8 Classification Layer: SoftMax.

To reduce redundancy in the feature fusion network, we have designed two structures
for fusing features [47]. The first structure combines the outputs of two convolution
layers, input layer 1 and input layer 2. Input layer 1 is a shallow convolution layer used
for classification, while input layer 2 is a deeper layer in the network. To increase the
dimension of features in input layer 2 [48] , we use deconvolution layers. In the second
feature fusion structure, we combine the previously fused features, controlling the size of
the features through convolution. We employ a cell operation layer that uses splicing to
combine feature maps of the same size, ensuring that the spliced feature map maintains
the same size as the original map, but with the number of channels equal to the sum of
input channels. To avoid data overload, we use smaller convolution kernels to reduce the
number of feature channels. Algorithm 2 summarizes the steps of feature fusion based
on DenseNet.

Algorithm 2: Acoustic wave width algorithm.
Input: Data sequence
Output: Number of MWEs

1 for Follow pointer 6= Forward pointer do
2 Recognition results and accuracySet simulate acceleration clock;
3 TimerGenerate dataset path;
4 Load acceleration data;
5 Circular pointer zeroing;
6 Convolute with the specified size;
7 Enter the recognition algorithm and record the results;
8 if No mark on the upper bound of the interval then
9 Judge whether the upper bound threshold of the interval is reached;

10 Maintain follow pointer.
11 end
12 end

Applications of the IIoT Data

We use the scheme proposed in this paper and the two previous schemes to collect data
from large-scale mechanic industrial sites [49] . Through many test analyses in different
scenarios, it is concluded that the cost of accessing industrial sites to collect data using an
embedded industrial gateway is three to four times that of the scheme proposed in this
paper, and the effectiveness of the data is not advantageous. The method of data collection
using a data terminal unit is similar in cost and data validity to the scheme in this paper.
Its disadvantage is that it is extremely complex to develop, can only collect a single dataset,
and has poor privacy.

In order to further measure the performance of the system proposed in this paper,
we applied the scheme to the industrial site of a large manipulator and collected data
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for several large manipulators. We collected a total of 890 acceleration and sound data
generated during normal operation. We can improve the algorithm for collecting datasets
to identify potential problems and make necessary adjustments to the arm.

In the first test, we focused solely on the data collected by the sound sensor and
designed an algorithm called the acoustic wave width (AWW) algorithm, which is based
on the working frequency of the manipulator. The AWW algorithm calculates the total
wavelength of the machine’s working interval and counts the acoustic convolution data
that reach a predetermined threshold. In the first test dataset, there were 890 Operator
Work Events (MWEs). There were 7 error detections and 17 missed detections in the AWW
algorithm, and its accuracy was 97.30%.

To improve the accuracy and stability of working state recognition for large-scale
manipulators, we incorporated acceleration data to assist in detection in addition to the
sound sensor. This approach eliminates the noise interference caused by collisions be-
tween surrounding arms. To solve the asynchronous problem of the two sensors, we
designed a finite state machine detection (FSMD) algorithm. The FSMD algorithm matches
the asynchronous sound characteristics with the acceleration characteristics by dividing
the present-state (PS) and sub-state (SS). This process filters out any mismatched noise
signals [50] .

The results of the second test on the previous dataset show that the large manipulator
worked 890 times normally. The AWW algorithm combined with the FSMD algorithm had
5 error detections and 12 missed detections , and its accuracy rate was 98.09%, which has
significantly improved. The state table of the finite state machine algorithm is shown in
Table 1.

Table 1. State table of FSMD algorithm.

Accelerate
PS

Sound
PS

Accelerate
SS

Sound
SS

Accelerate
Output

Sound
Output

MWE
Output

0 0 0 0 0 0 0
0 0 0 M 0 0 0
0 0 1 0 0 0 0
0 0 1 M 0 0 M
1 N 0 0 0 0 N
1 N 0 M 0 0 N
1 N 1 0 0 0 N
1 N 1 M 0 0 N

In the third experiment, we used the feature fusion network designed in this paper
to process the dataset. There was one error detection and three missed detections in the
preprocessed dataset, and the accuracy rate was 99.56%, which improved significantly. By
observing and comparing the data of three times, it is clear that the sonic algorithm can
effectively detect the working data of a large manipulator. However, the accuracy can be
significantly improved by adding the finite state machine algorithm. At the same time, the
feature fusion network designed in this paper can further improve the recognition accuracy
after preprocessing the dataset. Therefore, the system can successfully realize real-time
monitoring and fault data detection of the industrial site. In addition to the tests mentioned
above that demonstrate the feasibility of the system, we have also tested it in an industrial
setting using a large shooting arm and reached consistent conclusions. The system device
has a high accuracy rate, and it can be further improved through the implementation of
specific algorithms and special networks. We plan to conduct experiments with it and
compare more data, as well as develop more algorithms for different scenarios.

5. Conclusions

With the development of 5G technology, the IIoT has been promoted more and more
rapidly. While increasing productivity, it also generates massive, ultra-high-dimensional,
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complex, and heterogeneous real-time data. We need advanced technology to promote
efficient and reliable IIoT networks. Combining the idea of multisensor information fusion,
this paper breaks away from the traditional network mode of an “edge sensor-Central
computer”. A three-level networking model based on a distributed sensor self-network
and cloud server platform is presented. We implement monitoring data collection for a
variety of industrial scenarios that require data collection. The system can process and
store critical information in time, reduce data transmission and storage costs, and improve
the reliability and effectiveness of data transmission. At the same time, a feature fusion
network is designed to further expand the amount of feature information and improve the
accuracy of industrial data recognition.

The system model improves the efficiency of modern chemical plant production to
a certain extent and also reduces costs. Visualization ensures the safety and maintenance
of the plant. It can be said that it provides an important basis for enterprise development
and optimization. In the future, we will continue to experiment and design algorithms for
different scenarios, as well as improve the system’s data processing ability and accuracy in
different scenarios.
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