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Abstract: With the rapid growth of cloud computing and the creation of large-scale systems such
as IoT environments, the failure of machines/devices and, by extension, the systems that rely on
them is a major risk to their performance, usability, and the security systems that support them. The
need to predict such anomalies in combination with the creation of fault-tolerant systems to manage
them is a key factor for the development of safer and more stable systems. In this work, a model
consisting of survival analysis, feature analysis/selection, and machine learning was created, in
order to predict machine failure. The approach is based on the random survival forest model and an
architecture that aims to filter the features that are of major importance to the cause of machine failure.
The objectives of this paper are to (1) Create an efficient feature filtering mechanism, by combining
different methods of feature importance ranking, that can remove the “noise” from the data and leave
only the relevant information. The filtering mechanism uses the RadViz, COX, Rank2D, random
survival forest feature ranking, and recursive feature elimination, with each of the methods used to
achieve a different understanding of the data. (2) Predict the machine failure with a high degree of
accuracy using the RSF model, which is trained with optimal features. The proposed method yields
superior performance compared to other similar models, with an impressive C-index accuracy rate of
approximately 97%. The consistency of the model’s predictions makes it viable in large-scale systems,
where it can be used to improve the performance and security of these systems while also lowering
their overall cost and longevity.

Keywords: machine failure; survival analysis; random survival forest; feature analysis; feature
selection

1. Introduction

Critical infrastructure systems, such as water supply, power supply, transportation,
telecommunications, etc., play a significant role in the sustainable development of modern
societies. Modern infrastructure systems are highly interconnected and consist of geograph-
ically extensive networks. Continuous communication and data exchange between these
systems leads to interdependencies that are essential for their proper functioning and the
functioning of the overall system they belong to. Due to the large-scale networking of in-
frastructure systems, there can be economic, social, health, and environmental problems in
case of their failure. The failure of these systems can arise from extreme natural phenomena
(hurricanes, floods) or technological disasters and cyber-attacks. As a result, systems of
this type must be regularly monitored, upgraded, and maintained [1].

Ensuring the healthy and continuous operation of systems such as aircraft engines,
cars, computer servers, and even satellites, is an imperative need, given their contribution to
critical services, beyond urban infrastructure. The accurate prediction of their malfunctions
and, by extension, their operational interruptions, can contribute to improvements in the
design of proactive fault-tolerant systems, as well as significant cost reduction through
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prompt fault reporting. Previous research has used various techniques to create predictions
in scenarios such as the autoregressive model [2], principal component analysis [3], and
opposite degree algorithm [4].

Furthermore, a significant amount of research has been carried out in the anomaly
detection field, which has a closely correlated relation to machine failure. The research
involves a variety of proposed models mostly making use of different machine learning
techniques such as ANN [5,6], RF and SVM [7], and convolutional neural networks (CNNs)
and long short-term memory (LSTM) [8].

To accurately predict machine failure and prevent costly downtime, it is essential to uti-
lize a reliable and flexible approach that can account for a wide range of factors influencing
machine degradation. While traditional statistical models have been widely used in failure
prediction [9], they often rely on strict assumptions about machine degradation patterns
that may not accurately reflect the real-world complexity of the problem. In contrast, sur-
vival analysis has emerged as a promising approach, offering several advantages that can
help improve the accuracy and efficiency of predictions. By incorporating time-to-failure
information, handling right-censored data, accounting for covariate effects, and providing
flexibility in application, survival analysis represents a superior alternative to traditional
models in the context of machine failure prediction.

This research aims to address a gap in the literature by exploring the use of survival
analysis in combination with various feature selection/analysis and machine learn-
ing methods to predict machine failure. While some studies have utilized survival
analysis to predict failure, few have examined the effectiveness of different feature selec-
tion/analysis methods in conjunction with this technique. Most of the existing research
focuses primarily on different machine learning models, such as LSTM networks [10,11],
moving away from the survival analysis approach. While machine learning models
are undoubtedly useful in predicting machine failure, survival analysis may be more
appropriate when the goal is to predict failure times and identify key factors in failure
prediction. In this proposed model, a machine learning survival analysis technique is
used, along with feature analysis and selection methods. The machine learning model
used is random survival forest (RSF), which is well-suited to time-to-event data, such
as machine failure times, and has several advantages over other machine learning
methods in the context of survival analysis. Examples include the ability to handle
time-dependent covariates, non-linear relationships between covariates and survival,
and interactions between covariates [12].

Unlike survival analysis models, standard machine learning algorithms are not
equipped to handle the right-censored data that are prevalent in machine failure datasets.
RSF is a great way to incorporate machine learning and simultaneously overcome this
problem, due to its ability to handle high-dimensional, complex data [13]. RSF can handle
both continuous and categorical predictors, as well as complex interactions, nonlinear rela-
tionships, and time-varying effects. This makes it particularly useful in survival analysis
settings where there may be many potential predictors that interact in complex ways [14].
One of the key benefits of using RSF is its ability to handle missing data, which is common
in many real-world datasets [13–15]. RSF uses a tree-based approach to impute missing
values by splitting the data at each node based on the available data, and then using the
available data to make a prediction for the missing value [13]. This imputation process is
repeated multiple times, resulting in a distribution of imputed datasets that can be used to
estimate uncertainty. Overall, the flexibility and versatility of RSF make it a powerful tool
for survival analysis, particularly in situations where there are many potential predictors
and complex interactions among variables [13].

Our research makes the following contributions:

• We propose a new machine failure prediction model aimed at increasing prediction
accuracy using machine learning mechanisms and the method of survival analysis;

• The proposed model includes a data filtering/selection layer that is designed to choose
the most suitable features for training the machine learning model. This is achieved by



Future Internet 2023, 15, 153 3 of 26

implementing various feature analysis/selection techniques. Each of the techniques
employed targets a distinct aspect of comprehending the data;

• A random survival forest model is used to combine machine learning and statistical
analysis, overcoming their limitations, that affect the prediction [12];

• We objectively examine the model on a collection of 10,000 machine instances, with
experiments showing promising statistical accuracy;

• Our work contributes to the existing literature on the use of RSF for machine failure
prediction, as well as the need for a strong feature extraction level for model training.

The innovation presented in this paper centers around a novel approach to predict
machine failure in large-scale systems, by incorporating a technique that prioritizes the
suitability of the data. The proposed method utilizes the RSF model and an efficient feature
filtering mechanism, incorporating a range of feature importance ranking techniques to
eliminate irrelevant data and retain only pertinent information. This process effectively
eliminates “noise” from the data, ultimately leading to increased accuracy and consistency
in the prediction outcomes.

The overall organization of the paper is as follows. Section 2 provides an overview
of the related work that was reviewed for this research, including a comparison of our
proposed approach to other proposals in the literature. In Section 3, we present the
mathematical and theoretical background of the techniques utilized in this study. In
Section 4, we describe the model created in our study as well as the dataset used for
training and testing the model. Additionally, we discuss the different failure modes
of the machines in the dataset. In Section 5, we present the results and findings of our
study, which are later discussed in Section 6. Finally, Section 7 concludes and closes
the paper.

2. Related Work

Despite the abundance of statistical methods that can be used, survival analysis is
conceptually largely aligned with the study of predicting the failure of a machine [16].

Kaplan–Meier curves and the COX regression model have been employed in similar
research to determine the relationship between the survival time of a subject and one or
more prognostic variables. In [17], the SMED (single-minute exchange of die) philosophy
and survival analysis are used to reduce transition times. In this research, the COX model
is also used to identify the significance of causes of time loss. The proposed methodology
predicts activity times, considering only the characteristics that were identified as significant
toward transition times, which is defined as a limitation by the authors.

Similarly, the model proposed in [18] follows a gradual Bayesian approach to model
failure using the tree-like accident theory and the Bayesian survival analysis model to
predict the probability of survival for welded pipes. Using Bayesian, Kaplan–Meier, and
Weibull curves, the authors construct staged Bayesian distribution, which is then used to
make predictions about the time-to-failure of the pipes. Weibull distribution is also used
in [19] to predict the life of battery cells, combined with the exponential, log-normal, and
log-logistic distributions to create an accelerated failure time (AFT) parametric survival
model. In this research, the authors concluded that low values of prediction error could be
achieved by only using a small number of variables on the proposed model. The authors
assert that this discovery holds significant value in their research, as their model yielded a
total decrease of 40% in the root mean square error (RMSE). A limitation of this study is
that the authors relied on only two datasets to support their findings, without exploring
the use of other datasets.

In [10], an LSTM approach is presented for the remaining life prediction of ma-
chines. The proposed approach leverages the advantages of LSTMs in capturing
temporal dependencies in sensor data while also effectively handling missing data.
The authors conducted experiments on a real-world dataset of a milling machine and
evaluated the performance of their novel approach in comparison to various baseline
methods. The results indicate that the LSTM-based approach surpasses the other meth-
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ods in accurately predicting the machine’s health status and effectively capturing its
dynamic behavior. Out of the variety of models tested, the bidirectional-LSTM model
had a total RMSE value of 15.42 cycles, outperforming all other models, such as deep
convolutional neural network (DCNN) (18.44 cycles); support vector regressor (SVR)
(20.96 cycles); multilayer perceptron (MLP) (20.84 cycles); bidirectional recurrent neu-
ral network (BD-RNN) (20.04 cycles); and a classic LSTM (18.07 cycles). Similarly, the
authors of [11] proposed a semi-supervised deep architecture for predicting the remain-
ing useful life (RUL) of turbofan engines. The model uses both labeled and unlabeled
data to enhance its performance and reduce the need for extensive labeled data. It
involves a combination of a convolutional neural network (CNN) and a LSTM network
that work in tandem to extract features and capture the temporal dependencies of the
input data. The model was evaluated on the C-MAPSS dataset and compared against
several state-of-the-art methods, achieving superior performance in terms of both RUL
prediction accuracy and mean absolute error. Specifically, the model proposed by the
authors yielded superior RMSE results for most of the subsets that it tested, with the
value of 12.10 on the FD003 subset being the lowest, while also providing the best
prediction result on all of them (FD001: 231, FD002: 3366, FD003: 251, FD004: 2840).
A limitation of the study, as stated by the authors, is the use of a piece-wise linear
degradation model, which does not account for the individual degradation patterns
of each engine in each subset. The authors plan to address this limitation in future
work by exploring the use of an unsupervised fault detector based on a variational
autoencoder to optimize performance.

Introduced in [20] is a method based on DCNNs to diagnose faults in induction mo-
tors using multiple signals. The proposed method leverages the advantages of DCNNs
in automatic feature extraction and achieves improved diagnostic performance by com-
bining information from multiple sensor signals. The authors conducted experiments
on a dataset containing multiple types of faults in induction motors and evaluated the
performance between two different architectures of their proposed method. The first
architecture utilized a multichannel model that merged two separate time–frequency
images from vibration signals and current signals, forming a two-channel image. This
image was then fed into a deep model that consisted of three 2D convolutional layers and
a fully connected layer with ReLU activation functions. The output layer had six units
that correlated with six distinct labels. The second architecture used two convolutional
networks were utilized to analyze different sensor signals separately, and then merged
in fully connected layers to contribute to the output of label prediction. One network
was trained on vibration signals, while the other was trained on current signals. The
learned fault signatures from each network were combined by flattening them into a
fully connected layer with 1024 ReLUs. The output layer used for predicting the state
label was the same as the one used in architecture 1. The confidence interval analysis
showed that the proposed multi-signal DCNN model had stable performance and the
merged model outperformed the multi-channel model, with a 95% likelihood of covering
fault classification skill between 99.89% and 99.93%. To address the issue of limited
training data for deep architectures, the authors suggest the use of data augmentation
techniques to expand the dataset and exploring pre-existing models for fault diagnosis
as fields of improvement for their future work.

The paper [21] proposes a method for equipment failure diagnosis that addresses
the challenge of limited data and imbalanced data distribution. Specifically, the proposed
method combines the synthetic minority oversampling technique (SMOTE) with a con-
ditional tabular generative adversarial network (CTGAN) to predict equipment failures
with a mixture of numerical and categorical data. The experimental results show that the
proposed method outperforms other similar methods in five-category failure classification,
even when failure data account for less than 1% of the total data. The proposed model
showed a high recall rate of 0.9068, an accuracy of 0.8712, and a balanced accuracy of 0.8883.
The recall rate and balanced accuracy were the highest across all methods tested by the
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authors which, apart from the crated model, were a CatBoost (non-oversampling) model,
a combination of SmoteNC and CatBoost, and finally, another combination of the ctGAN
and CatBoost models. It is noteworthy that the highest accuracy was obtained using the
CatBoost algorithm without oversampling. Moreover, the paper highlights the importance
of false positives in equipment failure prediction, as the cost of sudden machine downtime
far exceeds that of system misdiagnosis. Therefore, the proposed method aims to increase
the possibility of false positives to reduce the possibility of false negatives. The authors
also note that the interpretability of the equipment failure prediction results is crucial, and
they incorporated a tree-based model for failure prediction to analyze the causes of failures
and implement preventive measures accordingly.

In [22], the authors make a comparative study to evaluate a plethora of machine
learning techniques for the task of fault detection and classification. The models used
in this study are SVM classifier, KNN classifier, random forest, logistic regression, and
decision tree. All models were tested on five datasets, and their accuracy and AUC-ROC
scores were measured. The authors concluded that the best performing machine learning
method was random forest, with an average accuracy of 0.964 and an average AUC_ROC
score of 0.948 across all datasets. The other notable methods were the decision tree model,
with an average accuracy of 0.959 and AUC_ROC score of 0.944, and KNC, with an average
accuracy and AUC_ROC score of 0.942 and 0.930, respectively.

In the proposal of [12], the authors suggest a new approach for predicting the remain-
ing service life of water mains by combining machine learning and survival statistics. The
authors developed a machine learning algorithm that uses a combination of historical
failure data and pipe-specific characteristics to predict the probability of failure at any
given time. They then applied survival statistics to estimate the remaining service life of
the water main based on the predicted failure probability. The study utilized two distinct
machine learning models—specifically, a random forest model and a random survival
forest model—and additionally incorporated the Weibull proportional hazard survival
model to assess and compare their respective abilities, in order to accurately predict the
remaining useful life of water mains. The results showed that the RSF model achieved supe-
rior performance (C-index = 0.880) compared to the Weibull proportional hazard survival
model (C-index = 0.734) and the random forest machine learning model (C-index = 0.807),
indicating the potential of machine learning in predicting the remaining service life of
water mains.

The literature reviewed in this study indicates that many of the methods for predicting
remaining useful life either solely employ survival analysis [16,18,23] or only use machine
learning techniques [10,11,20]. However, combining both approaches can be beneficial,
as demonstrated by the papers [12,19], which use a combination of survival analysis
and machine learning to make their predictions. Furthermore, most of the papers using
survival analysis rely on the use of the COX model for their feature evaluation [18,19,23,24].
By relying solely on the COX model for feature selection, important non-linear or time-
dependent relationships between predictor variables and survival time may be missed or
obscured, leading to a potentially incomplete or inaccurate understanding of the underlying
data. Similarly, in the case of [12], only using feature ranking from a RSF model may
not provide information about the direction or magnitude of the relationship between
predictor variables and survival time. That is where the combination of different feature
ranking/selection techniques can prove to be an advantage in our model. By not only using
the standard COX and RSF feature ranking/selection methods, we can achieve a more
comprehensive and accurate understanding of the data, as well as increased confidence
and validation of the results, while mitigating some of the limitations and biases of each
individual method.
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3. Background
3.1. Survival Analysis
3.1.1. Kaplan–Meier and Nelson–Aalen Methods

The Kaplan–Meier estimator is a non-parametric statistical method used to calculate
the survival function. The survival function indicates the probability that the subject
participating in the study will survive beyond a certain period [12]. In the case of this study,
the event is the time until the machine ceases to function. The probability of survival for
each time point is calculated using the following formula:

S =
NSL− NSD

NSL
(1)

where NSL is the number of machines that function at the start and NSD is the number of
machines that stop functioning.

The Nelson–Aalen estimator is used for the same purpose as the Kaplan–Meier esti-
mator, to summarize and display data. Unlike Kaplan–Meier, the Nelson–Aalen estimator
uses the hazard function instead of survival [12]. The hazard function focuses on the rate
of occurrence of the event we want to observe at time t and is defined by the formula:

Ĥ(t) = ∑ti≤t
di

ni
(2)

where di is the number of events at time ti and ni is the number of machines at time ti.
Both the Kaplan–Meier and Nelson–Aalen estimators are commonly used in survival

analysis to estimate the survival function and hazard function, respectively. These methods
can provide valuable insights into the time-to-event data and can be used to compare
survival between different groups or treatments.

3.1.2. COX Proportional-Hazards Model

The COX proportional hazards model is a regression model commonly used by re-
searchers to determine the relationship between a subject’s survival time and one or more
predictor variables. It provides insights into how various parameters affect the duration of
a subject’s survival. Unlike the metrics mentioned previously, the COX model allows for
calculations to be made considering more than one variable. Furthermore, the model can
be used for both categorical and non-categorical variables, in contrast to Kaplan–Meier and
Nelson–Aalen, which can only be used for categorical variables. The COX model can be
used to identify how different factors in the dataset affect the event of interest. The hazard
function used to calculate COX is:

h(t) = h0 · e(b1·x1+b2·x2+···+bn ·xn) (3)

where t is the survival time, h(t) is the hazard function, (x1, x2, . . . , xn) are the variables,
and (b1, b2, . . . , bn) are the regression coefficients of the variables. The values ebi are
known as hazard ratios (HR), and they are used to measure the influence of the variables.
HR = 1⇒ no effect, HR�1⇒ decrease in risk, HR �1⇒ increase in risk.

The COX proportional hazards model has several advantages over other survival
analysis methods. One advantage is that it can handle both continuous and categorical
variables simultaneously, allowing for the analysis of multiple variables. Furthermore,
the COX model does not make any assumptions about the distribution of survival times,
making it more robust to violations of assumptions. Additionally, the model provides
information on the direction and magnitude of the effect of each predictor variable on the
hazard of the event.

3.1.3. Survival Trees

Survival trees (ST) are decision trees that are specifically designed for analyzing time-
to-event data. In the context of survival analysis, the goal of building a survival tree is to
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identify subgroups of instances which differ in their risk of experiencing the event, based
on their baseline characteristics [25].

The basic idea of a survival tree is to recursively partition the sample into increas-
ingly homogeneous subgroups with respect to the event of interest. The partitioning is
achieved by repeatedly splitting the data based on the values of one or more predictor
variables, such that the within-node heterogeneity in terms of the survival outcomes
is minimized [25]. At each step of partitioning, the algorithm selects the variable and
the split point that maximally differentiates the survival outcomes of the subgroups
defined by the split. This process continues until no further improvement in within-node
homogeneity is achieved or a stopping criterion is met. The result is a tree structure
where each terminal node represents a distinct subgroup with a unique risk profile for
the event of interest.

Once the tree is built, it needs to be pruned to prevent overfitting and improve its
generalizability to new data. The most used method for pruning is cost complexity pruning,
which involves adding a penalty term to the impurity measure to favor simpler trees that
avoid overfitting. Other methods, such as cross-validation or resampling techniques, can
also be used for pruning.

Survival trees have several advantages over traditional regression models, including
their ability to handle nonlinear and interactive effects, identify distinct subgroups with
different risk profiles, and provide easily interpretable results in the form of a decision
tree. However, they also have some limitations, such as their tendency to create overfit
trees, sensitivity to the choice of split criterion and stopping rule, and inability to handle
time-varying covariates or competing risks.

3.1.4. Random Survival Forest

RSF is a machine learning method for predicting survival outcomes, extending the
classical random forest (RF) algorithm to handle censored survival data. RSF constructs
an ensemble of decision trees, where each tree is grown using a random subset of the
data and a random subset of the features. To handle censored data, RSF introduces a new
splitting criterion that considers the distribution of the survival times in each node of the
tree. Specifically, the splitting criterion is based on the log-rank statistic, which measures
the difference in survival times between two groups of observations [13].

The log-rank statistic is used to measure the difference in survival times between two
groups of observations. It is calculated as:

LR =
(O− E)2

V
(4)

where O is the observed number of events in the group, E is the expected number of events
based on the Kaplan–Meier estimator, and V is the variance of the number of events based
on Greenwood’s formula.

The splitting criterion in RSF is based on the log-rank statistic. At each node of the
tree, the algorithm considers all possible splits on all possible features and selects the split
that maximizes the log-rank statistic. Specifically, the splitting criterion is defined as:

S =

(
LRle f t − LRright

)
SE

(5)

where LRle f t and LRright are the log-rank statistics for the left and right child nodes, and
SE is the standard error of the log-rank statistic.

Once the tree ensemble is constructed, RSF can make predictions for new observations.
The predicted survival probability for an observation is calculated as the average of the
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survival probabilities predicted by all the trees in the ensemble. The survival probability
for a given time t is estimated as:

P(t|x) = e−H(t|x) (6)

where H(t|x) is the hazard function predicted by the tree ensemble for the observation
with covariate x.

3.2. Feature Analysis

Feature analysis is a process of examining the input features in a prediction model to
gain insights into their predictive power and their relationship with the target variable. It
is an important step in the development of prediction models, as it can help to identify the
most important features for predicting the target variable and to understand the underlying
patterns and relationships in the data. By analyzing the feature importance scores and/or
combining them with other techniques, one can gain insights into the factors that are most
strongly associated with the, in our case, time-to-event outcome and develop more accurate
prediction models.

3.2.1. RadViz

The RadViz method is a visualization technique that is used to represent the relation-
ship between multidimensional data points in a two-dimensional space. It maps each data
point onto a circle with a set radius and then draws lines from the center of the circle to each
point. The position of each data point on the circle is determined by a weighted average of
its values in each dimension. The formula for calculating the position of a data point on the
circle is as follows:

xi =
∑j
(
wj · vij

)
∑j wj

(7)

where xi is the position of the data point on the circle, vij is the value of the data point in
the jth dimension, and wj is a weight that determines the importance of the jth dimension.
The weights are determined by the user and are used to emphasize certain dimensions
over others. Once the positions of the data points on the circle are determined, lines are
drawn from the center of the circle to each point. The length of each line is proportional
to the distance between the data point and the center of the circle, which represents the
overall relationship between the data points [24].

The RadViz method provides an intuitive visualization of how different dimensions
contribute to the overall relationship between the data points, making it a useful tool
for exploratory data analysis and for communicating complex relationships between
data points.

3.2.2. Rank2D

The Rank2D model is a feature selection technique that ranks input features based on
their pairwise correlation with the target variable. The model used in our study utilizes two
types of ranking methods: Pearson ranking and covariance ranking. Pearson’s ranking is
based on the Pearson correlation coefficient, which measures the linear relationship between
two variables. Covariance ranking, on the other hand, measures the linear relationship
between two variables without standardizing their scale. The Rank2D model first computes
the pairwise Pearson correlation coefficients and covariance coefficients between each input
feature and the target variable. The features are then ranked based on their absolute value
of the correlation coefficient or covariance coefficient. The top-ranked features are then
selected for use in the classification model. The mathematical formula for Pearson ranking
is given by:

r(x, y) =
n · ∑(x · y)−∑ x · ∑ y√

(n · ∑ x2 − (∑ x )2)(n · ∑ y2 − (∑ y )2)
(8)
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where r(x, y) is the Pearson correlation coefficient between input feature x and target
variable y, Σ is the sum of the values of the input feature or target variable, and n is the
total number of data points. The mathematical formula for covariance ranking is given:

cov(x, y) = ∑i(xi −mean(x)) · (yi −mean(y))
n− 1

(9)

where cov(x, y) is the covariance between input feature x, and target variables y, xi, and yi
are the values of input feature x and target variable y for the ith data point; mean(x) and
mean(y) are the mean values of input feature x and target variable y; and n is the total
number of data points.

Rank2D can be used to select the most relevant features for classification tasks and
can improve the accuracy and efficiency of the classification model. The model can be
particularly useful in situations where the number of input features is large and feature
selection is required to reduce the complexity of the model.

3.3. Feature Selection

Feature selection is a critical step in the development of machine learning models,
such as random survival forest. It involves identifying a subset of relevant features
from a larger set of input features. Optimal feature selection can lead to significant
improvements in the performance of classification models, as well as providing insights
into the underlying patterns and relationships in the data. Feature selection is crucial
for several reasons, such as reducing the dimensionality of the problem, improving
the interpretability and generalization performance of the model, and reducing the
computational cost of training and prediction [26]. Therefore, proper feature selection
techniques are essential to develop effective machine learning models that can accurately
solve real-world problems.

Recursive Feature Elimination

Recursive feature elimination (RFE) is a popular feature selection technique that
recursively removes less important features from a dataset until a desired number of
features is reached. RFE uses a machine learning algorithm to rank the importance of each
feature and iteratively eliminates the least important features until the desired number
of features is selected. The basis for RFE involves training a machine learning model
on a subset of the features and evaluating the importance of each feature based on its
contribution to the model’s performance. The RFE model can improve the accuracy and
efficiency of a prediction model by identifying the most important features, while also
reducing the risk of overfitting [26].

The results of RFE can be important in feature selection, as they can provide valuable
insights into the underlying patterns and relationships in the data. By identifying the
most important features, RFE can help to simplify the prediction model and improve its
interpretability, while also reducing the computational complexity of the model.

4. Materials and Methods
4.1. The Proposed Model

The proposed prediction model is based on survival analysis for processing and
extracting conclusions in a human decentralized context, focused on non-biological entities.
Survival analysis concerns predicting the time until an event occurs. In this specific study,
our interest is focused on using failure data to estimate the machine’s life span under
specific usage and stress conditions. The strategy followed for creating the model is:

1. Examination of the significance of the functional characteristics of the machines;
2. Selection of the characteristics that are of statistical and practical importance for the

prediction model;
3. Feeding these data into the random survival forest model for training and the ability

to predict with the best possible accuracy.
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Model Workflow Description

As presented in Figure 1, the initial step is to extract the helpful features from the
dataset, using the RadViz, Rank2D, COX, and feature ranking of RSF. Each of the methods is
used to achieve a different part of understanding of the data. RadViz visualization technique
is used for the identification of clusters of highly correlated features with the survival of
the machine. Rank2D, on the other hand, enables the identification of correlations among
the features. The COX model is a suitable method for determining the features that exert
the greatest impact on the survival time of the machine. Meanwhile, the feature ranking of
RSF can model non-linear relationships between the predictors and the outcome, making it
a valuable tool for feature selection in this domain.
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Following the feature analysis, an RFE model is employed to identify the optimal set
of features that have a significant impact on machine failure prediction. This step is crucial
to ensure that the RSF model is trained with the most relevant and informative features,
leading to improved predictive performance. By selecting the best subset of features using
the RFE approach, the RSF model can effectively capture the complex relationships between
the predictors and the survival outcome, leading to accurate and reliable predictions.

The features that are deemed important through the various layers of feature analysis
and selection are utilized in the training of the RSF model. By incorporating only the top-
performing features, the RSF model can achieve a higher level of accuracy and reliability in
predicting machine failure. The trained model can then be used to make predictions on
new datasets and aid in proactive maintenance, ultimately reducing downtime and costs
associated with machine failure.

4.2. Dataset Description

The dataset used in this study [27] was provided by Stephan Matzka from the School
of Engineering–Technology and Life at Hochschule für Technik und Wirtschaft Berlin,
Germany. The dataset comprises 10,000 rows, each containing 14 columns of features,
including a unique identifier, product ID indicating the quality variant, and variant-specific
serial number. Additional features include air temperature, process temperature, rotational
speed, torque, tool wear, and a machine failure label. The product ID denotes the quality
variant as either low, medium, or high. The air temperature and process temperature
in a manufacturing process are generated using separate random walk processes with
different standard deviations. The rotational speed is calculated from a power value with
added noise, and torque values follow a normal distribution with no negative values. The
quality variants add different amounts of tool wear to the process. The machine failure
label indicates whether the machine has failed due to one of five failure modes, each with
specific conditions, but it is not disclosed to the machine learning algorithm which failure
mode has caused the failure.

The right-censored items in the dataset, meaning the machines that did not fail during
its composure, are presented in Table 1. The percentage of the censored machines was a
high 96.61%, which declares an imbalance in the dataset. The high proportion of right-
censored instances in a survival dataset can have a significant impact on the performance
of prediction mechanisms such as RSF, due to the potential lack of information about the
failure times of non-censored instances. As the RSF model is designed to handle right-
censored data, it can still provide reasonable estimates of the survival function and hazard
rate. However, the imbalance in the dataset can result in a biased model that is more
accurate for censored instances, which can lead to inaccurate predictions for non-censored
instances. This limitation can have important implications for decision making based on the
model’s predictions, especially if the non-censored instances represent high-value assets.

Table 1. Right-censored machines in the dataset.

Censored
Instances

Non-Censored
Instances

Proportion of
Censored Instances

Proportion of
Censored Instances

9661 339 0.9661 0.0339

4.3. Types of Machine Failure

Identifying the type of machine failure is of utmost importance, as each failure mode
can have a varying impact on production efficiency, cost, and uptime. Proper identification
can help with the effective allocation of resources, maintenance scheduling, and implement-
ing appropriate mitigation measures. Understanding the underlying causes of different
machine failure types and accurately identifying them is crucial for the efficient operation
of a machine-dependent system.
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4.3.1. Tool Wear Failure (TWF)

Tool wear failure is a gradual process that occurs because of continuous use of the
machine, thus creating a strain on its components, causing it to fail. This type of failure
can impact the quality of results produced by the machine and can result in increased
replacement costs. Identifying the factors contributing to tool wear can help to optimize
the use of tools and reduce the frequency of replacements.

4.3.2. Heat Dissipation Failure (HDF)

Heat dissipation failure occurs when there is insufficient cooling of the machining
process, leading to an increase in the temperature of the tool and workpiece. This can cause
deformations, cracks, or even melting of the material being machined. HDF is particularly
important in high-speed machining operations, where the heat generated can be significant
and quickly damage the tool or the workpiece.

4.3.3. Power Failure (PWF)

Power failure (PWF) happens when the machining process is not supplied with enough
power or when there is an excessive amount of power being delivered. Insufficient power
can lead to a reduction in the material removal rate, while excessive power can cause the
tool to break or lead to workpiece damage. PWF is an important failure mode to monitor
because it can directly impact the productivity and quality of the machining process.

4.3.4. Overstrain Failure (OSF)

Overstrain failure occurs when the forces acting on the tool exceed its design limits,
leading to deformation or even breakage of the tool. This can happen when the material
being machined is particularly hard or when the machining parameters are not optimized.
OSF can lead to significant downtime and repair costs, if not prevented.

4.3.5. Random Failures (RNF)

Random failures occur due to factors outside of the control of the machining process,
such as material defects, operator error, or environmental factors. RNF can be particularly
challenging to predict and prevent, making it important to continuously monitor the
machining process and identify any patterns or trends that may indicate a potential failure.

5. Results

The model was tested for its accuracy performance in the machine failure prediction,
while also in the prediction of the type of machine failure. This means that the feature
ranking/selection layer was also used to measure the best features to calculate each machine
failure mode.

5.1. Model Evaluation Criteria
5.1.1. C-Index

Assessing the accuracy of machine failure prediction models can be challenging due
to the presence of right-censored failure events in the testing dataset. This means that
some machines may have been operational for the entire duration of the testing period,
making it impossible to observe when they would have failed. To address this challenge, a
common metric used to evaluate the performance of machine failure prediction models is
the concordance index (C-index).

The C-index considers both the observed failure times and the predicted failure
times, including those that are censored. This is achieved by creating pairs of machines,
where the machine with an observed failure time is ranked higher than the machine with
a censored failure time. The C-index ranges from 0.5 to 1, with a value of 1 indicating
perfect prediction performance, where the observed failure times follow the same order
as the predicted failure times, and a value of 0.5, indicating that the prediction model
performs no better than random chance. Therefore, the C-index provides a reliable way
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to assess the accuracy of machine failure prediction models, even in the presence of
censored data [22].

Calculate the total C-index by summing all values and dividing by the total number
of possible pairs:

C =
1

num ∑i;di=1 ∑j:yi<yj
I[ŷi > ŷj] (10)

where C represents the C-index; num = number of all comparable pairs; yi and yj repre-
sent the observed and predicted time to fail, respectively; and I is the indicator function.
Therefore, this metric includes censored data, creating ranked pairs where the observed,
uncensored events occur before the observed censored event.

5.1.2. Percentage Change

Percentage change is a mathematical calculation that shows the difference between
two values as a percentage of the original value. To calculate the percentage increase, the
difference between the new and old values must be found and divided by the original
value. This difference is then multiplied by 100 to obtain the percentage increase. The
formula used to make this calculation is presented in Equation (12).

I = y− x (11)

Percentage Increase =
I
x
· 100 (12)

In Equation (11), x is the number before the increase, y is the number after the increase,
and I is the increase between the two values. In Equation (12), I is the increase between the
values and x is the original number.

5.2. COX and RSF Feature Analysis

For the selection of the most important features, a set of feature selection and feature
analysis techniques were used. These results were then compared and the features that
prevailed were applied to the RSF model for training. The features were also ranked for
each of the machine failure types mentioned in Section 4.3.

The COX and RSF methods in the feature ranking section showed that the most
important features in terms of machine failure were torque, rpm, and air temperature,
as shown in Figure 2 and Table 2. Specifically, in the figure and table, the ranking of
the characteristics is shown for the type of machine failure. In the COX results, the
values that have a negative value indicate low correlation with machine failure, while
positive values indicate an increased probability of machine failure. In contrast, in the
RSF results, negative values indicate that the characteristic reduces the predictive ability
of the model, i.e., in this specific case, the correlation of the characteristic with a low
risk of machine failure. In the case of RNF prediction, all characteristics have negative
values, indicating that they are all related to a low risk of machine failure. Although
this complicates the model prediction, including the context of machine failure, i.e., a
random factor, it is somewhat logical.

Table 2. Feature ranking results based on RSF importance mean.

Feature Machine
Failure HDF OSF PWF RNF TWF

Rotational speed [rpm] 0.1173 0.0850 0.1594 0.0047 −0.1413 0.1377
Torque 0.0678 −0.0008 0.0028 0.2343 −0.1162 0.1041

Air temperature [K] 0.0480 0.0731 (~)−0.0000 (~)−0.0000 −0.0623 −0.0194
Process temperature [K] 0.0070 −0.0098 0.013 0.0015 −0.1022 0.0161

Type 0.0006 −0.0001 0.0062 (~)−0.0000 −0.0558 −0.0026
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The ranking of the features in the various techniques differed slightly, but the char-
acteristics were consistently among the top-ranked features. Specifically, the features of
torque and rpm were consistently ranked among the top three features.
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failure and HDF.

For the COX results shown in Figure 2, we can observe that in the case of all the failed
machines, the COX diagram showed a strong correlation between the machine failure risk
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and the increase in the air temperature. Moreover, the torque feature seems to have a
correlation with the failure of the machine but to a smaller degree. The rest of the features
in the diagram seem to have either no impact (rotational speed) or are associated with a
lowered risk of the failure of the machine. Similar results are shown in the HDF failure type
on the COX diagram where the air temperature seems to have the highest correlation to the
risk of machine failure, while the increase values in other features seem to have a lower
risk. For the OSF, RNF, PWF, and TWF failure types, all the features seem to have a small
correlation with the event we aimed to capture, so using the other metrics in combination
with the COX diagram is needed to better evaluate the features. The small correlation is
noticed because of the small values of the positive and negative rankings, which means
that most of the features are closer to 0.

5.3. RadViz and Rank2D Depiction of Feature Relations

For a better understanding of the features, feature analysis techniques such as the
RadViz and Rank2D technique were used. Through them, the relationships of the char-
acteristics between them can be analyzed and better understood, which provides better
results in their sorting.

In case of machine failure, the RadViz analysis, depicted in Figure 3, showed that
a high rotational speed combined with a high process temperature is a possible factor
contributing to the failure. This is evident as only failed machines are pulled towards the
rpm feature, with some being close to the middle of rpm and the process temperature. The
same results can be observed in the PWF case, where most of the failed machines in the
machine failure category that were pulled towards the rpm feature seem to belong in PWF.
So, we can assume that increased rpm is correlated with a PWF type of machine failure.
Apart from that, we can see that most of the machines, working or otherwise, are closer to
the torque feature and the area between the torque and the type of machine. The strong pull
towards the torque feature indicates that torque is critical for the proper functioning of the
machines. The fact that many of the machines are also located in the area between torque
and type suggests that there may be a relationship between the type of machine and its
torque output. Finally, the light pull towards the process temperature for both working and
failed machines indicates the importance of this feature, especially in the failure categories
of PWF, TWF, and RNF, where some of the failed machines can be seen moving towards
that area of the diagram.

Through the analysis of 2D ranking, a strong correlation between the process and
air temperature features with the rpm of the machine is observed, which is logical in the
mechanical context. Additionally, increasing the rpm of the machine results in a corre-
sponding decrease in its torque, as shown in Figure 4. Moreover, using the Pearson ranking
2D model, as shown in Figure 5, we observe an almost perfect positive correlation between
the air temperature and process temperature features. This leads us to the conclusion
that an increase in one of these two variables may lead to the destruction of the machine.
Similarly, the almost complete negative correlation between the rotational speed and torque
variables is also evident from the same diagram. This negative correlation may indicate that
an increase in one of the two variables results in a decrease in the probability of machine
failure. These observations highlight the importance of considering these variables in
machine failure prediction models.



Future Internet 2023, 15, 153 18 of 26

Future Internet 2023, 15, x FOR PEER REVIEW 19 of 28 
 

 

 

Figure 3. RadViz graphical representation of feature relations for different causes of machine failure. 

Through the analysis of 2D ranking, a strong correlation between the process and air 

temperature features with the rpm of the machine is observed, which is logical in the me-

chanical context. Additionally, increasing the rpm of the machine results in a correspond-

ing decrease in its torque, as shown in Figure 4. Moreover, using the Pearson ranking 2D 

model, as shown in Figure 5, we observe an almost perfect positive correlation between 

the air temperature and process temperature features. This leads us to the conclusion that 

Figure 3. RadViz graphical representation of feature relations for different causes of machine failure.



Future Internet 2023, 15, 153 19 of 26

Future Internet 2023, 15, x FOR PEER REVIEW 20 of 28 
 

 

an increase in one of these two variables may lead to the destruction of the machine. Sim-

ilarly, the almost complete negative correlation between the rotational speed and torque 

variables is also evident from the same diagram. This negative correlation may indicate 

that an increase in one of the two variables results in a decrease in the probability of ma-

chine failure. These observations highlight the importance of considering these variables 

in machine failure prediction models. 

 

Figure 4. Results of linear correlation of features using covariance 2D ranking. Figure 4. Results of linear correlation of features using covariance 2D ranking.

Future Internet 2023, 15, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 5. Results of linear correlation of traits using Pearson 2D ranking. 

5.4. Number of Selected Features 

The recursive feature elimination technique was used to select the number of charac-

teristics to be used in the final prediction model. Based on this, as well as the results of the 

negative influence of features obtained from RSF and COX, we can formulate the charac-

teristics that will give us the best possible prediction results. 

According to the results for the general prediction of machine failure, RFE used two 

features to achieve the best prediction, as shown in Figure 6. The addition of more features 

reduced the prediction accuracy, which is normal considering the previous feature rank-

ing evaluation. However, if we also consider the results of the RSF and COX, we can be 

more generous with the number of features that will be used, by adjusting their quantity 

to a number quite close to the original number given by RFE. The same methodology can 

be used for predicting the type of machine failure. 

Figure 5. Results of linear correlation of traits using Pearson 2D ranking.



Future Internet 2023, 15, 153 20 of 26

5.4. Number of Selected Features

The recursive feature elimination technique was used to select the number of char-
acteristics to be used in the final prediction model. Based on this, as well as the results
of the negative influence of features obtained from RSF and COX, we can formulate the
characteristics that will give us the best possible prediction results.

According to the results for the general prediction of machine failure, RFE used two
features to achieve the best prediction, as shown in Figure 6. The addition of more features
reduced the prediction accuracy, which is normal considering the previous feature ranking
evaluation. However, if we also consider the results of the RSF and COX, we can be more
generous with the number of features that will be used, by adjusting their quantity to a
number quite close to the original number given by RFE. The same methodology can be
used for predicting the type of machine failure.

Furthermore, in Figure 6, it was observed that in most cases, the best prediction
accuracy was achieved with only two features. The only exceptions were the TWF case,
which required three features, and the OSF case, which required all five features to achieve
the best possible prediction. The decrease in the precision with the addition of more features
could be an indicator that the most relevant information for the prediction was contained
within a small subset of the available features.

1 
 

 

Figure 6. Cont.
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1 
 

 Figure 6. Optimal number of features based on RFE accuracy score for different causes of machine
failure.

5.5. Survival and Cumulative Hazard Curves

From the analysis of the survival and cumulative hazard curves, it is observed that
the safe operation of the machines ranges from 0 to ~200 min of operation. From this
point onwards, the risk of machine failure increases rapidly. The same pattern is confirmed
by the failure of machines after this time point, as shown in Figure 7. Furthermore, an
examination was carried out on the machines in the only categorical variable contained
in the dataset, which was the type of machine shown in Figure 8. This variable took on
the values of high, medium, and low. From this examination, it appears that high-quality
machines perform better than low- and medium-quality machines, although to a small
extent, in the time range of 200–240 min. This may also be due to their relatively smaller
population, as high-quality machines accounted for 20% of the total dataset. In addition, a
noticeable superiority of medium-quality machines over low-quality machines is observed
in the time range of 200–230 min, which evens out in the later time frames.
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5.6. Model Training and Results

For our evaluation, we measured the predictions of the RSF model against a normal
random forest model, which was trained with the exact same dataset and configuration
as the RSF but with the downside of ignoring the right-censored data, unlike in RSF. We
used the models one time to make the prediction using the whole dataset (Table 3) and
its features and another time with the feature selecting layer (Table 4). In both, we used
the metric of the C-index to calculate the accuracy of each model. It is important to note
that both models were trained using identical hyperparameters for the calculation of
the C-index.

Table 3. Model results for machine failure and all its causes with the whole dataset, using C-index.

Model Machine
Failure HDF OSF PWF RNF TWF

RSF 0.9724 0.9976 0.9735 0.9936 0.6695 0.5446
RF 0.9558 0.9145 0.9956 0.9986 0.3899 0.9222

COX PH 0.8837 0.9944 0.9957 0.9965 0.3931 0.9642
ST 0.8447 0.9399 0.8868 0.9475 0.4972 0.6302

Table 4. Model results for machine failure and all its causes with feature selection, using C-index.

Model Machine
Failure HDF OSF PWF RNF TWF

RSF 0.9724 0.9977 0.9735 0.9951 0.7644 0.6841
RF 0.9627 0.9093 0.9958 0.9987 0.4792 0.9217

COX PH 0.8983 0.9672 0.9955 0.9965 0.8603 0.9718
ST 0.8476 0.6457 0.9420 0.9670 0.4967 0.6874

The data were divided into a 75% training and 25% testing set to evaluate the perfor-
mance of our model. For the RSF, we selected the splitting criterion based on the log-rank
test, which compares survival curves between two or more groups. The data were applied
to the RSF model consisting of 1000 trees. To make a prediction, a sample descends tree
by tree down to a terminal node in the forest. The data in each terminal node are used
for non-parametric estimation of the survival function and cumulative hazard using the
Kaplan–Meier and Nelson–Aalen estimators, respectively. Additionally, the risk score
representing the expected number of events for a particular terminal node can also be
computed. The overall prediction is the average of all the predictions of the trees in the
forest. The model produced very accurate prediction results for machine failure, about 97%,
as well as when the machine failed due to heat dissipation failure (HDF~99%), overload
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(OSF~97%), and lack of power supply (PWF~99%). In cases of random failure (RNF) and
tool wear failure (TWF), the model did not predict the outcome as efficiently, achieving a
C-index of ~54% for RNF and ~0.67% for TWF. This fact is likely due to the lack of sufficient
machines that have stopped working due to these causes, as well as the more difficult
nature of predicting them.

The results show that the RSF model has the upper hand in the main prediction
of the machine failure out of all the models tested but lacks in the prediction of some
types of failure. In the failure prediction and without using the data analysis/selection
layer, the model that kept up with the RSF in terms of C-index score was random forest
with a score of 0.9558, only 0.0166 less than the C-index of RSF. Both COX PH and ST
scored below 90%. As for the types of failure, the results showed an imbalance among
the predictions of the models, where no model excelled in the prediction of all the types.
For the HDF and RNF failure types, the best prediction was achieved by the RSF with
a percentage of approximately 99% and 67%, respectively, while for the failure types
of OSF and TWF, the COX PH model displayed the best C-index score among all the
other models, achieving scores of 99.57% and 96%, respectively. Finally, the RF model
produced the best C-index score for the PWF failure type with 99.86%. The numbers
discussed are presented in Table 3.

With the insertion of the feature selection layer, all models increased their predictions
in most cases. It is noteworthy that the optimal set of selected features used by the models
differed across the various modes of failure. The features used by each model to achieve its
best C-index score can be seen in Table 5. All models used on average four features, with
the decimal values rounded up to the closest integer because the features cannot be split.
One outlier to this was the prediction of TWF, where three out of the four models used two
features to achieve their best prediction, while the RF model used all five.

Table 5. Number of features each model used to achieve its best prediction on each failure type.

Model Machine
Failure HDF OSF PWF RNF TWF

RSF 5 4 5 3 3 2
RF 3 4 5 2 2 5

COX PH 3 4 5 5 3 2
ST 5 4 2 5 2 2

The RSF model showed significant improvements in the prediction of TWF (from
~54% to ~68%) and RNF (from ~67% to ~76%) types, while also making slightly better
predictions on the PWF, OSF, and HDF types. The RF model also improved its results
both in the machine failure prediction (increase by ~1.1%) and in the prediction of the
failure types of RNF, PWF, and OSF. In the case of RNF, the increase was significant as
the RF model was almost 10% more accurate using the feature selection. In contrast, the
prediction of the TWF and HDF showed a small decrease in accuracy. The COX PH model
exhibited improvements in most performance categories, with the exception of PWF, where
its performance remained stable, and HDF, where the C-index decreased by 0.0272. The
most significant increase was the RNF prediction where the C-index score improved from
39% to 86%, showing a high 119.9% increase. Finally, ST also made major improvements in
the prediction of the machine failure, as well as the OSF, PWF, and TWF failure types. It
was also the model with the most significant decrease in the C-index score after the feature
analysis/selection layer, with the score of HDF decreasing by approximately 31%. Another
drop-off was also present in the RNF failure type, although this was less significant. The
percentages of increase and decrease in the C-index scores of each model are presented in
Table 6.

Considering all models, the RSF, despite feature selection, did not manage to surpass
the results of the RF in the predictions of OSF and PWF, and in the predictions of the COX
PH model on the RNF and TWF failure types. Especially in the case of TWF, the difference
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remained significant despite the improved accuracy. However, RSF performed better in
the overall prediction of failure but also stayed close or performed better than the other
models in all cases except TWF.

Table 6. Percentage of increase/decrease in C-index score after the feature analysis/selection layer.

Model Machine
Failure HDF OSF PWF RNF TWF

RSF 2.609% 0.01% 0% 1.508% 14.152% 25.656%
RF 0.757% −0.455% 0.02% 0.1% 22.937% −0.054%

COX PH 1.744% −2.732% −0.02% 0% 119.9% 0.771%
ST 0.344% −31.277% 6.043% 2.174% −0.1% 8.951%

6. Discussion

The results show that the RSF model performs better than the other models selected
for this study in predicting the main cause of machine failure, achieving a C-index of
0.9724. In general, the feature selection layer had a mostly positive impact on the C-index
score in all the models, as depicted in Table 6. The table was calculated using the method
described in Section 5.1.2. The most impressive increase was seen in the COX PH model,
which more than doubled its C-index score. Furthermore, the model that seemed to be
favored the most by the addition of the feature selection layer was RSF, which is the only
one that either increased or kept the same C-index score. In contrast, the addition of the
feature selection layer exhibited a negative impact on the prediction of the HDF failure
type in three out of the four models that were tested. The most significant decrease of this
failure type was noted in the ST model, whose C-index score decreased by approximately
31%. This shows that further research may be needed to address this issue in this specific
type of failure, as it seems to be more susceptible to changes in the data.

One notable finding from our study is that most models demonstrated improved
accuracy in predicting failure types that were previously challenging to evaluate, suggesting
a substantial enhancement in their predictive capabilities. This improvement is attributed to
the incorporation of a feature analysis and selection layer, which effectively identified and
leveraged the most relevant features for predicting these challenging failure types. This was
mainly in the RNF and TWF failure types, where the models demonstrated lower C-index
scores. For RNF, all models showed increases of over 14%—apart from the ST model, which
had a slight decrease of 0.1%. Regarding TWF, the models that had the worst performance,
namely the RSF and ST, had an increase of 25.65% and 8.9%, respectively. These increases
in C-index score in the models show that the feature selection layer critically improves the
overall prediction, helping it reach a more consistent prediction accuracy among all the
failure types. It must be noted that the limited number of features provided in the dataset
used may be a restricting element of the overall increase that the feature selection layer can
provide to the model. Moreover, as emphasized in the Results section, the decrease in the
C-index score of the HDF failure type is of major importance, and further research is needed
to address this issue.

One limitation of this study is the exclusive use of a single dataset. While the dataset
was selected based on its suitability for addressing the research questions and objectives,
the findings may not be generalizable to other populations or contexts. Additionally,
the dataset contained a high number of right-censored data, with 96.61% (Table 1) of the
instances being censored. This could impact the accuracy and reliability of the results, as
well as limit the methods that were used. It is important for future research to consider
using multiple datasets and exploring alternative methods for addressing censored data to
improve the validity and generalizability of the findings.

7. Conclusions

The breakdown of machines is a major issue in today’s technology-dependent societies.
To better manage this problem, we propose a machine failure prediction model based on
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survival analysis techniques. The developed model filters the main features that contribute
to machine failure through RSF, COX regression, Rank2D, and RFE techniques. Then, the
selected data are fed into the RSF model, which is used to perform the prediction. Using
RSF in this scenario provides better management of censored data, as machines failure
datasets are often heavily right-censored.

The model was subjected to a comparative analysis against a conventional random forest
model, survival trees model, and COX PH survival analysis model. It exhibited superior
performance in two out of the six categories, while consistently producing reliable predictions,
and demonstrating comparable C-index scores with the top-performing models, on the rest
of the categories. Additionally, the use of this model enables support for high-dimensional
data, which is a common occurrence in machine breakdown. The model showed promising
prediction results with a success rate of approximately 97%, while also demonstrating a high
ability to predict the cause of the failure of the machine.

The high level of accuracy achieved by the proposed approach makes it an especially
valuable tool for the development of fault-tolerant systems in large-scale environments,
including those within the Internet of Things (IoT). The ability to accurately predict machine
failure can help to prevent costly downtime and minimize the risk of catastrophic system
failures, thus enhancing the overall reliability and stability of these complex systems. The
proposed approach provides a promising solution for the performance optimization and
security enhancement of large-scale systems, with potential benefits spanning a wide range
of industries and applications.

While our study provides valuable insights into the performance of the predictive
models in the specific dataset used, there are limitations that warrant further research.
Future work could involve the evaluation of our proposed approach on a variety of different
datasets to assess its generalizability and robustness. Additionally, further optimization of
the feature analysis and selection layer could be considered. These efforts could lead to the
development of an even more accurate and reliable predictive model.
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