
Citation: Song, B.; Zhou, D.; Wu, J.;

Yuan, X.; Zhu, Y.; Wang, C. Protecting

Function Privacy and Input Privacy

in the Publicly Verifiable Outsourcing

Computation of Polynomial

Functions. Future Internet 2023, 15,

152. https://doi.org/10.3390/

fi15040152

Academic Editors: Weizhi Meng and

Christian D. Jensen

Received: 23 March 2023

Revised: 10 April 2023

Accepted: 20 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Protecting Function Privacy and Input Privacy in the Publicly
Verifiable Outsourcing Computation of Polynomial Functions
Beibei Song 1 , Dehua Zhou 2,* , Jiahe Wu 1 , Xiaowei Yuan 1 , Yiming Zhu 1 and Chuansheng Wang 2

1 College of Cyber Security, Jinan University, Guangzhou 511436, China
2 College of Information Science and Technology, Jinan University, Guangzhou 510632, China
* Correspondence: tzhoudh@jnu.edu.cn

Abstract: With the prevalence of cloud computing, the outsourcing of computation has gained
significant attention. Clients with limited computing power often outsource complex computing
tasks to the cloud to save on computing resources and costs. In outsourcing the computation of
functions, a function owner delegates a cloud server to perform the function’s computation on
the input received from the user. There are three primary security concerns associated with this
process: protecting function privacy for the function owner, protecting input privacy for the user
and guaranteeing that the cloud server performs the computation correctly. Existing works have
only addressed privately verifiable outsourcing computation with privacy or publicly verifiable
outsourcing computation without input privacy or function privacy. By using the technologies of
homomorphic encryption, proxy re-encryption and verifiable computation, we propose the first
publicly verifiable outsourcing computation scheme that achieves both input privacy and function
privacy for matrix functions, which can be extended to arbitrary multivariate polynomial functions.
We additionally provide a faster privately verifiable method. Moreover, the function owner retains
control over the function.

Keywords: outsourcing computation; function privacy; input privacy; publicly verifiable computation;
homomorphic encryption; proxy re-encryption

1. Introduction

With the explosive growth of data, the demand for data processing among users is
constantly growing, which makes cloud services increasingly popular. These cloud services
can help weak clients with limited resources store large-scale data or complete expensive
computational tasks at a low cost. One of the most common applications of cloud services
is outsourcing computation.

Consider a setting with three entities in the process of outsourcing the computation of
functions as shown in Figure 1: a function owner, who possesses the function model and
wants to outsource its computation to a cloud server; a series of request users, who need to
obtain the function’s results on the private inputs; and a cloud server that performs the
computation of the function based on the inputs and returns the results to the request users.
In this process, the cloud server is untrusted. It should not learn anything about either the
input or the function. Additionally, the correctness of the results should be verified. Thus,
there are three requirements that need to be considered: function privacy, input privacy
and public verifiability.

For example, in a medical predication scenario, a doctor, as the function owner, has
developed an expensive disease prediction function model; in addition, some patients,
as the request users, want to predict the probability of contracting this disease with their
personal health data. It would be stressful for the doctor to perform the computation locally,
so he wants to outsource the computation of the function to a cloud server. The cloud
server would then compute the prediction function based on the inputs from the patients
and return the predicted results to them.

Future Internet 2023, 15, 152. https://doi.org/10.3390/fi15040152 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15040152
https://doi.org/10.3390/fi15040152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0922-5612
https://orcid.org/0000-0003-4256-4528
https://orcid.org/0009-0000-1804-7171
https://orcid.org/0000-0002-1890-4265
https://orcid.org/0000-0002-1066-7613
https://doi.org/10.3390/fi15040152
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15040152?type=check_update&version=1

Future Internet 2023, 15, 152 2 of 19

The function parameters in this process are that private data owned by the doctor
should remain confidential from the cloud server. Similarly, the health data of the patients
should also be kept confidential. Since the cloud server is unreliable, it may compress the
function model or simplify the computation for its own benefit, which can lead to a biased
predicted result. Therefore, a fundamental requirement is that the patients can verify the
correctness of the computed results. However, in many scenarios, individual verification
is not sufficient. For example, patients may need to convince their insurance institutions
to accept verification, which means that private verification cannot meet this requirement.
Hence, we emphasize public verification, which allows anyone to verify the results of an
outsourced function without learning anything about the sensitive data.

Figure 1. Outsourcing computation model of functions.

To address these requirements, researchers have proposed a series of solutions, such as
Homomorphic Encryption (HE) [1–3], Secure Multi-Party Computation (SMPC) [4–6] and
Publicly Verifiable Computation (PVC) [7–9]. Among them, homomorphic encryption can
perform computations on ciphertexts. Secure multi-party computation can enable multiple
parties to jointly complete a computing task without revealing their secret information.
Publicly verifiable computation can verify the correctness of the computation results. It is
important to combine privacy protection with verifiable computation.

Many works have been devoted to addressing one or more of the requirements
in outsourcing the computation of functions [7–19], but none have achieved all of the
above-mentioned requirements simultaneously. Our work aims to fill this gap, and the
contributions of this study are listed below:

• We propose the first publicly verifiable outsourcing computation scheme that achieves
both function privacy and input privacy for matrix functions, which can be extended
to arbitrary polynomial functions (the extension method is provided).

• We additionally provide a faster privately verifiable method, which allows the request
user to verify the results more efficiently than with public verification.

• The function owner retains control over the function. If they do not allow a user to
use their function model, the cloud server cannot complete the computation.

The remainder of this paper is organized as follows. We present a brief overview of the
related works in Section 2. We define the notation and review the necessary preliminaries
in Section 3. We provide the system model and design goals in Section 4. In Section 5, we
provide our publicly verifiable outsourcing computation scheme with privacy measures,
and in Section 6, we analyze the performance of our scheme. Finally, Section 7 contains our
conclusions and future works.

2. Related Works

There have been many works addressing one or more of the requirements mentioned
above in outsourcing function computation. The schemes in [10–12] realize function privacy
and input privacy based on FHE [2] or GCs [4]. However, they can only achieve private
verification and not public verification. Additionally, the expensiveness of cryptographic
primitives, such as GCs and FHE, limits their practical relevance. The schemes in [13–15]
use lightweight algorithms for encryption and decryption instead of FHE to construct
schemes with input privacy and function privacy. They reduce the system costs but still do
not realize public verification.

Future Internet 2023, 15, 152 3 of 19

The scheme in [16] shares the function model and input data among multiple servers
using additive secret sharing [20] rather than encryption, and the results are obtained
through the cooperation of these servers. Although it protects both function privacy and
input privacy, it only provides private verification and not public verification. It also
requires a strong assumption of non-collusion for the servers or the private data will
be leaked.

Some works construct publicly verifiable computation schemes for specific functions.
For instance, the works in [7,17–19] have constructed publicly verifiable computation
schemes that are efficient for specific functions, such as univariate polynomial functions
and matrix functions. In [8], a publicly verifiable computation scheme for Boolean functions
was constructed based on key policy attribute-based encryption (KP-ABE) [21]. However,
this scheme does not offer input or function privacy. Moreover, ref. [9] proposed a publicly
verifiable scheme with privacy protection, but it can only protect one element between
function privacy and input privacy, i.e., either a publicly verifiable computation scheme
with function privacy or a publicly verifiable computation scheme with input privacy.

Table 1 summarizes the requirements achieved in the surveyed literature, which can
inform the research findings of our proposed scheme.

Table 1. Comparison of the proposed scheme with previous works.

Study
Ref./No Function Privacy/Input Privacy Private

Verification
Public

Verification

[10–12] X/X X ×
[13–15] X/X X ×

[16] X/X X ×
[7,8,17–19] ×/× X X

[9] X/ × or ×/X X X
Our scheme X/X X X

Note: X—supported; and ×—not supported.

To improve efficiency, our work employs a partial homomorphic encryption scheme.
The cloud server needs to perform a transformation on the ciphertexts from two different
clients before computing. Several works have addressed this transformation on ciphertexts.
For instance, Peter et al. [22] proposed a scheme that requires a participant to possess a
strong private key that can decrypt any ciphertext in order to complete the transformation
on ciphertexts. However, this approach poses a threat to data privacy and makes the data
owner lose the right to control their data.

In contrast, our work ensures that the function owner retains control over their func-
tion, thereby strengthening data privacy. In [23], Ximeng Liu et al. split the strong private
key in the BCP [24] scheme among multiple participants to decentralize the decryption
power of the strong private key. However, their approach did not consider how to split
the key securely. Additionally, their ciphertext transformation requires more coopera-
tion among participants, which increases communication costs and decreases computing
efficiency.

In contrast, our approach involves fewer participants, has lower communication costs
and offers higher computing efficiency. In [25], Yutaka Kawai et al. proposed a homomor-
phic proxy re-encryption scheme that supports homomorphic operations for re-encrypted
ciphertexts. However, this scheme requires a large number of computations of the discrete
logarithm and group operations in bilinear groups, which increases the computational cost.
Our approach is based on a lean homomorphic proxy re-encryption scheme, which makes
computations more efficient.

3. Preliminaries

In this section, we review the basic notations and the primitives that are treated in this
paper. The basic notations are shown in Table 2.

Future Internet 2023, 15, 152 4 of 19

Table 2. Summary of notations.

Notations Descriptions

x The lowercase bold letters denote vectors where xi indexes the i-th
element

M The uppercase bold letters denote matrices where Mi,j indexes the
(i, j)-th element

x> The transpose of vector x

x . . . y The dot product of two vectors, x = (x1, . . . , xn) and y = (y1, . . . , yn),
where x · y = ∑n

i=1 xiyi
M · x The matrix–vector multiplication of M and x

x $← S Uniformly sample x from a set S at random.
N The set of all natural numbers
[n] The set {1, . . . , n}, where n ∈ N
λ The security parameter

p, q The odd primes
ZN A group under addition modulo N
Z∗N A group satisfies gcd(b, N) = 1, where b ∈ [N − 1]

F = Zm×d
q The set of all m× d matrices over Zq

G = 〈g〉 The cyclic group with generator g
Φm(X) The m-th cyclotomic polynomial, where Φm(X) = XN + 1

R := Z[X]/Φm(X) The ring of integer polynomials modulo Φm
Rp The ring R with coefficients modulo p
χ The discrete Gaussian distribution over the ring

(pk, sk) The key pair of public key and secret key

3.1. Additive Homomorphic Encryption (Additive HE)

Rivest et al. first proposed homomorphic encryption (HE) in 1978 [1], and this en-
cryption performs homomorphic operations on ciphertexts without decryption. This is
equivalent to performing the corresponding operations on plaintext, ensuring data privacy
while also maintaining data availability.

Depending on the supported mathematical operations, HE can be classified into partial
(additive or multiplicative) homomorphic encryption (PHE) [26,27], fully homomorphic
encryption (FHE) [2] and somewhat homomorphic encryption (SWHE) [28–30]. PHE sup-
ports only one type of operation (either additive or multiplicative) on the ciphertext. FHE
supports both additive and multiplicative operations but with high computational costs.
SWHE supports limited multiplication and addition operations, with lower computational
costs compared with FHE.

The following describes the additive homomorphic encryption scheme that we use
based on [24], which contains five algorithms: HE = (Setup, KeyGen, Enc, Dec, Eval). The
details are as follows:

• Setup(λ)→ pp: The security parameter λ is taken as input, and two λ-bit large prime
numbers, p

′
, q
′
, are chosen. Then, we have N = pq, where p = 2p

′
+ 1 and q = 2q

′
+ 1. A

generator g ∈ Z∗N2 is randomly sampled, and then the public parameters pp = (N, g)
are output.

• KeyGen(pp) → (pk, sk): The public parameters pp are taken as input. According

to pp = (N, g), a $← ZN2 is randomly sampled. Then, the public/secret key pair
(pk = ga mod N2, sk = a) is output.

• Enc(m, pk) → c: For a message m ∈ ZN , r $← ZN2 is sampled. The message m
is encrypted with public key pk = ga and outputs ciphertext c = (A, B), where
A = gar mod N2, B = gr(1 + mN) mod N2.

• Dec(c, sk)→ m: For the ciphertext c = (A, B), secret key sk = a is used for decryption,

and the output message is m = B/(A
1
a)−1 mod N2

N .

Future Internet 2023, 15, 152 5 of 19

• Eval(c1, c2)→ c1 ⊕ c2: For two ciphertexts c1 and c2, whose corresponding plaintexts
are m1, m2, where

c1 = Enc(m1) = (A1, B1) = (gar1 mod N2, gr1(1 + m1N) mod N2) (1)

c2 = Enc(m2) = (A2, B2) = (gar2 mod N2, gr2(1 + m2N) mod N2), (2)

the additive homomorphism property is described as follows:

c1 ⊕ c2 = Enc(m1)⊕ Enc(m2)

= (gar1 · gar2 , gr1(1 + m1N) · gr2(1 + m2N)) mod N2

= (ga(r1+r2) , gr1+r2(1 + (m1 + m2)N)) mod N2

→ Enc(m1 + m2, pk). (3)

In particular, given a constant γ, we have Eval(c1, γ)→ cγ
1 , where

cγ
1 = (gaγr1 , gγr1(1 + m1N)γ) mod N2

= (gaγr1 , gγr1(1 + γm1N))mod N2

→ Enc(γm1, pk). (4)

3.2. Linear Homomorphic Encryption (LHE)

Linear homomorphic encryption (LHE) [28–30] can support limited additive and
multiplicative operations on ciphertexts. It is able to compute a linear combination of
multiple ciphertexts, which has practical applications.

Given n plaintexts (m1, . . . , mn), the corresponding ciphertext is (c1, . . . , cn). Given n
constant coefficients (γ1, . . . , γn), the ciphertext of the linear combination ∑n

i=1 γi ·mi can
be computed by {ci}n

i=1 and {γi}n
i=1. Next, we describe the LHE algorithms based on

the private key version by Brakerski and Vaikuntanathan [3]. It contains five algorithms:
LHE = (Setup, KeyGen, Enc, Dec, Eval). The details are as follows:

• Setup(λ) → pp: The security parameter λ is taken as input. Two λ-bit large prime
numbers q and p ∈ Z∗q are chosen. Set n = 2blog λe−1, and there is a cyclotomic
polynomial f (x) = xn + 1. χ is the discrete Gaussian distribution over the ring
Rq = Zq[x]/〈 f (x)〉. The public parameters pp={n, f , q, χ} are obtained as outputs.

• KeyGen(pp)→ sk: The public parameter pp is taken as input. A ring element s $← χ
is a sample, and the secret key sk = s is obtained as an output.

• Enc(sk, m) → c: For a message m ∈ Rp, a $← Rq, e $← χ is taken as a sample, and the
output ciphertext is c = (u, v) = (as + pe + m,−a).

• Dec(sk, c)→ m: The ciphertext c = (u, v) is decrypted with the secret key sk = s, and
the output m = (u + v· sk) mod p is obtained.

• Eval((γ1, . . . , γd), ((c(1), . . . , c(d))) → c: Given d coefficients γ1, . . . , γd ∈ Zq and d
ciphertexts c(1), . . . , c(d) ∈ (Rq)2, the linear homomorphism property is described
as follows:

c =
d

∑
i=1

γi · c(i) =
d

∑
i=1

γi · (u, v)(i)

= (
d

∑
i=1

γi · u(i),
d

∑
i=1

γi · v(i))

= (
d

∑
i=1

γia · s +
d

∑
i=1

γi pe +
d

∑
i=1

γimi,−
d

∑
i=1

γia)

→ Enc(sk,
d

∑
i=1

γimi). (5)

Future Internet 2023, 15, 152 6 of 19

3.3. Homomorphic Proxy Re-Encryption (HPRE)

Blaze, Bleumer and Strauss first proposed proxy re-encryption (PRE) [31] at EURO-
CRYPT 1998. The proxy can convert the ciphertext encrypted by the data owner into
another ciphertext that can be decrypted by the specified data receiver. Homomorphic
proxy re-encryption was introduced in [25], which combines the homomorphic property of
HE and the “key-switching” property of PRE.

The following describes our homomorphic proxy re-encryption method, which con-
sists of six algorithms: PRE = (Setup, KeyGen, Enc, ReKeyGen, ReEnc, Dec). It is based on
the additive homomorphic encryption above, and the details are as follows:

• Setup(λ) → pp: The security parameter λ is taken as input. HE.Setup(λ) → pp is
run to generate pp = (N, g). Then, the output pp = (N, g) is obtained.

• KeyGen(pp) → ((pki, ski), (pk j, sk j)): The public parameter pp is taken as input.
HE.KeyGen(pp) → (pk, sk) is run twice to generate (pki = ga mod N2, ski = a),
(pk j = gb mod N2, sk j = b), which stands for the public/secret key pair of the data
owner and data receiver, respectively. Then, the output ((pki, ski), (pk j, sk j)) is ob-
tained.

• Enc(m, pki)→ ci: For a message m ∈ ZN , the data owner runs HE.Enc(m, pki)→ ci to
output the ciphertext ci = (Ai, Bi), where Ai = gar mod N2, Bi = gr(1 + mN) mod N2.
Then, the output is ci.

• ReKeyGen(ski, sk j) → rki→j: The data owner’s secret key ski and the data receiver’s

secret key sk j are taken as input, and the re-encryption key rki→j =
skj
ski

= b
a is the output.

• ReEnc(rki→j, ci)→ cj: The re-encryption key rki→j and the ciphertext ci are taken as
inputs, and the re-encryption ciphertext cj is obtained as the output, where

cj = (Aj, Bj) = (A
rki→j
i , Bi)

= (gar b
a , gr(1 + mN)) mod N2

= (gbr, gr(1 + mN)) mod N2

→ Enc(m, pk j). (6)

• Dec(cj, sk j)→ m: The ciphertext cj = (Aj, Bj) = (gbr, gr(1 + mN)) is decrypted with

the data receiver’s secret key sk j = b, and the output is m =
Bj/(Aj

1
b)−1 mod N2

N .

3.4. Verifiable Matrix-Vector Multiplication (VerM)

Verifiable computation is a computational model that allows the client to delegate com-
putational tasks to a computational entity and then to verify the correctness of the computed
result without re-executing the entire computation task. The schemes in [32,33] propose
a critical observation of matrix–vector multiplication, and the scheme in [9] proposes a
solution for publicly verifiable matrix–vector multiplication computation.

The following describes the publicly verifiable matrix–vector multiplication scheme that we
use based on [9], which consists of four algorithms: VerM = (Setup, Prepare, Compute, Veri f y).
Table 3 shows the data size in the scheme, and the details are given below:

• Setup(λ) → pp: The security parameter λ is taken as input, and a λ-bit large prime
number q is chosen. Let Zq be a finite field and G = 〈g〉 be a cyclic group of generator
g and order q. Let m, d > 0 be integers, and then output pp = (q, m, d, g).

• Prepare(F) → ver: The function owner takes their matrix F ∈ F , where F = Zm×d
q

is the set of all m × d matrices over Zq as input to generate the public verification

data ver (once and for all). A vector t = (t1, . . . , tm)
$← Zm

q is uniformly sampled,
and s = (s1, . . . , sd) = t·F is computed. The obtained output is ver = (T, S), where
T = gt = (gt1 , . . . , gtm) , S = gs = (gs1 , . . . , gsd).

Future Internet 2023, 15, 152 7 of 19

• Compute(F, x) → y: The function F ∈ F and the input x = (x1, . . . , xd)
> ∈ Zd

q are
taken as inputs. The result y = F · x = (y1, · · · , ym)> is obtained.

• Veri f y(ver, x, y)→ (0, 1): The public verification data ver, the input x and the result
y are taken as input. This convinces the user to accept the result if and only if

d

∏
i=1

gsi ·xi =
m

∏
i=1

gti ·yi (7)

If the equation is valid, then the output is 1; otherwise, the output is 0.

The correctness of the verification is as follows:
The left side:

d

∏
i=1

gsi ·xi =
d

∏
i=1

g(∑
m
j=1 tjFj,i)xi = g∑d

i=1 ∑m
j=1 tjFj,ixi . (8)

The right side:

m

∏
i=1

gti ·yi =
m

∏
i=1

gti ·(∑d
j=1 Fi,jxj) = g∑m

i=1 ∑d
j=1 tjFi,jxj . (9)

If y = F · x, then it is easy to verify that Equation (7) holds.

Table 3. Data size.

Data Size

Matrix F m× d
Verification data t 1×m
Verification data s 1× d

Vector x d× 1
The final result y m× 1

4. System Model and Design Goals
4.1. System Model

Consider a setting in our system model with three entities: a function owner who
wants to outsource the function’s computation; two non-collusive cloud service providers
CSP1 and CSP2 that collaborate to complete the computation; and a series of request users
who want to obtain the computation results on their inputs. Figure 2 outlines a rough sketch
of our system model. It consists of the following three phases: Preparation, Computation
and Verification. The number before the text corresponds to Figure 2.

• Preparation:

(1) The function owner encrypts the function parameters and prepares the public
verification data. Then, they upload the function’s ciphertext to the cloud service
provider CSP1.

(2) A request user encrypts their input when they request CSP1 to perform
the computation.

(3) When CSP1 receives the request from the user, it asks the function owner for
permission.

(4) The function owner generates a temporary public/secret key pair and a re-
encryption key when they permit the use of their function.

(5) The function owner sends the temporary public key and the re-encryption key to
CSP1 and sends the temporary secret key to CSP2.

Future Internet 2023, 15, 152 8 of 19

• Computation:

(6) CSP1 re-encrypts the original function ciphertext with a mask. Then, the new
ciphertext can be decrypted by CSP2 with the temporary secret key. CSP1 then
collaborates with CSP2 to complete the computation.

(7) CSP1 returns the result ciphertext to the user.

• Verification:

(8) The public verification is performed using the public verification data, the in-
put ciphertext and the result ciphertext. Simultaneously, the user decrypts the
result ciphertext and verifies the result privately in a fast way with the public
verification data and the plaintexts of their input and result.

Figure 2. The publicly verifiable outsourcing computation model with privacy.

4.2. Design Goals

There are five goals that need to be achieved in our model:

• Maintain function privacy: The function ciphertext and public verification data cannot
reveal any information about the function, so the encryption schemes that we use
should be semantically secure so that no adversary can infer any information from the
obtained ciphertext.

• Maintain input privacy. Similarly, the input ciphertext must not reveal information
about the input. The encryption scheme for the input, thus, needs to be semantically secure.

• Maintain result privacy. No one should be able to obtain information about the result
plaintext except for the request user. The result ciphertext cannot be distinguished
from the random elements.

• Achieve public verification. Anyone can complete the verification with the publicly
available information, and there is no malicious CSP that can persuade the public to
accept an incorrect result with a non-negligible probability. We assume that the public
has limited computational resources, and so verification must be efficient.

• Ensure the function owner’s control over the function. CSPs cannot complete the
computation if the function owner does not allow the user to use their function model.

Future Internet 2023, 15, 152 9 of 19

5. The Proposed Solution

We propose a scheme for the publicly verifiable outsourcing of computation with both
input privacy and function privacy for matrix–vector multiplication in this section. The
scheme can also be extended to various polynomial functions.

We provide the extension method in Section 5.4. In our setting, the function owner
has a matrix F ∈ Zm×d

q , and the request user has a vector x. The user requests access from
the cloud server for the result y = F · x. Our scheme consists of three phases: Preparation,
Computation and Verification, which are specified below.

5.1. Preparation

1. The key pair of preparation steps for the function owner:

- Run HE.Setup(λ)→ pphe to generate pphe = (N, g).
- Run HE.KeyGen(pphe)→ (pk f , sk f) to generate (pk f , sk f)=(ga, a).

2. The function owner encrypts the matrix and uploads it to CSP1:

- For each element fi in the matrix F ∈ Zm×d
q , 0 < i ≤ m× d, run

HE.Enc(pk f , fi)→ cti to generate cti = (gari , gri (1 + fi N)), where ri
$← ZN2 .

- Upload ct = (ct1, . . . , ctm·d) to CSP1.

3. The function owner generates the verification data ver:

- Run VerM.Prepare(F)→ ver to generate ver = (T , S). It holds that
T = gt = (gt1 , . . . , gtm),
S = gs = (gs1 , . . . , gsd),

where t $← Zm
q and s = (s1, . . . , sd) = t · F.

4. The request user encrypts the input vector and sends it to CSP1:

- Run LHE.Setup(λ)→ pplhe to generate the public parameters pplhe = (n, f , q, χ)
for the request user.

- Run LHE.KeyGen(pplhe)→ sk to generate the secret key sk = s for the request
user.

- For each xi in the input vector x = (x1, . . . , xd)
>, i ∈ [d], xi ∈ Zp[x]/〈 f (x)〉,

run LHE.Enc(sk, xi) → ci to generate the ciphertext ci = (ui, vi) = (ais + pei +

xi,−ai), where ai
$← Rq, ei

$← χ and ci ∈ R2
q.

- The user sends the ciphertext c = (c1, . . . , cd)
> to CSP1 and requests computation.

5. CSP1 asks the function owner for permission.
6. The function owner will generate a temporary key pair and a re-encryption key if

permission is granted:

- The function owner runs HE.KeyGen(pphe) → (pk
′
f , sk

′
f) again to generate a

temporary public/secret key pair (pk
′
f = ga

′
, sk

′
f = a

′
).

- Run PRE.ReKeyGen(sk f , sk
′
f)→ rk f→ f ′ to generate a re-encryption key rk f→ f ′ =

sk
′
f

sk f
= a

′

a .

- The function owner sends pk
′
f and rk f→ f ′ to CSP1 and sends sk

′
f to CSP2.

5.2. Computation

1. CSP1 re-encrypts the matrix ciphertext:

- For each element cti in the matrix ciphertext ct, 0 < i ≤ m × d, CSP1 runs
PRE.ReEnc(rk f→ f ′ , cti)→ ct

′
i to re-encrypt cti into ct

′
i, where

cti = (A, B) = (gari , gri (1 + fi N)), rk f→ f ′ =
a
′

a .

Then, ct
′
i = (A

rk
f→ f ′ , B) = (ga

′
ri , gri (1 + fi N))mod N2.

Future Internet 2023, 15, 152 10 of 19

2. CSP1 sends the re-encryption ciphertext with a mask to CSP2:

- For each element ct
′
i in ct

′
= (ct

′
1, . . . , ct

′
m·d)

>, 0 < i ≤ m · d, CSP1 samples

r
′
i

$← ZN2 as the mask.
- For each mask r

′
i , run HE.Enc(r

′
i , pk

′
f) → rct

′
i with the temporary key pk

′
f to

generate rct
′
i = (ga

′
r̂i , gr̂i (1 + r

′
i N))mod N2, where r̂i

$← ZN2 .
- For i ∈ [m · d], run HE.Eval(ct

′
i, rct

′
i)→ ct

′
i ⊕ rct

′
i to generate the masked cipher-

text mct
′
i = rct

′
i ⊕ ct

′
i → Enc(fi + r

′
i).

- CSP1 sends the masked ciphertext mct
′
= {mct

′
i}

m×d
i=1 and the user’s input

ciphertext c = {ci}d
i=1 to CSP2.

3. CSP1 computes the final result’s first part res1:

- Parse r
′

as a m× d-size matrix and write r
′
i,j to index the (i, j)-th element.

- For i ∈ [m], run LHE.Eval((r
′
i,1, . . . , r

′
i,d), (c1, . . . , cd))→ res1

i to generate res1
i =

∑d
j=1 r

′
i,jcj. The first part of the final result is res1 = [res1

1, ..., res1
m]

T .

4. CSP2 performs the decryption for the masked ciphertext:

- After receiving the masked ciphertext {mct
′
i}

m×d
i=1 , for i ∈ [m · d], CSP2 runs

HE.Dec(mct
′
i, sk

′
f) → f

′
i to generate the masked matrix parameters { f

′
i = fi +

r
′
i}

m×d
i=1 .

- Parse f
′
= (f

′
1, ..., f

′
m·d) as an m× d-size matrix and write f

′
i,j to index the (i, j)-th

element. It holds that f
′
i,j= fi,j + r

′
i,j.

5. CSP2 computes the second part of the final result res2:

- For i ∈ [m], run LHE.Eval((f
′
i,1, . . . , f

′
i,d), (c1, . . . , cd)) → res2

i to generate

res2
i = ∑d

j=1 f
′
i,jcj. Then, send the second part of the final result res2 = [res2

1, ..., res2
m]

T

to CSP1.

6. CSP1 computes the final result res and returns it to the user:

- For i ∈ [m], CSP1 computes resi = res2
i − res1

i = ∑d
j=1 f

′
i,jcj − ∑d

j=1 r
′
i,jcj =

∑d
j=1 fi,jcj. Then, the final result res=[res1, . . . , resm]T is returned to the user.

5.3. Verification

1. Public Verification:

- The public runs VerM.Veri f y(ver, c, res)→ (0, 1). It outputs 1 if and only if

d

∏
i=1

gsi ·ci =
d

∏
i=1

gti ·resi . (10)

2. Private Verification:

- After the user receives the result ciphertext res=(res1, ..., resm)T , for i ∈ [m], they
run LHE.Dec(sk, resi) → yi to generate the plaintext yi, where yi = ∑d

j=1 fi,jxj.
The final result plaintext is y = (y1, · · · , ym)> = F · x.

- Run VerM.Veri f y(ver, x, y)→ (0, 1). It outputs 1 if and only if

d

∏
j=1

gsi ·xi =
d

∏
j=1

gti ·yi . (11)

5.4. The Extension Method for Arbitrary Polynomial Functions

In the previous subsection, we described the verifiable matrix–vector multiplication.
However, the function may be arbitrary. The scheme in [9] gives a solution for outsourcing

Future Internet 2023, 15, 152 11 of 19

these arbitrary polynomial functions based on the verifiable matrix–vector multiplication
scheme.

This scheme decomposes the computation of arbitrary polynomials into a two-phase
computation in which the heavy part is the matrix–vector multiplication that can be
delegated to the cloud server, and the other part provides a substantially fast computation
for the user. Then, we describe the decomposition scheme for univariate polynomials and
arbitrary multivariate polynomials based on [9].

5.4.1. Univariate Polynomials

Let F be the set of all univariate polynomials of higher order over a finite field Zq. For
any f (x) ∈ F , suppose that f (x) = f0 + f1x + . . . fdxd. Let m = d

√
d + 1e and define

F = (

f0 f1 · · · fm−1
fm fm+1 · · · f2m−1
...

... · · ·
...

fm2−m fm2−m+1 · · · fm2−1

) (12)

as a matrix of order m, where fi = 0 for all i > d. Set x = (1, x, . . . , xm−1)> and
y = (1, xm, . . . , xm2−m). Then, we have f (x) = y · (F · x).

This is a two-phase computation: (i) the computation of u = Fx and (ii) the com-
putation of f (x) = y · u. The first phase is a matrix–vector multiplication function that
can be delegated to a cloud server using our verifiable computation scheme. It requires
O(m2) = O(d) arithmetic operations. The second phase is a substantially fast computation
for the user that requires only O(m) = O(

√
d) arithmetic operations locally.

5.4.2. Multivariate Polynomials

Let F be the set of all arbitrary multivariate polynomials over a finite field Zq. For any
f (x1, . . . , xm) = ∑d

i1,...,im=1 fi1,...,im · x
i1
1 · · · x

im
m ∈ F , m ≥ 2, l = bm/2c , parse the parameters

as a dl × dm−l matrix
F =

(
F(i1,...,il),(il+1,...,im)

)
(13)

where F(i1,...,il),(il+1,...,im) = fi1,...,im . Set y =
(

xi1
1 · · · x

il
l

)
∈ Zdl

q and x =
(

xil+1
l+1 · · · x

im
m

)>
∈

Zdm−1
q ; then, we have f (x1, . . . , xm) = y · (F · x).

This is a two-phase computation: (i) the computation of u = Fx and (ii) the computa-
tion of f (x1, . . . , xm) = y · u. The first phase is a matrix–vector multiplication that can be
delegated to a cloud server using our verifiable computation scheme. It requires O(dm)
arithmetic operations. The second phase is a substantially fast computation for the user
that requires O(ddm/2e) arithmetic operations locally.

6. Results
6.1. Correctness Analysis

• Correctness of the result ciphertext res from CSP1. Given the ciphertexts of the result
res and the input vector c, for i ∈ [d], it holds that:

ci = (ui, vi) = (ais + pei + xi,−ai) (14)

resi =

(
d

∑
j=1

fi,juj,
d

∑
j=1

fi,jvj

)

=

(
d

∑
j=1

fi,jais +
d

∑
j=1

fi,j pei +
d

∑
j=1

fi,jxi,−
d

∑
j=1

fi,jai

)
(15)

Future Internet 2023, 15, 152 12 of 19

Let ∑d
j=1 fi,jai = âi and ∑d

j=1 fi,jei = êi, such that the following holds:

resi =

(
âis + pêi +

d

∑
j=1

fi,jxi,−âi

)

→ Enc

(
sk,

d

∑
j=1

fi,jxi

)
(16)

We can see that the result res corresponds to the multiplication of matrix F and vector
x in plaintext.

• Correctness of decryption for the result ciphertext res. Given the ciphertext of the
result res, where

resi =

(
d

∑
j=1

fi,juj,
d

∑
j=1

fi,jvj

)
=

(
âis + pêi +

d

∑
j=1

fi,jxi,−âi

)
(17)

for i ∈ [d], it holds that:

yi =
d

∑
j=1

fi,juj +

(
d

∑
j=1

fi,jvj

)
· sk mod p

= âis + pêi +
d

∑
j=1

fi,jxi − âis mod p

=
d

∑
j=1

fi,jxi (18)

We can see that the decryption for the result ciphertext is correct.
• Correctness of public verification.

Given the input vector ciphertext c, the result ciphertext res and the public verification
data ver = (T , S) = ((gt1 , . . . , gtm), (gs1 , . . . , gsd)), where

ci = (ui, vi) (19)

resi =

(
d

∑
j=1

fi,juj,
d

∑
j=1

fi,jvj

)
(20)

si =
m

∑
j=1

tjFj,i (21)

for i ∈ [d], it convinces the public to accept the result if and only if:

d

∏
i=1

gsi ·ci =
d

∏
i=1

gti ·resi . (22)

The left side is:

d

∏
i=1

gsi ·ci =

(
d

∏
i=1

gsi ·ui ,
d

∏
i=1

gsi ·vi

)

=

(
d

∏
i=1

g(∑
m
j=1 tj fj,i)·ui ,

d

∏
i=1

g∑m
j=1 tj fj,i ·vi

)
= (g∑d

i=1 ∑m
j=1 tj fj,iui , g∑d

i=1 ∑m
j=1 tj fj,ivi) (23)

Future Internet 2023, 15, 152 13 of 19

and the right side is:

d

∏
i=1

gti ·resi =

(
d

∏
i=1

gti ·∑d
j=1 fi,juj ,

d

∏
i=1

gti ·∑d
j=1 fi,jvj

)

=

(
g∑m

i=1 ∑d
j=1 tj fi,juj , g∑m

i=1 ∑d
j=1 tj fi,jvj

)
(24)

If y = F · x, then Equation (22) holds.
• Correctness of private verification.

The correctness of private verification is consistent with the description provided in
Section 3.4.

6.2. Security Analysis

In our two-server setup, we assume that CSP1 and CSP2 are non-collusive. Our
security model allows for one or both servers to be malicious, as our verifiable computation
scheme can detect the malicious behavior and reject the computation result. However,
they cannot cooperate with each other. Under the non-collusion assumption, suppose one
of the CSPs is malicious; then, the two CSPs cannot collaborate to perform the correct
computation because the other CSP updates its data, causing the temporary ciphertext to
not correspond to the temporary key. In this process, the malicious CSP does not learn any
valuable information.

In our system, the function owner cannot obtain any additional information other than
the function parameters. CSP1 learns only the original ciphertext, the temporary ciphertext
after re-encryption and the input ciphertext. CSP2 learns only the temporary private key,
the masked function parameters and the user’s input ciphertext. The request user only
learns its own input and the computation result. Any public verification party can only
learn the input ciphertext, the result ciphertext and the public verification data.

Next, we present the security analysis of our encryption schemes.

• HE. The scheme is based on the hardness of the Decisional Composite Residuosity
Assumption and Decisional Diffie–Hellman Assumption, which is stated below:

Definition 1. (Decisional Composite Residuosity Problem [26]) Given a composite n and an
integer z, decide if z is an n− residue modulo n2 or not, namely, if there exists y such that
z = yn(modn2).

Definition 2. (Decisional Diffie–Hellman Problem [24]) Let g be an element of prime order
in a cyclic group G. Given ga, gb, h ∈ G, decide whether or not h = gab.

Theorem 1. The scheme is semantically secure if and only if the Decisional Composite
Residuosity Assumption and Decisional Diffie–Hellman Assumption hold.

• LHE. The security is established in [3], and we state it below:

Theorem 2. LHE is linearly homomorphic as long as max{|γ1|, . . . , |γd|} · prn1.5 < q/2.

Theorem 3. Let r = poly(n) and q = 2nε
for some 0 < ε < 1. The scheme is semantically

secure under the worst-case hardness of approximating the shortest vectors on ideal lattices to
within a factor of O(2nε

).

• HPRE. It is based on the security of HE.
• VerM. It is based on the hardness of the Discrete Logarithm Assumption [9]. It will

pass the verification by mistake with a probability of 1/q at most, which is negligible
when q is a λ-bit prime. It is stated below:

Future Internet 2023, 15, 152 14 of 19

Definition 3. (Discrete Logarithm Problem) Let g be an element of prime order in a cyclic
group G. Given h ∈ G, compute x such that h = gx.

Theorem 4. The scheme is semantically secure if and only if the Discrete Logarithm Assump-
tion holds.

6.3. Experimental Results

To verify the efficiency, we performed our experiments on a personal computer with
an AMD Ryzen 5 3600 3.6 GHz processor with 8 GB memory and running on the Ubuntu
Desktop-20.04.1-LTS operating system using python language. We used the charm-crypto
library to implement HE operations, PRE operations and VerM operations and used Mi-
crosoft SEAL to implement LHE operations. In the experiment, we set the security param-
eter of LHE to 4096 and that of HE to 1024. We tested the efficiency for the four entities
when the matrix size was (10× 10, 50× 50, 100× 100, 150× 150). The average time for each
experiment was obtained by running it multiple times as shown in the graphs.

Figure 3 illustrates the time cost for the function owner, where the blue line presents
the time for encrypting the matrix, the red line presents the time for preparing the gener-
ation of the verification data, and the gray line represents the time for the generation of
the verification data. As shown in Figure 3, the function owner efficiently prepares the
generation of verification data once for all parties. The primary overhead is the encryption
of matrix parameters; however, since the function owner only needs to encrypt the function
once for all parties, the computation cost can be amortized. Note that the vertical axis is on
a logarithmic scale with a base of 10, and the same applies to Figures 4 and 5.

Figure 3. The time cost for the function owner.

Figure 4 illustrates the time cost for CSP1. The blue line represents the time for re-
encrypting the ciphertext, the red line represents the time for encrypting the mask, the
gray line represents the time for generating the masked ciphertext, and the yellow line
represents the time for computing the first part of the result ciphertext. As shown in
Figure 4, the time for re-encryption and encrypting masks is nearly identical to that for the
function owner to encrypt the matrix, and the homomorphic operations are highly efficient.
The computation involving LHE ciphertexts is the most time-consuming, which would
significantly burden the user if performed locally. Therefore, it was outsourced to the cloud
server for computation.

Figure 5 illustrates the time cost for CSP2, where the blue line represents the time
for decrypting the masked ciphertext, and the red line represents the time computing
the second part of the result ciphertext. As can be seen from Figure 5, the computation

Future Internet 2023, 15, 152 15 of 19

with LHE ciphertexts is the most time-consuming, which is the same as CSP1, so it was
outsourced to the cloud server.

Figure 4. The time cost for CSP1.

Figure 5. The time cost for CSP2.

Figure 6 illustrates the time cost for the request user, where the blue line represents the
time for encrypting their input vector and the red line represents the time for decrypting
the final result ciphertext. As shown in Figure 6, the encryption and decryption for users
are very efficient.

Figure 7 illustrates the time cost for verification, where the blue line represents the
time for private verification, and the red line represents the time for public verification.
As shown in Figure 7, the process of private verification is quick and efficient. Public
verification, on the other hand, may take more time but is still accessible for the public.

Future Internet 2023, 15, 152 16 of 19

Figure 6. The time cost for the request user.

Figure 7. The time cost for verification.

Next, we present the communication costs in Table 4, where the matrix size is m× d,
N is the parameter in HE, and Rp is the ring in LHE.

Table 4. Communication Costs.

Sender Receiver Phase Communication Cost

Function owner CSP1 Preparation 2 · (m× d) ·Z∗N2 (Once for all)
Function owner The public Preparation (m + d) ·Zq (Once for all)
Function owner CSP1 Preparation 1 ·ZN2 + 1 ·Z∗N2

Function owner CSP2 Preparation 1 ·ZN2

Request User CSP1 Preparation d · (Rq)2

CSP1 Function owner Preparation Permission Message
CSP1 CSP2 Computation 2 · (m× d) ·Z∗N2 + d · (Rq)2

CSP1 Request User Computation m · (Rq)2

CSP1 The public Verification (d + m) · (Rq)2

CSP2 CSP1 Computation m · (Rq)2

Future Internet 2023, 15, 152 17 of 19

Compared with [9], our scheme achieves both function privacy and input privacy. In
terms of computational complexity, our scheme is similar to their second scheme with only
input privacy for the cloud server side, but we have two servers, which requires twice the
computational overhead. At the same time, the two servers need to communicate with
each other, which incurs additional communication overhead, but these additional costs
provide privacy for the function.

7. Conclusions and Future Work

In this paper, we focused on the privacy-preserving and publicly verifiable outsourc-
ing computation of matrix functions and polynomial functions. Our publicly verifiable
computation scheme achieved both input privacy and function privacy for matrix functions,
and it can be extended to arbitrary polynomial functions. Our scheme additionally provides
a faster privately verifiable method and ensures the function owner’s control over access
to the function. Our solution may be of interest to applications in oblivious polynomial
evaluation or polynomial prediction model inference.

In the future, we plan to construct a publicly verifiable outsourcing computation
scheme for nonlinear functions, such as for activation functions in convolutional neural
networks. Furthermore, we will address how to identify malicious cloud servers if the
verification fails.

Author Contributions: Conceptualization, B.S. and D.Z.; methodology, B.S.; software, J.W. and
X.Y.; validation, J.W., X.Y. and B.S.; formal analysis, B.S., J.W. and X.Y.; investigation, B.S. and
Y.Z.; resources, B.S. and Y.Z.; data curation, J.W. and X.Y.; writing—original draft preparation, B.S.;
writing—review and editing, Y.Z., D.Z. and C.W.; visualization, B.S. and J.W.; supervision, D.Z. and
C.W.; project administration, D.Z. and C.W.; funding acquisition, D.Z. and C.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This paper was funded by the National Natural Science Foundation of China (Nos.
U2001205, 61732021,61932010), Guangdong Basic and Applied Basic Research Foundation (Nos.
2019B030302008, 2023B1515040020), and TESTBED2 (No. H2020-MSCA-RISE-2019).

Data Availability Statement: All data are presented in the main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
2. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual ACM Symposium on Theory of

Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009; Mitzenmacher, M., Ed.; ACM: New York, NY, USA, 2009;
pp. 169–178.

3. Brakerski, Z.; Vaikuntanathan, V. Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages.
In Proceedings of the Advances in Cryptology—CRYPTO 2011—31st Annual Cryptology Conference, Santa Barbara, CA,
USA, 14–18 August 2011; Rogaway, P., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 6841, pp. 505–524. [CrossRef]

4. Yao, C.C. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer
Science, Toronto, ON, Canada, 27–29 October 1986; IEEE Computer Society: Washington, DC, USA, 1986; pp. 162–167.

5. Demmler, D.; Schneider, T.; Zohner, M. ABY—A Framework for Efficient Mixed-Protocol Secure Two-Party Computation. In
Proceedings of the 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, USA,
8–11 February 2015; The Internet Society: Reston, VA, USA, 2015.

6. Feng, D.; Yang, K. Concretely efficient secure multi-party computation protocols: Survey and more. Secur. Saf. 2022, 1, 2021001.
[CrossRef]

7. Papamanthou, C.; Shi, E.; Tamassia, R. Signatures of Correct Computation. In Proceedings of the Theory of Cryptography—10th
Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, 3–6 March 2013; Volume 7785, pp. 222–242.

8. Parno, B.; Raykova, M.; Vaikuntanathan, V. How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based
Encryption. In Proceedings of the Theory of Cryptography—9th Theory of Cryptography Conference, TCC 2012, Taormina, Italy,
19–21 March 2012; Volume 7194, pp. 422–439.

9. Zhang, L.F.; Safavi-Naini, R. Protecting data privacy in publicly verifiable delegation of matrix and polynomial functions. Des.
Codes Cryptogr. 2020, 88, 677–709. [CrossRef]

http://doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1051/sands/2021001
http://dx.doi.org/10.1007/s10623-019-00704-y

Future Internet 2023, 15, 152 18 of 19

10. Applebaum, B.; Ishai, Y.; Kushilevitz, E. From Secrecy to Soundness: Efficient Verification via Secure Computation. In Proceedings
of the 37th International Colloquium Conference on Automata, Languages and Programming, ICALP 2010, Bordeaux, France,
6–10 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; Part I; Volume 6198, pp. 152–163.

11. Barbosa, M.; Farshim, P. Delegatable Homomorphic Encryption with Applications to Secure Outsourcing of Computation. In
Proceedings of the Topics in Cryptology—CT-RSA 2012—The Cryptographers’ Track at the RSA Conference 2012, San Francisco,
CA, USA, 27 February–2 March 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7178, pp. 296–312.

12. Chung, K.M.; Kalai, Y.T.; Vadhan, S.P. Improved Delegation of Computation using Fully Homomorphic Encryption. In Advances
in Cryptology—CRYPTO 2010, Proceedings of the 30th Annual Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 2010;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6223, pp. 483–501.

13. Fiore, D.; Gennaro, R.; Pastro, V. Efficiently Verifiable Computation on Encrypted Data. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014; ACM: New York, NY, USA,
2014; pp. 844–855.

14. Joo, C.; Yun, A. Homomorphic authenticated encryption secure against chosen-ciphertext attack. In Proceedings of the Advances
in Cryptology–ASIACRYPT 2014: 20th International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, 7–11 December 2014; Springer: Berlin/Heidelberg, Germany, 2014; Part II 20; pp. 173–192.

15. Libert, B.; Peters, T.; Joye, M.; Yung, M. Linearly Homomorphic Structure-Preserving Signatures and Their Applications. In
Proceedings of the Advances in Cryptology—CRYPTO 2013—33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
18–22 August 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Part II, Volume 8043,
pp. 289–307.

16. Zhang, L.F. Multi-server verifiable delegation of computations: Unconditional security and practical efficiency. Inf. Comput.
2021, 281, 104740. [CrossRef]

17. Catalano, D.; Fiore, D.; Gennaro, R.; Vamvourellis, K. Algebraic (trapdoor) one-way functions and their applications. In
Proceedings of the Theory of Cryptography: Tenth Theory of Cryptography Conference, TCC 2013, Tokyo, Japan, 3–6 March 2013;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 680–699.

18. Elkhiyaoui, K.; Önen, M.; Azraoui, M.; Molva, R. Efficient Techniques for Publicly Verifiable Delegation of Computation. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2016, Xi’an, China,
30 May–3 June 2016; ACM: New York, NY, USA, 2016; pp. 119–128.

19. Fiore, D.; Gennaro, R. Publicly verifiable delegation of large polynomials and matrix computations, with applications. In
Proceedings of the ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA, 16–18 October 2012;
ACM: New York, NY, USA, 2012; pp. 501–512. [CrossRef]

20. Beimel, A. Secure Schemes for Secret Sharing and Key Distribution. Ph.D. Thesis, Technion—Israel Institute of Technology, Haifa,
Israel, 1996.

21. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data.
In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA,
30 October–3 November 2006; ACM: New York, NY, USA, 2006; pp. 89–98.

22. Peter, A.; Tews, E.; Katzenbeisser, S. Efficiently Outsourcing Multiparty Computation Under Multiple Keys. IEEE Trans. Inf.
Forensics Secur. 2013, 8, 2046–2058. [CrossRef]

23. Liu, X.; Robert, H.; Deng, K.K.R.C.; Weng, J. An Efficient Privacy-Preserving Outsourced Calculation Toolkit With Multiple Keys.
IEEE Trans. Comput. 2016, 65, 3567–3579. [CrossRef]

24. Bresson, E.; Catalano, D.; Pointcheval, D. A Simple Public-Key Cryptosystem with a Double Trapdoor Decryption Mechanism
and Its Applications. In Proceedings of the Advances in Cryptology—ASIACRYPT 2003, Ninth International Conference on the
Theory and Application of Cryptology and Information Security, Taipei, Taiwan, 30 November–4 December 2003; Lecture Notes
in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2894, pp. 37–54.

25. Kawai, Y.; Matsuda, T.; Hirano, T.; Koseki, Y.; Hanaoka, G. Proxy Re-Encryption That Supports Homomorphic Operations for
Re-Encrypted Ciphertexts. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2019, 102-A, 81–98. [CrossRef]

26. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the Advances in
Cryptology—EUROCRYPT ’99, International Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, 2–6 May 1999; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1592,
pp. 223–238. [CrossRef]

27. Gamal, T.E. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985,
31, 469–472. [CrossRef]

28. Goldwasser, S.; Micali, S. Probabilistic Encryption. J. Comput. Syst. Sci. 1984, 28, 270–299. [CrossRef]
29. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Trans.

Comput. Theory 2014, 6, 1–36.
30. Zhou, H.; Wornell, G.W. Efficient homomorphic encryption on integer vectors and its applications. In Proceedings of the 2014

Information Theory and Applications Workshop, ITA 2014, San Diego, CA, USA, 9–14 February 2014; pp. 1–9.
31. Blaze, M.; Bleumer, G.; Strauss, M. Divertible Protocols and Atomic Proxy Cryptography. In Proceedings of the Advances in

Cryptology—EUROCRYPT ’98, International Conference on the Theory and Application of Cryptographic Techniques, Espoo,

http://dx.doi.org/10.1016/j.ic.2021.104740
http://dx.doi.org/10.1145/2382196.2382250
http://dx.doi.org/10.1109/TIFS.2013.2288131
http://dx.doi.org/10.1109/TIFS.2016.2573770
http://dx.doi.org/10.1587/transfun.E102.A.81
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1016/0022-0000(84)90070-9

Future Internet 2023, 15, 152 19 of 19

Finland, 31 May–4 June 1998; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1403,
pp. 127–144.

32. Blum, M.; Luby, M.; Rubinfeld, R. Self-Testing/Correcting with Applications to Numerical Problems. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 13–17 May 1990; ACM: New York, NY, USA, 1990;
pp. 73–83. [CrossRef]

33. Blum, M.; Wasserman, H. Program Result-Checking: A Theory of Testing Meets a Test of Theory. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; IEEE Computer Society:
Washington, DC, USA, 1994; pp. 382–392. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/100216.100225
http://dx.doi.org/10.1109/SFCS.1994.365678

	Introduction
	Related Works
	Preliminaries
	Additive Homomorphic Encryption (Additive HE)
	Linear Homomorphic Encryption (LHE)
	Homomorphic Proxy Re-Encryption (HPRE)
	Verifiable Matrix-Vector Multiplication (VerM)

	System Model and Design Goals
	System Model
	Design Goals

	The Proposed Solution
	Preparation
	Computation
	Verification
	The Extension Method for Arbitrary Polynomial Functions
	Univariate Polynomials
	Multivariate Polynomials

	Results
	Correctness Analysis
	Security Analysis
	Experimental Results

	Conclusions and Future Work
	References

