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Abstract: Industrial control systems (ICS) and supervisory control and data acquisition (SCADA)
systems, which control critical infrastructure such as power plants and water treatment facilities,
have unique characteristics that make them vulnerable to ransomware attacks. These systems are
often outdated and run on proprietary software, making them difficult to protect with traditional
cybersecurity measures. The limited visibility into these systems and the lack of effective threat
intelligence pose significant challenges to the early detection and prediction of ransomware attacks.
Ransomware attacks on ICS and SCADA systems have become a growing concern in recent years.
These attacks can cause significant disruptions to critical infrastructure and result in significant
financial losses. Despite the increasing threat, the prediction of ransomware attacks on ICS remains a
significant challenge for the cybersecurity community. This is due to the unique characteristics of
these systems, including the use of proprietary software and limited visibility into their operations. In
this review paper, we will examine the challenges associated with predicting ransomware attacks on
industrial systems and the existing approaches for mitigating these risks. We will also discuss the need
for a multi-disciplinary approach that involves a close collaboration between the cybersecurity and
ICS communities. We aim to provide a comprehensive overview of the current state of ransomware
prediction on industrial systems and to identify opportunities for future research and development
in this area.

Keywords: ransomware; industrial control systems; SCADA; ransomware detection and prevention;
attack likelihood prediction; situation awareness; security assessment

1. Introduction

Supervisory control and data acquisition (SCADA) systems are used to control and
monitor industrial processes, such as power plants, water treatment facilities, and manu-
facturing plants [1,2]. Due to the critical nature of these systems, cybersecurity concerns in
SCADA systems are of paramount importance. Additionally, the availability of easy-to-use
malware development toolkits makes it more feasible to rely on those malicious applica-
tions in many attack scenarios [3]. Some of the key concerns include system vulnerabilities,
remote access, lack of security controls, lack of security awareness, and interoperability [4].
SCADA systems can contain vulnerabilities, such as unpatched software or outdated op-
erating systems, that can be exploited by attackers to gain unauthorized access to the
system [5]. Moreover, many SCADA systems can be accessed remotely, which can increase
the risk of an attack [6]. For example, if an attacker can gain access to a remote access point,
they could potentially take control of the system [7]. In addition, SCADA systems may
not have the same level of security controls as traditional IT systems, such as firewalls or
intrusion detection systems (IDS). Operators or maintenance personnel may not have the
same level of security awareness or training as IT professionals, which can increase the risk
of human errors [8]. Furthermore, SCADA systems often involve multiple vendors and
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protocols, which can increase the complexity of the systems and make it more difficult to
secure them. Among the malware types, ransomware has been utilized in recent years to
extort victims by locking their personal and operational data in exchange for a ransom [9].
There is no doubt that ransomware attacks are on the rise as well as some other types of
cyberattacks. Therefore, the ways to properly address the problem are important.

Not only are PCs and mobile devices targeted by ransomware attacks, but also In-
dustrial Internet of Things (IoT) and SCADA systems [10]. The issue is exacerbated in
cyber-physical and industrial systems such as SCADA due to the adoption of security
measures and procedures from the traditional systems [11]. These measures and proce-
dures do not fully conform or fit with the SCADA environment and context due to their
special nature and the data exchanged between each of the critical components. These
aspects are highly dependent on the system context, operations, and data-processing flow.
Such aspects can be investigated through several factors that contribute to deterring the
momentum of ransomware attacks in industrial control systems (ICS).

1.1. Recent ICS Ransomware Attacks

There have been several recent ransomware attacks against ICS, including SCADA. In
2021, two major ransomware attacks targeted critical infrastructure in the United States [12].
In May, Colonial Pipeline, which supplies gasoline and jet fuel to much of the East Coast [12],
was hit by a cyberattack that disrupted its operations for several days. The incident resulted
in fuel shortages, panic buying, and price increases in multiple states. Then, in June,
JBS, the world’s largest meat supplier, was targeted by a similar attack that forced the
company to shut down its plants in the US and Australia. The attackers used a variant
of the Ryuk ransomware to encrypt the company’s systems and demanded a ransom of
several million dollars. These attacks caused significant financial losses for both companies,
with Colonial Pipeline reportedly paying a ransom of $4.4 million to the attackers and
JBS paying $11 million. In October 2021, a ransomware attack on the Czech Republic’s
largest power company, CEZ, resulted in the shutdown of several power plants and the
disruption of the electricity supply to thousands of customers. The attackers used the
Winnti malware to gain access to the company’s systems and then deployed the RansomExx
ransomware. In December 2020, the Cybersecurity and Infrastructure Security Agency
(CISA) issued an emergency directive regarding a ransomware attack on a natural gas
compression facility; the attackers used a variant of the TrickBot malware. These examples
demonstrate that ransomware attacks on ICS can have serious consequences and can
cause significant disruption to critical infrastructure. These incidents highlighted the need
for increased cybersecurity measures and sparked discussions about the vulnerability of
critical infrastructure to cyberattacks. The attacks also demonstrated the potential for
significant economic and social disruptions as a result of these types of attacks. Therefore,
it is important for organizations that operate industrial systems to take steps to protect
their systems from these types of attacks, by implementing robust cybersecurity measures
and regularly updating and patching their systems.

1.2. Objectives and Contributions

Numerous studies have been conducted proposing ransomware detection and mitiga-
tion solutions. Some of these studies tackled the problem in SCADA systems. However,
there is a lack of investigative studies that addressed the problem. Therefore, the research
community needs to establish a more comprehensive state-of-the-art knowledge base of the
current risks related to the ransomware problem within the SCADA domain. Consequently,
this paper is a comprehensive survey of the current solutions, open issues, and research
directions. To the best of our knowledge, this is the first survey paper that explores the
answers to reducing and/or preventing ransomware attacks targeting SCADA systems.

In this survey, we selected articles based on their relevance to predicting ransomware
attacks. Due to the narrow focus of the survey, we limited the number of articles to
those specifically addressing ransomware prediction. Therefore, we conducted a non-



Future Internet 2023, 15, 144 3 of 18

systematic literature review to analyze the available literature. The contribution of this
paper is threefold:

• We identify existing studies pertaining to ransomware attacks on SCADA systems and
highlight the differences to establish our unique contribution;

• We discuss both technical and organizational aspects of the ransomware problem;
• We provide a generic situational-based framework that can be used to design solutions

that combine the technical and environmental factors dealing with ransomware attacks
on SCADA.

2. Related Works

The adoption of Internet-connected devices in industrial systems such as SCADA
increased the likelihood of cyberattacks as well [11]. In recent years, several incidents
involving malware attacks against ICS have been dissected and analyzed [13–15]. This is
due to the advantage that those malicious programs give to the attacker which allows them
to carry out automated, high-profile attacks with little effort. To mitigate these cybersecurity
concerns, organizations need to implement robust security measures for SCADA systems,
such as implementing secure remote access protocols, regularly updating and patching the
systems, and providing security training for operators and maintenance personnel [16].
Additionally, organizations need to conduct regular security assessments and penetration
testing to identify vulnerabilities and weaknesses in the systems [17].

2.1. SCADA Ransomware Surveys and Challenges

Ransomware is a popular research topic and several surveys have been conducted
to study its various aspects. The survey conducted by [18] examines SCADA systems’
architecture, vulnerabilities, and attack vectors due to TCP/IP network integration, and
analyzes ransomware, its phases, and encryption techniques. It establishes a risk assess-
ment for ransomware injection in SCADA systems, noting that budget constraints often
result in inadequate isolation and therefore exposure to threats. The study highlights the
potential damage caused by ransomware attacks on critical infrastructure and recommends
prioritizing ransomware protection in risk management and incident response plans. How-
ever, the survey neither discussed the solutions proposed for preventing and predicting
ransomware attacks nor highlighted the effect of the situation and context in which the
attacks occur. Likewise, ref. [19] examined the security vulnerabilities of SCADA systems
and categorized the threats. It reviewed SCADA systems’ architecture, vulnerabilities, at-
tacks, intrusion detection techniques, and testbeds as well as proposed an attack taxonomy
based on specific criteria. Moreover, the survey discusses the general threats and does not
discuss predicting the likelihood of a ransomware attack.

Another survey [20] provides an analysis of ransomware attacks pertaining to PCs/
workstations, mobile devices, and IoT/CPS platforms. This survey covers studies com-
pleted from 1990–2020, which offers insights into ransomware evolution, key components,
a taxonomy of significant ransomware families, and an extensive overview of countermea-
sures, including analysis, detection, and recovery across various platforms (i.e., not just
SCADA). Similarly, [21] offered a survey on the evolution, prevention, and mitigation of
ransomware in an IoT context, providing insights into IOT ransomware evolution. The
authors strived to dissect the various aspects of attacks, including ransomware strains,
current research, prevention, and mitigation techniques, handling affected machines, de-
ciding on ransom payment, and future trends in IoT ransomware propagation. However,
solutions related to the early prediction of ransomware were not discussed in either survey.

The investigators in [22] have noted recent progress in analyzing, detecting, and
preventing ransomware attacks. They discuss ransomware detection and prevention meth-
ods, and the testing of ransomware samples, and have proposed a new experimental
ransomware detection addon called AESthetic, which is incorporated into antivirus soft-
ware for the purpose of preventing such attacks. Their survey analyzes the effectiveness
of countermeasures and identifies several future research challenges. Another survey
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by [23] compares and classifies recent ransomware detection techniques and their respec-
tive decision-making procedures to distinguish between benign and malicious strains. Both
studies focused only on the detection and prevention of ransomware without discussing
the early prediction of such attacks. Consequently, the need to better define this gap in
terms of the existing literature discussing the likelihood of an attack given the contex-
tual circumstances is needed. Our paper strives to investigate how situational awareness,
including context, can be incorporated into those solutions as an additional layer.

2.2. Ransomware Attacks on SCADA

Ransomware targets a broad spectrum of sectors, including critical infrastructure
such as transportation, telecom, logistics operations, public agencies, and healthcare [24].
Moreover, with the recent disruption of Colonial Pipeline’s 100 million gallons of daily
fuel supplies and the halting of JBS’s beef-processing operations, ransomware attacks hit
heavily on industrial sectors causing major losses to the victims and consumers.

By utilizing the cryptography-related application programming interfaces (APIs) em-
bedded into the operating systems, ransomware can efficiently run in various environments
with minimal memory and processing resources [25]. Different ransomware categories
exhibit various behaviors related to encrypting data and locking services. Such encryption
can be easily performed using the libraries and functions embedded in the underlying
operating system [26]. Therefore, the distinction between ransomware-based encryption
and innocent encryption is challenging as they both use the same libraries and APIs.

Based on the targeted resource and the attack mechanism, ransomware can be classi-
fied into two categories, namely, locking ransomware and crypto-ransomware [27]. While
the former disables one or more key services provided by the targeted system, the latter en-
crypts the data and/or user-related files. Therefore, the key difference between ransomware
and traditional malware is the use of a system’s own component (like cryptographic rou-
tines or hardware) to attack another component (like the file system) [12]. This makes it
easy for ransomware developers to create unbreakable, sophisticated programs with little
effort, which explains the trend of ransomware attacks in recent years.

Unlike traditional malware and cyberattacks, thwarting ransomware needs to be
more proactive due to the irreversible damage that it may inflict on the victim’s data [28]
and operations. While the malware effect could be reversed by simply removing the
malicious software, the ransomware’s encrypted data cannot be accessed without the
help of the ransomware’s owner [10]. Therefore, it is more feasible to be proactive and
prevent the attack in the first place. As prevention needs the involvement of the system
user (i.e., victim) to some extent, the human and managerial factors become of significant
importance. However, such an aspect of cybersecurity governance that helps to protect
against ransomware attacks is mostly overlooked by the research community.

The factors concerning the proliferation of ransomware attacks are discussed in several
studies. The study conducted by [29] investigated several pre-existing constraints that lead
to an increasing number of successful ransomware attacks. Among these factors is the diffi-
culty of identifying bottlenecks in the system proactively. The diversity of components and
stakeholders at all levels of the system is another factor as the awareness and preparedness
vary and one weak component could have a cascading effect on the other components.
According to this study, organizational and personality differences influence the efficacy of
the policies and countermeasures pertaining to ransomware attack prevention. Qualitative
semi-structured interviews with focused groups have been conducted by [30] to investigate
ransomware attack strategies against different business environments. Several aspects have
been explored including attack vectors, targeted victims, and the nature of the industry.
The study shows that ransomware attacks target individual users and machines. It also
shows that emails and brute-forcing are the commonly used infection vectors employed by
the attackers to deliver the payload to the target.
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2.3. Research Related to Ransomware Countermeasures

Ransomware countermeasures can be categorized into detection, prevention, and
prediction. The detection approach utilizes the known attack patterns to build a model
that can detect attacks with similar behavior. Ransomware detection provides a proactive
measure on which the prevention takes place. Prevention is a specification approach that
relies on predefined rules and procedures to stop attacks when it happens [31]. These roles
and procedures are constructed manually based on human discretion. Hence, prevention is
static and prone to error.

2.3.1. Ransomware Prevention

Typically, studies that focus on prevention identify the various factors and parame-
ters that can influence the quality of the preventive measures [31]. The performance of
prevention frameworks depends heavily on quality factors. Predictions can also be used
as a proactive measure that improves prevention capabilities. Although several studies
developed prediction models for malware attacks, they use historical data as the basis
for prediction [32–35]. While this approach may be suitable for systems whose behavior
is static, it cannot be applied for ransomware attacks as the behavior is dynamic due to
obfuscation strategies such as polymorphism and metamorphism employed by attackers.
In addition, the existing predictive models are built out of the context from overseeing
the situation in which the ransomware attacks take place. In this section, a dozen or more
studies related to ransomware prediction are identified and discussed.

The factors influencing ransomware threat avoidance were explored by [36]. This
study exposed the interactions between several factors such as the subjective norm, the
attitude towards knowledge sharing, the experience of threats, and how such interactions
affect threat avoidance behavior. Moreover, this study identified the cascading effect of the
interaction of factors that act as a chain of nodes whose one node influences the proceeding
node and is influenced consequently by its preceding node, and so forth. The study focused
on college students within the United States. An empirical study to assess the ransomware-
related severity factors was conducted by [37]. The study investigated the effect of a set
of factors on the degree of severity. Among the studied factors are the organization’s
size, security posture, propagation class (a.k.a. the degree of ransomware sophistication),
and type of attack target. An impact assessment was carried out involving several items
such as the business continuity disruption timeframe, recovery time, affected devices, and
information loss.

A set of ransomware success factors were proposed by [38], including anonymous
payment methods, the adoption of system-owned cryptographic libraries, and easy-to-use
ransomware development kits. However, all previous studies approached the factors
related to ransomware attacks in isolation from the targeted environment. That is, those
factors were investigated in general without considering the operational environment. This
makes the findings and proposed hypothesis difficult to reflect on a particular scenario or
system. For SCADA systems, several ransomware attacks’ key success factors have been
investigated [11]. The study tried to focus on the factors related to the operational aspects
of the system. Resource limitation and incompatibility between the SCADA system and
security measures and security protocols were among the issues that were highlighted.

The study conducted by [39] investigated the interaction between the users, anti-virus
software, and malware. An empirical experiment has been conducted to measure several
factors that influence the spread of malware on victims’ devices. The study concluded that
the use of the Internet, peer-to-peer applications, and computer expertise are found to be
more influential in the rise of malware attacks. The relationship between user activities
and malware infections was also investigated by [40]. Routine activity theory was used to
measure to what extent the convergence of motivated attackers and vulnerable targets could
increase the likelihood of malware infections. The study concluded that the legitimate use
of computers has a weak correlation with a malware infection. Such correlation becomes
stronger when victims use illegitimate (pirated) software.
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2.3.2. Ransomware Prediction and Detection

Organizational and managerial factors are not the only aspect that can be explored for
situational-awareness-based protection against ransomware attacks but also the system’s
operational parameters. That is, the data collected from the running process of ransomware
can be combined with the organizational and managerial data so the model can predict
based on the behavior of both the ransomware and the system. This makes the model
situationally aware of future attacks that consider not only the development of ransomware
behavior but also the system’s vulnerabilities. Therefore, the model can adapt to the
operational and behavioral changes of the ransomware and target system.

Several studies were conducted to investigate the use of intelligent prediction engines
to predict potential malware and ransomware attacks. In the study [41], they used the
generative adversarial network (GAN) to predict future malware variants. The GAN was
used to generate new malware samples based on existing ones. The data were generated
by observing existing malware signatures and producing similar signatures. The signature
is derived from the static analysis of malware payloads.

The MalDeepNet [42] is a model constructed to predict the behavior of malware
and construct artificial patterns that represent the trend of malware behavior. The new
patterns are then added to the existing malware dataset, which was used to train a cluster-
based detection engine. Likewise, MalGAN [43] is a GAN-based malware generator that
is used to develop malware black-box attacks. MalGAN utilizes a generator to create
the malware samples and a substitute detector to train the black-box malware detection
system. A generative network is trained to minimize the generated adversarial samples
needed to produce the specific malicious probabilities that would be predicted by the
substitute detector.

Another study by [44] conducted a behavioral analysis of the ransomware attack
process and developed a model that predicts the future behavior of the malware. The
study relies on data related to the attack process, file system, persistence, and network
analysis. The model was built using supervised machine learning. The idea is to watch,
learn, and predict how the malware will evolve toward achieving its goal with very little
data. However, the study is limited to data that represent the previous attack behavior
regardless of the context in which the attack has taken place. This adversely affects the
model’s accuracy when dealing with sophisticated and targeted attacks that change their
behavior according to the context.

A logistic regression prediction model [45] was developed to circumvent the new
malware attack. The model was trained using a dataset of previous malware infections.
The model introspects the patterns in the data and analyzes the progression of the attack
behavior. Likewise, the light gradient-boosting decision tree was used by [46] to predict
future malware attacks on cloud systems. The model uses malware behavioral data to
train the decision tree classifiers. Similarly, the study conducted by [47] developed a
regression-based neural network model to forecast short-term ransomware behavior based
on historical time-series data. These models only focus on data related to processing
operations, but the context in which the process was running has been ignored.

A predictive model [48] for ransomware attacks on IoT devices was conducted using
the context ontology for feature extraction [49]. The use of contextual data helps to reduce
the computational complexity needed, which makes it suitable to run on resource con-
strained IoT devices. The context ontology focuses on a subset of known ransomware attack
vectors based on the assumption that the targeted devices are of the IoT type. However,
relying only on contextual data for lightweight modeling is not enough to capture the
characteristics of the evasive malware as it drops the behavioral data which is imperative
for predicting the future behavior of the malware.

The deep learning represented by long short-term memory (LSTM) was utilized by [50]
to provide an early prediction of malware attacks in Android devices. The model helps
to protect Android devices from malware attacks by the early prediction of suspicious
behavior. It captures the implicit contextual relations between various data generated by
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the running application. However, the model predicts the suspicious behavior of a running
process based on the data captured in the early phases of the attack during the same session.
Such an approach lacks the sufficient data needed for accurate prediction and is unable
to predict the future behavior of the malware. Table 1 summarizes the studies related to
ransomware prediction. It gives a brief description of the problems those studies have tried
to address, with the solutions they proposed, methods, tools, and limitations.

Predictive modeling can help to mitigate and prevent future attacks by tracing the
attack development over time. It can be developed using a combination of operational data
and managerial data. The operational data are collected from the running process of the
ransomware. The data consist of the process-tracing activities as well as the situational
data representing the context surrounding the running environment. The situational
data consolidate the operational data by adding context to the operational data. This
is imperative for ransomware attack prediction as many of those malware applications
can adaptively change their behavior according to the context. Furthermore, situational
data can also be collected from many sources related to the system of interest using threat
intelligence. Together with contextual data, situational data can enrich the knowledge
base of the prediction model. Nonetheless, this type of data fusion was overlooked by
existing studies.

Table 1 summarizes the studies related to ransomware behavior prediction. It can be
concluded that current studies rely solely on operational data extracted from the running
process of the ransomware on the system. These data contain information about the
interaction between the malicious process and the resources in the target system and are
used to train machine-learning models for detecting and predicting attacks. However,
these studies rely on historical data that do not capture how ransomware behavior evolves
over time, and they ignore environmental factors that affect the behavior of ransomware
when running. As ransomware can change its behavior based on several factors, including
the running environment, current security posture, and the situation on the targeted
system, predictive models for ransomware attacks on SCADA must take these factors
into account. Researchers and security professionals can address these limitations when
designing predictive models for ransomware attacks.
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Table 1. Studies related to ransomware behavior prediction.

Author Problem Solution Method Tools Empirical Limitation

[32]

Existing approaches to detect the
malware need to collect enough data
which takes more time, during which the
sabotage has likely already been inflicted
by the time of detection.

Predicting the behavior
based on a short snapshot of
behavioral data.

An ensemble RNN. The
method was able to
predict the attack within
5 s with an accuracy of
around 94 %.

Keras, and Tensorflow Yes

The method relies on historical data
to predict the behavior. This approach
is not suitable for obfuscated behavior
that tries to show a major difference
between past and future attacks.

[50]

Due to the obfuscation techniques
employed by advanced malware,
detection is no longer enough, and there
is a need for methodologies to predict
future behavior instead.

A rapid sequence snapshot
analysis was used to make
the prediction decisions.

A set of random snapshots
were taken from the APIs
and permission data and
used to train an ensemble
LSTM model that is used
for the prediction.

Tensorflow Yes

The LSTM was trained on historical
data only, which assumes that these
historical attack patterns are likely
to reoccur in future attacks. This
does not hold, especially with the
use of obfuscation and polymorphic
strategies adopted by the malware
to change the attack behavior.

[33]

The detection of ransomware based on
past attack data is not suitable to detect
novel, zero-day attacks, which are
common nowadays.

The behavioral patterns
extracted from the dynamic
analysis of ransomware
during the execution time
were used to train a
prediction model.

Support vector machines
(SVM) were used to build
the prediction model based
on the behavioral data.

Scikit Learn,
and Pandas Yes

This approach also uses historical
behavior to predict future ones.
This is not suitable for evasive
ransomware that uses obfuscation
and polymorphism to change its
behavior from time to time.

[34]

Advanced malware can obfuscate much
of its traces through many mechanisms,
such as metamorphic engines. Therefore,
the detection of such malware has
become a significant challenge for
malware analysis mechanisms.

A regression model to
predict advanced malware
based on a selected set of
significant features extracted
from a dataset of malware
runtime data.

The dataset is created by
executing real-world
malware samples and
capturing the behavioral
data into trace files.

N/A Yes

The model was trained using
historical data of existing and
known malware samples. The
dataset does not contain the future
behaviors necessary for accurate
prediction models.

[35]

Sophisticated Android malware families
often implement techniques aimed at
avoiding detection. Split-personality
malware, for example, behaves benignly
when it detects that it is running on an
analysis environment such as a malware
sandbox, and maliciously when running
on a real user’s device.

Exploiting sandbox
detecting heuristic
prediction to predict and
automatically generate
bytecode patches.

An Andronew, a heuristic
approach, was used based
on API calls collected
during the execution time
of the malware.

Sandbox Yes

The heuristics were performed based
on historical data, which limits the
ability of this approach to predict the
future behavior of malware
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Table 1. Cont.

Author Problem Solution Method Tools Empirical Limitation

[41]
Zero-day malware attacks are challenging
due to the polymorphic nature of
the malware.

Generating synthesized
malware samples based on
existing malware signatures
derived from the static
analysis of malware payloads.

GAN algorithm to
generate artificial
malware samples.

Keras, and Tensorflow Yes

The static analysis adopted by the
study does not reveal the behavioral
aspect of the malware as
polymorphism works during the
runtime. In addition, the packing
and encryption techniques used by
sophisticated malware prevent the
static analysis from exploring the
malware features.

[42] Existing malware detection is not
accurate enough.

A cluster-based detection
engine that is trained based
on artificial patterns
represents the trending of
malware behavior.

GAN algorithm to create
malware patterns. N/A N/A

There was no evidence of the
applicability and efficacy of
the model.

[43]
Malware authors have the ability to
reveal the features used by
detection models.

MalGAN model that attacks
black-box machine-learning
detection models.

A substitute detector to fit
the black-box malware
detection system.

N/A Yes

The data used for model training
were general and limited to
malware operational behavior. The
context was not captured.

[44] The ransomware changes its behavior
which makes it difficult to detect.

The study studies data
collected from the
ransomware process and
its interaction with the
file system.

It used malware
development toolkits to
create ransomware samples.

ADMMutate, Clet,
and Phatbot Yes

The study is limited to the ability of
the tools to manually create
samples, which makes it impractical
to have a diversified dataset.

[45]
Detecting novel malware attacks is
difficult as the behavior
changes continuously.

The model examines the
patterns in the data and
studies the evolution of the
malware behavior.

It used a collection of data
from previous malware
infections to train a logistic
regression algorithm.

N/A Yes

Relying on the evolution of the
attack behavior to forecast future
attacks is not sufficient to visualize
the sophisticated malware attacks.

[47]

The new types of malware tend to be
more difficult to detect than older ones.
This has made content-based,
signature-based, and pattern-matching
techniques less effective in detecting and
preventing ransomware attacks.

Utilized the neural network
algorithm to predict the
future occurrences of
ransomware and malware
attacks over time.

Time-series
regression-based neural
network algorithm model.

TensorFlow, Keras,
NumPy, Matplotlib,
and Pandas

Yes

The model concentrates solely on
data pertaining to processing
operations, disregarding the context
in which the process was executed.
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Table 1. Cont.

Author Problem Solution Method Tools Empirical Limitation

[48]

Existing ransomware attack predictions
are not tailored for IoT systems that are
diverse and resource-constrained
environments.

A technique for predicting
ransomware using
contextual data and utilizing
a context ontology to gather
information characteristics
of ransomware attacks
against the IoT.

An ontology approach
with SVM. N/A Yes

Relying only on contextual data and
ignoring the behavioral data is
insufficient for modeling the
characteristics of the evasive
malware attacks.

[50]
Detection solutions alone are no longer
enough to protect against malware due to
the increasing rate of zero-day attacks.

An early prediction of
malware attacks in Android
devices was proposed. By
capturing the implicit
contextual relations between
various data, the model
predicts the suspicious
behavior of a running
process using data collected
during the early stages of
the attack within the same
session.

LSTM and ensemble
learning. N/A Yes

This approach is inadequate in
terms of the necessary data required
for an accurate prediction and is
unable to anticipate the future
behavior of the malware.
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3. The Data Used for Ransomware Behavioral Analysis

To study the behavior of ransomware attacks, researchers typically rely on data col-
lected from various sources, including malware analysis reports, network traffic logs, and
incident response reports [25]. These data can provide insight into the tactics, techniques,
and procedures (TTPs) used by ransomware attackers, as well as the vulnerabilities they
target and the types of data they seek to encrypt. One of the primary sources of data used
in ransomware research is malware samples [27]. Security researchers can analyze these
samples to identify the specific strain of ransomware and the methods used to encrypt files
and demand payment. Researchers can also use sandboxing and emulation techniques to
simulate the behavior of ransomware in a controlled environment, allowing them to study
the malware’s TTPs and identify potential mitigation strategies [24].

Sandboxing is a technique used to analyze the behavior of ransomware in a controlled
environment. In a sandbox, the malware is isolated from the rest of the system and run in a
virtual environment where its actions can be monitored and recorded [27]. By observing
the malware’s behavior in this way, security researchers can gain valuable in-sight into
the tactics, techniques, and procedures (TTPs) used by ransomware attackers. Sandboxing
allows researchers to identify the specific files and folders targeted by the ransomware, the
encryption methods used, and any attempts to communicate with command and control
(C2) servers [26]. This information can then be used to develop more effective detection
and mitigation strategies. Sandboxing is a powerful tool in the fight against ransomware,
allowing researchers to study the behavior of malware in a safe and controlled environment
without risking the integrity of the system or the data it contains.

There are several well-known sandboxes that are commonly used for ransomware
analysis, including:

• Cuckoo Sandbox: a popular open-source sandboxing platform that is widely used
for malware analysis, including ransomware. It supports multiple operating systems,
including Windows, Linux, and macOS, and allows researchers to monitor the behavior
of malware in a virtual environment;

• Any.Run: a cloud-based sandboxing platform that allows users to analyze malware
behavior in real-time. It supports a wide range of file types and provides detailed
reports on the malware’s behavior, including network connections, file modifications,
and registry changes;

• Hybrid Analysis: a malware analysis platform that combines sandboxing with threat
intelligence to provide a comprehensive view of malware behavior. It supports multi-
ple file types, including executables, documents, and archives, and provides detailed
reports on the malware’s behavior and indicators of compromise (IOCs);

• VMRay Analyzer: a sandboxing platform that uses virtual machine introspection
(VMI) to analyze malware behavior. It supports a wide range of file types and pro-
vides detailed reports on the malware’s behavior, including network connections, file
modifications, and memory analysis.

These sandboxes are just a few examples of the many tools and platforms available for
ransomware analysis. Each has its own strengths and weaknesses, and researchers may
choose to use multiple sandboxes to gain a more comprehensive view of malware behavior.

In addition to malware samples, network traffic logs can provide valuable data for
studying ransomware attacks [24]. By monitoring network traffic during an attack, re-
searchers can identify the patterns and indicators of compromise (IOCs) associated with
ransomware, such as communication with command and control (C2) servers or attempts
to access and encrypt specific files [28]. This data can be used to develop intrusion detection
and prevention systems (IDPS) to alert organizations to potential ransomware attacks
and block them before they can cause damage. The behavioral data collected during
ransomware analysis can vary depending on the specific techniques and tools used, but
some common types of behavioral data include:
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• File system activity: information on which files and directories the ransomware ac-
cesses, modifies, or encrypts during an attack;

• Network activity: Data on the servers with which the ransomware communicates, the
ports it uses, and the protocols it employs.;

• Registry modifications: changes made to the Windows registry by the ransomware,
such as the creation or modification of registry keys;

• Process activity: information on the processes created or modified by the ransomware
during an attack, as well as any child processes spawned by the malware;

• System configuration changes: changes made by the ransomware to system settings
or configurations, such as changes to firewall rules or user account permissions;

• Memory analysis: the analysis of the ransomware’s behavior in memory, such as code
injection, process hollowing, or other memory-based attacks;

• Behavioral indicators: specific patterns or behaviors associated with ransomware
attacks, such as attempts to disable security software, or the presence of specific file
types or extensions commonly targeted by ransomware.

By analyzing these behavioral data, security researchers can gain insight into the
techniques and tactics used by ransomware attackers, as well as identify potential vulnera-
bilities and mitigation strategies.

4. Research Direction and Future Work

In the previous discussion on limitations, we noted that existing solutions for defend-
ing against ransomware attacks tend to approach the problem from a single perspective
focusing on operational or managerial aspects. This approach ignores the situational factors
that accompany attacks and can make the proposed solutions unsuitable or ineffective.
Therefore, there is a need to combine both approaches to develop security solutions that
consider the specific situation and context surrounding each incident. In this way, solutions
can be tailored to the systems they protect. To this end, we propose a generic framework
in this section that future research can use to develop situational-aware solutions such as
ransomware prediction: in other words, our view, namely, one that provides a situational
awareness that can trigger an active response toward preventing the attack (prediction
can be used to assess the strength of using different hardening strategies). By including
situational awareness into the framework, the model would be able to predict potential
attacks as soon as enough evidence is acquired from different sources. Therefore, this
survey intends to give the framework as a direction for future research. It provides a base-
line for our assessment of the various investigations to understand better how to compare
their contribution and efficacy. The framework is a generic guideline that the research
community can make use of when building more effective, situational-aware ransomware
prediction solutions. The framework helps future research to be more proactive so the
attacks can be prevented as early as possible which is necessary due to the irreversible
nature of ransomware attacks.

4.1. Research Direction: Situational Awareness Ransomware Prediction Framework

To construct the framework, situation awareness is implemented through processes
that vertically integrate organizational policy within managerial policy, which in turn is
horizontally incorporated with the human factor. The key ingredients in the proposed
framework are (1) the stakeholders (end users, cyber security team, and managerial team),
(2) framework inputs (SCADA design, cyber security policy playbooks, threat intelligence,
and operational data), and (3) framework outputs (perception, comprehension, and projec-
tion). Figure 1 illustrates the design of the proposed framework. To acquire data pertaining
to situation awareness about ransomware attacks, it is necessary to (1) collect the incident-
related data from the SCADA environment (perception), (2) synthesize elements of the
ransomware incident with existing knowledge, and identify the severity of the incident with
respect to cybersecurity objectives (comprehension), and (3) construct possible ransomware
incident scenarios that might happen in the near future to prepare for the appropriate
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response (projection). The design of the framework is composed of three phases as shown
in Figure 1. The framework’s design is a tri-phase artifact; each phase corresponds to one
module in the situational awareness approach.
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4.1.1. Perception Phase

The first phase is related to the perception module, in which data are collected from
different sources. Three sources of data will be collected, namely, SCADA design, cyber-
security policies and measures, and situational threat intelligence. The data related to
SCADA design and environment include but are not limited to nodes and devices intercon-
nected with each other. It also includes the software and hardware specifications within
the SCADA system. As part of this, the operational data are collected and/or exchanged
between SCADA sensory nodes and other supervisory components. Ransomware attacks
mainly deny access to these data by using the available cryptography mechanisms. There-
fore, the information pertaining to collecting, storing, and processing these operational
data is collected during the perception stage.

Cybersecurity policies and measures are the second sources of data collected during
the perception phase of the situational awareness approach. It includes but is not limited
to hardware/software security policies, data breach response policies, backup/recovery
policies, and user identification, authentication, and authorization policies. Moreover,
security measures currently in place are another source of data that will be collected during
the perception phase. Additionally, situational threat intelligence data are collected based
on the log files from different components in the SCADA system. The data collected from
the three sources will be used as input for the next stage in the situation-awareness-based
framework, i.e., comprehension.

4.1.2. Comprehension Phase

In the comprehension phase of the situation-awareness-based framework, the data
acquired from the previous phase will be used to construct three lists, namely, the situational
vulnerability list, asset list, and situational threat list. The combination of data will be
introspected for constructing a risk tree and situational vulnerability assessment. The
situational vulnerability list consists of a set of vulnerabilities in the SCADA system that
ransomware could expose to break into and carry out the attack. The set of vulnerabilities
is built based on the current situation and the setting applied to the SCADA system. This
includes, but is not limited to, the current topology, operational conditions, workload, type
of interaction, and amount of data. The vulnerability list is situational because it is derived
based not only on the devices and assets that are potential targets but also on the current
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operating conditions and number of resources in the SCADA allocated to support these
operations. This list changes according to the change in the situation.

The asset list will be constructed based on the topology of the SCADA system. The as-
sets include hardware, software, data, services, and applications. Communication channels
and protocols are also considered assets. Additionally, items in the asset list will be paired
with the priority of that asset. This priority will be used to measure the importance of the
asset. Such importance will be determined based on the potential that this asset contributes
to ransomware attacks. The proximity of an asset to the operational data is another factor
to be considered when assessing the importance of the asset. Nevertheless, the importance
of certain assets increases or decreases based on the situation. Adding a new device, sensor,
and/or service could increase (or decrease) the importance of another asset. By adopting
the situational awareness, items in the asset list will be reprioritized at any change in the
SCADA system. Therefore, the importance of the items changes as such.

The third list that will be constructed during the comprehension phase is the situational
threat list. In this list, the items are added and removed based on the degree of threat
severity, and how much it contributes to successfully carrying out ransomware attacks.
In such a manner, threats against data and devices where these data are stored and/or
processed will have the highest priority. As a situational list, the items change based on
the data-related factors such as the amount of data, processing capability, transmission
efficiency, and real-time dependency. The three lists will be combined to construct the risk
assessment that will be used as input for the projection, which is the third stage in the
situational awareness framework.

To build the risk assessment, a threat tree will be constructed based on the vulnerability
and asset lists. The threat tree takes as input the items in the asset list and the vulnerability
list. The asset list will be categorized into three types, namely, hardware, software, and data.
Likewise, items in the vulnerability list will be put under three categories: confidentiality,
integrity, and availability. Each vulnerability category will then be used as the root of
the threat tree. From each root, three branches will emit, each of which will be related
to one category of the assets, i.e., hardware, software, and data. Each asset category will
then be branched into several branches corresponding to the number of assets under that
category. The leaves of the tree represent the set of threats to that asset. Each leaf in the
threat tree will be assessed with two values: vulnerability level, and threat level. These
values are estimated based on two factors: the relevance to operational data and the current
situation within the SCADA system. The vulnerability level measures how vulnerable
an asset is, whereas the threat level measures the degree of the threat on that particular
asset. The threat tree will then be used to construct the risk assessment matrix where the
rows represent the list of assets and the columns represent the type of vulnerability. The
intersection of the row and column represents a risk value on a specific asset. This value
will be calculated according to Equation (1) as follows:

Risk = probability of attack × consequence of attack (1)

The probability of attack and consequence of attack are estimated based on the threat–
vulnerability values in the threat tree and asset priority (importance) in the asset list.

4.1.3. Projection Phase

Projection is the third phase of the situational awareness framework, in which the risk
assessment constructed during the comprehension will be used to predict ransomware
attacks on the SCADA system. The outcome of the situational risk assessment will be used
to create several scenarios for ransomware attacks. When the situation changes, current
scenarios are updated, or new scenarios are added. The purpose of creating these scenarios
is to get the SCADA system ready for potential ransomware attacks in light of the current
operational situation. For each scenario, a ransomware incident response will be prepared.
According to the situation, the incident responses are updated and adapted when the list of
scenarios is updated.
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The projection is essential for preventing potential future ransomware attacks. Typ-
ically, such projection is made based on data gathered from various sources. Therefore,
the data should represent the operational environment in which ransomware is executed.
This includes the runtime data gathered during the execution of the ransomware running
process and the situational data that reflect the operational environment of the process. By
coupling both data types, the projection will be situational-aware, and does not only rely
on the ransomware behavior but also the system parameters.

4.2. Suggestions for Future Works

Based on the literature reviewed, it is likely that the rise of ransomware targeting
SCADA ICS will continue. This is due to the characteristics of SCADA systems that permit
remote access and the interaction with diverse components, unique within bespoken envi-
ronments, making them vulnerable to ransomware attacks. Ransomware can encrypt the
operational data and disrupt the SCADA system, but predicting its behavior can aid in the
development of proactive measures that enhance ICS security. However, current research
efforts either concentrate on the operational side of attacks or the managerial and human
aspects, neglecting the context in which the attacks occur. Previous investigations have
also overlooked the evolutionary nature that allows ransomware to evolve its attacks with
no or less similarity to existing attacks to negatively affect the defense systems to predict
upcoming threats. Hence, the defense systems become less protective. This weakness
negatively impacts the effectiveness of predictive modeling, as ransomware’s behavior
varies depending on the situation and context. As a result, there is a need to combine both
operational and human factors when evaluating the probability of ransomware attacks.
This can be accomplished by gathering data from the running malware process, the under-
lying operating environment, situational data related to organizational and human factors,
and the system’s current security posture, through a daunting set of tasks.

As deep learning has emerged as a promising technique for predicting ransomware
attacks, it can be used to develop deep neural networks that can analyze vast amounts of
data from various sources and identify patterns that indicate the likelihood of a ransomware
attack. One direction of research is to develop multi-modal deep-learning models that
consider multiple data sources, such as network traffic, system logs, and user behavior, to
make more accurate predictions. Different modalities, such as network traffic data, system
logs, and user behavior, can be used to build a more comprehensive representation of the
system state and identify patterns that indicate the likelihood of a ransomware attack.

Another direction is to incorporate adversarial examples and defend against malicious
attacks in the training process, to increase the robustness of the deep-learning models
against real-world threats. Adversarial examples are intentionally crafted inputs that are
designed to fool machine-learning models. Research in this direction aims to develop
deep-learning models that can defend against such malicious attacks and improve the
robustness of the models against real-world threats. Normally, generative adversarial
networks (GAN) are used to generate artificial ransomware examples that represent the
future behavior of the attacks.

Improving the interpretability of the deep-learning models is another research direc-
tion so that organizations can understand the reasoning behind the predictions and make
informed decisions. The interpretability of deep-learning models refers to the ability to
understand the reasoning behind the predictions made by the model. Research in this area
aims to improve the interpretability of deep-learning models so that organizations can
understand the factors that contribute to the prediction of a ransomware attack and make
informed decisions.

In addition, research can also focus on developing transfer-learning models that
can be trained on one domain and then transferred to another domain to improve the
accuracy of predictions in new scenarios [51,52]. Transfer learning is a machine-learning
technique where a model trained on one domain is applied to another domain. In the
context of ransomware attack prediction, transfer-learning models can be trained on one
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set of data and then transferred to another domain to improve the accuracy of predictions
in new scenarios. This allows the predictive model to make use of data from similar (or
generic) scenarios and applies it in a specific SCADA scenario. Transfer learning also helps
to compensate data insufficiency by utilizing cross-domain knowledge. These research
directions aim to address various challenges in the field of ransomware attack prediction
using deep learning and also have the potential to significantly advance our understanding
of ransomware attack profiles and their strategies, consequently improving the security of
ICS against such threats.

5. Conclusions

This paper was developed to identify and explore the existing literature related to
ransomware attacks within the general ICS context. This survey provides an overview of
the current state of the art in ransomware attack prediction and highlights the potential of
deep learning to advance the field. As the prediction of ransomware attacks is a critical
area of research, this survey explored the state of the art and studies the related proposals.
In this survey, we have focused on predictive modeling as well as the organizational
and human factors influencing the performance of ransomware behavior prediction. A
situational awareness framework for ransomware prediction that combines the behavioral
and operational aspects of malware attacks was proposed as well. We also discussed the
challenges and limitations of each approach and identified future research directions, such
as the development of multi-modal deep-learning models, defense against adversarial
attacks, improvement of model interpretability, and transfer-learning models. Further
research is needed to address the challenges and limitations identified and to continue to
improve the accuracy and robustness of ransomware attack prediction models.
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34. Bahtiyar, Ş.; Yaman, M.B.; Altıniğne, C.Y. A multi-dimensional machine learning approach to predict advanced malware. Comput.

Netw. 2019, 160, 118–129. [CrossRef]
35. Leguesse, Y.; Vella, M.; Ellul, J. AndroNeo: Hardening Android Malware Sandboxes by Predicting Evasion Heuristics; Springer

International Publishing: Berlin/Heidelberg, Germany, 2018.
36. Acosta-Maestre, H.A. The Empirical Study of the Factors that Influence Threat Avoidance Behaviour in Ransomware Security Incidents;

Nova Southeastern University: Ann Arbor, MI, USA, 2021; p. 95.
37. Connolly, L.Y.; Wall, D.S.; Lang, M.; Oddson, B. An empirical study of ransomware attacks on organizations: An assessment of

severity and salient factors affecting vulnerability. J. Cybersecur. 2020, 6, tyaa023. [CrossRef]

http://doi.org/10.3390/s22051837
http://www.ncbi.nlm.nih.gov/pubmed/35270983
http://doi.org/10.3390/electronics10091043
http://doi.org/10.3390/app11199005
http://doi.org/10.1016/j.cose.2022.103028
http://doi.org/10.1145/3514229
http://doi.org/10.1016/j.eij.2020.05.003
http://doi.org/10.1016/j.cose.2021.102490
http://doi.org/10.1109/ACCESS.2019.2945839
http://doi.org/10.3390/su14031231
http://doi.org/10.1016/j.jnca.2020.102753
http://doi.org/10.1016/j.cose.2019.101568
http://doi.org/10.1016/S1353-4858(16)30086-1
http://doi.org/10.1016/j.cose.2018.05.010
http://doi.org/10.1016/j.comnet.2019.06.015
http://doi.org/10.1093/cybsec/tyaa023


Future Internet 2023, 15, 144 18 of 18

38. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and
research directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]

39. Lévesque, F.L.; Chiasson, S.; Somayaji, A.; Fernandez, J.M. Technological and human factors of malware attacks: A computer
security clinical trial approach. ACM Trans. Priv. Secur. TOPS 2018, 21, 1–30. [CrossRef]

40. Holt, T.J.; Bossler, A.M. Examining the Relationship Between Routine Activities and Malware Infection Indicators. J. Contemp.
Crim. Justice 2013, 29, 420–436. [CrossRef]

41. Moti, Z.; Hashemi, S.; Namavar, A. Discovering Future Malware Variants by Generating New Malware Samples Using Generative
Adversarial Network. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, 24–25 October 2019.

42. Lu, S.; Ying, L.; Lin, W.; Wang, Y. New era of deeplearning-based malware intrusion detection: The malware detection and
prediction based on deep learning. arXiv 2019, arXiv:1907.08356.

43. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. arXiv 2017, arXiv:1702.05983.
44. Popli, N.K.; Girdhar, A. Behavioural Analysis of Recent Ransomwares and Prediction of Future Attacks by polymorphic

and Metamorphic Ransomware. In Computational Intelligence: Theories, Applications and Future Directions-Volume II; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 65–80.

45. Yeboah-Ofori, A.; Boachie, C. Malware Attack Predictive Analytics in a Cyber Supply Chain Context Using Machine Learning. In
Proceedings of the 2019 International Conference on Cyber Security and Internet of Things (ICSIoT), Accra, Ghana, 29–31 May 2019.

46. Patel, V.; Choe, S.; Halabi, T. Predicting Future Malware Attacks on Cloud Systems using Machine Learning. In Proceedings of
the 2020 IEEE 6th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS),
Baltimore, MD, USA, 25–27 May 2020.

47. Albulayhi, K.; Al-Haija, Q.A. Early-Stage Malware and Ransomware Forecasting in the Short-Term Future Using Regression-
based Neural Network Technique. In Proceedings of the 2022 14th International Conference on Computational Intelligence and
Communication Networks (CICN), Al-Khobar, Saudi Arabia, 4–6 December 2022.

48. Mathane, V.; Lakshmi, P. Predictive analysis of ransomware attacks using context-aware AI in IoT systems. Int. J. Adv. Comput.
Sci. Appl. 2021, 12, 240–244. [CrossRef]

49. Sadighian, S.A.; Robert, J.-M.; Sarencheh, S.; Basu, S. A Context-Aware Malware Detection Based on Low- Level Hardware
Indicators as a Last Line of Defense. In Proceedings of the SECURWARE 2017: The Eleventh International Conference on
Emerging Security Information, Systems and Technologies, Rome, Italy, 10–14 September 2017; pp. 10–19.

50. Amer, E.; El-Sappagh, S. Robust deep learning early alarm prediction model based on the behavioral smell for android malware.
Comput. Secur. 2022, 116, 102670. [CrossRef]

51. Khan, M.; Naeem, M.R.; Al-Ammar, E.A.; Ko, W.; Vettikalladi, H.; Ahmad, I. Power forecasting of regional wind farms via
variational auto-encoder and deep hybrid transfer learning. Electronics 2022, 11, 206. [CrossRef]

52. Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K.; Islam, R. Dependable intrusion detection system for IoT: A deep transfer
learning based approach. IEEE Trans. Ind. Inform. 2022, 19, 1006–1017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cose.2018.01.001
http://doi.org/10.1145/3210311
http://doi.org/10.1177/1043986213507401
http://doi.org/10.14569/IJACSA.2021.0120432
http://doi.org/10.1016/j.cose.2022.102670
http://doi.org/10.3390/electronics11020206
http://doi.org/10.1109/TII.2022.3164770

	Introduction 
	Recent ICS Ransomware Attacks 
	Objectives and Contributions 

	Related Works 
	SCADA Ransomware Surveys and Challenges 
	Ransomware Attacks on SCADA 
	Research Related to Ransomware Countermeasures 
	Ransomware Prevention 
	Ransomware Prediction and Detection 


	The Data Used for Ransomware Behavioral Analysis 
	Research Direction and Future Work 
	Research Direction: Situational Awareness Ransomware Prediction Framework 
	Perception Phase 
	Comprehension Phase 
	Projection Phase 

	Suggestions for Future Works 

	Conclusions 
	References

