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Abstract: In recent years, dense retrieval has emerged as the primary method for open-domain ques-
tion-answering (OpenQA). However, previous research often focused on the query side, neglecting 
the importance of the passage side. We believe that both the query and passage sides are equally 
important and should be considered for improved OpenQA performance. In this paper, we propose 
a contrastive pseudo-labeled data constructed around passages and queries separately. We employ 
an improved pseudo-relevance feedback (PRF) algorithm with a knowledge-filtering strategy to en-
rich the semantic information in dense representations. Additionally, we proposed an Auto Text 
Representation Optimization Model (AOpt) to iteratively update the dense representations. Exper-
imental results demonstrate that our methods effectively optimize dense representations, making 
them more distinguishable in dense retrieval, thus improving the OpenQA system’s overall perfor-
mance. 
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1. Introduction 
Since 2019, there has been a significant development in pre-trained language models, 

making dense retrieval [1–6] (which projects text into a low-dimensional mathematical 
space) more effective than traditional sparse retrieval (which is based on term retrieval) 
in OpenQA. The retrieval module is a crucial step in OpenQA and typically adopts a dual-
encoder model architecture to learn dense representations of queries and passages. The 
dot product operation is then used to calculate the similarity between query-passage pairs 
for sorting purposes. Currently, many studies aim to improve this dense retrieval archi-
tecture; however, they have mainly focused on improving the query side, such as the 
model-level improvement [4,7] or instance-level improvement [8]. Despite these efforts, 
Sciavolino et al. [9] has experimentally demonstrated that DPR [1], which is a dense re-
trieval baseline, performed significantly worse than sparse retrieval on the entity-centric 
dataset EntityQuestions (EQ), as shown in Table 1. Their study indicated that DPR [1] 
could only improve questions with common entities and specific sentence templates, and 
text augmentation of queries alone could not solve this problem. Therefore, there is a need 
to build a more robust passage encoder. 

Based on the findings of Sciavolino et al. [9], we contend that the refinement of pas-
sage encoding is a crucial problem that needs to be addressed in open-domain question-
answering (OpenQA) research. Thus, to enhance retrieval performance in such tasks, we 
propose optimizing the dense representations of both queries and passages. However, 
before proceeding with a specific implementation, we encountered two major challenges. 
Firstly, encoding millions of passages in the entire training set with a dense encoder can 
be compute-intensive and time-consuming (8.8 h on 8 64 GB GPUs). Secondly, as demon-
strated by Sciavolino et al. [9], there is currently no universal and robust passage encoder 
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that can effectively encode long sequence texts from different domains and contain the 
required semantic information. 

Table 1. Retrieval results (Top-k) on NQ and EQ datasets. 

Dataset DPR-Single 1 DPR-Multi 2 BM25 
NQ 80.1 79.4 64.4 
EQ 49.7 56.7 72.0 

1 DPR model trained on NQ only. 2 DPR model trained on 4 datasets (NQ, TQA, WebQ, TREC) 
combined. 

This paper proposes a method for optimizing text representations based on the 
pseudo-relevance feedback (PRF) algorithm to address potential issues in retrieval. The 
proposed method constructs pseudo-labeled data with the query or passage as the center 
and builds a text representation optimization model called AOpt using the gradient de-
scent algorithm to optimize the dense representations of queries and passages at the in-
stance level. This approach avoids repeated text encoding, thus improving efficiency. To 
improve the general PRF algorithm, we use a knowledge-filtering strategy and conduct 
binary classification on query-passage pairs to obtain positive and negative pseudo-labels. 
Our positive and negative sampling strategy is based solely on whether the answer is con-
tained in the passage, which is the most direct strategy. We believe that using the most 
relevant labels is beneficial for the AOpt model, as the text representation will be opti-
mized through multiple iterations. After constructing the pseudo-labeled data, we first 
experiment with improving dense retrieval performance using a simple linear weight cal-
culation method under different hyperparameters of pseudo-labeled data. This verifies 
the effectiveness of pseudo-labeled data in optimizing text representation. We then build 
the text representation optimization model AOpt to iteratively optimize text-dense repre-
sentations. AOpt makes the relevant query-passage pairs closer in the mathematical space 
while making the irrelevant ones farther. Experimental results show that the optimized 
dense text representation effectively improves the performance of dense retrieval and the 
entire QA system in OpenQA. 

Overall, the proposed method contributes to the field of passage retrieval by address-
ing the potential issues of existing methods and providing a more efficient and effective 
way of optimizing text representations. 

2. Materials and Methods 
We found that previous research on retrieval modules in OpenQA systems has 

mostly focused on improving the performance of dense retrieval from the query side in 
the question-answering data. However, Ren et al. [10] have experimentally shown that the 
other end of the question-answering data, the passage side, still contains a lot of unused 
information and knowledge. Therefore, we propose a pseudo-labeled data construction 
method based on contrastive relevance from both the query and passage sides. Specifi-
cally, we use a knowledge-filtering strategy in the OpenQA retrieval process to perform 
binary classification on “query-passage” pairs to distinguish between positive and nega-
tive relevance. Next, we use a simple linear weighted calculation method to demonstrate 
the effectiveness of this pseudo-labeled data for improving the retrieval and question-an-
swering performance of OpenQA. 

We then separately design a query-centric text representation optimization model, 
AOpt-query, and a passage-centric text representation optimization model, AOpt-pas-
sage. Their loss functions both aim to pull positive “query-passage” pairs closer and push 
negative “query-passage” pairs further apart. During the optimization process, we itera-
tively update the dense representation of the query or passage dense representations us-
ing the gradient descent algorithm. 
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2.1. Constructing Pseudo-Labels 
Although DPR [1] achieved SOTA results at that time, it had several shortcomings, 

including its negative sampling strategies: (1) Random: this approach randomly sampled 
from the entire QA training corpus; (2) BM25: this method selected passages that con-
tained most of the query tokens but did not include correct answers from the BM25 re-
trieval results; and (3) Gold: this method selected gold passages (passages containing an-
swers) from other queries in the mini-batch. Xiong et al. [7] demonstrated that (1) random 
sampling resulted in indistinguishable sample vector distances; (2) BM25-based negative 
sampling resulted in biased sparse retrieval, which failed to effectively improve the re-
trieval performance of the model, and (3) mini-batch negative sampling resulted in fewer 
informative negative samples due to the smaller batch size and the lower probability of 
obtaining effective negative samples in each mini-batch, making it difficult to achieve im-
proved contrastive learning performance. To achieve better contrastive learning perfor-
mance, we propose a semi-supervised pseudo-labeled data construction method that im-
proves the negative sampling strategy in DPR [1]. 

Firstly, we still follow the dense retrieval step proposed in DPR [1] for retrieval. Spe-
cifically, we use a pre-trained model to encode all the queries and passage texts in the 
question-answering dataset to obtain their corresponding dense representations. Then, we 
construct an index of dense representations for all passages and use a dot-product calcu-
lation to obtain similarity scores for all “query-passage” pairs. After sorting the similarity 
scores, we take the top-k passages (usually, k is set to 100) as the most relevant passages 
for the current query. The question-answering retrieval step is shown in Figure 1. 

 
Figure 1. DPR Dense Retrieval Steps. 

In the encoding stage, we used the pre-trained query encoder and passage encoder 
provided by DPR [1]. DPR [1] constructs positive and negative samples based on the neg-
ative sampling strategy mentioned in Section 2.1 and the traditional positive sampling 
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strategy provided by the question-answering dataset. Two independent BERT-base-un-
cased pre-trained models are trained using these samples. Their training goal is to obtain 
a mathematical vector space that makes the distance between relevant “query-passage” 
pairs closer and the distance between irrelevant ones farther apart. 

We used the query encoder 𝐸𝐸𝑄𝑄 and passage encoder 𝐸𝐸𝑃𝑃 provided by DPR [1] to gen-
erate the dense representations of the queries and passages, which serve as the initial in-
put for AOpt. 

𝑞𝑞 = 𝐸𝐸𝑄𝑄(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) (1) 

𝑝𝑝 =  𝐸𝐸𝑃𝑃(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞) (2) 

where 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞  and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞  denote the query text and the passage text, 𝑞𝑞  and 𝑝𝑝  are 
[CLS] token’s hidden states in the last layer of BERT [11]. As shown in Figure 2, BERT [11] 
always adds a [CLS] token at the beginning of the input text before computation and en-
codes it together with the input text. Many previous studies [12] have demonstrated that 
the [CLS] token has a relatively effective representation in the final hidden state of pre-
trained encoder models. This hidden state is a d-dimensional mathematical vector (usu-
ally d = 768), which can be used as a semantic representation of the entire input text. There-
fore, the hidden state corresponding to the [CLS] token is commonly used as the final 
dense representation of the text. 

 
Figure 2. Embedding Generation Flow of BERT. 

In the stage of computing the relevance scores, based on previous relevant experi-
ments and considering both computational efficiency and effectiveness, we choose dot 
product operation to obtain the similarity scores of the “query-passage” pairs. 

𝑝𝑝(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞) = 𝑞𝑞 · 𝑝𝑝 (3) 

To efficiently compute the relevance scores of “query-passage” pairs, we used the 
FAISS library to construct an index for all passage representations. The FAISS library is an 
efficient open-source library suitable for dense vector search and clustering, particularly 
for similarity search of millions of mathematical vectors. By building an index, the FAISS 
library greatly reduces the search time. 

Specifically, given a query text q, we use its dense representation 𝑞𝑞 to retrieve the 
top-k passage dense representations closest to it in the FAISS index. Finally, we rank the 
retrieval results obtained through FAISS in descending order of similarity scores to obtain 
the top-k passages most relevant to each query. 

𝑡𝑡𝑡𝑡𝑝𝑝 − 𝑘𝑘𝑝𝑝∈𝑃𝑃(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞) = s𝑡𝑡𝑞𝑞𝑡𝑡�𝑝𝑝(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞, 𝑐𝑐𝑡𝑡𝑐𝑐𝑡𝑡𝑞𝑞𝑐𝑐𝑡𝑡)�[1:𝑘𝑘]  (4) 
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Here, we introduce a PRF algorithm, which evolves from the relevance feedback (RF) 
algorithm. The RF algorithm is a classic and common algorithm in information retrieval 
task. It interacts with users to obtain feedback information on search results and uses this 
feedback information as auxiliary data to enhance the performance of the retrieval algo-
rithm. The general step of the RF algorithm is to improve the query representation 
through some updating functions: 

𝑞𝑞𝑡𝑡+1 = 𝑓𝑓(𝑞𝑞𝑡𝑡) (5) 

𝑞𝑞𝑡𝑡 denotes the query representation after 𝑡𝑡 updates; 𝑓𝑓 denotes the update function. 
Rocchio’s algorithm is a classic RF algorithm, aiming to find the optimal query rep-

resentation which maximizes the similarity of relevant query-passage pairs and mini-
mizes the similarity of the irrelevant ones: 

𝑞𝑞𝑜𝑜𝑝𝑝𝑡𝑡 = argmax
𝑞𝑞

[𝑝𝑝𝑠𝑠𝑠𝑠(𝑞𝑞,𝐶𝐶+) − 𝑝𝑝𝑠𝑠𝑠𝑠(𝑞𝑞,𝐶𝐶−)] (6) 

𝑞𝑞 denotes the previous query representation; 𝐶𝐶+ denotes the relevant context of 𝑞𝑞; 𝐶𝐶− 
denotes the irrelevant context of 𝑞𝑞, and 𝑞𝑞𝑜𝑜𝑝𝑝𝑡𝑡 denotes the optimal query representation 
after algorithm’s updating. 

However, the RF algorithm requires manual interaction and feedback, making it 
costly. In order to automate user interaction feedback, the PRF algorithm was proposed. 
A common method of PRF is to select the top 𝑘𝑘’ passages from the top 𝑘𝑘 retrieval results 
as the relevant passage set and consider the rest as the irrelevant set. The final query rep-
resentation update is calculated in a weight calculation as Equation (7): 

𝑓𝑓(𝑞𝑞𝑡𝑡) = α * 𝑞𝑞𝑡𝑡 + β * 1
|𝐶𝐶+|

 * ∑ 𝑐𝑐+𝑐𝑐+∈𝐶𝐶+  − γ * 1
|𝐶𝐶−|

 * ∑ 𝑐𝑐−𝑐𝑐−∈𝐶𝐶−  (7) 

𝐶𝐶+ and 𝐶𝐶− respectively denote the relevant and irrelevant context of 𝑞𝑞𝑡𝑡, α, β, and γ are 
hyperparameters that determine different components. 

Overall, the PRF algorithm is suitable for training based on large-scale unsupervised 
corpora, as it can easily achieve the automatic generation of feedback labels through cer-
tain settings. Therefore, we design an improved PRF algorithm with knowledge filtering 
based on answers, which divides the retrieval results into two contrastive labels, as shown 
in Equation (8). 

� 𝑞𝑞𝑞𝑞𝑟𝑟𝑞𝑞𝑟𝑟𝑝𝑝𝑐𝑐𝑡𝑡, 𝑠𝑠𝑓𝑓 𝑝𝑝 𝑠𝑠𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞𝑖𝑖
𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞𝑟𝑟𝑞𝑞𝑟𝑟𝑝𝑝𝑐𝑐𝑡𝑡, 𝑠𝑠𝑓𝑓 𝑝𝑝 𝑐𝑐𝑡𝑡𝑡𝑡 𝑠𝑠𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞𝑖𝑖

 (8) 

𝑝𝑝 denotes the answer of the present query;  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑞𝑞𝑖𝑖 denotes the 𝑠𝑠 − 𝑡𝑡ℎ passage text in 
the Wikipedia dataset. 

Equation (8) is the feedback generation step in our improved PRF algorithm, which 
refers to the findings of Xiong et al. [7] and employs a more practical method for deter-
mining relevance relations to generate pseudo-labels. In addition, considering that the 
AOpt model needs to iteratively optimize text representations with more reliable and 
strongly correlated sample pairs, we did not introduce other non-strongly correlated neg-
ative sample strategies, such as random sampling. The element in the passage-centric 
pseudo-labeled data we constructed can be referred to in Table 2, including the passage 
ID, passage text, passage title, positive query samples of the passage (positive section), 
and negative query samples of the passage (negative section). 

Table 2. Example of constructed pseudo-labeled data. 

Id: wiki: 14572616 
Passage: The American Film Institute ranked season three one of the ten best television seasons of 2009. The Big Bang 

Theory (season 3). The third season of the American sitcom “The Big Bang Theory” was originally aired on 
CBS from September 21, 2009, to May 24, 2010, with 23 episodes. It received higher ratings than the previous 
two seasons with over 15 million viewers. Season three started three months after the end of season two when 
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the guys left for the North Pole. The third season saw the first appearances of future main cast members 
Melissa Rauch as Bernadette 

Title: The Big Bang Theory (season 3) 
Positive Section: when do amy and bernadette come into the big bang theory {third season} 
when does amy come in big bang theory {The third season} 
Negative Section: what is the cast of big bang theory paid {$1 million} 
when is the new episode of big bang theory airing” {September 25, 2017} 
where is the big bang theory show based {Pasadena, California} 

2.2. A Simple Linear Weight Calculation Method 
In this section, we propose a simple linear weight calculation method based on the 

pseudo-labeled data constructed in Section 2.1 to improve text representation by adjusting 
the weights of positive and negative samples. It should be noted that because of the sim-
plicity and directness of this method, we only apply it to optimize passage representations 
in the experiments. The main purpose of the experiments is to demonstrate the effective-
ness of the constructed pseudo-labeled data in improving text representation. 

First, following the above steps, we construct passage-centric pseudo-labeled data for 
the QA dataset. Next, we use the passage encoder provided by DPR [1] to encode all the 
passage texts in the QA dataset and use the output dense representations as the initial 
input for the text representation calculation process, as shown in Equation (9). 

𝑝𝑝′ = 𝛼𝛼 * 𝑝𝑝 + 𝛽𝛽 * 𝑝𝑝𝑡𝑡𝑝𝑝_𝑞𝑞 + 𝛾𝛾 * 𝑐𝑐𝑞𝑞𝑝𝑝_𝑞𝑞 (9) 

𝑝𝑝 denotes the passage representation before updating; 𝑝𝑝′ denotes the passage repre-
sentation after updating; 𝑝𝑝𝑡𝑡𝑝𝑝_𝑞𝑞 is the averaged value of all relevant query representation 
of 𝑝𝑝; 𝑐𝑐𝑞𝑞𝑝𝑝_𝑞𝑞 is the averaged value of all irrelevant query representation of 𝑝𝑝; 𝛼𝛼,𝛽𝛽, and 𝛾𝛾 
are hyperparameters that control the weights of the different components mentioned 
above. The whole updating process is shown in Figure 3. 

 
Figure 3. Flowchart for Updating Text Representations Based on Linear Weight Calculation. 
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The “Pre-process block” shown in Figure 3 is detailed in Figure 4. This process is 
based on the retrieval and construction of pseudo-labeled data obtained from the current 
query representation and passage representation. Additionally, the “Pre-process block” 
also appears in the execution steps of the AOpt model (Figure 5). 

 
Figure 4. Pre-process Steps. 

 
Figure 5. Flowchart for AOpt Model. 
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We set different ranges for the hyperparameters 𝛼𝛼,𝛽𝛽, and 𝛾𝛾, then we test the retrieval 
improvement brought by the updated dense representations under all possible hyperpa-
rameter combinations. The results will be shown in Section 3. 

Previous related studies based on PRF tended to construct relevance relations cen-
tered on queries and then use it to optimize query representations [8]. Differently, we re-
search the relations of both query and passage by leveraging retrieval results and optimiz-
ing both of them. Theoretically, our method pays more attention to solving the above 
problems to make it more practical and explicable. 

2.3. Text Representation Optimization Model AOpt 
In this section, we have designed two text representation optimization models: AOpt-

query and AOpt-passage. These models focus on the query side and passage side, respec-
tively, and automatically refine their dense representations. Both models use the same 
logic to calculate loss, aiming to bring positive “query-passage” pairs closer and push 
negative pairs farther apart. Specifically, the AOpt-query model adjusts the proportion of 
positive and negative passage representations in the optimization process of query repre-
sentations, while the AOpt-passage model performs corresponding operations based on 
passage representations. 

2.3.1. AOpt-Query LOSS 
The query-centric loss considers the query representation 𝑞𝑞 as the center and pulls 

the relevant passage representations 𝑝𝑝𝑡𝑡𝑝𝑝_𝑝𝑝 closer while pushing the irrelevant passage 
representations 𝑐𝑐𝑞𝑞𝑝𝑝_𝑝𝑝 farther: 

𝑝𝑝𝑞𝑞(𝑞𝑞,𝑝𝑝𝑡𝑡𝑝𝑝_p) > 𝑝𝑝𝑞𝑞(𝑞𝑞,𝑐𝑐𝑞𝑞𝑝𝑝_p), (10) 

where 𝑝𝑝𝑞𝑞(𝑞𝑞,𝑝𝑝𝑡𝑡𝑝𝑝_p) denotes the similarity for relevant passages representations 𝑝𝑝𝑡𝑡𝑝𝑝_p to 
the query representation 𝑞𝑞 ; 𝑝𝑝𝑞𝑞(𝑞𝑞,𝑐𝑐𝑞𝑞𝑝𝑝_p)  denotes the similarity for irrelevant passages 
representations 𝑐𝑐𝑞𝑞𝑝𝑝_pto query representation 𝑞𝑞. We learn each query-centric similarity 
relation by backpropagating its loss with the gradient descent algorithm: 

𝑟𝑟𝑞𝑞−𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑐𝑐 = − log∑ 𝑠𝑠(𝑞𝑞,𝑝𝑝𝑖𝑖)

∑ 𝑠𝑠(𝑞𝑞,𝑝𝑝𝑗𝑗)|pos_p +𝑛𝑛𝑛𝑛𝑛𝑛_p|
𝑗𝑗

|𝑝𝑝𝑜𝑜𝑠𝑠_p|
𝑖𝑖 , (11) 

𝑝𝑝𝑖𝑖 denotes the 𝑠𝑠 − 𝑡𝑡ℎ relevant passage representation for the current query; 𝑝𝑝𝑗𝑗 denotes 
the 𝑗𝑗 − 𝑡𝑡ℎ query representation in the union of relevant and irrelevant passage represen-
tation set for the current passage; s(𝑞𝑞,𝑝𝑝𝑖𝑖) denotes the similarity score of 𝑞𝑞 and 𝑝𝑝𝑖𝑖 calcu-
lated with the dot product operation. 

2.3.2. AOpt-Passage Loss 
The passage-centric loss considers the passage representation 𝑝𝑝  as the center and 

pulls the relevant query representations 𝑝𝑝𝑡𝑡𝑝𝑝_𝑞𝑞 closer while pushing the irrelevant query 
representations 𝑐𝑐𝑞𝑞𝑝𝑝_𝑞𝑞 farther: 

𝑝𝑝𝑞𝑞(𝑝𝑝,𝑝𝑝𝑡𝑡𝑝𝑝_q) > 𝑝𝑝𝑞𝑞(𝑝𝑝,𝑐𝑐𝑞𝑞𝑝𝑝_q) (12) 

Similarly, we learn each passage-centric similarity relation as follows: 

𝑟𝑟𝑝𝑝−𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑖𝑖𝑐𝑐 = − log∑ 𝑠𝑠(𝑝𝑝,𝑞𝑞𝑖𝑖)

∑ 𝑠𝑠(𝑝𝑝,𝑞𝑞𝑗𝑗)|pos_𝑞𝑞 +𝑛𝑛𝑛𝑛𝑛𝑛_𝑞𝑞|
𝑗𝑗

|𝑝𝑝𝑜𝑜𝑠𝑠_𝑞𝑞|
𝑖𝑖 , (13) 

We can find that the query-centric and passage-centric losses are similar in logic but 
different in the choice of the center component. 
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2.3.3. Dense Representations Update 
After performing backpropagation, we can get the gradient of the current center com-

ponent. Taking AOpt-passage as an example, we use 
∂𝑙𝑙𝑝𝑝−𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐

∂p
, which is the gradient of 

the current passage representation 𝑝𝑝 to update itself: 

𝑝𝑝𝑖𝑖+1 = 𝑝𝑝𝑖𝑖 – 𝜂𝜂 * 𝜕𝜕𝑙𝑙
𝜕𝜕𝑝𝑝

, (14) 

𝑝𝑝𝑖𝑖 denotes the passage representation before the 𝑠𝑠 − 𝑡𝑡ℎ update; 𝑝𝑝𝑖𝑖+1 denotes the passage 
representation after the 𝑠𝑠 − 𝑡𝑡ℎ update; η denotes the learning rate. 

In AOpt-passage, after updating all the dense representations of passages one by one 
(according to the design of the loss function, the batch size is set to 1, so each batch updates 
one passage representation), we use the FAISS library to rebuild the index for the updated 
passage representation set and re-execute the retrieval process, then reconstruct the 
pseudo-labels centered on the passage, and finally, optimize all passage representations 
again. The above process will be repeated n times (where n is the set number of rounds), 
as shown in Figure 5. The optimization of text representations will end when the loss 
function value does not decrease for five consecutive epochs, triggering an early stopping 
mechanism. 

3. Results 
In this section, we describe our experimental settings, experimental results, and re-

lated analysis. 

3.1. Experimental Preparations 
3.1.1. Dataset 
1. Wikipedia Dataset 

As Karpukhin et al. [1], we used Wikipedia as the knowledge source for OpenQA. 
They used the preprocessing code provided in DrQA [13] to remove semi-structured data, 
such as tables, infoboxes, and lists, from the documents and divided each document into 
multiple disjoint 100-token passages (a total of 21,015,324 passages), which served as the 
basic retrieval unit. In our retrieval experiments, we used the pre-processed passage set 
provided by Karpukhin et al. [1]. 
2. QA Dataset 

Similar to GAR [14], we conducted experiments on the test sets of two common 
OpenQA datasets: NQ [15] and TriviaQA [16]. 
• NQ 

NQ is designed for end-to-end question-answering tasks, where the questions are 
from real Google search logs, and the answers are manually annotated in Wikipedia doc-
uments as text spans. 
• TriviaQA 

The TriviaQA dataset is a challenging dataset with complex questions that require 
more cross-sentence reasoning to obtain the answers. The questions and corresponding 
answer sentences in this dataset have a significant amount of syntactic or lexical variation, 
making answering the questions more difficult. 

3.1.2. Evaluation Metrics 
Similar to DPR [1], we use top-k accuracy to evaluate the retrieval performance in 

OpenQA and use exact match to measure the reader performance. 
• Top-k Accuracy 

Top-k accuracy refers to the proportion of queries that have at least one answer pas-
sage in the top-k relevant passages returned by the retriever. This value represents an 
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upper limit on the number of queries that can be answered by subsequent extractive read-
ers. 
• Exact Match 

Exact match refers to the proportion of predicted answers that are identical to the 
reference answers provided in the question-answering dataset. Before comparing, the an-
swers need to be normalized by removing articles (such as “the”, “a”, and “an”) and punc-
tuation marks, etc. 

3.1.3. Experimental Details 
1. Device 

We conducted experiments on 4 NVIDIA Tesla V100 GPUs with 32 GB RAM each. 
2. Main Libraries 
• We used the PyTorch deep learning framework for our experiments. 
• Similar to DPR [1], we used the HNSW index from the FAISS-cpu library for retrieval 

experiments, with 512 neighbors stored for each node. 
3. Retriever and Reader 

Similar to Ma et al. [17], we used RetrieverNQ and ReaderNQ-Single for dense encoding 
and answer extraction on NQ and RetrieverMulti and ReaderTQA-Multi on TriviaQA. 

3.1.4. Hyperparameters 
• Weight-Based Calculation 

α,β, and, γ respectively denote the weight of the original passage representation, the 
weight of the averaged relevant query representations and the weight of the averaged 
irrelevant query representations. Following the previous conclusion, we set the relevant 
component weight β from 0 to 0.9 with a search interval of 0.1 and set the irrelevant com-
ponent weight γ  from 0 to −0.9 with a search interval of −0.1. As the basis, we fix the 
weight of the original passage representation to 1. 
• AOpt Model 

We set the training batch size to 1; namely, every single dense representation will be 
processed alone for a forward and backward propagation step during every epoch. We set 
the number of training epochs to a maximum of 100 and set the early stop to be triggered 
if the loss does not decrease for up to five consecutive epochs. We set the learning rate η to 
0.1 to obtain effective results. 

3.2. Experimental Results 
We first verified the effectiveness of the proposed pseudo-labeled data by conducting 

a simple linear weighted calculation on the NQ dataset. Next, we conducted experiments 
on both the NQ and TriviaQA datasets to compare the performance of the AOpt-query 
and AOpt-passage text representation optimization models proposed in this paper, as 
well as their combination, in the retrieval module and the entire QA system. 

3.2.1. Linear Weight Calculation Result 
For the experiment of linear weight calculation of pseudo-labels, we first need to find 

out the best hyperparameters through retrieval experiments with weight combinations 
within the specified range. Following the above hyperparameter settings, we calculated 
the retrieval performance for all possible combinations of β and γ on NQ and plotted the 
heat map shown in Figure 6 for retrieval accuracy from Top-1 to Top-100. 
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(a) (b) 

  
(c) (d) 

Figure 6. These are weight combinations experimental results (on NQ dataset) heat map, whose x-
axis denotes relevant query representations’ weight 𝛽𝛽 and y-axis denotes irrelevant query repre-
sentations’ weight 𝛾𝛾. The retrieval performance (EM) results are as follows: (a) Top-1; (b) Top-5; (c) 
Top-20; (d) Top-100. 

In Figure 6, the lighter the color, the higher the top-k accuracy. With Table 3, we found 
that the optimal weight combination for the proposed pseudo-labeled data construction 
method in OpenQA task retrieval experiments is β = 0.6, γ = −0.1, which can improve the 
Top-1 retrieval performance by about 5.9% on the NQ dataset. 
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Table 3. Retrieval of Top-k Results. 

 NQ TriviaQA 
Model Top1 Top5 Top20 Top100 Top1 Top5 Top20 Top100 
BM25 - - 59.1 73.7 - - 66.9 76.7 

DPR(single 1) - - 78.4 85.4 - - 79.4 85.0 
DPR(multi 2) - - 79.4 86.0 - - 78.8 84.7 

Hybrid 3(single) - - 76.6 83.8 - - 79.8 84.5 
Hybrid(multi) - - 78.0 83.9 - - 79.9 84.4 

GAR - 60.9 74.4 85.3 - 73.1 80.4 85.7 
ANCE(single) - - 81.9 87.5 - - 80.3 85.3 
ANCE(multi) - - 82.1 87.9 - - 80.3 85.2 

PAIR - 74.9 83.5 89.1 - - - - 
DPR * 45.7  68.3 - - 47.2 72.7 - - 

Weighted-based 
(𝛽𝛽 = 0.6, 𝛾𝛾 = −0.1) 

51.6 69.6 78.2 84.3 - - - - 

DPR + AOpt(query) 52.9 75.1 82.1 86.2 55.4 80.3 83.3 86.0 
DPR + AOpt(passage) 51.3 72.1 80.4 85.9 53.0 77.3 81.1 85.6 
DPR + AOpt(hybrid) 4 57.1 74.5 81.2 85.4 59.3 79.9 82.3 84.9 

1 trained on an individual training dataset. 2 trained on combined training datasets (all except 
SQuAD). 3 retrieval with both BM25 and DPR. 4 text representation optimization with both 
AOpt(query) and AOpt(passage). * our replication result under DPR [1] experimental settings. 

3.2.2. Retriever Performance 
After demonstrating the effectiveness of our proposed pseudo-labeled data in im-

proving OpenQA retrieval performance through simple linear weighting, we applied this 
data to our text representation optimization model AOpt. The AOpt-query model is used 
to optimize the dense representation of queries, while the AOpt-passage model is used to 
optimize the dense representation of passages. We conducted retrieval experiments on the 
NQ and TriviaQA datasets for three cases: “optimizing query representations only”; “op-
timizing passage representations only”; and “optimizing query and passage representa-
tions sequentially”. 

As shown in Table 3, we compared our proposed AOpt model with baseline models 
and representative models in recent years for OpenQA tasks and found that the AOpt 
model improved the retrieval performance on the NQ dataset, especially on the Top-1 
accuracy, achieving a significant improvement of 11.4% compared to the baseline model 
DPR. In addition, the AOpt model achieved the best retrieval performance on the Trivi-
aQA dataset, with a 12.1% improvement in the Top-1 accuracy compared to the DPR base-
line model. 

Specifically, we found that the retrieval performance of AOpt-query was slightly 
higher than AOpt-passage, with a maximum difference of 3.0% (Top-5 accuracy on the 
NQ dataset). We believe this indicates that optimizing query representations is more ef-
fective than optimizing passage representations under the same scale. 

Although optimizing queries can achieve relatively higher significant results, the 
data in Table 3 for “DPR + AOpt(hybrid)” shows that optimizing both query and passage 
representations can achieve even bigger improvement. On the NQ dataset, it improved by 
4.2% compared to only optimizing query representations and 5.8% compared to only op-
timizing passage representations. On the TriviaQA dataset, it improved by 3.9% com-
pared to only optimizing query representations and 6.3% compared to only optimizing 
passage representations. 

Furthermore, according to Table 3, we found that DPR with AOpt led to a significant 
improvement in retrieval performance, especially in Top-1 accuracy. As the k value in-
creases, the retrieval improvement starts to decrease. We believe that this phenomenon is 
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caused by our pseudo-labeled data construction strategy, which strengthens the mathe-
matical correlation between query representation and passage representation through 
several iterations. When retrieving from a large-scale set of passages, our dense represen-
tation optimization strategy makes the retriever focus more on the most recent relevant 
passages that contain the current query answer. Therefore, in the iterative retrieval pro-
cess, relevant passages will obtain higher-ranking results. In other words, this method can 
achieve results comparable to adding an additional re-ranker module. 

During the iterative epochs of the AOpt model, we found that AOpt-passage and 
AOpt-query resulted in different trends in retrieval performance, as shown in Figure 7. 

  
(a) (b) 

Figure 7. AOpt Retrieval Performance Trends, which are (a) passage-centric and (b)query-centric. 

Based on the two trends shown in Figure 7, we conduct the following observations: 
(1) the retrieval performance change curve using the AOpt-passage model is stable and 
gradually tends to flatten; (2) the retrieval performance change curve using the AOpt-
query model quickly reaches its peak and then rapidly declines. 

We believe that this is due to the significant difference in sequence length between 
queries and passages. In the QA dataset, the query sequence length is generally less than 
15 tokens, while the passage sequence length is around 100 tokens. Therefore, after the 
same computation, the AOpt model will update query representation more thoroughly 
over a larger range, which explains why query representation can show relatively large 
improvements and steeper trends in retrieval recall. However, due to the relatively longer 
text length of passage sequences, it is more difficult to achieve precisely encoded text, and 
they often lack some semantic information. Therefore, passage representation can absorb 
additional relevant semantic information from relevant and irrelevant query representa-
tions during the AOpt optimization process while still retaining most of its original en-
coding information. In other words, if query representations are continually updated, sim-
ilar to passage representations, the original information in query representations will be 
completely covered, thereby losing its own representational ability. Therefore, for query 
representation optimization, we need to determine the best training rounds and stop op-
timizing query representation in advance. 

3.2.3. Reader Performance 
We evaluated the final question-answering exact match of the reader by inputting 

retrieval results from NQ and TriviaQA datasets. Our AOpt model was compared to the 
baseline and representative models in OpenQA, and the results are presented in Table 4. 
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The analysis shows that our AOpt model achieved the best performance on the NQ da-
taset, with a maximum improvement of 5.7% when compared to the baseline model DPR 
[1]. Additionally, the exact match on TriviaQA also demonstrated an improvement of 4.3% 
when compared to DPR [1]. 

Table 4. QA Exact Match Results. 

Model NQ  TriviaQA 
BM25 32.6 52.4 
DPR 41.5 56.8 
Hybrid 39.0 57.9 
GAR 45.3 62.7 
ANCE 46.0 57.5 
DPR + AOpt(query) 43.9 58.9 
DPR + AOpt(passage) 43.3 58.5 
DPR + AOpt(hybrid) 47.2 61.1 

4. Conclusions and Future Work 
In this paper, we begin by constructing contrastive pseudo-labeled data using ques-

tion-answering retrieval results. Next, we propose two models for optimizing dense rep-
resentations: AOpt-query and AOpt-passage. They focused on queries and passages, re-
spectively, and used a gradient descent algorithm to refine dense representations at the 
instance level. Experimental results show that the AOpt model can effectively optimize 
the dense representations, resulting in improved retrieval and question-answering perfor-
mance of the OpenQA system. The highest improvements observed are 12.1% and 5.7%, 
respectively. In future work, we plan to research and design a specific reader model to 
further enhance the performance of the entire OpenQA system. 
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