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Abstract: The Internet of Things (IoT) connects devices via the Internet. Network congestion is one 

of the key problems that has been identified by researchers in the IoT field. When there is a huge 

number of IoT devices connected to the internet, this creates network congestion. Transfer control 

protocol is a transport layer protocol that provides a reliable end-to-end connection between two 

devices. Many Congestion Control Algorithms have been proposed to solve network congestion. 

However, there is no perfect solution to this problem. This paper proposes an effective loss-based 

Congestion Control Algorithm to effectively adapt the congestion window in the IoT environment. 

It uses simple experiment scenarios to test the algorithm for wired and wireless channels and ob-

serves important performance metrics: link utilization, inter-protocol fairness, intra-protocol fair-

ness and throughput. The results are impressive, and the proposed algorithm is shown to outper-

form other standard algorithms. 
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1. Introduction 

There is significant enthusiasm in both industry and academia about the Internet of 

Things (IoT). Its goal is to create universally deployable and interoperable “smart” gadg-

ets that can connect wired or wirelessly and function independently. Due to technological 

advancements and the infrastructure provided by the IoT, individuals can now use a wide 

variety of gadgets to access the internet and exchange real-time data. Transmission control 

protocol (TCP) is the most reliable of all the protocols used for data transmission over the 

Internet. The IoT facilitates the connection and communication of a wide variety of elec-

tronic gadgets through the Internet. There is currently a wide range and rapid growth of 

connected IoT devices. Consequently, there has been an exponential rise in network con-

gestion. There is a clear correlation between the quantity of internet-connected devices 

and the level of congestion. The exponential growth of internet-connected devices has 

dramatically increased network congestion. Therefore, modifications to TCP are neces-

sary. Specifically, there is a need for modifications that are well suited to the IoT environ-

ment and that can start the connection in terms of capacity and adjust the rate of trans-

mission as congestion rises. 

Most IoT devices have limited energy and work well in sensitive areas. Critical data 

are sent from various sensors that serve different areas, including military surveillance 

and health care monitoring [1]. Electric smart meters have emerged as a relevant topic in 

the IoT and are working well as efficient IoT applications [2]. In addition to other applica-

tion layer protocols, the IoT also provides special application layer protocols that serve its 

uses and requirements, including Message Queuing Telemetry Transport (MQTT), Exten-

sible Messaging and Presence Protocol (XMPP) and Representational State Transfer 

(RESTful) HTTP. These algorithms do not satisfy the requirements of IoT. 

A Congestion Control Algorithm (CCA) is required to balance their varying band-

width, latency, and delay requirements. Since the 1980s, researchers have proposed 
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numerous TCP CCA, and developed several standards and modifications for these algo-

rithms. The first TCP specification was proposed in 1981 [3]. 

In late 1986, the first congestion collapse occurred. At the time, there was no clear 

reason for this collapse, and it was assumed that it was due to the malfunctioning of a TCP 

protocol. In 1988, a new policy was suggested by Jackobson: the TCP Tahoe [4]. It included 

Slow Start (SS), Retransmission Timeout (RTO) and Fast Retransmit and Congestion 

Avoidance Algorithm (CAA). To solve the congestion problem, the policy aimed to deal 

with different sending phases. Mathis et al. [5] created TCP SACK (Selective Acknowledg-

ment) to address packet losses. TCP SACK enables the receiver to identify the segments 

that have been delivered. This allows the TCP sender to promptly identify and rebroad-

cast the missed segment. SACK further allows the TCP receiver to selectively 

acknowledge out-of-order segments. It transmits segments to the source and allows it to 

only transmit missing parts. SACK’s main drawback is the receiver’s lack of appropriate 

acknowledgements. Selective acknowledgement is difficult and requires transmitter and 

receiver acknowledgement protocol changes. Following this, numerous techniques and 

algorithms were proposed to adjust sending rate over TCP and avoid congestion. The 

degradation in throughput in TCP Tahoe occurred because the congestion window 

(CWND) decreased to one when any packet loss occurred. This issue was identified by 

Floyd and Henderson [6], who suggested TCP NewReno. 

Most of these CCAs use the concept of “Additive Increase Multiplicative Decrease” 

(AIMD); this means the CWND increases in an exponential fashion to reach maximum 

bandwidth. The CWND decreases when network bandwidth is reached and congestion 

in the network is detected because of segment losses. Congestion in the network is en-

countered when retransmission timeout (RTO) expires, or three duplicate acknowledge-

ments (3DupAck) are reached at the sender [3]. TCP NewReno allows a modification of 

the Fast Recovery Algorithm (FRA) where partial acknowledgement is permitted. 

This paper suggests an effective congestion control algorithm for the IoT environ-

ment. A stable TCP algorithm ensures that the adjustment of new windows is taken pre-

cisely to reduce packet loss and increase throughput. 

Section 2 of this paper provides the related work. Section 3 presents the proposed 

algorithm and explains the working principles and their implementation. Section 4 out-

lines the important findings in implementing the proposed algorithm and discusses the 

results. Section 5 offers conclusions related to this work. 

2. Related Work 

Congestion control policy is generally concerned with how congestion is dealt with. 

It can be categorized into the following groups: 

Loss-based CCA is a type of CCA where packet loss is used as a congestion indication 

signal to trigger further action. TCP NewReno does not perform well in a high bandwidth-

delay product (BDP) because there is sufficient bandwidth to occupy; this is not what hap-

pens in these protocols. In 2004, Lisong et al. [7] proposed TCP Binary Increase Congestion 

(BIC) control, which can deal with fast long-distance networks. This algorithm uses a bi-

nary search algorithm to identify the optimal CWND. The aggressive nature of this algo-

rithm causes losses to increase in the network; it is therefore not intended for low-speed 

networks. 

Delay-based CCA means that any increase in delay is counted as an increase in net-

work congestion and vice versa. Numerous protocols under this policy have been encoun-

tered. TCP Vegas [8] suggests a better Round-Trip Time (RTT) estimation than Reno esti-

mation. As a result, it increases the general throughput; however, TCP Vegas is not suita-

ble for high-speed networks. 

Hybrid CCA means that the adjustment of CWND is controlled by both Delay and 

Packet Loss. One of the most well-known algorithms that uses both factors to adjust the 

congestion window is a standard algorithm: TCP Compound [9]. It is used by Windows 7 

and later. Using the same approach, TCP-FIT [10] hybrid strategies are used to control 
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CWND. AIMD has been used to alter the CW regardless of whether there have been losses 

or acknowledgements. Increasing throughput is accomplished by parallel protocol oper-

ation.  

TCP Illinois [11] is a hybrid protocol developed for networks with high bandwidth. 

It alters the standard AIMD algorithms so that the modification of window size is depend-

ent on loss and the direction is determined by delay, or more specifically RTT. It employs 

the default settings for the FR and the retransmission features of regular TCP NewReno.  

The key advantages of TCP Illinois are that it is designed to handle different types of 

network environments, such as wireless networks, satellite links and high latency net-

works. It has a range of parameters that can be adjusted to optimize performance under 

different network conditions, making it a flexible and adaptable algorithm. 

While TCP Illinois offers many advantages, there are also some potential disad-

vantages to consider; it may be more aggressive than other CCAs, which can lead to in-

creased packet loss. This may occur in high-speed networks, or in networks with high 

packet loss rates. Also, it may not be compatible with all types of networks and may not 

work well with other CCAs. This can lead to interoperability issues and may require ad-

ditional configuration to ensure proper functioning. TCP Illinois may not perform well in 

certain network conditions, such as networks with high latency or jitter; this can affect its 

ability to accurately measure network congestion and adjust its sending rate [12]. 

TCP YeAH [13] is another high-speed Hybrid CCA TCP variant. This algorithm has 

two modes of operation, one of which is identical to TCP Reno. The other makes use of 

STCP’s [14] aggressive behavior. It is a CCA that is designed to improve TCP performance 

in high-speed and high-latency networks. While TCP YeAH is a standalone algorithm, it 

does incorporate elements of the NewReno and STCP congestion control mechanisms. It 

incorporates the fast recovery mechanism from NewReno, allowing it to quickly recover 

from packet loss and maintain high throughput. Specifically, when TCP YeAH detects that 

a packet has been lost, it enters a fast recovery phase. During this phase, it reduces the 

congestion window (CWND) size by half and retransmits the lost packet. This helps to 

prevent congestion collapse and maintain efficient network performance.  

It also incorporates the adaptive window sizing algorithm from STCP, which allows 

it to dynamically adjust the CWND size based on network conditions. Specifically, during 

periods of low congestion, TCP YeAH uses a concave control mechanism to gradually 

increase the CWND size at a rate proportional to the square root of the current CWND 

value. This helps to prevent sudden spikes in network traffic that may lead to congestion. 

During congestion, TCP YeAH switches to an additive increase/multiplicative decrease 

(AIMD) approach to congestion control, reducing the CWND size by a certain percentage 

to slow down the sending rate and prevent further congestion. 

While TCP YeAH offers significant advantages in terms of improving TCP perfor-

mance under challenging network conditions, its complexity, potential fairness issues, 

and compatibility limitations must be carefully weighed against its benefits when decid-

ing whether to implement it in a particular network environment, especially in an IoT 

environment. 

Bottleneck Bandwidth and Round-trip propagation time (BBR) [15] is a CCA devel-

oped by Google in 2016. It is designed to improve network performance by more effi-

ciently utilizing available network bandwidth and reducing network latency. The TCP 

BBR algorithm works by continuously measuring the available bandwidth and the RTT 

of data packets as they traverse the network. Based on these measurements, the algorithm 

determines the ideal sending rate for the connection. TCP BBR operates by dynamically 

adjusting the sending rate based on the network’s available bandwidth and RTT. It uses a 

model of the network to estimate the maximum amount of data that can be transmitted 

without causing congestion, and it calculates the ideal sending rate based on this estimate. 

TCP BBR aims to provide fair sharing of network resources; however, there is some 

concern that it may prioritize traffic from larger RTT over smaller RTT nodes. This could 
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potentially create an uneven playing field and limit access to network resources for some 

nodes [16]. 

Verma et al. [17] developed a CCA intended for use with lightweight IoT application 

protocols such as Message Queuing Telemetry Transport (MQTT) and Extensible Messag-

ing and Presence Protocol (XMPP). It defines a new window initialization method and 

modifies the SS and CA phases by defining new parameters in order to work in two 

modes: reactive and proactive modes. There are two parameters in this context: rho and 

beta. The basic rule is that TCP works in a reactive mode when beta is less than rho and 

in a proactive mode when beta is greater than rho. The author compares the suggested 

algorithm with other standard protocols. The author claims that the algorithm increases 

the throughput and maintain fairness in TCP Cubic. 

Chappala et al. [18] proposed an Adaptive Congestion Window (ACW) for IoT de-

vices. The design of the ACW depends on three parameters: sending rate, receiving rate 

and the available bandwidth of the path. The authors assume that there is a communica-

tion between the nodes to share connection information. The connection information is 

used to adjust the sending window when some nodes release/share the link; however, this 

information may burden the node and increase the packet overhead, which in turn re-

duces the link utilization and consumes the node resources and energy. 

Gupta et al. [19] proposes a novel STCP approach to control congestion in the IoT 

environment. In this approach, a new window initialization technique is used based on 

the current available bandwidth of the path in order to reach the available bandwidth as 

fast as possible. However, this method is not recommended according to [3]; SS phase is 

preferable. This process develops a new approach for detecting congestion prior to col-

lapse and sets the CWND limits accordingly. This approach is called Early Congestion 

Detection; this factor is computed depending on the queue size of the most congested link 

on the path, available bandwidth and RTT. Due to a prior set of window limits, it may 

underutilize the available bandwidth. 

A small segment size window is available in microcontrollers with limited capabili-

ties. On such devices, a special TCP/IP stack called micro-IP (uIP) sets the sending window 

to one segment size by default. Congestion control in such a scenario relies heavily on 

careful management of the RTO. In [20], the author proposes an enhanced scheme for RTO 

to manage the problem of large RTT variation caused by certain systems. By using the 

idea of weak RTT estimate from CoCoA [21], this technique changes the RTO so that it is 

variable, rather than the fixed RTO set by the original TCP uIP. This kind of congestion 

control is limited to very small buffers, less than or equal to one maximum segment size.  

In [22], the authors propose a new technique to reduce the delay in multipath TCP 

(MPTCP) by reducing the number of transmissions using an Opportunistic Routing (OR) 

technique. The OR routing model is implemented to increase the throughput and reliabil-

ity of wireless networks via the use of the broadcasting method. The authors compare the 

proposed scheme with other MPTCP algorithms. Though this scheme may be applicable 

for large memory devices such as smartphones, smartwatches and tablets due to their 

heterogeneous interfaces, it may not be applicable for devices with limited buffers and 

single connections deployed for IoT, such as esp32 [23] and esp8266 [24]. The author in 

[25] analyzed and designed QoS-aware personalized privacy for MPTCP for use in Indus-

trial IoT (IIoT) to optimize the tradeoff between efficiency and privacy protection. IIoT 

data may be vulnerable to attack and requires more attention when MPTCP is the use case. 

A second group of researchers have taken a novel approach and employed state-of-

the-art controllers, such as fuzzy controllers, to fine-tune and optimize the congestion con-

trol technique. Fuzzy controllers were used by Zaineb et al. [26] to improve the TCP Pro-

tocol in a mobile network. Other networks, such as Software Defined Networks (SDN), 

also impact congestion. Researchers have used the Neural Network approach to solve 

congestion problems in 5G communication [27]. However, examining these forms of con-

trollers and networks is beyond the scope of our study. 
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3. The Proposed Algorithm 

This paper proposes an effective CCA that modifies how the congestion avoidance 

phase is dealt with by changing the parameter updating process. TCP constantly evaluates 

the capability of a network in order to forward traffic to the destination. This process starts 

with the initial CWND, which is set to a default maximum segment size of 10 [28].  

This algorithm utilizes two variables: alpha and beta. Alpha is responsible for incre-

ment in the congestion window at the sending node, while beta represent the decrement 

factor. It uses delay as a back-off factor (beta) to decrease the sharpness of alpha increment 

when there is an increase in delay. This limits the increment rate of the congestion win-

dow.  

To explain the working principle of the algorithm, two cases are shown: the first case, 

when the algorithm running under normal conditions i.e., the link is not congested. In the 

SS phase, the algorithm behaves as TCP NewReno; when the CWND become equal or 

greater than the SSThresh value in this case, the algorithm enters into congestion avoid-

ance phase and the behavior of the algorithm is as follows:  

First Case flow: 

Step 1: Set initial parameters alpha = 1, beta = 0.67, deltal = 1//initial value at the connec-

tion establishment. 

Step 2: For each packet acknowledgement delta = time.now () − time of last congestion; 

Step 3: calculate throughput = bytes sent * 8/time.now − last send time; 

Step 4: If delta > deltal then calculate difference = delta − deltal; 

Step 5: Update alpha = 1 + 10 * difference + 0.3 * difference * difference; 

Step 6: update min_RTT, max_RTT, RTT of the last acknowledged segments  

Step 6: Refine the increase variable alpha = 2 * (1 − beta) * alpha; 

Step 7: Calculate the increament inc = ((segment size * segment size) + CWND * al-

pha)/CWND; 

Step 8: update CWND = CWND + inc; 

The second case is when the link is congested and in its congestion avoidance phase. 

There are two ways to detect TCP congestion. First, there may be TCP congestion when 

there is no acknowledgement from the receiver to the sender; this means that the sender 

timeout variable is expired. The second way to detect congestion is when there are three 

duplicate acknowledgements between the receiver and the sender. When there is a con-

gestion due to RTO expiration, the congestion window returns to one segment size and 

returns to Slow Start in order to follow TCP NewReno behavior. On the other hand, when 

the congestion is due to three duplicate acknowledgments, the algorithm follows the be-

havior described below: 

SSThresh is calculated depending on the current inflight bytes. It is multiplied by 

beta to leave some space in the pipe and reduce congestion. This factor will increase its 

friendliness to other CCAs. Beta is only calculated when the increment of throughput is 

below one-third of the previous throughput; this means that there is no increase in the 

congestion window by higher values while the link is congested. 

At each acknowledgement, RTT can be calculated as follows; Equation (1) shows the 

difference in time between packet send time and its acknowledgement: 

RTT_i=Ack_ rt (i) − Packet_st (i) (1) 

where RTT_i is Round Trip Time of the ith packet, Ack_rt (i) is the time of receiving 

acknowledgement of ith packet and Packet_st (i) is the ith packet delivery time. 

If the connection is normal and no packet drops due to congestion, throughput can 

be calculated as follows: 

throughput = (data sent in bytes*8)/(current time-last send time) (2) 
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where throughput is the current throughput, data sent in bytes is the number of delivered 

bytes, current time is the current time registered by the sender and last send time is the 

registered time of the last successful data sent. The increment factor, alpha, is flattened by 

the beta factor after being calculated (steps 5 and 6) as stated in the algorithm. With Equa-

tions (1) and (2), it would be possible to adjust sending rate to improve performance. 

Second case: The following illustrate the algorithm at congestion event: 

Step 1: Set CWND = SSThresh; 

Step 2: update alpha = 1; 

Step 3: calculate diff = throughput − last throghput; 

Step 4: if diff/last throughput <= 0.33 go to Step 5: else go to Step 6: 

Step 5: Calculate beta = 1.1 * minRTT/maxRTT; 

Step 6: SegWin = 25 * Segmentsize; 

Step 7: SSthresh = max (SegWin, bytesInFlight * beta * 1.25); 

4. Results and Discussion 

According to [29,30], Network Simulator 3 (NS3) [31] has been used due to its various 

advantages, such as its open source, parallel processing and faster computational time. 

Returning to the topology of simulation, it is essential to use dumbbell topology as a 

testbed for the validation process. Figure 1 outlines the dumbbell topology; it contains 

sending nodes, bottlenecks and receiving nodes. On the left side, there are N sending 

nodes numbered (S1, S2, …., Sn). They are connected to the left of router 1 (R1); router 2 

(R2) forms the bottleneck. The destination nodes (D1, D2, …, Dn) are connected to R2. The 

parameter setting for the network is depicted in Table 1. 

 

Figure 1. Testbed (Dumbbell Topology). 

In the IoT, many devices with different Transport Layer Protocols and different sys-

tem capabilities are connected to the network. Within this context, algorithm performance 

may be investigated in wired and wireless access link channels and at different link-

speeds and different background traffic levels. During the simulation, the time was fixed 

to 30 s, which was sufficient to explore the behavior of the algorithm. 

Table 1. General parameter setting. 

Parameter Setting 

Simulation time 30 s 

Access Link 10 Mbps, 10 ms 

Bottleneck 1 Mbps and 30 ms, 2 Mbps and 30 ms 

Error Rate 10^−6 

TCP Variant TCPNewReno, TCPBbr, TCPIllinois, TCPYeah 

Channel Wire, Wireless 
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Different experiments were conducted and the results of these were compared with 

four standard internet stack protocols: TCP BBR [26], TCP NewReno, TCP Illinois and 

TCP Yeah.  

4.1. First Experement: Proposed Approach (TCP Modified) 

Four stationary sending nodes (S1, …, S4) were connected to a router (R1) via an 

access link, and four stationary receiving nodes (D1, …, D4) were connected to a router 

(R2) via an access link. A bottleneck link was connected to the routers (R1 and R2), as 

shown in Figure 2. To ensure the proper working of the proposed algorithm, its CWND 

and shape were investigated. All sending nodes were set to have the same internet stack 

protocol (TCP modified, i.e., the proposed algorithm). The parameter setting for this sim-

ulation is shown in Table 2. 

 

Figure 2. Testbed (Dumbbell Topology) for TCP Modified. 

Table 2. First experiment parameters setting. 

Parameter Setting 

Simulation time 30 s 

Access Link 10 Mbps, 10 ms 

Bottleneck 1 Mbps and 30 ms 

Error Rate 10^−6 

TCP Variant TCPModified 

Channel Wire 

Segment size 536 bytes 

Figure 3 shows the congestion window of the four flows and demonstrates how it 

behaves for different phases. These include the Slow Start phase, network congestion (the 

congestion detection phase), and the congestion avoidance phase. The different phases of 

the CWND are discussed at each point and further explained. All the sending nodes start 

with the SS phase; in this phase, the algorithm acts as the TCP NewReno SS phase. When 

congestion is detected due to RTO expiration or three duplicate acknowledgments, the 

algorithm modifies the CWND to be equal to one segment size; this occurs because the 

default SSThresh is equal to (65535) bytes. When congestion is detected, the algorithm 

recalculates the SSThresh. If the new value of SSThresh after the detection of the conges-

tion would be lower than the previous one, and hence after the second Slow Start, it is 

clear that the congestion avoidance algorithm is activated, as indicated by the arrow in 

Figure 3, which points to the CA phase of flow S1. Figure 3 shows that the CCA is func-

tioning properly. 

Bottleneck link 

1Mbps,30msec 

Access link 

10Mbps,10msec 
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Figure 3. CWND of the proposed algorithm versus time. 

4.2. Second Experement: Proposed Approach with Onother Protocols I 

The topology used in this experiment is shown in Figure 2. The intra-protocol test 

was applied using three sending nodes. The installed internet stack protocol had the same 

protocol as the suggested algorithm. The fourth node was one of the algorithms outlined 

in Table 1 with a parameter setting as highlighted in Table 2. Each Si-Di represented the 

dedicated flow: S1-D1 represents the first flow, S2-D2 represents the second flow, and so 

on. 

The bar charts in Figure 4 show the average throughput when the bottleneck link 

speed was set to 1 Mbps and 2 Mbps. Figure 4a shows that TCP NewReno flows for a 1 

Mbps bottleneck link occupied only 16.5% of the link. Furthermore, the 2 Mbps bottleneck 

link only occupied 17.9% of the link. Jain’s Fairness Index will be discussed below. Figure 

4b–d show the throughput of the TCP variant for TCP BBR, TCP Illinois and TCP Yeah, 

respectively. The throughput of these flows was compared to TCP Modified throughput. 

For all the tests, the throughput of the suggested protocol was higher when acceptable 

fairness was maintained. 
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Figure 4. (a) Throughput versus TCP Variant (3 TCP Modified and 1 TCP NewReno); (b) Through-

put versus TCP Variant (3 TCP Modified and 1 TCP BBR); (c) Throughput versus TCP Variant (3 

TCP Modified and 1 TCP Illinois); (d) Throughput versus TCP Variant (3 TCP Modified and 1 TCP 

Yeah). 

The other evaluation metric is the fairness index. Jain’s Fairness method is the opti-

mal method to calculate this index. Equation (3) shows this equation. Figure 5 shows the 

fairness index when there are three flows of the suggested algorithm with a single flow of 

the standard algorithm for both bottleneck link speeds. 

Jain’s Fairness Index = (∑throughput(i)) ^2/(N × ∑ (throughput(i)) ^2) (3) 

where N represents the link number and throughput(i) is the ith node throughput. 

 

Figure 5. Jain’s Fairness Index for the proposed algorithm for the other flows. 

4.3. Third Experement: Proposed Approach with Another Protocols II 

The topology used in this experiment is shown in Figure 2. This time, an intra-proto-

col test was applied with two sending nodes. The installed internet stack protocol had the 

same protocol as the suggested algorithm. The installed internet stack protocol for the 

remaining two nodes is highlighted in Table 1. The parameters outlined in Table 2 were 

applied in this simulation. 

Figure 6 shows that the suggested algorithm outperformed the other algorithms, 

even though in the sharing traffic for this experiment, 50% of nodes were from other types 

of congestion control mechanisms. This result also indicates that the suggested algorithm 

performs better than others. Figure 7 shows the fairness index for this experiment. 
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(c) (d) 

Figure 6. (a) Throughput versus TCP Variant (2 TCP Modified and 2 TCP NewReno); (b) Through-

put versus TCP Variant (2 TCP Modified and 2 TCP BBR); (c) Throughput versus TCP Variant (2 

TCP Modified and 2 TCP Illinois); (d) Throughput versus TCP Variant (2 TCP Modified and 2 TCP 

Yeah). 

 

Figure 7. Jain’s Fairness Index for the proposed algorithm with respect to other flows for 50% link 

sharing. 

The competition for 50% of nodes of different flow degrades for both TCP Illinois and 

TCP Yeah were higher than under TCP BBR and TCP NewReno. TCP BBR was developed 

by Google in 2016 and is currently used by their servers. IoT devices such as esp32 and 

esp8266 implement lightweight TCP/IP algorithms in their Real Time Operating Systems 

(RTOS). In turn, RTOS implements most of the TCP NewReno algorithm, such as Slow 

Start, congestion avoidance, congestion detection and selective acknowledgement. Being 

friendly to these algorithms will likely have several advantages. 

4.4. Forth Experement: Proposed Aproach with Wireless Access Link 

In this simulation, it is very important to look at how well the proposed CCA works 

when the channel is wireless. The sender nodes were WIFI nodes connected to a gateway 

router (R1) over the WIFI channel. Figure 8 depicts the network produced by this simula-

tion. Figure 9 shows the throughput of each configuration and Figure 10 shows Jain’s Fair-

ness Index for each. The results show that the suggested protocol also performs well in a 

wireless environment. This test was conducted as follows: half of the sending nodes are 

using the TCP Modified Internet Stack Protocol, while the other half are using one of the 

standard protocols listed in Table 1. The simulation begins with S1, S2 having TCP Modi-

fied and S3, S4 having TCP New Reno; the bottleneck link speed is set to 1 Mbps. After 
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recorded result of the throughput is depicted in Figure 9a. The same procedure was con-

ducted for Figure 9b–d. 
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Figure 8. Testbed (dumbbell topology) with wireless sender side nodes for the fourth experiment. 

  
(a) (b) 

  
(c) (d) 

Figure 9. (a) Throughput versus TCP Variant for the wireless channel (2 Modified and 2 TCP 
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RTT. When RTT is high, the proposed algorithm’s throughput may suffer. Unlike other 

loss based CCAs, the effective algorithm looks at the increase in an end-to-end delay to 

ensure that the CWND does not rise aggressively and affect other intra-protocols. The 

algorithm was successfully tested, and the results confirmed that it outperforms other 

standard CCAs in terms of throughput while also maintaining fairness within an accepta-

ble range. While the proposed algorithm performed better in tests than other standard 

CCAs, it has not been tested for different devices capabilities, such as different RTT for 

different flows and traffic types. In future work, we plan to extend the work of the algo-

rithm to be able to efficiently deal with single segment size, which is an extension to the 

algorithm since it needs to deal with RTO. 
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