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Abstract: Accurately looking into the future was a significantly major challenge prior to the era
of big data, but with rapid advancements in the Internet of Things (IoT), Artificial Intelligence
(AI), and the data availability around us, this has become relatively easier. Nevertheless, in order
to ensure high-accuracy forecasting, it is crucial to consider suitable algorithms and the impact
of the extracted features. This paper presents a framework to evaluate a total of nine forecasting
algorithms categorised into single and multistage models, constructed from the Prophet, Support
Vector Regression (SVR), Long Short-Term Memory (LSTM), and the Least Absolute Shrinkage and
Selection Operator (LASSO) approaches, applied to an electricity demand dataset from an NHS
hospital. The aim is to see such techniques widely used in accurately predicting energy consumption,
limiting the negative impacts of future waste on energy, and making a contribution towards the 2050
net zero carbon target. The proposed method accounts for patterns in demand and temperature to
accurately forecast consumption. The Coefficient of Determination (R2), Mean Absolute Error (MAE),
and Root Mean Square Error (RMSE) were used to evaluate the algorithms’ performance. The results
show the superiority of the Long Short-Term Memory (LSTM) model and the multistage Facebook
Prophet model, with R2 values of 87.20% and 68.06%, respectively.

Keywords: artificial intelligence; energy forecasting; energy management; electrical demand
forecasting; hospital; National Health Service; net zero carbon target

1. Introduction

Recently, the National Health Service (NHS) of the United Kingdom (UK) outlined
plans to achieve net zero emissions by 2050, with an 80% reduction by 2028–2032 [1].
The NHS generates 18% of all emissions deriving from the UK’s non-domestic buildings [2].
This is mainly due to the high energy consumption of hospitals. For the sake of reducing
energy consumption, hospitals can adopt precise forecasting techniques to predict energy
usage and facilitate the development of effective solutions to overcome potential increases.

In this context, multiple forecasting techniques have been proposed in recent years,
and they can be categorised into, but not limited to, time series models, regression models,
econometric models, genetic algorithm models, and others [3]. Time series models are
simple, as they use the time-series trends from time-stamped historical data to predict the
future energy demand. This work implements and utilises time series models that predict
future energy consumption based on previously captured time-stamped data.

Load forecasting of electricity demand has been widely investigated, with studies
considering various sectors and geographical locations, and it is categorised into short-,
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medium-, and long-term forecasting. Short-term forecasting has been considered by [4–7]
and can typically predict from an hour to a week into the future. Medium-term forecasting,
on the other hand, can range between a week and a year; an example is the studies
conducted by [8], in which the authors used 5 years of data to predict the 6th year. Finally,
long-term forecasting can predict up to 5 years into the future [9]. In this paper, we
implement time series models to perform medium-term electricity demand forecasting,
primarily using Facebook’s Prophet (FBP), Support Vector Regression (SVR), and Long
Short-Term Memory (LSTM), all of which are commonly used algorithms for forecasting
time series data.

FBP is an open-source modular regression algorithm developed and released by Face-
book’s Core Data Science team [10]. As a time series forecasting algorithm, it excels when
dealing with data/time series that have strong seasonal effects. The LSTM algorithm is
considered one of the most effective Recurrent Neural Network (RNN)-based architectures.
It is mainly used in, and excels in, natural language processing and forecasting time series,
due to its capability of saving statistical values from earlier stages to be used in predicting
future estimates [11–13]. The SVR algorithm is adapted from the Support Vector Machine
(SVM). It is a regression algorithm that is developed to robustly and flexibly model non-
linear relationships between variables. This enables better interpretation of the resulting
models. Because SVR works on nonlinear models, it uses kernels to transform the data into
a linear equation with a high number of dimensions [14,15].

In the current state of the art, researchers have employed numerous techniques to
perform electricity demand forecasting. The authors in [16] discuss the importance of
electric load forecasting in maintaining the balance between electric power generation and
consumption, and its role in ensuring the reliability and stability of the power grid. The arti-
cle describes various methods of load forecasting, including linear regression, econometric
models, fuzzy models, data mining procedures, and AutoRegressive Integrated Moving
Average (ARIMA) models, and highlights the use of artificial neural networks in load
forecasting. The article also proposes a load forecasting model based on a neural network
and a wavelet denoising algorithm, and presents real recorded data from the Bulgarian
power system grid to demonstrate the effectiveness of the proposed method in reducing
the relative error between real and theoretical data.

In [17], the authors explore the use of Artificial Neural Network (ANN) models
to predict future energy consumption. Various ANN models with different structures,
learning algorithms, and transfer functions were created and tested using actual input and
output data for training, validation, and testing. The goal was to identify the best model
with the greatest generalisation ability. The chosen ANN model was then used to predict
energy consumption in Greece in the coming years. The Feed-Forward (FF) ANN method
was used, and several models were developed and compared to select the most suitable
one. The MATLAB neural network toolbox was used to train the models, with input and
output data from the previous 15 years used for training and validation. The Levenberg-
Marquardt and Gradient Descent learning algorithms and hyperbolic tangent sigmoid,
logarithmic sigmoid, and hard-limit transfer functions were used, with structures consisting
of 1 to 5 hidden layers with 2 to 40 neurons in each hidden layer. The selected model
was the Levenberg-Marquardt-Logarithmic Sigmoid (with a structure: 4/12/11/1), as it
had the best generalising ability, a compact structure, a fast training process, and low
memory consumption. ANN models were found to be effective in predicting energy
consumption thanks to their computational speed, ability to handle complex nonlinear
functions, and robustness even when full information is not available.

Some authors went on to explore the impact of hybrid models on the overall perfor-
mance of the forecasting process. For instance, the authors in [18] investigated the use of a
hybrid approach by combining Singular Spectrum Analysis (SSA) and ANNs for day-ahead
hourly load forecasting. The extracted components are employed as exogenous regressors
in a global forecasting model, comprising either a Multilayer Perceptron (MLP) or an LSTM
predictive layer. The model is further extended to include exogenous features, such as
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weather forecasts. The predictive performance is evaluated on two real-world datasets,
and the results show that the decomposition step improves the relative performance of
ANN models, with a combination of LSTM and SSA providing the best overall performance.

Furthermore, Aravazhi et al. [19] proposed a model that predicts load demand for
different hospital usage scenarios by using a dual hybrid combination of four simple
models: Seasonal-ARIMA (SARIMA), SVR, MLP, and LSTM. Experimental results show
that there are corresponding matching models for unique usage scenarios. For example,
in one case, a single LSTM model performed better in predicting the demand for inpatient
day shift surgery in a Norwegian hospital, while a hybrid model performed more effectively
in most cases.

Bagnasco et al. [20] proposed the use of multilayer perception BP neural networks as
a forecasting algorithm to predict electricity consumption in Cellini medical clinic in Turin,
using time series data of load data, day type, and weather data as input features, and Mean
Absolute Percentage Error (MAPE), Daily Peak MAPE, Coefficient of the Variation of the
Root Mean Square Error (CVRMSE), Mean Percentage Error (MPE), and MAPE under 5%
as forecasting assessment metrics. In [21], the authors conducted a study to see which
has a higher impact on the forecasting accuracy, the neural network or the learning algo-
rithm. In their paper, the performance of MLP and Elman neural networks in electric load
forecasting was compared. Using a dataset from a power utility in Thessaloniki, Greece,
the authors performed short-term forecasting to predict one week ahead in order to test
the network’s generalisation ability. Different combinations of prediction order and the
number of neurons in the hidden layer were used to find the architecture that would model
the data most effectively. The MATLAB Neural Networks toolbox was used to initialise,
train, and test both the MLP and Elman networks. The Mean Square Error (MSE) was
used to measure network performance, and the results show that the efficiency of the
learning algorithm is more important than the neural network model used for forecasting.
The authors found that the Elman network models the considered electric load series better
than the MLP network, but training the Elman network is two to five times slower than
training the MLP network. The time required for training depends on the training data size
and the number of network parameters. However, the learning algorithms used with the
Elman network were not able to fully implement the richer structure of this network. A
synthesis that includes the advantages and disadvantages of the techniques and algorithms
proposed in the literature are presented in Tables 1 and 2.

Table 1. Advantages and Disadvantages of the Different Types of Forecasting Models Commonly
Used in the Literature.

Forecasting Techniques Advantages Disadvantages

Time Series Models
(FBP, LSTM, SVR)

Easy to implement and interpret.
Effective in dealing with
strong seasonal effects.

Cannot capture complex relationships
and nonlinearities in the data.
Limited accuracy in long-term forecasting.

Regression Models
Easy to interpret and implement.
Can capture linear relationships
between variables.

Cannot capture nonlinear relationships
in the data.
Limited accuracy in long-term forecasting.

Econometric Models
Can capture complex relationships
and nonlinearities in the data.

Can be difficult to interpret and implement.
Limited accuracy in long-term forecasting.

Genetic Algorithms

Can capture complex relationships
and nonlinearities in the data.
Can optimise multiple objectives
simultaneously.

Can be computationally expensive
and difficult to interpret.
Limited accuracy in long-term forecasting.
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Table 2. Advantages and Disadvantages of Specific Techniques/Algorithms Used in the Literature.

Algorithm Advantages Disadvantages

FBP Simple and easy to implement. Limited ability to capture complex patterns in data.
Can perform poorly when there are abrupt changes or
irregularities in the data.

LSTM Capable of capturing long-term dependencies in data. Can be computationally expensive and require large
amounts of data for training.

Can be computationally expensive and require large
amounts of data for training. Can be sensitive to the choice of kernel function.

Able to handle nonlinear relationships between
variables. Can overfit if not properly regularised.

SVR Can handle nonlinear relationships between
variables.

Can be computationally expensive and require large
amounts of data for training.

Able to capture complex patterns in data. Can be sensitive to the choice of kernel function.

RNN Capable of capturing long-term dependencies in data. Can be computationally expensive and require large
amounts of data for training.

Able to handle nonlinear relationships between
variables. Can suffer from the vanishing gradient problem.

ANN Can handle complex, nonlinear relationships between
variables.

Can be computationally expensive and require large
amounts of data for training.
Can suffer from the vanishing gradient problem.

ARIMA Simple and widely used. Capable of capturing
short-term dependencies in data.

Limited ability to capture long-term dependencies and
nonlinear relationships between variables.
Can perform poorly when there are abrupt changes or
irregularities in the data.

SARIMA Extends ARIMA to handle seasonal patterns in data. Limited ability to capture long-term dependencies and
nonlinear relationships between variables.
Can perform poorly when there are abrupt changes or
irregularities in the data.

LASSO Able to handle high-dimensional data. Can be sensitive to the choice of regularisation parameter.
Can perform feature selection and help with model
interpretability.

May not perform well when there are nonlinear
relationships between variables.

MLP Able to handle complex, nonlinear relationships
between variables. Can be sensitive to the choice of activation function.

Capable of capturing long-term dependencies in data. Can suffer from the vanishing gradient problem.
Can be used for both regression and classification
problems.

Can be computationally expensive and require large
amounts of data for training.
Can suffer from the vanishing gradient problem.
May require careful tuning of hyperparameters to prevent
overfitting.

In this paper, we perform a comparative study that includes a total of nine forecasting
algorithms to investigate the impact of hybrid models and the incorporation of weather data
on the overall accuracy of forecasting electricity demand in an NHS hospital. The strengths
and main contributions of the study are summarised as follows:

1. The use of a comparative study design and the inclusion of multiple forecasting
algorithms allow for a robust analysis of the proposed technique.

2. The impact of hybrid models and weather data on electricity demand forecasting is
assessed.

3. The use of an NHS hospital as the case study provides a relevant and practical
application of the research, which could have important implications for hospital
energy management and efficiency.
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The paper is structured as follows. Section 2 outlines the data used, Section 3 describes
the methodology, Section 4 presents our obtained results, and finally, Section 5 concludes
the paper and suggests potential future directions.

2. Data

This section outlines the details of the data used in this study. The first dataset contains
data related to electricity demand, which is the main focus of this study. The dataset was
collected as part of a previous study [22] conducted in an NHS hospital (Medway NHS
Foundation Trust) located in the south-east of England. The second dataset constitutes
measurements of the average temperature. The following subsections, Sections 2.1 and 2.2,
highlight more details about the electricity demand and weather datasets, respectively,
including, where applicable, details of data collection.

2.1. NHS Electricity Demand Dataset

The dataset reflects the Half-Hourly (HH) electricity consumption of a diverse group
of wards/departments in the hospital, including four clinical areas (two of which operate
24/7, while the other two operate only during the day) and one non-clinical. The data were
collected using a Wireless Electricity Data Logger (WEDL) system provided by Energy-
Logix [23] (see [22] for more details about the system), which obtained consumption data
directly from the hospital’s electricity meters. The data used in this study covered a period
of 15 months, from December 2017 to the end of February 2019. The electricity meters
pulsed 1 kWh pulses, which were collected for half an hour by the WEDL and pushed to
the server every hour. Figure 1 shows a violin plot visualising the descriptive statistics of
the dataset used.
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Figure 1. Violin plot showing descriptive statistics of the electricity demand in the five areas consid-
ered in the study.

Note that the data were collected for each ward/department separately during the
data collection phase. In this study, the dataset is combined and treated as one to provide a
comprehensive representation of an entire hospital unit.

2.2. Weather Dataset

The weather dataset is obtained from the European Commission’s science and knowl-
edge service, EU Science Hub [24]. The dataset consists of hourly recordings of the Typical
Meteorological Year (TMY) 2-m air temperature in the hospital location for the period of
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2007–2016. The TMY is obtained as shown in Table 3. The mean TMY temperature is 10.36,
and the standard deviation is 5.57. Figure 2 shows the box plot of the temperature and
the half-hourly electricity consumption. As mentioned earlier, and among other things,
this study sets out to investigate the impact of an external factor, such as the temperature,
on the overall forecasting results.

Table 3. The typical meteorological year data.

Year 2011 2015 2012 2016 2015 2015 2012 2012 2011 2012 2015 2012

Month 1 2 3 4 5 6 7 8 9 10 11 12
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Figure 2. Violin plot of the typical meteorological year temperature and the half-hourly energy
consumption.

3. Forecasting Models and Evaluation Metrics

This section aims to present the core methodology adopted in conducting this study
by outlining the developed forecasting models and their testing and evaluation performed
in this study. The testing, which applies to all models and methods adopted in this paper,
was performed by splitting the electricity demand dataset into 12 months for training (from
1 December 2017 to 1 December 2018) and 3 months for testing (from 1 December 2018 to
28 February 2019), using the train-test split method (see Figure 3).
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Figure 3. Splitting of the data into training and testing periods.

3.1. Forecasting Models

As mentioned before, in this work, we focused on using quantitative models because
we relied on previous data to predict future ones. We focused on three algorithms, namely
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FBP, LSTM, and SVR, and compared them to the LASSO algorithm which captures the
linear relationship between the data [25].

In our experiments, we set up these algorithms as follows.

• FBP: The yearly, weekly, and daily seasonality are all set to increase forecasting
accuracy and reliability.

• LSTM: The architecture used consists of one input, one hidden, and one output layer,
with one, two hundred, and one nodes, respectively.

• SVR: The “RBF” kernel is used, due to its ability to deal with the high space complex-
ity problem.

3.1.1. Multistage Forecasting

In this study, a multistage model is designed, consisting of two stages and constructed
from a different combination of forecasting algorithms, to examine the impact this might
have on the accuracy of the forecasting. Let us assume that the initial forecast is denoted by
ŷ1(t) for time tε{0 −→ TR}, where TR is the last data point of the training set. The residuals,
denoted by e(t), are the differences between the actual values and the initial forecast.

e(t) = y(t)− ŷ1(t) (1)

We can then use these residuals to forecast the future residuals, which we will call
ê(t). The hybrid forecasting model that incorporates these two forecasts can be represented
mathematically as:

ŷ(τ) = ŷ1(τ) + ê(τ) (2)

where ŷ(τ) is the final forecast at time τε{TR −→ TS}, TS refers to the last data point of the
test set.

In other words, this model combines the information from the initial forecast with the
information contained in the historical residuals to generate a more accurate final forecast.
Figure 4 visualises the multistage modeling process.

 Training Data 
From: 01/12/2017 

To: 01/12/2018 

 

First Model 

Residuals Data 
From: 01/12/2017 

To: 01/12/2018 

 

Second Model 

Initial Forecast 
From: 01/12/2018 

To: 28/02/2019 

 

Residuals Forecast 
From: 01/12/2018 

To: 28/02/2019 

 

  σ   
Final Forecast 

From: 01/12/2018 

To: 28/02/2019 

 

Figure 4. Architecture of the multistage model.

Figure 5 further expands on Figure 4 to describe the multistage forecasting process.
In the first stage of the multistage model, the training data acts as input to the “First Model”.
Part of the output from the “First Model” is used to compute the “Residuals Data”, and the
other part becomes the “Initial Forecast”. The “Residuals Data” is then passed on to the
“Second Model” to obtain the “Residuals Forecast”, which is then arithmetically added to
the “Initial Forecast” to give the “Final Forecast” data.
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Figure 5. Data flow through the multistage model.

For this paper, the multistage model is implemented using two different approaches.
The first involves having the same algorithm in both stages of the model; that is, the “First
Model” and “Second Model” are the same (see Figure 4). In the second approach, a hybrid
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of models is used; that is, the “First Model” and “Second Model” are different, such as
SVR-LSTM. The following are the multistage models utilised in this study:

• Multistage models with similar algorithms

1. SVR-SVR
2. FBP-FBP

• Multistage models with hybrid algorithms

1. FBP-SVR
2. FBP-LSTM
3. SVR-LSTM

3.1.2. Limitations of Residual Forecasting

The residual forecasting method is a statistical technique that involves fitting a model
to historical data and then using the residuals, which are the differences between the actual
values and the predicted values, to forecast future values. The residual forecasting method
can be a useful tool for forecasting time series data, particularly when the data contain
complex patterns that are difficult to model using traditional methods. However, it also
has some limitations. Outlined below are some advantages and limitations of using the
residual forecasting method.

• Advantages

– Simplicity: The method is easy to implement and requires minimal technical
expertise.

– Flexibility: The method can be applied to a wide range of forecasting problems,
including time series forecasting and regression analysis.

– Improved accuracy: By accounting for the residual errors in the forecasting model,
the residual forecasting method can lead to more accurate predictions.

– Transparency: The method is transparent and provides insight into the forecasting
process, which can help decision-makers understand the sources of uncertainty
in the forecasts.

• Limitations

– Limited by time horizon: Residual forecasting is most effective in predicting
outcomes over short to medium time horizons. Over longer time horizons,
the accuracy of the predictions may decrease, particularly if there are significant
changes in external factors that were not accounted for in the historical data.

– Dependence on underlying model: The accuracy of the forecasts is heavily de-
pendent on the accuracy of the underlying model used to estimate the residuals.

– Assumption of stationarity: The method assumes that the residual errors are
stationary over time, which may not always be the case.

– Ignoring other sources of uncertainty: The method only accounts for residual
errors and ignores other sources of uncertainty, such as measurement errors or
random fluctuations.

3.2. Metrics to Evaluate the Forecasting Models

In this work, three kinds of error metrics are examined for the hybrid forecasting
models, as follows:

• The coefficient of determination (R2):

R2 = 1− RSS
TSS

(3)

where RSS is the sum of squares of residuals, and TSS is the total sum of squares.
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• Mean Absolute Error (MAE):

MAE =
1
n

n

∑
j=1
|yj − ŷj| (4)

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
n

n

∑
j=1

(yj − ŷj)2 (5)

where n is the number of samples, and y and ŷ are the predicted value and actual
value, respectively.

A key feature of the error metrics employed for model evaluations is their ability to
differentiate among model results. The metric that identifies higher variations in regression
models’ performance is often the more desirable. In this instance, MAE could be impacted
by many average error values without sufficiently showing some of these large errors.
The RMSE could be better at identifying model performance differences by providing
higher weighting to unfavorable conditions.

It is well known that the sensitivity of the RMSE to outliers is one of the key concerns
when using this metric. In practical situations, it is common for modelers to omit the
outliers that are several orders greater than the other samples when computing the RMSE,
especially if the sample size is small. If the model biases are significant, the systematic
errors may need to be removed before computing the RMSEs.

One key merit of RMSEs over MAEs is that RMSEs do not need to compute the absolute
value, which is highly undesirable in many mathematical calculations. For example, it
may be challenging to compute the sensitivity or gradient of the MAEs with respect to
model parameters. In addition, in data assimilation, the sum of squared errors is usually
defined as the cost function to be minimised by adjusting model parameters [26]. In this
case, penalising large errors through the defined least-square terms is demonstrated to
be effective in enhancing model performance. In the scenarios of computing model error
sensitivities or data as simulation applications, MAEs are not favored over RMSEs.

4. Forecasting Results and Discussion

This section aims to present the results obtained from forecasting the electricity de-
mand data, as previously outlined in Section 3.1. The implemented approach is to evaluate
the performance of single and multistage models to see which is best to be used to accu-
rately forecast the data. This section therefore opens with Section 4.1, which will show the
results of the single models, that is, the LASSO, FBP, LSTM, and SVR. Section 4.2 will then
highlight the results obtained from running the multistage models with similar algorithms,
that is, SVR-SVR and FBP-FBP, and Section 4.3 will present the results obtained from the
multistage models with hybrid algorithms, that is, FBP-SVR, FBP-FBP, FBP-LSTM, and SVR-
LSTM. Finally, Section 4.4 will present the results of the comparative study by comparing
the computed metrics, that is, R2, MAE, and RMSE, of all the single and multistage models.
The forecasting for each single/multistage model is performed in the presence and absence
of the temperature data as a predicting feature, details of which were presented earlier in
Section 2.2.

4.1. Single Models

Four single models were developed to be tested using the electricity demand dataset.
The outputs from these models are computed, and their performances are compared using
the three metrics R2, MAE, and RMSE, as highlighted earlier in Section 3.2. Table 4 shows
a comparison which is further visualised in Figure 6. The performance evaluation is
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performed on the models after training them on the electricity demand dataset with and
without the use of the temperature as a training feature.

Table 4. Forecasting performance results for all single models: R2, MAE, and RMSE values.

Model R2 MAE RMSE

Without
Temperature
as a Feature

Single

LASSO −0.76% 5.05 5.83

SVR 44.35% 3.17 4.34

FBP 68.68% 2.51 3.25

LSTM 87.20% 1.55 2.08

With
Temperature
as a Feature

Single

LASSO 10.15% 4.61 5.51

SVR 44.99% 3.12 4.31

FBP 27.61% 3.82 4.94

As seen in Table 4 and Figure 6, the LSTM outperforms all other models with an R2 of
87.20%, an MAE of 1.55, and an RMSE of 2.08. Figure 7 shows the predicted/forecasted
output against the testing data, which span the period between 1 December 2018 and
28 February 2019, as shown earlier in Figure 3. The figure visualises a close similarity be-
tween both datasets with minor differences. It is also worth mentioning that the addition of
the temperature as a feature did not improve the results. There is a negligible improvement
with the LASSO and SVR models, and a decrease in performance for the FBP. This indicates
that the energy consumption is not impacted by the changes in temperature, and this can
also be visually seen in Figure 2.

(a) (b)

(c)

Figure 6. MAE, R2, and RMSE values for the single models with and without temperature as a
feature. (a) Mean Absolute Error (MAE). (b) Coefficient of Determination (R2). (c) Root Mean Square
Error (RMSE).
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Figure 7. Testing data vs LSTM forecasted data of the hospital’s electricity demand.

4.2. Multistage Models with Similar Algorithms

As discussed in Section 4.1, the LSTM outperformed the LASSO, SVR, and FBP algo-
rithms. Accordingly, the multistage models are developed to see whether the performance
of those models can be improved. For this, we chose to create the multistage models using
only the SVR and FBP models, given that the LASSO algorithm gave poor results.

Table 5 and Figure 8 show a performance comparison between the two multistage
models constructed from the SVR and the FBP. The results show a significant advantage to
the FBP-FBP (with and without consideration of temperature as a feature) compared to all
other cases, including the SVR-SVR with and without consideration of temperature and
the FBP-FBP with temperature. The recorded metrics are an R2 value of 68.81%, an MAE of
2.51, and an RMSE of 3.25. Once again, the effect of the temperature is very minor and only
accounted for an increase of 0.75% in accuracy.

(a)
(b)

(c)

Figure 8. MAE, R2, and RMSE values for the multistage similar models with and without temperature
as a feature. (a) Mean Absolute Error (MAE). (b) Coefficient of Determination (R2). (c) Root Mean
Square Error (RMSE).
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Table 5. Forecasting performance results for all multistage similar models: R2, MAE, and RMSE values.

Model R2 MAE RMSE

Without
Temperature as a Feature

Multistage
Similar

SVR-SVR 43.57% 3.17 4.37

FBP-FBP 68.06% 2.52 3.28

With
Temperature as a Feature

Multistage
Similar

SVR-SVR 44.14% 3.13 4.34

FBP-FBP 68.81% 2.51 3.25

The output from the FBP-FBP multistage model without temperature as an extra
feature is plotted to visualise the performance (see Figure 9). As can be seen, the slightly
poor accuracy reported in the R2 value of 68.06% is visually clear in the comparison of the
predicted data with the observed/testing data.

Figure 9. Testing data vs forecasted data from Multistage Similar model with FBP of the hospital’s
electricity demand.

4.3. Multistage Models with Hybrid Algorithms

In this subsection, we present the results of the hybrid models where we used two
different forecasting algorithms to enhance the accuracy. Table 6 and Figure 10 show a
performance comparison between the two multistage hybrid models constructed from
the SVR, FBP, and LSTM. The results show a slight advantage to the FBP-LSTM (without
consideration of temperature as a feature) compared to all other models, including the
FBP-SVR, and SVR-LSTM, with and without consideration of temperature. The recorded
metrics are an R2 value of 68.22%, an MAE of 2.54, and an RMSE of 3.28.

Table 6. Forecasting performance results for all multistage hybrid models: R2, MAE, and RMSE values.

Model R2 MAE RMSE

Without
Temperature
as a Feature

Multistage
Hybrid

FBP-SVR 67.86% 2.56 3.29

FBP-LSTM 68.22% 2.54 3.28

SVR-LSTM 42.70% 3.32 4.40

With
Temperature
as a Feature

Multistage
Hybrid

FBP-SVR 67.97% 2.55 3.29

FBP-LSTM 67.13% 2.60 3.33

SVR-LSTM 39.62% 3.35 4.52
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(a) (b)

(c)
Figure 10. MAE, R2, and RMSE values for the multistage hybrid models with and without temper-
ature as a feature. (a) Mean Absolute Error (MAE). (b) Coefficient of Determination (R2). (c) Root
Mean Square Error (RMSE).

The output from the FBP-LSTM multistage model is plotted to visualise its perfor-
mance. As shown in Figure 11, the actual/testing data can be visually identified , especially
for values that are less than the mean value and outliers.
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Figure 11. Testing data vs forecasted data from Multistage Hybrid model, with FBP as first model
and LSTM as second model, of the hospital’s electricity demand.

4.4. Evaluation and Discussions

As shown in Table 7 and Figure 12, the forecasting accuracy varies depending on the
different models used. We can also observe that the LSTM model has the best accuracy as
it can capture the daily consumption pattern. The FBP-FBP is the best performing hybrid
model, despite the 68% accuracy; this can be explained by the ability of FBP to incorporate
seasonality (e.g., holidays) into its forecast, and with FBP as the second model, its accuracy
can be optimised by taking into account unusual consumption patterns.
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Table 7. Forecasting performance results for all models: R2, MAE, and RMSE values.

Model R2 MAE RMSE

Without
Temperature
as a Feature

Single

LASSO −0.76% 5.05 5.83

SVR 44.35% 3.17 4.34

FBP 68.68% 2.51 3.25

LSTM 87.20% 1.55 2.08

Multistage
Hybrid

FBP-SVR 67.86% 2.56 3.29

FBP-LSTM 68.22% 2.54 3.28

SVR-LSTM 42.70% 3.32 4.40

Multistage
Similar

SVR-SVR 43.57% 3.17 4.37

FBP-FBP 68.06% 2.52 3.28

With
Temperature
as a Feature

Single

LASSO 10.15% 4.61 5.51

SVR 44.99% 3.12 4.31

FBP 27.61% 3.82 4.94

Multistage
Hybrid

FBP-SVR 67.97% 2.55 3.29

FBP-LSTM 67.13% 2.60 3.33

SVR-LSTM 39.62% 3.35 4.52

Multistage
Similar

SVR-SVR 44.14% 3.13 4.34

FBP-FBP 68.81% 2.51 3.25

(a) (b)

(c)
Figure 12. Results of the comparative study showing the MAE, R2, and RMSE values of all models.
(a) Mean Absolute Error (MAE). (b) Coefficient of Determination (R2). (c) Root Mean Square Error
(RMSE).

To further investigate the success of FBP-FBP, we present the residuals from the first
FBP model. From the residual values shown in Figure 13, we can observe that the vast
majority of the values lie between −10 and 10, except for the outliers, which can have a
major effect on the error values. To better evaluate the residuals, we plotted their histogram
in Figure 14. We can observe that the residuals can be modeled as a normal distribution
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with a relatively narrow variance. Thus, the second FBP would use the residuals and build
an accurate forecast, ultimately optimising the accuracy.
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Figure 13. Values of residuals.
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Figure 14. Histogram of residuals.

5. Conclusions and Future Work

The study presented in this paper considers a total of nine forecasting models, cate-
gorised into single and multistage ones. The models are trained twice, that is, with and
without consideration of the external temperature as a feature. The results of the compar-
ative study show that the multistage models generally perform better compared to the
single models. However, the LSTM stands out and outperforms all other models, and the
FBP-FBP model is the best performing multistage model. The results show the edge that
recurring neural network models have over all other models, including hybrid models;
however, further investigation and fine-tuning of the hybrid models can be done. As far as
feature consideration is concerned, the temperature has little or no impact on the results,
especially because the high-accuracy results were obtained from the LSTM without using
the temperature as a feature, while for the FBP-FBP model, temperature had a minor effect
on its accuracy.

For future work, we suggest extending the analysis to a longer time horizon to capture
long-term trends, comparing the residual forecasting method to other forecasting tech-
niques, analyzing the impact of demand response strategies, assessing the effectiveness
of energy efficiency measures, and exploring the generalisability of the results to other
hospital settings and other societal sectors. By conducting these future studies, researchers
can gain a more comprehensive understanding of energy demand patterns in hospitals,
potential energy-saving strategies, and the applicability of the residual forecasting method
in other settings.
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