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Abstract: The need for artificial intelligence (AI) and machine learning (ML) models to optimize data
center (DC) operations increases as the volume of operations management data upsurges tremen-
dously. These strategies can assist operators in better understanding their DC operations and help
them make informed decisions upfront to maintain service reliability and availability. The strategies
include developing models that optimize energy efficiency, identifying inefficient resource utiliza-
tion and scheduling policies, and predicting outages. In addition to model hyperparameter tuning,
feature subset selection (FSS) is critical for identifying relevant features for effectively modeling DC
operations to provide insight into the data, optimize model performance, and reduce computational
expenses. Hence, this paper introduces the Shapley Additive exPlanation (SHAP) values method, a
class of additive feature attribution values for identifying relevant features that is rarely discussed in
the literature. We compared its effectiveness with several commonly used, importance-based feature
selection methods. The methods were tested on real DC operations data streams obtained from the
ENEA CRESCO6 cluster with 20,832 cores. To demonstrate the effectiveness of SHAP compared to
other methods, we selected the top ten most important features from each method, retrained the
predictive models, and evaluated their performance using the MAE, RMSE, and MPAE evaluation
criteria. The results presented in this paper demonstrate that the predictive models trained using
features selected with the SHAP-assisted method performed well, with a lower error and a reasonable
execution time compared to other methods.

Keywords: data center; artificial intelligence; machine learning; feature selection; SHAP; game theory

1. Introduction

A plethora of data-driven business processes, governmental and educational systems,
and the rapid adoption of Industry 4.0 digital technologies [1], such as cloud platforms,
the Internet of Things (IoT), computationally extensive AI and ML techniques, augmented
reality (AR), big data streaming services, blockchain, robotics, and 3D technologies [2], are
accelerating the demand for and complexity of data center (DC) industries. This trend has
recently been bolstered by the emergence of COVID-19, which has increased the global
demand for social networking, online education, and video conferencing, a trend that
appears to be continuing [3]. As data center demand and complexity increase, so do opera-
tional management challenges, making it more difficult for operators to maintain service
reliability and availability. Energy management is one of the most common and complex
challenges. According to A. S. Andrae and T. Edler [4], if appropriate measurements are
not taken, data centers are expected to consume up to 21% of the global demand; however,
if necessary, measurements are taken, this figure could be reduced to 8% by 2030. Hence, a
new solution is required to optimize DC operations and energy efficiency.

The emergence of IoT and intelligent technologies have recently enabled the automa-
tion of DC operations management by tracking operations parameters and generating
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massive amounts of streaming data over time, allowing DC operators to make data-driven
decisions. However, the massive amount of streaming data must be transformed into
actionable information to optimize DC operations. Thus far, commonly used methods for
modeling DC operations and analyzing data streams are based on heuristic, statistical,
and mathematical models. These models are reactive and incapable of processing massive
amounts of data streams with complex and non-linear interactions [5] in such a complex
data center environment. Recently, artificial intelligence and machine learning technologies
being increasingly leveraged in the data center industries to model and process massive
amounts of streaming data into actionable information. Google implemented a simple
neural network, ML approach for predicting power usage effectiveness (PUE), which
assisted in configuring controllable parameters and resulted in a 40% cooling efficiency
enhancement [6]. Research by A. Grishina et al. [7] was also conducted on thermal charac-
terization and analysis using ML to enhance DC energy efficiency. Although many more
AI and ML-based research studies have been conducted to optimize DC energy efficiency
and operations at different layers, relevant feature selection has rarely been discussed.
However, relevant feature selection is the backbone for effectively modeling DC operations
with the objectives of improving model performance, reducing computational expense,
and providing insight into the underlying patterns. To the best of our knowledge, although
several feature selection methods have been discussed in various domains, they have
rarely been discussed in the context of the DC industries. Therefore, identifying relevant
features in the context of DCs is essential for mining the underlying patterns and effectively
modeling DC operations. Hence, this paper establishes Shapley Additive exPlanation
(SHAP) value-assisted Feature Selection (FS) method, which is rarely discussed in the
literature. SHAP was initially proposed by Lundberg and Lee [8] for explainable AI (XAI)
in the field of AI and machine learning techniques. Recently, SHAP showed promising
results in FSS methods for identifying relevant features by explaining the contributions
of each feature toward developing an accurate model. Why SHAP? SHAP is a unique
class of additive feature attribution values with consistent, missingness, and accuracy
properties that computes feature importance based on the game theory concept. It is a
model-agnostic method that can be applied to any machine learning or deep learning
model. Hence, the ultimate goal of this paper is to identify relevant features based on their
importance, which is computed using SHAP in relation to the specified target variables.
We compared SHAP’s effectiveness with several widely used feature selection methods. To
demonstrate the feature selection analysis, we conducted experiments using operational
management data streams obtained from an HPC DC: the ENEA-CRESCO6 cluster with
20,832 cores from Italy. The data streams consist of energy consumption, cooling system,
and environment-related operational features. In this paper, we use data center energy
demand and ambient temperature target variables to demonstrate the FS process in the
context of data center industries, allowing for the effective modeling and optimization of
DC operations.

The contributions of this paper are: (i) Establishing SHAP-values-assisted feature
automation method in the context of a data center with non-linear and complex system
interactions and configurations to identify relevant features for effectively modeling and
optimizing DC operations. This enables DC operators to better understand their DC opera-
tional patterns, allowing them to accurately characterize and optimize their DC operations
in a cost-effective way. (ii) Enables accurately characterize and identify the underlying
patterns and relationships of features in relation to the target variables, allowing operators
to make informed decisions. (iii) Analyzing the effectiveness of various importance-based
feature selection methods and selecting the best one that allows for the identification of
relevant features in relation to the target variables. (iv) Finally, we identify the best feature
selection technique for DC characterizations and operational optimizations that attempts
to capture significant features, improve model performance, and reduce computational
expense. We also analyze and characterize feature dependency and interactions to bet-
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ter understand how a particular feature affects the modeling of the target variable and
DC operations.

We compared the proposed method to other commonly used feature selection methods.
The top ten features of each feature selection method were then chosen, and the predictive
models were retrained to identify the best feature selection method in the context of the
data center industries. Hence, the best feature selection method is the one which results in
better model performance and reduced computational expenses. The main contribution
of this paper is therefore to identify and establish essential feature selection methods in
the context of data centers to effectively model and reduce the computational expenses of
machine learning models for the optimization and characterization of DC operations.

The remaining sections of this paper are structured as follows: Section 2 provides a
literature review in relation to feature selection techniques, focusing on the techniques used
in the FSS space. Section 3 describes the methodology used in this paper. Section 4 presents
the experimental results and discussion, and Section 5 provides conclusions and describes
future works of the author.

2. A Theoretical Review of Feature Selection Methods

In a given data stream, D, with n features, 2n possible feature subsets can be generated.
However, all these subsets may not be relevant for modeling and mining important patterns.
Some features may appear to be equidistant, redundant, irrelevant, or noisy. To overcome
these challenges, there are two special methods used to identify relevant features [9]. The
first method is feature extraction/dimensional reduction, which transforms the original
input feature into a reduced representation set. The second method is feature selection,
which identifies relevant subsets while preserving the original information [10,11]. Hence,
in this paper, we focus on feature selection methods for identifying relevant features
in the context of a data center. The main classes of feature selection (FS) methods are
wrapper methods, embedded methods, and filter methods [12]. Wrapper methods use
the model’s performance as a score to select relevant feature subsets [13]. Although
wrappers are effective methods, they are computationally expensive and in some case
pros to overfilting [14]. On the other hand, embedded feature selection methods are
applied during the model training process and are associated with a specific learning
algorithm [11,12]. Filter methods are another model-independent feature selection method
that are typically applied in the preprocessing steps [15].

The best method, however, is usually determined depending on the problem identified.
Data center operational management data streams are multivariate time series problems.
The data streams are sequences of observations, denoted as xi (t); [i = 1, n; t = 1, . . . ,T] [16],
in which x represents observations, i represents measurements taken at each time point,
t, n is the maximum index, and the maximum time length is T. The time series can be a
univariate time series (UTS) problem or a multivariate time series (MTS) problem. It may
be an MTS if the number of features, n, is greater than or equal to 2, and it may be a UTS if
n=1. This paper focuses on an MTS because the data center operations management data
streams at hand are stored in a multi-dimensional matrix represented as m ∗ n, where n
represents features in the data streams and m represents rows in the data streams. The
target variables for the data center ambient temperature and data center energy demand are
determined not only by their previous history but also by several other operational factors.
The interaction between streams over time is the key to the complexity of the MTS problem.
Thus, feature subset selection (FSS) entails identifying relevant features from given data
streams with three main objectives. The objectives are: To provide insights into the data,
reduce computational expense, and improve model performance [12]. To achieve these
objectives, many studies have been conducted to identify relevant features in regression
problems. For example, wrapper methods such as recursive feature elimination (RFE) and
backward feature elimination (BFE) take input in the form of a single-column vector of the
matrix. However, MTS data streams are stored in the form of a multidimensional matrix,
which may lose important information during vectorization.
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Additionally, MTS data streams typically contain complex correlations between fea-
tures over time that make it difficult to apply wrapper and embedded feature selection
methods to MTS problems.

Filter methods are correlation-based feature selection techniques that are effective on
time series or continuous variables that compute correlations among different features
and the target variable. Using correlation-based methods such as Pearson, Spearman,
and Kendall, filter methods identify relevant features that have high correlations to the
target variable. Filter methods identify relevant FSSs related to the target variable based on
distance, dependency, and consistency [17]. Commonly used correlation-based methods
are the Pearson, Spearman, and Kendall methods, as well as the mutual information (MI)
method. The Pearson correlation is the most widely used filter method for measuring the
linear relationship between two variables. The Spearman and Kendall correlation meth-
ods, which employ non-parametric tests, are better suited for non-normally distributed
data [18]. The degree of correlation between two variables is measured by the Spearman
correlation, whereas the Kendall method measures and computes the interdependency
between features [19]. Hence, the Kendall method is more accurate feature at identifying
dependencies and correlations in relation to the target variable than Spearman method. [19].
Spearman correlation can be effective for non-linear and non-time series data but shows
poor results in the domain of MTS problems. Another study used a feature selection method
based on Pearson correlation and symmetrical uncertainty scores to compute non-linear
and linear interactions between features and the target variable [20]. In this context, a
correlated but important feature may be overthrown, leading to the wrong conclusion. An-
other well-known feature selection method is the mutual information (MI)-based method,
which measures the uncertainty of random variables, termed Shannon’s entropy [21]. A
recent feature subset selection method based on merit score, also implemented by Kathirga-
manathan and P. Cunningham [22], was used to identify relevant features in the MTS
domain. In general, correlation-based feature selection (CFS) techniques are not effective
in MTS problems [23]. As a CFS technique requires input streams in the form of vector
representations, it may result in the loss of important information during vectorization.
Recently, importance-based feature selection methods have been used in different domains,
including the MTS domain. Commonly used methods are random forest (RF)- and extreme
gradient boosting (XGB)-based feature importance ranking methods. For example, Zhen
Yang et al. [24] used the random forest method with Gini feature importance ranking to
identify relevant features related to PUE prediction. However, these methods suffer from
a high frequency and cardinality of features. This paper establishes SHAP value-assisted
relevant feature selection for effectively modeling and characterizing DC operations.

3. Methodology

This paper focuses only on supervised learning methods because modeling DC energy
demand and ambient temperature predictions are treated as time series regression problems.
To effectively model the problems, we applied Shapley Additive exPlanation (SHAP)
additive feature attribution value-assisted feature selection method to identify relevant
features based on various feature importance rankings. Section 3.2 presents the description
and implementation procedures of the SHAP-assisted feature selection. In the feature-
importance-based approach, input features are assigned a score based on how useful they
are at predicting the target variables. The top-ranked features are the most significant
features for modeling the specified target problem. We compared the effectiveness of the
SHAP value-assisted feature selection method introduced in this paper with the following
several commonly used importance-based feature selection methods: (i) Random Forest
with Gini Feature Importance Ranking (RFGFIR) (mean decrease impurity), (ii) Random
Forest permutation-based Feature Importance Ranking (RFPFIR), (iii) Random Forest
with SHAP-values-based Feature Importance Ranking (RFSVFIR), (iv) XGB with Gain-
based Feature Importance Ranking (XGBGFIR), (v) XGB with Permutation-based Feature
Importance Ranking (XGBPFIR), and (vi) XGB with SHAP-values-based Feature Importance
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Ranking (XGBSVFIR). The methods were tested and validated using a real dataset from an
HPC data center, a CRESCO6 cluster consisting of 20,832 cores. The dataset was divided
into a 7:3 ratio for training and testing while preserving the time order. Table 1 illustrates the
dataset’s features and descriptions. Then we trained the models using the first 70% of the
dataset, applied the feature selection methods, and ranked the important features in prior
orders. The models were retrained, being with the highest-ranked features from each feature
selection method, and their performance and learning rate of the feature selection were
compared. This was performed n − 1 times. Finally, the topmost important features with
good model performance and fair computational expenses were kept. The experimental
procedures are detailed in Section 3.2 in Figure 1. To validate the feature selection methods,
we applied the 30% testing set of the dataset. We then retrained and compared the methods’
performance and learning rate using the top 10 most important features of each feature
selection method. To evaluate and compared the feature selection methods, we applied to
mean absolute average error (MAPE), mean absolute error (MAE), and root mean squared
error (RMSE) evaluation criteria. The method with the lowest error and computational
expenses was selected as the best method for the identification of relevant features to
effectively model DC operations. In this paper, we generally adhered to the conceptual
framework illustrated in Figure 1. The following three steps were systematically applied:
(i) Dataset and preprocessing as described in Section 3.1, (ii) Introduction to SHAP feature
attribution value-assisted relevant feature selection procedures as described in Section 3.2,
and (iii) the machine learning models used to evaluate the feature selection methods
presented in Section 3.3.

Table 1. Features and descriptions.

No. Feature’s Name Descriptions

1 Timestamp
measure Datetime (instant of time that the data points are monitored).

2 sys_power Total instantaneous power measurement of computing node (watt).

3 cpu_power CPU power measurement of the computing node (watt).

4 mem_power Ram memory power measurement of the computing node (watt).

5 fan1a Fan speed represented as fan1a installed in the node as RPM (reverse per minute).

6 fan1b Fan speed represented as fan1b installed in the node as RPM (reverse per minute).

7 fan2a Fan speed represented as fan2a installed in the node as RPM (reverse per minute).

8 fan2b Fan speed represented as fan2b installed in the node as RPM (reverse per minute).

9 fan3a Fan speed represented as fan1a installed in the node as RPM (reverse per minute).

10 fan3b Fan speed represented as fan3b installed in the node as RPM (reverse per minute).

11 fan4a Fan speed represented as fan4a installed in the node as RPM (reverse per minute).

12 fan4b Fan speed represented as fan4b installed in the node as RPM (reverse per minute).

13 fan5a Fan speed represented as fan5a installed in the node as RPM (reverse per minute).

14 fan5b Fan represented as fan5b installed in the node as RPM (reverse per minute).

15 sys_util Percentage use of the system (%).

16 cpu_util Percentage of use of CPU’s of the computing node (%).

17 mem_util Percentage of use of the RAM memory of the computing node.

18 io_util Node input/output traffic.

19 cpu1_temp CPU1 temperature (◦C) of a node.

20 Cpu2_temp CPU2 temperature (◦C) of a node.
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Table 1. Cont.

No. Feature’s Name Descriptions

21 sys_airflow System airflow of nodes measured in cubic feet to minute (CFM.

22 exh_temp Exhaust temperature that is air exit of the nodes in ◦C.

23 amb_temp A temperature near the computing nodes or data center room operating temperature.

24 dcenergy Data center energy demand meter consumed up to the next reading.

25 supply_air Cold air/inlet temperature (◦C) that belows from CRAC to regular airflow rate (RPM) in DC

26 return_air Ejected heat or warm air back from racks to the outside (◦C).

27 relative_umidity Working/Operating humidity of the CRAC (◦C).

28 fan_speed Cooling system fan speed within the CRAC to regulate airflow rate within the DC (RPM).

29 cooling Cooling working intensity of the DC (%).

30 free_cooling Not applicable/ values represented as 0.

31 hot103_temp Environmental hot temperature sensor installed around the computing node (◦C).

32 hot103_hum Environmental humidity temperature sensor installed around the nodes (◦C).

33 hot101_temp Environmental hot temperature sensor installed around the computing node (◦C).

34 hot101_hum Environmental humidity temperature sensor installed around the nodes (◦C).

35 hot111_temp Environmental hot temperature sensor installed around the computing node (◦C).

36 hot111_hum Environmental humidity temperature sensor installed around the nodes (◦C).

37 hot117_temp Environmental hot temperature sensor installed around the computing node (◦C).

38 hot117_hum Environmental humidity temperature sensor installed around the nodes (◦C).

39 hot109_temp Environmental hot temperature sensor installed around the computing node (◦C).

40 hot109_hum Environmental humidity temperature sensor installed around the nodes (◦C).

41 hot119_temp Environmental hot temperature sensor installed around the computing node (◦C).

42 hot119_hum Environmental humidity temperature sensor installed around the nodes (◦C).

43 cold107_temp Cold temperature sensor installed around the computing node (◦C).

44 cold107_hum Cold working humidity sensor installed around the computing node (◦C).)

45 cold105_temp Cold temperature sensor installed around the computing node (◦C).

46 cold105_hum Cold working humidity sensor installed around the computing node (◦C).)

47 cold115_temp Cold temperature sensor installed around the computing node (◦C).

48 cold115_hum Cold working humidity sensor installed around the computing node (◦C).)

49 cold113_temp Cold temperature sensor installed around the computing node (◦C).

50 cold113_hum Cold working humidity sensor installed around the computing node (◦C).)

3.1. Datasets and Descriptions

The dataset used in this paper was obtained from the ENEA CRESCO6 cluster, a data
center consisting of 434 computing nodes with 20,832 cores. Each node consists of two
Intel Xeon Platinum 8160 CPUs (represented as CPU1 and CPU2), each with 24 cores and a
total of 192 GB of RAM, corresponding to 4 GB/core and operating at a clock frequency
of 2.1 GHz. The ENEA CRESCO6 cluster has been operating since 2018. The cluster has a
nominal computing power of 1.4 PFLOPS and is based on the Lenovo Think System SD530
platform. The nodes are linked with an Intel Omni-Path network and have 15 switches
of 48 ports each at 100 Gb/s with a latency equal to 1 µs of bandwidth. For monitoring
and management purposes, each computing server/node of CRESCO6 is instrumented
with onboard sensors. These sensors read the values of the operational parameters of the
equipment for the entire calculation server/node. These sensors monitor temperatures at
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different sections of the nodes (e.g., CPU, RAM, fans, rotation speeds, and the volume of
air passing through the nodes) and the energy demand.

The data are read via an intelligent platform management interface (IPMI), which
is a CONFLUENT software package directly installed on the cluster computing nodes
and stores the acquired values in a MySQL database. Cooling system parameters such as
inlet temperature, outlet temperature, relative humidity, airflow, and fan speed are also
monitored using the onboard sensors of the refrigerating machine. There are also several
sensors installed around the cluster to monitor the environmental conditions around the
data center. These sensors measure temperature- and humidity-related parameters. The
data streams related to computing nodes, cooling, and environmental parameters are
stored in a MySQL database with separate tables. In this experiment, we used annual
data streams from 2020. These data streams were collected in a matter of seconds or
minutes. The datasets were then organized, standardized, and sensitized, and missing
values were interpolated. Next, the datasets were resampled into 15 min intervals equal in
length, and the available tables of data composing the datasets were aligned. Finally, the
datasets were aggregated into one table and shaped as (35,136, 50): that is, 35,136 rows and
50 features/columns. Table 1 provides the features and descriptions of the dataset.

The above-mentioned features represented the totals and averages of the values of
the data points, which were derived from each sensor’s data stream. In addition to the
features listed in Table 1, we included time covariate features in the time series, which have
a significant impact on model performance. The included covariates are hours, weekdays,
weekends, months, and quarters, which could have a greater impact and improve the
modeling performance of the target variables. Hence, the final data streams used in
the application of the feature selection methods were shaped (35,136, 55). Note that the
time stamp measure was an index, and the actual features were 54 columns, shaped
as (35,136, 54).

3.2. Shapley Additive exPlanation (SHAP)-Based FSS Method

Shapley Additive exPlanation (SHAP) is one of the additive feature attribution values
methods initially proposed by Lundberg and Lee (2017) and was designed for explainable
AI (XAI) [8]. The explanation level is focused on comprehending how a model makes
decisions based on its features and from each learned component. SHAP is a class of
additive feature attribution methods that are model-agnostic and can be applied to any
machine learning and deep learning model by attributing the importance of each input
feature. In comparison to other additive feature attribution methods, such as LIM [25] and
DeepLIFT [26], SHAP has a unique approach that satisfies the accuracy, missingness, and
consistency properties of feature attribution. In SHAP, feature importance can be computed
using ideas from game theory concepts. The model explanation can be computed at global
and local levels. The model’s global explanation assists in better understanding which
features are important, as well as the interactions between different features. It is also more
aligned with human intuition and is more effective at mining influential features. Hence,
this paper introduces SHAP-values-assisted feature selection to identify relevant features
with respect to the specified target variables in the context of a data center.

The SHAP-assisted feature selection procedures used in this paper are depicted in
Figure 1. The procedures were: (i) data collection and preprocessing; (ii) training the
models using all features in the initial interaction; (iii) applying SHAP, computing the
Shapley values of each feature, and ranking them in ascending priority order; (iv) training
the models n times, beginning with the topmost features and continuing until the optimal
subset is found with respect to each of the aforementioned methods; and (v) selecting the
optimal feature subset to effectively model the target problem with the most predictable
feature subset to optimize DC operations. In general, Shapley values can be computed as a
unified measure of feature importance, which is the average of the marginal contributions
of features from all conceivable coalitions. For example, we can compute the Shapley value
of a given feature, n, in each dataset, D. The value of the feature is replaced by a value from
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another instance of the model, and all possible outcomes are considered to compare the
original prediction with the new prediction. Hence, the average between the new value
and the original value represents the importance of feature n to the final prediction. For
example, the Shapley value estimation of the jth feature with i combinations of features,
target feature x, j index, data streams D with matrix X, and predictive model f, Shapley
value for x is computed as follows:

φij = f ˆ(x + j) − f ˆ(x − j) (1)

where φi
j is the average Shapley value of the jth feature with the ith feature, f ˆ(x+j) is the

prediction for target x with a random number of feature values, including jth feature, and
f ˆ(x−j) is the coalition without the jth feature. In general, to compute the Shapley value of
the jth feature that is target x, the equation is given as follows:

φj(x) =
1
n

n

∑
i=1

(φi
j) (2)

The importance of all features is computed in the same way and is ranked based on
their Shapley value in a prior order. As shown in the following iterations, the model is then
trained using the most important features, beginning from the top and continuing until the
optimal feature subset is found.

1. 1st interaction: i1 = f 1
2. 2nd interaction: i2 = f 1, f 2
3. nth interaction: in = f 1, f 2, f 3, . . . ,fn

Finally, the optimal feature subset can be found and used to effectively model the target
problem. The following Figure 1 shows the overall conceptual framework of the process.

Figure 1. The flow of SHAP assisted FSS method. Relevant feature selection and analysis processes
in the context of the DC operations. The colors represent different tasks.

Depending on the machine learning model architecture, various SHAP approxima-
tion methods are available. These are the kernelSHAP, Gradient SHAP, and TreeSHAP
approximations for decision-tree-based machine learning models, and the DeepSHAP ap-
proximation for deep learning approaches. In this paper, we used RF- and XGB-tree-based
prediction models with TreeSHAP to identify and validate feature selection methods in the
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context of a data center. TreeSHAP is the fastest method when compared to others because
it has optimized hy-perparameters with RF and XGB decision tree models.

3.3. Machine Learning Models

The use of machine learning (ML) and deep learning (DL) technologies to optimize
data center operations has increased. Identifying relevant features in relation to a specific
problem is critical for effectively modeling and optimizing DC operations using these
technologies. Hence, this paper demonstrates an importance-based, relevant FSS with RF
and XGB predictive models. The models’ implementations are described in the following
Sections 3.3.1 and 3.3.2.

3.3.1. Random Forest (RF)

Random Forest (RF) is an ensemble machine learning algorithm that is commonly
used in regression problems. It was initially proposed by Ho (1995) [27] and was further
extended by L. Breiman (2001) [28]. Bootstrap aggregation is used to train the algorithm.
Each tree is trained on a random subset of the examples with replacement. In this case,
each tree learner is shown a different subset of the training data, and the same observation
can be chosen multiple times in a sample [29]. In general, the algorithm follows these
steps: (i) in RF, n number of random samples are generated from the given data set and
have k records; (ii) individual decision trees are constructed for each sample; (iii) each
decision tree generates sequential output; and (iv) the final output is then considered as an
average for classification and regression, respectively. As our study concerns a multivariate
time series (MTS) regression problem, we fitted several decision tree classifiers to different
sub-samples of the data set and then averaged the predictions. This could improve the
predictive accuracy and avoid the overfitting of the RF regression model. During model
implementation, the values of the hyperparameters typically have a significant impact
on the performance and behavior of the model. Hence, the hyperparameters for the RF
algorithm were explored and tuned as follows: the maximum depth of trees was 5, and the
estimator, or forest, in the trees was 200, with the rest remaining as defaults.

3.3.2. Extreme Gradient Boosting (XGB)

Extreme gradient boosting (XGB) is an ensemble ML model that provides efficient
and effective implementation of gradient boosting, which is widely used ML algorithms in
both classification and regression problems [30], with regularization to objectively reduce
variance and bias. Due to its ability to perform parallel computation on a single machine,
XGBoost is at least ten times faster than existing gradient boosting implementations [9]. It
can perform a variety of objective functions, such as regression, classification, and ranking.
It also has features for performing cross-validation and identifying important variables [30].
The hyperparameters for XGB ere explored and tuned as follows: the maximum depth was
5, the estimator was 200, and the learning rate was 0.01.

3.4. Model Performance Evaluation Criteria

In regression, the model error is the difference between the actual sample and the
predicted values. The following evaluation criteria were used to determine the model’s
performance:

(i) Mean absolute error (MAE): this is the arithmetic mean of the absolute values of the
errors, representing the deviation from actual values. The computational equation is
given as follows:

MAE =
∑n

i=1|ŷi − yi|
n

(3)

(ii) Root mean squared error (RMSE): a popular performance evaluation metric for models.
It can be interpreted as the standard deviation of the forecast errors.
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(iii) Mean absolute percentage error (MAPE): the total of each period’s individual absolute
prediction error divided by the actual values. The RMSE and MAPE are computed as
follows, respectively:

RMSE =

√(
1
n

) n

∑
i=1

(yi − yi)
2 (4)

MAPE =
∑n

i=1|ŷi − yi|
n

× 100 (5)

Execution time: the time it takes for the model to learn and predict based on the given
input variables, where ŷ is the predictive value at time point i and yi is the actual value.
The execution time in this paper is the computational time when SHAP is applied to the
trained models. Lower MAE, RMSE, and MAPE values indicate better performance of the
model in predicting energy demand and ambient temperature.

4. Results and Discussion

The SHAP-assisted feature selection method established in this paper has been dis-
cussed and compared to several importance-based feature selection methods. Feature
importance is computed and scored for all input features with a given machine learning
model. A higher score indicates that the specific feature contributes more to the problem’s
modeling effectiveness and efficiency. We compared the SHAP-values-assisted feature
selection method with other commonly used methods to determine its suitability and
effectiveness for identifying relevant features to effectively mine and optimize data center
operations, allowing data center operators to perform data-driven service reliability and
availability improvements. To demonstrate the feature selection process in the context of
data center industry, we used two widely used machine learning regression models: the RF
and XGB prediction models. We decided to use these methods to identify relevant features
in the context of data centers because they are widely used for feature selection processes,
they are faster, and, when compared to others, the TreeSHAP approximation method has
optimized hyperparameters with RF and XGB. The hyperparameter values of the models
and the FSS have a significant impact on the models’ behavior and performance. Hence, the
hyperparameters for each method were tuned as follows: for the RF-based feature selection
methods, the maximum depth of the trees was 5 and the estimator, or forest, in the trees
was 200; the rest were left as defaults. For the XGB feature selection methods, the maximum
depth was 5, the estimator was 200, and the learning rate was 0.01; the rest was left as
defaults. All the feature selection methods were fitted and computed in Python. Initially,
the models were trained using 70% of the total data streams, considering all input features.
Following that, we applied feature selection methods to the trained model to compute the
importance of each feature and rank them in priority order. The most important feature
received the highest score and was ranked first. We trained the models after computing
and ranking features based on their importance for each feature selection method, starting
with the topmost-ranked feature and continuing n times to find the optimal feature subset
from each feature selection method. The order of ranked features and the combination
of optimal subsets for each feature selection method may differ due to the nature of the
machine learning models. To evaluate the feature selection methods, we created a testing
set comprising 30% of the total data streams with all input features. We then selected the
top ten most important features from each feature selection method and retrained the ML
model’s performance and learning rate to demonstrate the suitability of the FSS methods.
We used three evaluation criteria to determine and compare the suitability of each feature
selection method. These were the MAE, RMSE, and MAPE evaluation metrics.

Hence, the suitable feature selection method is then the method which will produce
the most predictable feature subset with the best model performance and computational
expense in the context of a data center industry. The results in Tables 2 and 3 are based
on the top ten most important features chosen from each feature selection method. The
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results demonstrate how to determine which feature selection method is best suited to
identifying relevant features with respect to the specified target variables in the context of a
data center. Note that we selected the ambient temperature and energy demand of the data
center as target variables to explore the feature selection process, allowing us to extract
the underlying patterns that enable the maintenance of data center operations. Hence, the
results in Tables 2 and 3 pertain to the ambient temperature and energy demand target
variables, respectively.

Table 2. Experimental results for predicting data center ambient temperature with the top 10 most
important features chosen from each feature selection method. Ambient temperature (amb_temp) is
the target variable. The best-suited FSS can be determined by observing the results in the table. The
FSS method with the lowest error metrics and the shortest execution time is the best-suited feature
selection method.

Feature Selection
Methods

Evaluation Metrics and Execution Time When Feature Selection Is Applied

MAE RMSE MAPE Execution Time (sec)

RFGFIR 0.644 0.0512 0.033 102.011

RFPFIR 0.499 0.392 0.022 175.515

RFSVFIR 0.42 0.237 0.018 120.790

XGBGFIR 0.43 0.339 0.022 118.790

XGBPFIR 0.443 0.348 0.025 123.364

XGBSVFIR 0.401 0.245 0.0035 98.039

Table 3. Experimental results for predicting data center energy demand with the top ten most
important features chosen from each feature selection method. Data center energy demand (dcenergy)
is the target variable. The best-suited FSS can be determined by observing the results in the table. The
FSS method with the lowest error metrics and the shortest excavation time is the best-suited feature
selection method.

Feature Selection
Methods

Evaluation Metrics and Execution Time When Feature Selection Is Applied

MAE RMSE MAPE Execution Time (sec)

RFGFIR 14.241 22.112 0.032 115.011

RFPFIR 3.714 8.504 0.018 163.283

RFSVFIR 1.368 6.657 0.005 142.830

XGBGFIR 2.329 8.413 0.024 121.785

XGBPFIR 0.443 0.348 0.015 128.845

XGBSVFIR 0.401 0.235 0.004 78.682

Tables 2 and 3 demonstrate the performance and computational expenses of the models
implemented for predicting the data center ambient temperature and energy demand,
respectively, that were retrained with the top ten most important features obtained from
each feature selection method. The feature selection methods presented in this paper
are RFGFIR, RFPFIR, RFSVFIR, XGBGFIR, XGBPFIR, and XGBSVFIR, as shown above
in Tables 2 and 3. RFGFIR is a method that computes feature importance during the
model training process, making it computationally fast but error prone. Tables 2 and 3
demonstrate that RFGFIR had a fair speed but lower performance than others. On the other
hand, RFPFIR can be used to identify relevant features by using permuted samples out-of-
bag to compute feature importance (OOB). To compute feature importance, this method
requires a trained model and test samples. It shuffles each feature by chance and quantifies
the changes in the model’s effectiveness. The feature that has a significant impact on model
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performance is the most important feature for effectively modeling the target problem. As
is shown in Tables 2 and 3, RFPFIR outperformed RFGFIR but had a high computational
cost. XGBGFIR and XGBPFIR are two others commonly used, importance-based feature
selection methods. Like RFGFIR, XGBGFIR can be computed during the model training
process using an importance attribute technique. Its value is computed as the average
gain across all tree splits. XGBPFIR, on the other hand, requires a trained model and
test data to compute the feature importance by permuting samples. XGBGFIR randomly
shuffles each feature and calculates the changes in model performance. In this case, the
most important feature is the one with significant impact on model performance. As
demonstrated in Tables 2 and 3, XGBPFIR outperformed XGBGFIR, RFGFIR, and RFPFIR
in terms of performance at a reasonable speed. However, these methods suffer from a high
frequency and cardinality of features in the relevant feature selection process, which may
result in wrong conclusions.

The SHAP-values-assisted FSS method introduced in this paper, on the other hand,
outperformed the other methods for identifying relevant features in the context of a data
center. According to the conceptual framework of the SHAP-assisted feature selection
process presented in Section 3.3, it is model-agnostic and can be used with any machine
learning model. In this paper, we used TreeSHAP with RF and XGB models to demonstrate
FSS methods.

Hence, Tables 2 and 3 demonstrate that the RFSVFIR and XGBSVFIR which are
SHAP-values-assisted FSS methods outperformed other methods, demonstrating lower
errors and fair speed. RFSVFIR performed with an MAE of 0.42, RMSE of 0.237, MAPE
of 0.018, and an MAE of 1.368, RSME of 6.657, and MAPE of 0.005 at predicting the
DC ambient temperature and DC energy demand target variables, respectively, with
a fair computational speed. XGBSVFIR, on the other hand, predicted the DC ambient
temperature and DC energy demand target variables with lower errors of a MAE of
0.401, RMSE of 0.245, MAPE of 0.0035, and a MAE of 0.451, RSME of 0.235, and MAPE
of 0.004, respectively, with fair computational speed. When we compared XGBSVFIR
with RFSVFIR, XGBSVFIR outperformed RFSVFIR, demonstrating a better performance
and fair computational expenses. Hence, SHAP with XGB feature selection was faster
when compared with SHAP with RF due to the capacity for parallel computation in
XGB. Furthermore, due to its optimized hyperparameter with TreeSHAP [31]. Hence, as
demonstrated by the experimental results in Tables 2 and 3, XGBSVFIR is the best-suited
FSS method in the context of a data center for identifying the relevant operational features
and underlying patterns to effectively model and optimize DC operations.

To visualize the experimental results of the most suitable FSS method, we relied on
three plots: SHAP feature importance, SHAP summary, and partial dependency plots.
Hence, the graphs are based on the XGBSVFIR feature selection method. SHAP feature
importance plots visualize features based on their feature importance, which is prioritized
with high, absolute Shapley values. The feature importance of each feature is computed as
the average absolute Shapley value of each feature across the data streams, as below:

φj(x) =
1
n

n

∑
i=1
|φi

j| (6)

Following the Shapley value results, we sorted the feature importance from highest to
lowest and plotted the graph. Figures 2a and 3a illustrate the SHAP feature importance
plots based on the XGBSVFIR method at predicting the data center ambient temperature
(amb_temp) and energy demand (dcenergy) target variables, respectively. The y-axes
represent the names of the features and x-axis represents the Shapley values. The Shapley
values indicate how much each feature influences the prediction of the target variable.
Although SHAP feature importance is useful for visualizing the importance of features, it
does not provide further information, aside from the importance. SHAP summary plots
can provide additional information about the effects of each feature on the target variable.
The SHAP summary plot provides the dispersion information of Shapley per each feature.
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Figures 2b and 3b display SHAP summary plots of the features used to predict data center
ambient temperature and energy demand, respectively. The y-axis displays feature names
and Shapley values, while the vertical line represents the accumulated density. The feature
effect is represented by two colors: red for the greatest influence and blue for the least
influence. In general, the topmost features are the most predictable.

Figure 2. (a) SHAP feature importance plot. (b) SHAP summary plot. (a) illustrates the SHAP feature
importance, computed as an average absolute value of SHAP for each feature, producing a standard
bar plot of the ten leading features obtained from XGBSVFIR with respect to the data center ambient
temperature target variable. The supply_air is the most important feature that has the greatest impact
on predicting ambient temperature (maintaining DC operating environment). (b) illustrates the
SHAP summary plot of ten leading features obtained from the XGBSVFIR method. The higher the
SHAP value of a feature, the more important it is for effectively modeling the problem. For example,
supply air has the greatest influence on predicting data center ambient temperature (amb_temp), and
its effect is represented by two colors: red for a high impact and blue for a lower impact on predicting
the target variable.

Figure 3. (a) SHAP feature importance plot. (b) SHAP summary plot. (a) illustrates SHAP based
feature importance that computed as an average absolute value of SHAP for each feature, producing
a standard bar graph of the ten leading features obtained from XGBSVFIR method with respect to the
data center energy demand target variable. (b) illustrates SHAP summary plot of ten leading features
obtained from XGBSVFIR method. The higher the SHAP value of a feature, the more effect it has
in effectively modeling the specified problem. For example, the system power (sys_power) has the
greatest influence on predicting data center energy demand (dcenergy. The coloring represents the
impact of features on predicting the target variable at high and low effects (high red, low blue).
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For example, the supply air is an inlet temperature supplied by the cooling system.
It allows the data center to maintain an ambient temperature. Exhaust temperature is
dissipated temperature from the computing nodes that should be effectively returned to the
computer room air conditioning (CRAC) unit while maintaining the data center’s ambient
temperature and improving equipment efficiencies. Hence, supply_air and exh_temp are
the topmost important features at predicting amb_temp while optimizing DC operations.
Figure 2a,b below are plots of the top ten most important features for predicting amb_temp
over 2000 data samples.

Figure 3a,b below show the importance of SHAP features and SHAP summary plots
of features in relation to the data center energy demand target variables. Note that these
figures are based on 2000 samples taken from the testing sets. The result shows that the
main energy consumers in the data center are the computing nodes, which are represented
by sys_power, the total power consumption of the calculation nodes in the center. Hence,
sys_power is the topmost influential feature at predicting the data center energy demand.
Time-based covariates such as quarter, months, and days have a greater impact on data
center energy consumption.

Furthermore, we present SHAP dependency plots that can provide the necessary
information to understand the feature interactions and underlying patterns. The Shapley
interaction of features can be computed as below:

φi,j = ∑
s⊆\{i,j}

|s|!(X− |s| − 2)!
2(X− 1)!

δij(s) (7)

The Shapley interaction of a single feature can be computed by subtracting from the
model’s main feature impact:

δij(s) = f̂x(s ∪ {i, j})− f̂x(s ∪ {i})− f̂x(s ∪ {j}) + f̂x(s) (8)

where s denotes the average value of all coalitions and X denotes the feature matrix.
Figures 4 and 5 depict SHAP feature dependency plots, which show the interactions of
features and their impact on predicting the target variable. For example, Figure 4a–d
illustrates the interaction between supply_air and exh_temp, exh_temp with covariate
month, syst_util with exh_temp, and sysairflow with cpu2_temp. The indexed feature
name is positioned on the x-axis, and the Shapley values are positioned on the y-axis.
The vertical lines represent the accumulated information density. The colors represent the
interaction of the features and their impact on predicting the target variable. The red color
represents the feature’s higher effect, while the blue color represents the feature’s lower
effect. For example, as the supply air temperature rises, the exhaust temperature in the data
center rises as well, which has a greater impact on predicting the ambient temperature.

Similarly, Figure 5 illustrates the SHAP feature dependency plots to demonstrate
feature interaction and the underlying pattern analysis with respect to the data center
energy demand target variables. The following subfigures, a–d, illustrate the SHAP feature
interactions and pattern analysis. In addition to sys power, the time covariate features of
quarter, months, and days, as well as the data center cooling system fan speed to supply
inlet temperature, have a greater impact on the data center’s energy consumption. As a
result, the following subfigures are based on these important features and their interactions
with other dependent patterns. The Shapley values of the feature are positioned on the
y-axis and the feature is positioned on the x-axis, while the interaction feature information
is accumulated on the vertical line. The red color represents the highest feature effect, while
the blue color represents the lowest effect in predicting the target variable. For example,
Figure 5a demonstrates how the covariate quarter feature interacts with the data center’s
return air or outlet temperature in the first quarter, indicating that the outlet temperature is
good at predicting energy demand.
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Figure 4. SHAP feature dependence plots depict the interaction of a specified index feature with
another feature that has a greater interaction with the index feature. The indexed feature is positioned
on the x-axis, and its Shapley values are positioned on the y-axis. Here, we present four different
SHAP feature dependency plots as (a–d). In the case of (a), as supply air in the data center increases,
so does the interaction with the exh temp in predicting the ambient temperature. Similarly, the other
graphs also interpreted the interdependency of features and their impact on predicting the target
variable. Note that red indicates a high feature effect and blue indicates a low effect.

Figure 5. SHAP feature dependence plots depict the interaction of a specified feature with another
feature. The indexed feature is positioned on the x-axis, and its Shapley values are positioned on
the y-axis. Here, we present four different SHAP feature dependency plots as (a–d). In the case of
(a), in the first quarter, the data center outlet temperature increases the data center energy demand
prediction. Similarly, the other graphs also interpreted the interdependency of features and their
impact on predicting the target variable.
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5. Conclusions and Future Works

In conclusion, we introduced a SHAP-values-assisted feature subset selection (FSS)
method for the identification of relevant features in multivariate time series (MTS) problems
in the context of a data center. It is a class of additive feature attribution values that obey
desirable accuracy, missingness, and consistency properties. It is also more consistent in at-
tributing feature importance and is more in line with human intuition. Furthermore, SHAP
addresses the high frequency and cardinality of features that occur in feature-importance-
based feature selection methods. SHAP computed the importance of each feature based
on game theory concepts that calculate the contributions of each feature towards model
development. As a result, the SHAP-value-based FSS method is useful for identifying
relevant FSS to effectively model data center operations while providing insight into the
data, improving model performance, and lowering computational expenses. Understand-
ing the underlying patterns enables data center operators to make data-driven decisions
while maintaining their data center operations ahead of time, ensuring service continuity
and resource availability. We proved the effectiveness of the SHAP-assisted FSS method
compared with several commonly used feature selection approaches by using real data
streams obtained from an HPC data center (ENEA CRESCO6) cluster. We demonstrated
the experiment by selecting ten of the most significant features of each method. The results
in Tables 2 and 3 demonstrate that, with better interpretability, the SHAP-assisted FSS
method outperformed the other commonly used feature selection methods discussed in
this paper. Additionally, unlike other methods, SHAP is a model-agnostic approach that
can be applied to machine learning and deep learning techniques.

The method needs further investigation with more data and validation with other ad-
ditive feature attribution methods in future work. We will extend our investigation to apply
the SHAP method for explaining complex black-box models and determining controllable
features to identify the optimal solution for optimizing data center operations. We will
also extend our work to investigate the SHAP method for identifying important features in
real-time predictions in both machine learning and deep learning forecasting models.
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