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Abstract: Computational analysis and integration of smartwatch data with Electronic Medical
Records (EMR) present potential uses in preventing, diagnosing, and managing chronic diseases. One
of the key requirements for the successful clinical application of smartwatch data is understanding
healthcare professional (HCP) perspectives on whether these devices can play a role in preventive
care. Gaining insights from the vast amount of smartwatch data is a challenge for HCPs, thus tools
are needed to support HCPs when integrating personalized health monitoring devices with EMR.
This study aimed to develop and evaluate an application prototype, co-designed with HCPs and
employing design science research methodology and diffusion of innovation frameworks to identify
the potential for clinical integration. A machine learning algorithm was developed to detect possible
health anomalies in smartwatch data, and these were presented visually to HCPs in a web-based
platform. HCPs completed a usability questionnaire to evaluate the prototype, and over 60% of
HCPs scored positively on usability. This preliminary study tested the proposed research to solve the
practical challenges of HCP in interpreting smartwatch data before fully integrating smartwatches
into the EMR. The findings provide design directions for future applications that use smartwatch
data to improve clinical decision-making and reduce HCP workloads.

Keywords: Electronic Medical Record (EMR); smartwatch; machine learning; anomaly detection;
health monitoring; co-design; design science; diffusion of innovation

1. Introduction

Analysis of user-generated smartwatch data offers opportunities to improve lifestyle
and health outcomes as well as overall healthcare delivery [1–5]. Machine Learning
(ML) and deep learning techniques have previously been used to analyse the physio-
logical big data collected by smartwatches to detect the onset of diseases such as cardio-
vascular disease, Parkinson’s disease, mental health disorders, dementia, asthma, and
COVID-19 [2,6–8]. Healthcare providers have also recognized this technology’s potential in
preventive care [9,10]. Computational analysis of large datasets generated by smartwatches
to detect anomalies, extract meaning, and present information in a visually appealing
manner benefits healthcare professionals by optimizing clinical decision-making for the
early detection and diagnosis of possible health disorders [11–14]. Integrating smartwatch
data into clinical care and with Electronic Medical Records (EMRs) may also provide a more
comprehensive view of a person’s health and complement routine clinical data, leading
to better patient/client engagement in self-care and increased healthcare efficiency [15].
However, the integration of smartwatch data analytics into EMR and clinical workflows has
been slow due to the existing gap between computational analyses, healthcare professionals’
(HCP) interpretation of technical machine-learning processes and results, and the risk of
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an increased workload [3,16]. Integration of wearables into EMR still has to be improved
and standardized for wider acceptance into healthcare practice for preventive care [3].
One of the key requirements for the successful clinical application of smartwatch data is
understanding HCP perspectives on whether these devices can play a role in preventive
care [1,3,4]. Gaining these perspectives would shift the focus of development from design-
ing systems for users to designing systems with users [17,18], and healthcare providers
should be directly involved in the development of the technology that will, ultimately,
impact them. The co-design approach actively involves users to value their expertise and
recognise them as collaborators throughout the design process [17]. Co-design is a user-
centred approach that brings together domain experts, users, and researchers to design
and develop systems to increase user engagement and meet the needs of multidisciplinary
collaboration [18]. However, there is a dearth of research on designing smartwatch–based
health monitoring applications for preventive healthcare employing a co-design approach.
Practical cases demonstrating the usefulness of smartwatches in health and lifestyle support
are required to guide the use of this technology in real-world health monitoring applica-
tions. Moreover, meaningful involvement of HCP in initial artefact design and evaluation
should take place to assist in the development of relevant and practical applications for
deployment in clinical settings [17]. Therefore, this study aimed to co-design, develop, and
evaluate a health monitoring tool (a prototype) using smartwatch data analytics to assist
HCP with clinical decision-making.

This study has both theoretical and practical contributions. Theoretically, it contributes
to the diffusion of innovation theory by operationalizing the designing for diffusion con-
cept [19], through the involvement of end users in the prototype design. The participatory
design aimed to ensure that HCPs’ requirements were met and that a useful solution was
created without increasing HCPs’ workload burden. The study’s practical contribution is
through demonstrating the feasibility of smartwatch data integration for health monitoring,
enabling data-driven clinical decision-making. This study has brought a co-design-based
Design Science Research (DSR) artefact to the fore, combining the concepts of co-design
and DSR, strengthening collaborative innovation and knowledge accumulation. Moreover,
healthcare providers can communicate early warning signs with their clients/patients
for early intervention through the prototype. This study thus indirectly supports peo-
ple/patients to self-regulate their health behaviour and engage in a healthy lifestyle, as
they value the feedback and input of health experts more than the automated feedback
from smartwatches [20].

The remainder of this paper is structured as follows. The next section reviews the
related work on health monitoring tools using smartwatch data. The proposed research
methods are presented in Section 3, including frameworks employed, study design, par-
ticipants, and study phases. Data analysis and results are reported in Sections 4 and 5.
Discussion, implications, and future work are highlighted in Section 6. Finally, limitations
are presented in Section 7, and conclusions in Section 8.

2. Related Work

Recently, there has been an increasing scholarly interest in aggregating wearable
data with official health records to give HCPs an integrated view of an individual’s health.
Smartwatches collect enormous amounts of data using different sensors and they can record
data points per day, minute, or second, thus generating hundreds of megabytes of data per
user. With the advancement of sensors for heart rate monitoring and the introduction of
Electrocardiography (ECG) and Photoplethysmography (PPG) sensors in smartwatches,
several authors have focused on the detection of cardiovascular diseases. Using wearable
PPG sensors, Torres-Soto and Ashley [21] created a multitask deep learning model to
evaluate the signal quality and arrhythmia event detection for real-time identification of
atrial fibrillation. Tison and Sanchez [22] too developed a deep neural network for the
passive detection of Atrial Fibrillation using smartwatch data and validated it against
the reference standard 12-lead electrocardiography (ECG) diagnosed Atrial Fibrillation.
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Additionally, the COVID-19 outbreak has also accelerated the development of cutting-edge
medical technologies that allow care delivery without requiring direct physical contact. A
growing body of research has demonstrated the utilization of smartwatches in predicting
and preventing COVID-19 by employing anomaly detection algorithms [6–8].

Wearable technology, therefore, creates opportunities for real-time remote health
monitoring by HCPs. This technology has the potential to transform the healthcare industry
and medical practices for better diagnosis, timely treatment, and preventive healthcare.
Commercially available wearables, including the Fitbit, Apple Watch, Samsung Gear, and
Xiaomi Mi, have shown reasonable performance in accuracy for physiological parameters,
leading these devices to be increasingly used in research [2,14]. Data processing and
continuous monitoring of physiological parameters recorded by wearables may foster more
efficient and reliable diagnoses. For example, heart rate is a physiological parameter that
is clinically relevant, and an abnormal heart rate over time can give an indication of an
individual’s overall health. These abnormal data points that deviate significantly from
most data and do not conform to expected behaviour are called anomalies [23], which can
be detected using mathematical models and machine learning algorithms.

Increasing research efforts are directed at exploring continuous and remote health moni-
toring and the integration of smartwatch data to predict, detect, or manage various diseases.
Gay and Leijdekkers [24] and Hill and Garcia [25] proposed solutions to aggregate data from
multiple wearable devices on a central database server or by creating a mobile app to enable
interoperability between wearable devices. Kheirkhahan and Nair [26] have also developed a
framework for real-time and online assessment of mobility monitoring (ROAMM) to monitor
physical activity based on smartwatch data for visualization and summary statistics. Their
framework included a mobile application to collect and pre-process data and a server for
storing and retrieving data and remote monitoring. However, before integrating smartwatches
into health monitoring, a thorough analysis of their accuracy and influence on work practices
should be performed for the smartwatch to obtain greater acceptance from healthcare experts.
It is necessary to develop real-world cases focused on the needs of HCP in order to assess the
usefulness, user-interface design, and usability [2].

3. Methods
3.1. Frameworks

We employed the DSR approach [27] and used Diffusion of Innovation (DoI)
theory [28,29] as an overarching research framework in this study. Design Science Re-
search is a problem-focused research paradigm for solving a specific practical problem by
designing, building, and evaluating new constructs, models, algorithms, methods, and
systems [27,30–32].

Rogers’s Diffusion of Innovation theory [28] seeks to explain how, why, and at what
rate new ideas and technology spread. Dearing [33], however, further suggests applying
diffusion of innovation for intervention development by involving potential users during
the design of the innovation rather than once the innovation has been designed. We chose
the design for diffusion approach as it offers an increased likelihood of successful diffusion
into the user space [19,34]. In addition, the collaboration between healthcare providers,
developers, and researchers through co-design provides necessary hands-on experience
and infrastructure and is recommended for successful implementation of these solutions
into practice [17,35].

3.2. Study Design

The study was divided into three phases: co-design, development, and evaluation,
based on co-design [36] and design science research frameworks [27] (Figure 1). In the
observation phase, we employed a co-design approach to gain insight into HCP needs for
an application that would allow them to monitor, interpret, and make health decisions
based on smartwatch data. In the systems development phase, we developed a web-based
application prototype that used machine learning to help visualize long-term smartwatch
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data, analyse health trends (anomaly detection), and allow HCPs the ability to communicate
areas of concern to clients/patients. Finally, in the experimentation phase, HCPs evaluated
the prototype.
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Attributes from Rogers’s Diffusion of Innovation theory [28] were applied in the
design and evaluation phases of the prototype to determine how potential end-users
would respond to the prototype. The attributes used in this study were relative advantage,
compatibility, complexity, and trialability. These attributes were applied through the
questionnaires used in both the co-design and evaluation phases of the study, as these
attributes improved the understanding of how integrating smartwatch data with EMR
relates to healthcare professionals’ work practices.

Relative advantage and compatibility were applied in the co-design phase of the
study [28]. Relative advantage is the degree to which an innovation is perceived as better
than the idea it supersedes. Compatibility is how consistently the innovation is perceived
as compatible with existing EMR systems. Complexity and trialability were used in the
evaluation phase of the study. Complexity is the extent to which an innovation is perceived
as challenging to understand and use. Trialability is whether an innovation may be trialled
and modified. Observability is the degree to which the innovation results are visible to
others. The observability attribute was not yet applicable in this study as the prototype
was not integrated into the EMR for automatic documentation.

3.3. Participants

We invited HCPs interested in using smartwatch data in health monitoring to par-
ticipate in this study. We surveyed eight HCPs for this study (one Physiotherapist, four
clinical exercise physiologists, two physical trainers, and one General Practitioner-GP).
We targeted specific HCPs who were most likely to be involved in using or monitoring
smartwatch data as the first point of contact to potentially interact with smartwatch users.
This study was approved by the Auckland Health Research Ethics Committee (Reference
number: AH23872).

3.4. Study Phases
3.4.1. Co-Design

Participants completed an anonymous online survey that contained a mix of multiple-
choice, open-ended, and closed-ended questions. Participants were asked their views
on the accuracy of smartwatch data, the possible benefits and barriers to integration in
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a healthcare setting, and how they would like to view smartwatch data in a web-based
application. Participants were also asked what smartwatch data they perceive as valuable
and useful what type of health anomalies/irregularities they would like to see highlighted
in the summary reports, who should view the summary reports, and whether they prefer
to have an alert feature to notify them about any abnormal event in the data.

3.4.2. Prototype Development

A prototype was then developed based on the information obtained through the
co-design survey. Smartwatch data (FitBit®) from a publicly available dataset—PMData:
A sports logging dataset Simula PMData [37]—was used to train a machine learning
algorithm for the detection of anomalies in the data. The PMData dataset [38] contains
five months of data collected from 16 smartwatch users, who were encouraged to wear
the watch as much as possible, as well as when sleeping. Smartwatches collect enormous
amounts of data using different sensors and record data points at daily, per minute, or per
second frequencies, thus generating hundreds of megabytes of data per user per day. The
Fitbit Versa 2 (Google LLC, Mountain View, CA, USA) smartwatch was used to collect data
in the PMData dataset between November 2019 and March 2020. The following data were
available in the dataset (i) heart rate (i.e., the number of heartbeats per minute (bpm) at a
given time), (ii) calories burned per minute, (iii) steps per minute, and (iv) distance moved
per minute (in centimetres). These parameters were used as features in the development
of the machine-learning algorithm as they were the most relevant variables from the
smartwatch data and had the highest sampling frequency. The data was used to train and
build a predictive machine learning model to detect irregular heartbeats based on heart rate,
calories, steps, and distance data over time. A web-based dashboard was also developed to
visually present the potential health anomalies with the possibility for our participants to
filter out false positives using their domain knowledge.

3.4.3. Prototype Evaluation

All eight co-design participants were contacted via email to participate in the eval-
uation phase. Participants were sent a link to an online video demonstrating how the
prototype application works, and they were also sent the URL of the working prototype
hosted on the web server. After viewing and interacting with the prototype, participants
were required to evaluate the prototype by completing the mHealth App Usability Ques-
tionnaire (MAUQ) [39]. The MAUQ is a validated questionnaire with different versions
available for patients as well as healthcare providers. We chose the healthcare provider
version, with a slight modification in wording to fit into the context of the prototype.
The MAUQ for healthcare providers is an 18-item questionnaire categorized into three
subscales—ease of use, interface and satisfaction, and usefulness. One item related to poor
internet connection was not relevant to this study and was, therefore, excluded. Of the
remaining three Diffusion of Innovation attributes, complexity was tested via the ease-of-
use items, and trialability was tested via the items from the interface and satisfaction, and
usefulness categories. Positive and negative opinions about the prototype were measured
using a 5-point Likert scale, with 1 indicating participants strongly disagreeing, and 5 in-
dicating participants strongly agreeing with the statements. An additional open-ended
question was added to the usability questionnaire asking about any additional features
that participants felt would be valuable to incorporate in future iterations of the prototype.

4. Data Analysis
4.1. Co-Design

We analysed data collected during the co-design phase by thematic analysis to identify
conceptual patterns between the ideas and application functional requirements from partici-
pants. Descriptive statistics were used to tabulate the frequencies of closed-ended questions.
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4.2. Prototype Development

We used a clustering algorithm to build a predictive machine learning model using
the PyCaret library (pycaret.anomaly). Pycaret.anomaly is an open-source, low-code
machine-learning library in Python that automates machine-learning workflows to detect
anomalies in data) (https://pycaret.readthedocs.io/en/latest/api/anomaly.html, accessed
on 12 February 2023). We used heart rate, calories, steps, and distance data over time as
features for anomaly detection. Power BI (https://powerbi.microsoft.com/, accessed on
12 February 2023) visualization reports were generated and integrated into the web-based
dashboard to display the anomalies detected using the trained machine learning pipeline.

PyCaret automates several time-consuming tasks in machine learning, such as data
pre-processing, feature engineering, hyper-parameter tuning, and model deployment. Each
operation performed in PyCaret is sequentially stored in a fully automated Pipeline for
deployment. Its Anomaly Detection Module is an unsupervised machine learning module
to identify rare items, events, or observations, with over 12 algorithms to analyse the results
of trained models.

To prepare the data for further processing and analysis, we changed the sample
frequency of the heart rate data so that all datasets (including heart rate, calories, steps,
and distance) recorded the observations per minute. For each participant, we created an
empty DataFrame with a DateTimeIndex matching our sample period and then merged all
four datasets to create a single DataFrame of time series data. Next, the setup() function
initialized the environment and inferred the data formats for all input features. To receive
the list of all available anomaly detection algorithms, we used the model() function as
shown in Figure 2. To train the machine learning model, we used create_model() and
trained the Clustering-Based Local Outlier function (ID = “cluster”) model. The fraction
parameter determined the proportion of outliers in the dataset. The fraction parameter
was set to 0.0001. The default value of the contamination parameter was set at 0.05, when
the fraction parameter was not used. The assign_model() function assigned the anomaly
labels to the dataset to analyse the results by appending two new columns—"Anomaly”,
which held a value of 1 for an outlier and a value of 0 for an inlier, and “Anomaly Score,”
which was a continuous value as a decision function (the algorithm calculated the score
internally, based on which the anomaly is determined). The predict_model() function
assigned anomaly labels to a new unseen dataset to make predictions. The save_model()
function saved the model and the transformation pipeline for later use. Additionally, the
load_model() function loaded a saved model in the same or an alternative environment,
and it may be used on new unseen data for prediction. Supplementary File S1 contains the
complete code for anomaly detection.

Performance of the Model

The additional columns at the end of the dataset produced by the anomaly detection
algorithm classified data with anomaly labels. We trained different classification models
and obtained their Accuracy, Precision, Recall, and F1 score, to evaluate their performance
using the compare_model() function on the resulting labelled dataset. The clustering-based
local outlier algorithm produced the best results when we compared its performance to the
other commonly used neighbour based (knn) and classification-based (iforest) anomaly
detection algorithms. Moreover, local anomalies are crucial in smartwatch data, as anoma-
lies at any point in time may influence neighbouring readings. The time instances just
before and after an anomaly were critical and significant in any medical condition [14]. A
clustering-based local outlier algorithm was used because it detected local anomalies [14].
Additionally, the clustering-based local outlier approach had a faster calculation time and
was effective for big datasets [40]. The results of the performance analysis are provided in
Supplementary File S2.

https://pycaret.readthedocs.io/en/latest/api/anomaly.html
https://powerbi.microsoft.com/
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4.3. Prototype Evaluation

We calculated the average response to all items on the usability questionnaire to
evaluate the prototype’s usability. Item scores 1 or 2 were regarded as negative responses,
3 as neutral, and 4 or 5 were considered positive responses to the prototype’s usability. The
higher the overall average, the higher the usability [39].

5. Results
5.1. Co-Design

Based on the requirements gathered in the co-design phase, the objectives of the
prototype were identified from the survey responses as shown in Table 1. Participant
requirements were categorized into (1) DoI attributes—relative advantage and compati-
bility of the prototype; (2) visualization and customization of user interface features; and
(3) anomaly detection and alert features of the prototype. Participants’ responses are re-
ported from most to least preferred requirements. Participants indicated that heart rate was
the most valuable parameter for data visualization and anomaly detection. Participants
also indicated that they would prefer to view the summary reports as charts and bar graphs
and expressed that healthcare administrators should be the personnel to view the summary
reports to take further action, i.e., they could notify HCPs for decision-making.

Table 1. Requirements and objectives resulting from the co-design phase.

No. Requirements Most to Least Preferred (Objectives)

1.

Diffusion of Innovation attributes

Relative advantage:
How monitoring smartwatch data benefit clinicians and
patients

Improved communication
Patient/client empowerment
Behaviour change
Informed decision making

Compatibility:
How integrating smartwatch data assist clinicians with patient
care

It will be a good starting point and would provoke more
productive discussions
It will support evidence-based practice
Good way to review the data and plan before the consultation
It will reduce the consultation time spent gathering information
on lifestyle and health data
It will increase the workload
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Table 1. Cont.

No. Requirements Most to Least Preferred (Objectives)

2

Data visualization and customization

Most valuable activity and physiological parameters

Heart rate
Step count
Calories burned
Sleep score, ECG, blood glucose
Sedentary minutes

The preferred way to view the summary reports

Charts
Bar graphs
Line graphs
Text summaries

Frequency of summary reports

Weekly
Monthly
Daily
Only if an anomaly is detected

3

Anomaly detection and alert feature

Type of anomalies
Heart rate
Sleep score
Pain levels

Who should view the summary reports for further actions? Healthcare administrators (who can then notify clinicians)
Clinicians

Alert feature 60% preferred to have this feature

5.2. Prototype Development

The web-based application prototype was developed to display the long-term smart-
watch data (Figure 3a) and anomaly detection results (Figure 3b) in visualizations and also
included an email feature to allow for feedback on areas of concern to patients/clients. A
drop-down feature on the dashboard was to cycle through visualizations of smartwatch
data and anomaly detection results of different patients/clients. Anomalies were displayed
using an interactive graph, and participants had the ability to use their domain knowledge
to filter out false positives by changing the health parameters relative to individuals’ de-
mographics, activity, and physiological parameters. After viewing the anomaly detection
results, participants could notify their clients or patients about further action to be taken.

5.3. Prototype Evaluation

One physiotherapist and clinical exercise physiologist from phase one did not partici-
pate in the evaluation phase. We received a total of 10 responses in the evaluation phase
(two physiotherapists, three clinical exercise physiologists, four physical trainers, and one
General Practitioner). The average and number of responses above four for the usability
questionnaire items are shown in Table 2 and Figure 4. The interface was well-received,
with at least 60% of participants giving each a score (≥4). The ease-of-use category received
the highest and second highest rankings (average scores of 5 and 4.5). Items from the
interface and satisfaction category were the third highest-scored items (average scores of
4.4 and 4.3). All other items had average scores above or equal to 4, except the items that
corresponded to whether participants would use the prototype again (I11, average score
3.9), the prototype’s usefulness (I13, average score 3.8), and whether the prototype has all
the functions and capabilities participants expected to have (I16, average score 3.7). Overall,
each item scored in either the “positive” or “neutral” range.

Participants left several comments to the open-ended question about features that
participants felt would be valuable to incorporate in future iterations of the application
(Table 3).
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Table 2. Results of the Usability Questionnaire.

Question/Item Average #Responses with Scores ≥4

Ease of use
I1: The prototype was easy to use 4.5 10
I2: It was easy for me to learn and use the prototype 5 10
I3: The navigation was consistent when moving between screens. 4.5 10
I4: The interface of the prototype allowed me to use all the functions 4.5 10
I5: Whenever I made a mistake using the prototype, I could recover easily and
quickly 4.1 7

Interface and satisfaction
I6: I like the interface of the prototype 4 7
I7: The information in the prototype was well organized, so I could easily find the
information I needed 4.4 9

I8: The prototype adequately acknowledged and provided information to let me
know the progress of my action 4.3 9

I9: I feel comfortable using this prototype in social settings 4 7
I10: The amount of time involved in using this prototype has been fitting for me 4.3 9
I11: I would use this prototype again 3.9 8
I12: Overall, I am satisfied with this prototype 4.2 8

Usefulness
I13: The prototype would be useful for my healthcare practice 3.8 8
I14: The prototype improved my access to delivering healthcare services 4.1 8
I15: The prototype helped me manage my patients’/clients’ health effectively 4.1 7
I16: This prototype has all the functions and capabilities I expected it to have 3.7 6
I17: This prototype provides an acceptable way to deliver healthcare services 4 8
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Table 3. Participant’s comments in the evaluation phase.

Participant # Comment(s)

P1 “This will be a useful tool to monitor clients.”

P2

“The application was easy to navigate, informative. The latter question on above survey
was marked as equivocal for following reasons—1. The HR, calories and distance are
perhaps patients self monitored targets, when used for HR anomalies, currently if a
condition is suspected, it is monitored for 24 h and a treatment plan formulated. However,
this would be helpful on long-term monitoring. 2. Secondly, most helpful monitoring and
parameters of clinical relevance are BP and blood sugar, I would hope future developments
will allow this.”

P3 “Can this be used for all smart-watches-if this is not the case the application would not be
too useful.”

P4
“possibly more suitable for hospital based [sic] physiotherapy rehab services or gym based
[sic] training. other featuers [sic] to add could be total time spend exercising, etc. or time
spent sitting inactive”

P5 “Power meter data while running and cycling”

P6

“The ability to personalize anomaly/abnormality detection. What I want to be notified of”

“Heart rate variability metric added, an interactive component with the client may be a
built-in chat, a client input function where they can add data such as body weight, mood,
and energy levels or leave comments regarding the daily activity that could assist in the
review processand explain any abnormalities”

“I think the challenge of implementation will be streamlining the process of monitoring
patients’ health. If a specific client has multiple health conditions and various methods of
recording data, having to refer to multiple online platforms or documentation could be a
challenge. I feel the current design is useful, but further development to create a “one-stop
shop” would be the next step. Patients with heart conditions or diabetes could input their
daily blood pressure/blood glucose levels. This does span outside the scope of smartwatch
data but may improve the usefulness of the online platform for healthcare professionals.”

6. Discussion, Implications, and Future Work

This study co-designed, developed, and tested the usability of an application prototype
that used smartwatch data and advanced analytics for health monitoring and anomaly
detection. Our study highlights the potential of using smartwatch data to support HCPs
in monitoring their patients/clients’ health, and to motivate people to prevent chronic
diseases and manage their health [5]. The co-design phase enabled us to initially gather
information on HCP needs and expectations from these technologies to optimally support
them in their work. In addition to HCPs’ preferences about physiological parameters and
the user interface, HCPs indicated their preference for healthcare administrators (someone
with technical knowledge) to be the type of personnel to view the results of smartwatch
data analytics, who can then notify the HCP when their intervention is required, thus
possibly reducing burden associated with the additional data work. This feedback provides
tangibility to introducing new roles in healthcare for the interpretation of technical results
and as an interface between the technical and the clinical sides of the healthcare system [3].

In the evaluation phase, HCPs were particularly satisfied with the prototype’s interface
design and ease of use. The findings were comparable with prior studies on healthcare
providers’ perceptions about using smartwatch data for clinical decision making, in that
HCPs recognized this technology’s potential in preventive care [4,9,10]. Some participants
left comments that would be useful to consider in future designs of similar applications
including suggestions on the addition of other measurable parameters if the technology
allows (participant 2), filtering anomaly detection to suit the requirements of the HCP
(participant 6), as well as including a chat function with the notification feature.

HCPs can also use this prototype for at-risk individuals, healthy individuals (as
a preventive tool), and individuals diagnosed with chronic diseases (to manage their



Future Internet 2023, 15, 111 12 of 15

condition). Responses to the open-ended question highlighted the areas of improvement
for future iterations. Features like total exercise time, inactive minutes, and heart rate
variability can be included in the machine learning model to detect anomalies in heart
rate and other physiological parameters. The prototype can be extended by testing its
compatibility with data from other smartwatches and creating a deployment framework for
implementation in real-world settings. For example, the Apple Watch’s electrocardiogram
(ECG) feature can be used to detect cardiac arrhythmias or atrial fibrillation [41].

By addressing HCPs’ needs with the prototype, a practical contribution of this study
is to provide them with an instrument that detects anomalies and visualizes smartwatch
data to improve patient care delivery and reduce their workloads. This study contributes
to IS research by combining the concepts of co-design and DSR through the development
of a system artefact and the evaluation thereof. The study also theoretically advances the
diffusion of innovation theory by operationalizing the design for diffusion notion [19].
The prototype optimizes technology interaction with human oversight by involving HCP
(human element) during the co-design and anomaly detection [42]. The study aimed to
support HCP in clinical decision-making and not replace them.

There are growing efforts to combine health data from multiple sources to give HCP
a unified and comprehensive view of clients’/patients’ health. Our prototype solution,
using user-generated data from smartwatches, is one instance to demonstrate a possible
integration of smartwatch data for preventive health monitoring. Moreover, we utilised a
conventional machine learning algorithm as the exemplar to demonstrate the feasibility of
this approach. The clustering algorithm can be replaced by deep learning models under
different application scenarios to improve the performance of the proposed approach,
for example, Convolutional neural networks (CNN) for ECG image data [21,43]; Long
short-term memory (LSTM), as smartwatch data is time–series data [6]; Multilayer Extreme
Learning Machines (ML-ELMs) for accelerated deep learning development [44]; and LSTM
autoencoders to reduce the noise in data.

In addition, integrating smartwatch data into EMR presents significant infrastructure
challenges, including secured and scalable data storage, standards and protocols for en-
suring interoperability, connectivity and resource allocation, ethical and legal frameworks
that protect patient privacy, and ensuring data ownership. Addressing these infrastruc-
ture challenges requires a multidisciplinary approach that involves healthcare providers,
technology providers, researchers, policymakers, and patients. Future research can help
address these challenges by developing innovative solutions that are scalable, interoper-
able, secure, and patient-centred. Finally, future research can also focus on developing
reimbursement models that recognize the clinical value of using smartwatch data and
support the reimbursement of healthcare providers for the time and resources required to
use smartwatch data reports.

7. Limitations

Although we learned practical design requirements and future directions from HCP
during the co-design and evaluation phases, this work has certain limitations. First, the
analytical approach (machine learning algorithm) that we considered in our prototype is
just an example, and the results require more careful and exhaustive clinical validation
before deploying in clinical settings. The small sample size was another limitation; therefore,
user requirements may not fully represent specific target groups’ viewpoints. Subsequent
studies can consider a larger sample size to overcome this limitation. We envision a future
tool designed with the collaborative efforts of the interdisciplinary working group and
multiple stakeholders to build a deployment framework of the prototype with real-time
smartwatch data.

In addition, we recognize that patient perspectives and privacy considerations around
using and sharing smartwatch data are enormous challenges to overcome for the successful
deployment of such applications. Having said that, as a developmental step, we wanted
to ensure that HCPs perceived smartwatches as having clinical value before involving
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patients directly. Future endeavours can extend this study by including healthy people and
patients in an iterative co-design process to understand their perspectives on such tools, to
prevent and manage chronic diseases.

8. Conclusions

Integrating smartwatches into EMR may benefit HCPs in care delivery, and there is sig-
nificant potential for smartwatches to be used for health monitoring. An integrated solution
may streamline the process of monitoring patients’ health. This study found that we were
able to develop an application prototype that uses smartwatch data to detect and visually
present anomalies to HCP for further action through a co-design process. Moreover, the
co-design process ensured the effective application of these technologies in healthcare. This
preliminary study evaluated the acceptability of smartwatches among healthcare profes-
sionals and tested their feasibility before integrating them into the EMR. The prototype was
well received, with some positive comments about the potential integration of smartwatch
data into clinical practice.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/fi15030111/s1, Python code for the machine learning algo-
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