
Citation: Boumechaal, H.; Boufaida,

Z. Complex Queries for Querying

Linked Data. Future Internet 2023, 15,

106. https://doi.org/10.3390/

fi15030106

Academic Editor: Paolo Bellavista

Received: 21 December 2022

Revised: 17 February 2023

Accepted: 26 February 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Complex Queries for Querying Linked Data
Hasna Boumechaal * and Zizette Boufaida

LIRE Laboratory, University of Constantine 2-Abdelhamid Mehri, Constantine 25000, Algeria
* Correspondence: hasna.boumechaal@univ-constantine2.dz

Abstract: Querying Linked Data is one of the most important issues for the semantic web community
today because it requires the user to understand the structure and vocabularies used in various
data sources. Furthermore, users must be familiar with the syntax of query languages, such as
SPARQL. However, because users are accustomed to natural language-based search, novice users
may find it challenging to use these features. As a result, new approaches for querying Linked Data
sources on the web with NL queries must be defined. In this paper, we propose a novel system
for converting natural language queries into SPARQL queries to query linked and heterogeneous
semantic data on the web. While most existing methods have focused on simple queries and have
ignored complex queries, the method described in this work aims to handle various types of NL
queries, particularly complex queries containing negation, numbers, superlatives, and comparative
adjectives. Three complementary strategies are used in this context: (1) identifying the semantic
relations between query terms in order to understand the user’s needs; (2) mapping the NL terms to
semantic entities; and (3) constructing the query’s valid triples based on the different links used to
describe the identified entities in order to generate correct SPARQL queries. The empirical evaluations
show that the proposed system is effective.

Keywords: semantic web; Linked Data; question answering systems; SPARQL

1. Introduction

On the web, heterogeneous, complex, and distributed datasets have emerged in recent
years. Linked Data [1] refers to a collection of interconnected datasets on the semantic web.
This last method uses ontologies to represent the semantics and structures of datasets. This
massive amount of data available on the web must be in a resource description framework
(RDF) data model to create a Web of Data [2]. An RDF is a World Wide Web Consortium
(W3C) standard for describing and defining various types of Linked Data vocabularies.

In this context, one of the most pressing issues for the semantic web community today
is querying Linked Data. However, the user must understand the structure and vocabulary
used in various data sources. Furthermore, users must be familiar with the syntax of
formal query languages such as SPARQL [3]. Because they are accustomed to natural
language-based search, novice users may find it challenging to use these features. While
forming SPARQL queries to query Linked Data is not the easiest task, even for advanced
users, natural language interfaces are considered the ultimate solution of semantic web
research for accepting natural language queries and translating them to SPARQL queries.

Over the years, various approaches for querying Linked Data with NL queries have
been presented in the literature, such as QASYO [4], FREyA [5], DEANNA [6], GFMed [7],
CASIA [8], gAnswer [9], Xser [10], WDAqua [11], the system in [12], and finally, the method
by Kotnis et al. [13]. However, most existing methods have been designed to answer simple
queries and do not take into account complex queries with specific conditions. They are
not intended to answer compound queries or queries containing negation, numbers, date
comparisons, superlatives, and comparative adjectives.

This work primarily aims to propose a Linked Data query framework for answering
various NL queries. Simple queries, as well as those containing conjunctions, negations,

Future Internet 2023, 15, 106. https://doi.org/10.3390/fi15030106 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15030106
https://doi.org/10.3390/fi15030106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi15030106
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15030106?type=check_update&version=1

Future Internet 2023, 15, 106 2 of 20

numbers, superlatives, and comparative adjectives, can be addressed by our proposed
system. A new system for constructing correct SPARQL queries from various NL query
scenarios, particularly complex queries, is proposed. The following steps are used to
interpret the user’s query:

1. Identify the semantic relations between the NL query terms;
2. Map these terms to specific entities of Linked Data;
3. Combine the identified semantic relations, the matching entities, and the links between

these matching entities in the datasets to form valid triples of the query;
4. Formulate SPARQL queries based on all the valid triples.

The remainder of this paper is organized as follows: Section 2 presents existing works
in the field of Linked Data querying; Section 3 discusses the proposed system and its main
steps; then, an evaluation is presented in Section 4; Section 5 conducts a discussion; and
Section 6 presents the conclusions and perspectives of our work.

2. Related Work

Various approaches in the literature have been used to analyze a user’s natural lan-
guage query to query Linked Data. This section provides information about some ap-
proaches used on the semantic web:
Triple-based system approaches. These systems mainly focus on natural language process-
ing (NLP) tools to represent the syntax tree of the NL query as a set of triples in the form
<subject, predicate, object>. Then, these query triples are translated into dataset compatible
triples to produce a structured query. Specifically, they use NLP tools, semantic metrics, and
WordNet [14] to make sense of NL queries with respect to a dataset’s structure. QASYO [4]
is an example of these systems. These systems require syntactically and grammatically
correct queries as input in this context. However, once the query is parsed incorrectly or
contains syntax errors, producing the correct structured query and the relevant answers is
difficult. This problem becomes worse, especially for complex queries.
Graph-based system approaches. These systems represent the structure of the query as
a graph based on the dependency analysis of the query. Then, this graph is mapped
to a subgraph in the RDF dataset. In particular, they search in the RDF graph for the
semantic elements that correspond to the query terms to construct the semantic dependency
graph, which can be easily converted into a structured query. DEANNA [6], gAnswer [9],
WDAqua [11], the system in [12], and the method by Kotnis et al. [13] can be classified
as graph-based systems. However, identifying the corresponding entities between the
graphical representation of the query and the RDF graph is not a trivial task because these
systems must measure the similarity between the two graphs to find the RDF subgraphs
corresponding to the query. Therefore, these systems need to summarize the knowledge
graph to reduce the search space. It should be noted that these system approaches do
not address complex queries because identifying the graphical representation of complex
queries and their corresponding entities with the RDF graph is very difficult compared to
simple queries.
Machine learning-based system approaches. These systems use a contextual learning
mechanism to improve system performance over time by answering specific user questions.
FREyA [5] and CASIA [8] are systems that use machine learning to record suggestions
presented to the user for the disambiguation of specific terms. These systems are explainable
for a particular dataset. However, the main limitation of these system approaches is their
inability to consider complex queries, and they have difficulty answering queries for which
they have not seen training data.
Controlled language-based system approaches. In this type of system, users express their
input queries in the syntax of a controlled language (CL). A CL is a restricted version of a
natural language that uses a well-defined subset of a language’s grammar and lexicon but
adds the terminology needed in a technical domain [15]. Therefore, the concerned users
are the experts who know the domain well and use simple and precise queries to query a
given dataset. GFMed [7] is a controlled language system.

Future Internet 2023, 15, 106 3 of 20

The major previous system approaches perform very accurate simple and compound
queries. However, these systems fail when users want to filter the results by specific expres-
sions containing differences, aggregations, ordering, negation, numbers, date comparisons,
superlatives, and comparatives adjectives.

Inspired by this challenge, in this work, we propose a new system approach for
querying Linked Data using different forms of NL queries. In particular, this system can
deal with complex queries containing specific relations and can identify them and the links
between their corresponding entities in the datasets.

3. Proposed System

To translate natural language queries into SPARQL, we believe that a querying process
that consists of four steps should be followed, as shown in Figure 1.

Future Internet 2023, 15, x FOR PEER REVIEW 3 of 21

Controlled language-based system approaches. In this type of system, users express their
input queries in the syntax of a controlled language (CL). A CL is a restricted version of a
natural language that uses a well-defined subset of a language’s grammar and lexicon but
adds the terminology needed in a technical domain [15]. Therefore, the concerned users
are the experts who know the domain well and use simple and precise queries to query a
given dataset. GFMed [7] is a controlled language system.

The major previous system approaches perform very accurate simple and compound
queries. However, these systems fail when users want to filter the results by specific ex-
pressions containing differences, aggregations, ordering, negation, numbers, date com-
parisons, superlatives, and comparatives adjectives.

Inspired by this challenge, in this work, we propose a new system approach for que-
rying Linked Data using different forms of NL queries. In particular, this system can deal
with complex queries containing specific relations and can identify them and the links
between their corresponding entities in the datasets.

3. Proposed System
To translate natural language queries into SPARQL, we believe that a querying pro-

cess that consists of four steps should be followed, as shown in Figure 1.

Figure 1. The proposed querying process.

In this context, users can explore their information needs more naturally without re-
lying on technical aspects of the querying process. A detailed description of each step of
our process with some illustrative examples is given in the following subsections.

3.1. Interpreting the User’s NL Query
In order to understand the user need, we must identify the two main parts of a query,

which are:
• The query object represents what the user wants in return.
• The query body consists of the semantic relations between the NL query terms.

Figure 1. The proposed querying process.

In this context, users can explore their information needs more naturally without
relying on technical aspects of the querying process. A detailed description of each step of
our process with some illustrative examples is given in the following subsections.

3.1. Interpreting the User’s NL Query

In order to understand the user need, we must identify the two main parts of a query,
which are:

• The query object represents what the user wants in return.
• The query body consists of the semantic relations between the NL query terms.

We consider that combining these parts of the query supports the construction of a
correct SPARQL query. For example, the query «give me all libraries established before
1400» has two main parts:

1. Libraries as a query object.

Future Internet 2023, 15, 106 4 of 20

2. {libraries—established before—1400} as the query body.

While the user does not tell any information about these main parts in the asked query,
we must process the syntactic structure of the query in order to infer these parts. However,
the process of constructing the query to identify these parts is not a trivial task, especially for
complex queries. In this context, we believe that the query interpretation can be performed
using the representation of grammatical relations between words in a sentence provided by
The Stanford CoreNLP [16] which is an NLP tool built by Stanford University and is one of
the most widely used natural language analysis tools. CoreNLP enables users to derive
linguistic annotations for text, including token and sentence boundaries, parts of speech,
named entities, numeric and time values, dependency, and relations, as shown in Figure 2.

Future Internet 2023, 15, x FOR PEER REVIEW 4 of 21

We consider that combining these parts of the query supports the construction of a
correct SPARQL query. For example, the query «give me all libraries established before
1400» has two main parts:
1. Libraries as a query object.
2. {libraries—established before—1400} as the query body.

While the user does not tell any information about these main parts in the asked
query, we must process the syntactic structure of the query in order to infer these parts.
However, the process of constructing the query to identify these parts is not a trivial task,
especially for complex queries. In this context, we believe that the query interpretation
can be performed using the representation of grammatical relations between words in a
sentence provided by The Stanford CoreNLP [16] which is an NLP tool built by Stanford
University and is one of the most widely used natural language analysis tools. CoreNLP
enables users to derive linguistic annotations for text, including token and sentence
boundaries, parts of speech, named entities, numeric and time values, dependency, and
relations, as shown in Figure 2.

Figure 2. Graph dependency of the query «give me all libraries established before 1400».

3.1.1. Identifying the Query Class
In this section, we present the query structure as the sequence of the query’s basic

grammatical elements such as subject, verb, and so on. To identify the query structure in
this context, we must process its word order, representing the specific sequence of words
in the query. For example, the query «what is the profession of Frank Herbert» has the
word order «WP - VBZ - DT - NN - IN - NNP - NNP» from the structure «Wh-word +
Auxiliary/Modal verb + subject + rest of the sentence».

In our work, to identify the main query parts, we classify the queries into four types:
yes/no questions, Wh questions, imperative queries, and compound queries. We note that
this query classification is based on the grammar of the English language. In the following,
we will describe the structure of each of these queries:
• Yes/no questions

The yes/no questions are made using auxiliary verbs (be, do, and have) or modal
verbs (can, may, and will) at the beginning of a sentence. Especially, yes/no questions are
the questions that can be answered by yes or no. Generally, these questions have the fol-
lowing structure:

Auxiliary/Modal verb + subject + verb + rest of the sentence (S1)

• Wh questions
Unlike yes/no questions, Wh-questions are used to ask for specific information. In

particular, Wh-questions begin with what, when, where, who, whom, which, whose, why,
and how. Generally, these questions have the following structures:

Figure 2. Graph dependency of the query «give me all libraries established before 1400».

3.1.1. Identifying the Query Class

In this section, we present the query structure as the sequence of the query’s basic
grammatical elements such as subject, verb, and so on. To identify the query structure in
this context, we must process its word order, representing the specific sequence of words
in the query. For example, the query «what is the profession of Frank Herbert» has the
word order «WP - VBZ - DT - NN - IN - NNP - NNP» from the structure «Wh-word +
Auxiliary/Modal verb + subject + rest of the sentence».

In our work, to identify the main query parts, we classify the queries into four types:
yes/no questions, Wh questions, imperative queries, and compound queries. We note that
this query classification is based on the grammar of the English language. In the following,
we will describe the structure of each of these queries:

• Yes/no questions

The yes/no questions are made using auxiliary verbs (be, do, and have) or modal
verbs (can, may, and will) at the beginning of a sentence. Especially, yes/no questions
are the questions that can be answered by yes or no. Generally, these questions have the
following structure:

Auxiliary/Modal verb + subject + verb + rest of the sentence (S1)

• Wh questions

Unlike yes/no questions, Wh-questions are used to ask for specific information. In
particular, Wh-questions begin with what, when, where, who, whom, which, whose, why,
and how. Generally, these questions have the following structures:

Wh-word + Auxiliary/Modal verb + subject + rest of the sentence (S2)

Wh-word + subject + Auxiliary/Modal verb + rest of the sentence (S3)

Wh-word + verb + rest of the sentence (S4)

• Imperative queries

Future Internet 2023, 15, 106 5 of 20

Imperative queries are based on the structure of imperative sentences. They express
an order or a request. Generally, they begin with verbs such as find, search, give, and
show me.

The general structure of imperative queries is as follows:

Verb + object + rest of the sentence (S5)

• Compound queries

Compound queries involve more than two simple queries connected by a coordinating
conjunction (and, but, or).

Query1 + coordinating conjunction + Query2 (S6)

In practice, we apply Algorithm 1 to identify the query type as follows:

Algorithm 1: Identifying the query type

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 21

Wh-word + Auxiliary/Modal verb + subject + rest of the sentence (S2)

Wh-word + subject + Auxiliary/Modal verb + rest of the sentence (S3)

Wh-word + verb + rest of the sentence (S4)

• Imperative queries
Imperative queries are based on the structure of imperative sentences. They express

an order or a request. Generally, they begin with verbs such as find, search, give, and
show me.

The general structure of imperative queries is as follows:

• Verb + object + rest of the sentence

• Compound queries
Compound queries involve more than two simple queries connected by a coordinat-

ing conjunction (and, but, or).

Query1 + coordinating conjunction + Query2 (S6)

In practice, we apply Algorithm 1 to identify the query type as follows:

Algorithm 1: Identifying the query type.

3.1.2. Identifying the Query Object
As mentioned above, the query object is related to the query structure and the rela-

tions between words in the query. For this, we process each structure to identify its rela-
tive object. We apply Algorithm 2 to identify the question object of each structure.

3.1.2. Identifying the Query Object

As mentioned above, the query object is related to the query structure and the relations
between words in the query. For this, we process each structure to identify its relative
object. We apply Algorithm 2 to identify the question object of each structure.

Future Internet 2023, 15, 106 6 of 20

Algorithm 2: Identifying the question object

Future Internet 2023, 15, x FOR PEER REVIEW 6 of 21

Algorithm 2: Identifying the question object.

In detail, when the user asks a yes/no question such as «is the wife of President
Obama called Michelle», the object validates the query in the dataset. For example, the
object is a verification if President Obama’s wife is named Michelle or not.

Otherwise, when the user asks a Wh question, there are various cases (Structures (S2)
and (S3)):
1. If the question word is “where” such as the query «where is Fort Knox located», the

object here is a variable with category location.

In detail, when the user asks a yes/no question such as «is the wife of President
Obama called Michelle», the object validates the query in the dataset. For example, the
object is a verification if President Obama’s wife is named Michelle or not.

Otherwise, when the user asks a Wh question, there are various cases (Structures (S2)
and (S3)):

1. If the question word is “where” such as the query «where is Fort Knox located», the
object here is a variable with category location.

Future Internet 2023, 15, 106 7 of 20

2. If the question word is “when” such as the query «when did Michael Jackson die»,
the object here is a variable with category date.

3. If the question word is “how many”, the query object is the quantity of the followed
noun after “how many”. There are two cases:

(i) Many is an adjectival modifier of the followed noun, as shown in the depen-
dency graph of the query «how many moons does Mars have», visualized
in Figure 3.

(ii) The following noun is a nominal subject of the auxiliary verb, as shown in the
dependency graph of the query «how many awards has Bertrand Russell»,
visualized in Figure 4.

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 21

2. If the question word is “when” such as the query «when did Michael Jackson die»,
the object here is a variable with category date.

3. If the question word is “how many”, the query object is the quantity of the followed
noun after “how many”. There are two cases:
(i) Many is an adjectival modifier of the followed noun, as shown in the depend-

ency graph of the query «how many moons does Mars have», visualized in Fig-
ure 3.

Figure 3. Graph dependency of the query «how many moons does Mars have».

(ii) The following noun is a nominal subject of the auxiliary verb, as shown in the
dependency graph of the query «how many awards has Bertrand Russell», vis-
ualized in Figure 4.

Figure 4. Graph dependency of the query «how many awards has Bertrand Russell».

− In the two previous cases, if the followed noun is connected to another noun by con-
junction (Structure (S6)), as shown in Figure 5, the object is the sum of the quantities
of the two nouns (e.g., count (rivers) + count (lakes)).

Figure 5. Graph dependency of the query «how many rivers and lakes are in South Carolina».

4 If the question word is different from “how many”, there are two cases:

Figure 3. Graph dependency of the query «how many moons does Mars have».

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 21

2. If the question word is “when” such as the query «when did Michael Jackson die»,
the object here is a variable with category date.

3. If the question word is “how many”, the query object is the quantity of the followed
noun after “how many”. There are two cases:
(i) Many is an adjectival modifier of the followed noun, as shown in the depend-

ency graph of the query «how many moons does Mars have», visualized in Fig-
ure 3.

Figure 3. Graph dependency of the query «how many moons does Mars have».

(ii) The following noun is a nominal subject of the auxiliary verb, as shown in the
dependency graph of the query «how many awards has Bertrand Russell», vis-
ualized in Figure 4.

Figure 4. Graph dependency of the query «how many awards has Bertrand Russell».

− In the two previous cases, if the followed noun is connected to another noun by con-
junction (Structure (S6)), as shown in Figure 5, the object is the sum of the quantities
of the two nouns (e.g., count (rivers) + count (lakes)).

Figure 5. Graph dependency of the query «how many rivers and lakes are in South Carolina».

4 If the question word is different from “how many”, there are two cases:

Figure 4. Graph dependency of the query «how many awards has Bertrand Russell».

− In the two previous cases, if the followed noun is connected to another noun by
conjunction (Structure (S6)), as shown in Figure 5, the object is the sum of the quantities
of the two nouns (e.g., count (rivers) + count (lakes)).

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 21

2. If the question word is “when” such as the query «when did Michael Jackson die»,
the object here is a variable with category date.

3. If the question word is “how many”, the query object is the quantity of the followed
noun after “how many”. There are two cases:
(i) Many is an adjectival modifier of the followed noun, as shown in the depend-

ency graph of the query «how many moons does Mars have», visualized in Fig-
ure 3.

Figure 3. Graph dependency of the query «how many moons does Mars have».

(ii) The following noun is a nominal subject of the auxiliary verb, as shown in the
dependency graph of the query «how many awards has Bertrand Russell», vis-
ualized in Figure 4.

Figure 4. Graph dependency of the query «how many awards has Bertrand Russell».

− In the two previous cases, if the followed noun is connected to another noun by con-
junction (Structure (S6)), as shown in Figure 5, the object is the sum of the quantities
of the two nouns (e.g., count (rivers) + count (lakes)).

Figure 5. Graph dependency of the query «how many rivers and lakes are in South Carolina».

4 If the question word is different from “how many”, there are two cases:

Figure 5. Graph dependency of the query «how many rivers and lakes are in South Carolina».

4. If the question word is different from “how many”, there are two cases:

(i) If the query is in the active mode, the object is the noun relative by the de-
pendency nsubj, as shown in the dependency graph of the query «what is the
profession of Frank Herbert», visualized in Figure 6.

Future Internet 2023, 15, 106 8 of 20

(ii) If the query is in the passive mode, the object is the noun relative by the de-
pendency nsubjpass, as shown in the dependency graph of the query «which
software has been published by Mean Hamster Software», visualized in Figure 7.

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 21

(i) If the query is in the active mode, the object is the noun relative by the depend-
ency nsubj, as shown in the dependency graph of the query «what is the profes-
sion of Frank Herbert», visualized in Figure 6.

Figure 6. Graph dependency of the query «what is the profession of Frank Herbert».

(ii) If the query is in the passive mode, the object is the noun relative by the depend-
ency nsubjpass, as shown in the dependency graph of the query «which soft-
ware has been published by Mean Hamster Software», visualized in Figure 7.

Figure 7. Graph dependency of the query «which software has been published by Mean Hamster
Software».

− In the two previous cases, if the noun is connected to another noun by conjunction,
as shown in Figure 8, the object is the coordination of two nouns (e.g., rivers and
lakes).

Figure 8. Graph dependency of the query «which rivers and lakes traverse South Carolina».

Figure 6. Graph dependency of the query «what is the profession of Frank Herbert».

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 21

(i) If the query is in the active mode, the object is the noun relative by the depend-
ency nsubj, as shown in the dependency graph of the query «what is the profes-
sion of Frank Herbert», visualized in Figure 6.

Figure 6. Graph dependency of the query «what is the profession of Frank Herbert».

(ii) If the query is in the passive mode, the object is the noun relative by the depend-
ency nsubjpass, as shown in the dependency graph of the query «which soft-
ware has been published by Mean Hamster Software», visualized in Figure 7.

Figure 7. Graph dependency of the query «which software has been published by Mean Hamster
Software».

− In the two previous cases, if the noun is connected to another noun by conjunction,
as shown in Figure 8, the object is the coordination of two nouns (e.g., rivers and
lakes).

Figure 8. Graph dependency of the query «which rivers and lakes traverse South Carolina».

Figure 7. Graph dependency of the query «which software has been published by Mean Hamster
Software».

− In the two previous cases, if the noun is connected to another noun by conjunction, as
shown in Figure 8, the object is the coordination of two nouns (e.g., rivers and lakes).

Future Internet 2023, 15, x FOR PEER REVIEW 8 of 21

(i) If the query is in the active mode, the object is the noun relative by the depend-
ency nsubj, as shown in the dependency graph of the query «what is the profes-
sion of Frank Herbert», visualized in Figure 6.

Figure 6. Graph dependency of the query «what is the profession of Frank Herbert».

(ii) If the query is in the passive mode, the object is the noun relative by the depend-
ency nsubjpass, as shown in the dependency graph of the query «which soft-
ware has been published by Mean Hamster Software», visualized in Figure 7.

Figure 7. Graph dependency of the query «which software has been published by Mean Hamster
Software».

− In the two previous cases, if the noun is connected to another noun by conjunction,
as shown in Figure 8, the object is the coordination of two nouns (e.g., rivers and
lakes).

Figure 8. Graph dependency of the query «which rivers and lakes traverse South Carolina».
Figure 8. Graph dependency of the query «which rivers and lakes traverse South Carolina».

Otherwise, if the question word is subject, followed by the verb (Structure (S4)) and
relative by the dependency nsubj, the object is a variable as shown in the dependency graph
of the query «who created English Wikipedia», visualized in Figure 9.

Finally, when the user asks an imperative query (Structure (S5)), the object here is the
noun relative by the dependency direct object dobj, as shown in the dependency graph of
the query «give me all Argentine films», visualized in Figure 10.

− If this noun is connected to another noun by a conjunction, the object is the coordina-
tion of two nouns.

Future Internet 2023, 15, 106 9 of 20

Future Internet 2023, 15, x FOR PEER REVIEW 9 of 21

Otherwise, if the question word is subject, followed by the verb (Structure (S4)) and
relative by the dependency nsubj, the object is a variable as shown in the dependency
graph of the query «who created English Wikipedia», visualized in Figure 9.

Figure 9. Graph dependency of the query «who created English Wikipedia».

Finally, when the user asks an imperative query (Structure (S5)), the object here is the
noun relative by the dependency direct object dobj, as shown in the dependency graph of
the query «give me all Argentine films», visualized in Figure 10.

Figure 10. Graph dependency of the query «give me all Argentine films».

− If this noun is connected to another noun by a conjunction, the object is the coordina-
tion of two nouns.

3.1.3. Identifying the Query Body
While the query body consists of the semantic relations between the NL query terms,

we propose to extract relations between the query terms based on Stanford dependencies.
In particular, we describe three forms of the relations between the query terms:

(a) A triple consisting of three parts, i.e., subject, predicate, and object.
(b) A relation consisting of two parts, i.e., Argument 1 and Argument 2.
(c) A restriction is composed of some conditions in the query.

For this, we use some proposed rules:
(1) Nominal subject:

If (∃ nsubj (Ti, Tj) ∈ SCDepLIST) add (Relation <Tj, Ti, ?var>) (1)

This rule is applied to extract a relation between each term Ti that has a nominal sub-
ject Tj in the query. For example, in Figure 3, (nsubj (have, Mars) ∈ SCDepLIST) add
(Relation <Mars, have, ?var>).
(2) Passive nominal subject

Figure 9. Graph dependency of the query «who created English Wikipedia».

Future Internet 2023, 15, x FOR PEER REVIEW 9 of 21

Otherwise, if the question word is subject, followed by the verb (Structure (S4)) and
relative by the dependency nsubj, the object is a variable as shown in the dependency
graph of the query «who created English Wikipedia», visualized in Figure 9.

Figure 9. Graph dependency of the query «who created English Wikipedia».

Finally, when the user asks an imperative query (Structure (S5)), the object here is the
noun relative by the dependency direct object dobj, as shown in the dependency graph of
the query «give me all Argentine films», visualized in Figure 10.

Figure 10. Graph dependency of the query «give me all Argentine films».

− If this noun is connected to another noun by a conjunction, the object is the coordina-
tion of two nouns.

3.1.3. Identifying the Query Body
While the query body consists of the semantic relations between the NL query terms,

we propose to extract relations between the query terms based on Stanford dependencies.
In particular, we describe three forms of the relations between the query terms:

(a) A triple consisting of three parts, i.e., subject, predicate, and object.
(b) A relation consisting of two parts, i.e., Argument 1 and Argument 2.
(c) A restriction is composed of some conditions in the query.

For this, we use some proposed rules:
(1) Nominal subject:

If (∃ nsubj (Ti, Tj) ∈ SCDepLIST) add (Relation <Tj, Ti, ?var>) (1)

This rule is applied to extract a relation between each term Ti that has a nominal sub-
ject Tj in the query. For example, in Figure 3, (nsubj (have, Mars) ∈ SCDepLIST) add
(Relation <Mars, have, ?var>).
(2) Passive nominal subject

Figure 10. Graph dependency of the query «give me all Argentine films».

3.1.3. Identifying the Query Body

While the query body consists of the semantic relations between the NL query terms,
we propose to extract relations between the query terms based on Stanford dependencies.
In particular, we describe three forms of the relations between the query terms:

(a) A triple consisting of three parts, i.e., subject, predicate, and object.
(b) A relation consisting of two parts, i.e., Argument 1 and Argument 2.
(c) A restriction is composed of some conditions in the query.

For this, we use some proposed rules:

(1) Nominal subject:

If (∃ nsubj (Ti, Tj) ∈ SCDepLIST)⇒ add (Relation <Tj, Ti, ?var>) (1)

This rule is applied to extract a relation between each term Ti that has a nominal
subject Tj in the query. For example, in Figure 3, (nsubj (have, Mars) ∈ SCDepLIST)⇒ add
(Relation <Mars, have, ?var>).

(2) Passive nominal subject

If (∃ nsubjpass (Ti, Tj) ∈ SCDepLIST)⇒ add (Relation <Tj, Ti, ?var>) (2)

This rule extracts a relation between each term Ti that has a passive nominal subject Tj
in the query. For example, in Figure 7, (nsubjpass (published, software) ∈ SCDepLIST)⇒
add (Relation <software, published, ?var>).

(3) Direct object

If (∃ dobj (Ti, Tj) ∈ SCDepLIST ∩ Tj 6=Wh word)⇒ add (Relation <?var, Ti, Tj>) (3)

This rule is applied to extract a relation between each term Ti that has a direct object Tj
in the query. For example, in Figure 3, (dobj (have, moons) ∈ SCDepLIST)⇒ add (Relation
<?var, have, moons>).

Future Internet 2023, 15, 106 10 of 20

(4) Adjectival modifier

If (∃ amod (Ti, Tj) ∈ SCDepLIST and Tj! = “many”)⇒ add (Relation <Ti, unknown, Tj>) (4)

This rule is applied to extract a relation between each term Ti that has an adjectival
modifier Tj that is different to many. For example, in Figure 10, (amod (films, Argentine) ∈
SCDepLIST)⇒ add (Relation <films, unknown, Argentine>).

(5) Preposition

If (∃ nmod:X (Ti, Tj) ∈ SCDepLIST)⇒ add (Triple <Ti, X, Tk>) (5)

This rule is applied when the relation between Ti and Tj is a preposition such as in,
on, of, agent, as, by, to, and as. For example, in Figure 6, (nmod: of (profession, Herbert) ∈
SCDepLIST)⇒ add (Triple <profession, of, Herbert>).

(6) Compound term

If (∃ compound (Ti, Tj) ∈ SCDepLIST)⇒ ∀ Ti replace (Ti, Tj − Ti) (6)

This rule replaces each term Ti with a compound term Tj in the query with the
compound noun Ti − Tj. For example, compound (Russell, Bertrand)⇒ replace (Russell,
Bertrand-Russell).

(7) Negation

If (∃ neg (Ti, not) ∈ SCDepLIST)⇒ ∀ Ti replace (Ti, not − Ti) (7)

This rule allows for the replacement of each term Ti preceded by not, by not − Ti.
Consider the dependency graph of the query «what car is not made in Germany» as shown
in Figure 11. This rule is used as follows:

Future Internet 2023, 15, x FOR PEER REVIEW 10 of 21

If (∃ nsubjpass (Ti, Tj) ∈ SCDepLIST) add (Relation <Tj, Ti, ?var>) (2)

This rule extracts a relation between each term Ti that has a passive nominal subject
Tj in the query. For example, in Figure 7, (nsubjpass (published, software) ∈ SCDepLIST)
 add (Relation <software, published, ?var>).
(3) Direct object

If (∃ dobj (Ti, Tj) ∈ SCDepLIST ∩ Tj ≠Wh word) add (Relation <?var, Ti, Tj>) (3)

This rule is applied to extract a relation between each term Ti that has a direct object
Tj in the query. For example, in Figure 3, (dobj (have, moons) ∈ SCDepLIST) add (Re-
lation <?var, have, moons>).
(4) Adjectival modifier

If (∃ amod (Ti, Tj) ∈ SCDepLIST and Tj! = “many”) add (Relation <Ti, unknown, Tj>) (4)

This rule is applied to extract a relation between each term Ti that has an adjectival
modifier Tj that is different to many. For example, in Figure 10, (amod (films, Argentine)

∈ SCDepLIST) add (Relation <films, unknown, Argentine>).
(5) Preposition

If (∃ nmod:X (Ti, Tj) ∈ SCDepLIST) add (Triple <Ti, X, Tk>) (5)

This rule is applied when the relation between Ti and Tj is a preposition such as in,
on, of, agent, as, by, to, and as. For example, in Figure 6, (nmod: of (profession, Herbert)

∈ SCDepLIST) add (Triple <profession, of, Herbert>).
(6) Compound term

If (∃ compound (Ti, Tj) ∈ SCDepLIST) ∀ Ti replace (Ti, Tj − Ti) (6)

This rule replaces each term Ti with a compound term Tj in the query with the com-
pound noun Ti − Tj. For example, compound (Russell, Bertrand) replace (Russell, Ber-
trand-Russell).
(7) Negation

If (∃ neg (Ti, not) ∈ SCDepLIST) ∀ Ti replace (Ti, not − Ti) (7)

This rule allows for the replacement of each term Ti preceded by not, by not − Ti.
Consider the dependency graph of the query «what car is not made in Germany» as
shown in Figure 11. This rule is used as follows:

neg (made, not) replace (made, not-made)

Figure 11. Graph dependency of the query «what car is not made in Germany».

(8) Optimization rules

Figure 11. Graph dependency of the query «what car is not made in Germany».

neg (made, not)⇒ replace (made, not-made)

(8) Optimization rules

In order to optimize some of the previous relations and identify the query triples, we
propose the following specification rules:

If (Relation <Tj, Ti, ?var> ∩ Relation <?var, Ti, Tk>)⇒ add (triple <Tj, Ti, Tk> ∩
Delete (Relation <Tj, Ti, ?var>) ∩ Delete (Relation <?var, Ti, Tk>)

(8)

This rule is applied for each term Ti that has a nominal subject Tj and a direct object Tk
in the query. For example,

Relation <Mars, have, ?var> ∩ Relation <?var, have, moons>⇒ add (triple <Mars, have,
moons> ∩Delete (Relation <Mars, have, ?var>) ∩Delete (Relation <?var, have, moons>)

If (Relation <Tj, Ti, ?var> ∩ Triple <Ti, X, Tk>)⇒ add (triple <Tj, Ti-X, Tk> ∩
Delete (Relation <Tj, Ti, ?var>) ∩ Delete (Triple <Ti, X, Tk>)

(9)

Future Internet 2023, 15, 106 11 of 20

This rule is applied for each term Ti with a nominal or passive nominal subject Tj and
relative by a preposition with a term Tk in the query. For example,

Relation <rivers, are, ?var> ∩ Triple <are, in, Carolina> add (triple <rivers, are-in, Car-
olina> ∩ Delete (Relation Relation <rivers, are, ?var>) ∩ Delete (Triple <are, in, Carolina>)

(9) Comparative adjectives

Generally, comparative adjectives are used to compare one person or thing with
another. In the following, we describe the proposed rules of some comparative adjectives
used in the NL queries:

• Same This adjective indicates that two or more things are exactly like one another.
Especially, we use “same” as an adjective before a noun in two cases:

(i) With “as” to compare two nouns in a simple query. In practice, we applied the
following rule:

If (triple <Ti, Tj, Tk> ∩ Relation <Tk, unknown, same> ∩ triple <Tk, as, Ts>)⇒
add triple <Ts, Tj, Tk> ∩ Delete (Relation <Tk, unknown, same>) ∩ Delete (triple <Tk, as, Ts>)

(10)

This rule is applied when the predicate Tj relates the two terms Ti and Ts to
the same term Tk in the query. Therefore, we add a new triple to describe the
relation between Ts and Tk. For example, in Figure 12, “artists” and “Rachel
Stevens” are related by “born-on” to the same term “date” in the query «which
artists were born on the same date as Rachel Stevens». Therefore, we add a
new triple as follows: triple <artist, born-on, date> ∩ Relation <date, unknown,
same> ∩ triple <date, as, Rachel- Stevens> ⇒ add triple <Rachel- Stevens,
born-on, date> ∩ Delete (Relation <date, unknown, same>) ∩ Delete (triple
<date, as, Rachel-Stevens>).

(ii) To compare two nouns in a complex query. In practice, we apply the follow-
ing rule:

If (triple <Ti, Tj, Tk> ∩ Relation <Tk, unknown, same> ∩ triple <Ts, Tr, Tk>)⇒
add triple <Ti, Tj, var1> ∩ add triple <Ts, Tr, var2> ∩ Delete (Relation <Tk, unknown, same>) ∩

Delete (triple <Ti, Tj, Tk>) ∩ Delete (triple triple <Ts, Tr, Tk>) ∩ add restriction (var1 = var2)
(11)

This rule is applied when two terms, Ti and Ts, are related to the same term Tk,
by different relations: Tj and Tr. We replace Tk in the two triples with variables:
?var1 and ?var2. We also add a restriction, indicating that “var1” and “var2” are
equals. For example, in Figure 13, daughters and they (daughters) are related
to the same term “place” by “died-at” and “born-at” in the complex query
«which daughters of British earls died at the same place they were born at».
Therefore, we add two triples and a restriction as follows: triple <daughters,
died-at, place> ∩ Relation <place, unknown, same> ∩ triple <they, born-at,
place>⇒ add triple <daughters, died-at, ?var1> ∩ add triple <they, born-at,
?var2> ∩ Delete (triple <daughters, died-at, place>) ∩ Delete (Relation <place,
unknown, same>) ∩ Delete (triple <they, born-at, place>) ∩ add restriction
(?var1 = ?var2).

• More/less

These adjectives indicate whether a person or thing has more or less of a certain
quality. In particular, more and less are generally used in the following query structure:

Wh word +noun (subject) + verb + more/less + than + number + noun (object)

More indicates that the quantity of the noun after more than is larger than the given
number. Otherwise, less indicates that the noun’s quantity after less than is smaller than
the given number. In practice, we applied the two following rules:

Future Internet 2023, 15, 106 12 of 20

If (advmod (Ti, more) ∩mwe (more, than) ∩ nummod (Tj, Ti))⇒ restriction (count (Tj) > Ti) (12)

If (advmod (Ti, less) ∩mwe (less, than) ∩ nummod (Tj, Ti))⇒ restriction (count (Tj) < Ti) (13)

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 21

In order to optimize some of the previous relations and identify the query triples, we
propose the following specification rules:

If (Relation <Tj, Ti, ?var> ∩ Relation <?var, Ti, Tk>) add (triple <Tj, Ti, Tk> ∩ Delete (Relation <Tj, Ti,
?var>) ∩ Delete (Relation <?var, Ti, Tk>) (8)

This rule is applied for each term Ti that has a nominal subject Tj and a direct object Tk
in the query. For example,

Relation <Mars, have, ?var> ∩ Relation <?var, have, moons> add (triple <Mars,
have, moons> ∩ Delete (Relation <Mars, have, ?var>) ∩ Delete (Relation <?var, have,
moons>)

If (Relation <Tj, Ti, ?var> ∩ Triple <Ti, X, Tk>) add (triple <Tj, Ti-X, Tk> ∩ Delete (Relation <Tj, Ti,
?var>) ∩ Delete (Triple <Ti, X, Tk>) (9)

This rule is applied for each term Ti with a nominal or passive nominal subject Tj and
relative by a preposition with a term Tk in the query. For example,

Relation <rivers, are, ?var> ∩ Triple <are, in, Carolina> add (triple <rivers, are-in,
Carolina> ∩ Delete (Relation Relation <rivers, are, ?var>) ∩ Delete (Triple <are, in, Caro-
lina>)
(9) Comparative adjectives

Generally, comparative adjectives are used to compare one person or thing with an-
other. In the following, we describe the proposed rules of some comparative adjectives
used in the NL queries:
• Same

This adjective indicates that two or more things are exactly like one another. Espe-
cially, we use “same” as an adjective before a noun in two cases:

(i) With “as” to compare two nouns in a simple query. In practice, we applied the
following rule:

If (triple <Ti, Tj, Tk> ∩ Relation <Tk, unknown, same> ∩ triple <Tk, as, Ts>) add triple <Ts, Tj, Tk> ∩
Delete (Relation <Tk, unknown, same>) ∩ Delete (triple <Tk, as, Ts>) (10)

This rule is applied when the predicate Tj relates the two terms Ti and Ts to the
same term Tk in the query. Therefore, we add a new triple to describe the relation
between Ts and Tk. For example, in Figure 12, “artists” and “Rachel Stevens” are
related by “born-on” to the same term “date” in the query «which artists were born
on the same date as Rachel Stevens». Therefore, we add a new triple as follows:

triple <artist, born-on, date> ∩ Relation <date, unknown, same> ∩ triple <date,
as, Rachel- Stevens> add triple <Rachel- Stevens, born-on, date> ∩ Delete (Rela-
tion <date, unknown, same>) ∩ Delete (triple <date, as, Rachel-Stevens>).

Figure 12. Graph dependency of the query «which artists were born on the same date as Rachel
Stevens».
Figure 12. Graph dependency of the query «which artists were born on the same date as Rachel Stevens».

Future Internet 2023, 15, x FOR PEER REVIEW 12 of 21

(ii) To compare two nouns in a complex query. In practice, we apply the following
rule:

If (triple <Ti, Tj, Tk> ∩ Relation <Tk, unknown, same> ∩ triple <Ts, Tr, Tk>) add triple <Ti, Tj, var1> ∩
add triple <Ts, Tr, var2> ∩ Delete (Relation <Tk, unknown, same>) ∩ Delete (triple <Ti, Tj, Tk>) ∩ Delete

(triple triple <Ts, Tr, Tk>) ∩ add restriction (var1 = var2)
(11)

This rule is applied when two terms, Ti and Ts, are related to the same term Tk, by
different relations: Tj and Tr. We replace Tk in the two triples with variables: ?var1
and ?var2. We also add a restriction, indicating that “var1” and “var2” are equals.
For example, in Figure 13, daughters and they (daughters) are related to the same
term “place” by “died-at” and “born-at” in the complex query «which daughters of
British earls died at the same place they were born at». Therefore, we add two triples
and a restriction as follows:

triple <daughters, died-at, place> ∩ Relation <place, unknown, same> ∩ triple
<they, born-at, place> add triple <daughters, died-at, ?var1> ∩ add triple <they,
born-at, ?var2> ∩ Delete (triple <daughters, died-at, place>) ∩ Delete (Relation
<place, unknown, same>) ∩ Delete (triple <they, born-at, place>) ∩ add restriction
(?var1 = ?var2)

Figure 13. Graph dependency of the query «which daughters of British earls died at the same place
they were born at».

• More/less
These adjectives indicate whether a person or thing has more or less of a certain

quality. In particular, more and less are generally used in the following query structure:

Wh word +noun (subject) + verb + more/less + than + number + noun (object)

More indicates that the quantity of the noun after more than is larger than the given
number. Otherwise, less indicates that the noun’s quantity after less than is smaller than
the given number. In practice, we applied the two following rules:

If (advmod (Ti, more) ∩ mwe (more, than) ∩ nummod (Tj, Ti)) restriction (count (Tj) > Ti) (12)

If (advmod (Ti, less) ∩ mwe (less, than) ∩ nummod (Tj, Ti)) restriction (count (Tj) < Ti) (13)

For example, in Figure 14, the query «which countries have places with more than
two caves» gives the following restriction:

Advmod (two, more) ∩ mwe (more, than) ∩ nummod (caves, two) restriction
(count(caves), >, two)

Figure 13. Graph dependency of the query «which daughters of British earls died at the same place
they were born at».

For example, in Figure 14, the query «which countries have places with more than two
caves» gives the following restriction:

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 21

Figure 14. Graph dependency of the query «which countries have places with more than two caves».

(10) Superlative adjectives
Superlative adjectives describe a person or thing at the upper or lower limit of a qual-

ity relative to all other people or things in a group. Superlative adjectives are generally
used in the following query structure:

WH word + noun (subject) + verb + the + superlative adjective + noun (object)

These adjectives have three forms:
(i) Adjective + est, such as “highest” in the query «which U.S. state has the highest

population density», as shown in Figure 15. In this case, we applied the follow-
ing rule:

If (Relation <Ti, unknown, Tj> ∩ Pos (Tj) = JJS) restriction (Ti, Sup, Tj) (14)

Figure 15. Graph dependency of the query «which U.S. state has the highest population density».

This rule identifies the relationship between the superlative adjective Tj and the noun
Ti. Consider the previous query, this rule is used to generate the following restriction:

Relation <density, unknown, highest> ∩ Pos (highest) = JJS restriction (density,
Sup, highest)

(ii) most/least + adjective, such as “most deep” in the query «where is the most deep
point in the ocean», as shown in Figure 16. In this case, we applied the following
rule:

If (advmod (Ti, most/least) ∩ Relation <Tj, unknown, Ti> ∩ Pos (Ti) = JJ) restriction (Tj, Sup, most/least-Ti) (15)

Figure 14. Graph dependency of the query «which countries have places with more than two caves».

Advmod (two, more) ∩ mwe (more, than) ∩ nummod (caves, two) ⇒ restriction
(count(caves), >, two)

(10) Superlative adjectives Superlative adjectives describe a person or thing at the upper
or lower limit of a quality relative to all other people or things in a group. Superlative
adjectives are generally used in the following query structure:

WH word + noun (subject) + verb + the + superlative adjective + noun (object)

These adjectives have three forms:

(i) Adjective + est, such as “highest” in the query «which U.S. state has the
highest population density», as shown in Figure 15. In this case, we applied
the following rule:

Future Internet 2023, 15, 106 13 of 20

If (Relation <Ti, unknown, Tj> ∩ Pos (Tj) = JJS)⇒ restriction (Ti, Sup, Tj) (14)

Future Internet 2023, 15, x FOR PEER REVIEW 13 of 21

Figure 14. Graph dependency of the query «which countries have places with more than two caves».

(10) Superlative adjectives
Superlative adjectives describe a person or thing at the upper or lower limit of a qual-

ity relative to all other people or things in a group. Superlative adjectives are generally
used in the following query structure:

WH word + noun (subject) + verb + the + superlative adjective + noun (object)

These adjectives have three forms:
(i) Adjective + est, such as “highest” in the query «which U.S. state has the highest

population density», as shown in Figure 15. In this case, we applied the follow-
ing rule:

If (Relation <Ti, unknown, Tj> ∩ Pos (Tj) = JJS) restriction (Ti, Sup, Tj) (14)

Figure 15. Graph dependency of the query «which U.S. state has the highest population density».

This rule identifies the relationship between the superlative adjective Tj and the noun
Ti. Consider the previous query, this rule is used to generate the following restriction:

Relation <density, unknown, highest> ∩ Pos (highest) = JJS restriction (density,
Sup, highest)

(ii) most/least + adjective, such as “most deep” in the query «where is the most deep
point in the ocean», as shown in Figure 16. In this case, we applied the following
rule:

If (advmod (Ti, most/least) ∩ Relation <Tj, unknown, Ti> ∩ Pos (Ti) = JJ) restriction (Tj, Sup, most/least-Ti) (15)

Figure 15. Graph dependency of the query «which U.S. state has the highest population density».

This rule identifies the relationship between the superlative adjective Tj and
the noun Ti. Consider the previous query, this rule is used to generate the
following restriction: Relation <density, unknown, highest> ∩ Pos (highest) =
JJS⇒ restriction (density, Sup, highest)

(ii) most/least + adjective, such as “most deep” in the query «where is the most
deep point in the ocean», as shown in Figure 16. In this case, we applied the
following rule:

If (advmod (Ti, most/least) ∩ Relation <Tj, unknown, Ti> ∩ Pos (Ti) = JJ)⇒
restriction (Tj, Sup, most/least-Ti)

(15)

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 21

Figure 16. Graph dependency of the query «where is the most deep point in the ocean».

This rule identifies the relationship between the most/least Ti superlative adjective
and the noun Tj. Consider the previous query, this rule is used to generate the following
restriction:

advmod (deep, most) ∩ Relation <point, unknown, deep> ∩ Pos (deep) = JJ restriction (point, Sup, most-deep)

(iii) Irregular adjective, such as “most” in the query «which book has the most
pages», as shown in Figure 17. In this case, we applied the following rule:

If (Relation <Ti, unknown, most/least> restriction (Ti, Sup, most/least) (16)

Figure 17. Graph dependency of the query «which book has the most pages».

This rule identifies the relationship between the superlative adjective most/least and
the noun Ti. Consider the previous query, this rule is used to generate the following re-
striction:

If (Relation <pages, unknown, most> restriction (pages, Sup, most)

(11) Numbers
In addition to the numbers related to the comparative adjectives, a number may be

attached to a given noun in the query as a quantifier. In this case, we applied the following
rule:

If (nummod (Ti, Tj)) restriction (limit, Tj, Ti) (17)

This rule indicates that the cardinality value Tj is related to the noun Ti. For example,
in the query with a quantifier «what 2 cars are from Germany», the cardinality value 2 is
related to the noun cars, as visualized in Figure 18. Therefore, this rule is used to generate
the following restriction:

nummod (cars, 2) restriction (limit, 2, cars)

Figure 16. Graph dependency of the query «where is the most deep point in the ocean».

This rule identifies the relationship between the most/least Ti superlative
adjective and the noun Tj. Consider the previous query, this rule is used to
generate the following restriction:

advmod (deep, most) ∩ Relation <point, unknown, deep> ∩
Pos (deep) = JJ⇒ restriction (point, Sup, most-deep)

(iii) Irregular adjective, such as “most” in the query «which book has the most
pages», as shown in Figure 17. In this case, we applied the following rule:

If (Relation <Ti, unknown, most/least>⇒ restriction (Ti, Sup, most/least) (16)

This rule identifies the relationship between the superlative adjective most/least and the
noun Ti. Consider the previous query, this rule is used to generate the following restriction:

If (Relation <pages, unknown, most>⇒ restriction (pages, Sup, most)

Future Internet 2023, 15, 106 14 of 20

Future Internet 2023, 15, x FOR PEER REVIEW 14 of 21

Figure 16. Graph dependency of the query «where is the most deep point in the ocean».

This rule identifies the relationship between the most/least Ti superlative adjective
and the noun Tj. Consider the previous query, this rule is used to generate the following
restriction:

advmod (deep, most) ∩ Relation <point, unknown, deep> ∩ Pos (deep) = JJ restriction (point, Sup, most-deep)

(iii) Irregular adjective, such as “most” in the query «which book has the most
pages», as shown in Figure 17. In this case, we applied the following rule:

If (Relation <Ti, unknown, most/least> restriction (Ti, Sup, most/least) (16)

Figure 17. Graph dependency of the query «which book has the most pages».

This rule identifies the relationship between the superlative adjective most/least and
the noun Ti. Consider the previous query, this rule is used to generate the following re-
striction:

If (Relation <pages, unknown, most> restriction (pages, Sup, most)

(11) Numbers
In addition to the numbers related to the comparative adjectives, a number may be

attached to a given noun in the query as a quantifier. In this case, we applied the following
rule:

If (nummod (Ti, Tj)) restriction (limit, Tj, Ti) (17)

This rule indicates that the cardinality value Tj is related to the noun Ti. For example,
in the query with a quantifier «what 2 cars are from Germany», the cardinality value 2 is
related to the noun cars, as visualized in Figure 18. Therefore, this rule is used to generate
the following restriction:

nummod (cars, 2) restriction (limit, 2, cars)

Figure 17. Graph dependency of the query «which book has the most pages».

(11) Numbers

In addition to the numbers related to the comparative adjectives, a number may
be attached to a given noun in the query as a quantifier. In this case, we applied the
following rule:

If (nummod (Ti, Tj))⇒ restriction (limit, Tj, Ti) (17)

This rule indicates that the cardinality value Tj is related to the noun Ti. For example,
in the query with a quantifier «what 2 cars are from Germany», the cardinality value 2 is
related to the noun cars, as visualized in Figure 18. Therefore, this rule is used to generate
the following restriction:

nummod (cars, 2)⇒ restriction (limit, 2, cars)
Future Internet 2023, 15, x FOR PEER REVIEW 15 of 21

Figure 18. Graph dependency of the query «what 2 cars are from Germany».

3.2. Mapping the NL Terms to Semantic Entities
In this second step, we try to match each term in the query to one or more entities in

the chosen dataset without considering their relations. In particular, to realize this map-
ping of NL terms to the entities in the dataset, we use the DBpedia Lookup
(https://www.dbpedia.org/resources/lookup/ (accessed on 20 December 2022), an entity
retrieval service for Linked Data. This service can extract all the related entity identifiers
in DBpedia [17] for a given term, one of the most famous steps of the decentralized Linked
Data effort.

Next, to classify the matching entities, we rank them by the Levenshtein
(http://www.Merriampark.com/ld.htm, accessed on 18 April 2007.) distances between the
query term and these entities. Then, we eliminate all the matching entities with a Le-
venshtein distance greater than 5 to select the closest entities of the initial term. When this
term has no appropriate matching entities in DBpedia, we have to search for its synonyms
in WordNet [14]. If this term or at least one of its synonyms has matching entities in DBpe-
dia, the list of matching entities consists of the mapped entities ranked with the Le-
venshtein distances. Otherwise, if a query term or its synonyms in WordNet do not have
matching entities in DBpedia, we establish a dialogue with the user to get clarification.
For example, in the query «how many rivers and lakes are in South Carolina», we obtained
the matching entities listed in Table 1.

Table 1. Mapping of NL terms to DBpedia entities.

Query Terms Matching Entities in DBpedia Uri Levenshtein Distance
Rivers River http://dbpedia.org/ontology/River 2

Lakes
Lake
Place

http://dbpedia.org/resource/Lake
http://dbpedia.org/ontology/Place

2
3

South-Carolina South_Carolina http://dbpedia.org/resource/South_Carolina 1

After identifying the matching entities of each term, we combine them to identify all
possible queries. Finally, these queries are classified in ascending order of the averages of
the Levenshtein distances associated with each entity belonging to a given query (Table
2).

Table 2. Query classification.

Queries Average of Le-
venshtein Distances

<dbo (http://dbpedia.org/ontology/): River, unknown, dbr (http://dbpedia.org/resource/): South_Carolina>
∩ <dbr: Lake, unknown, dbr: South_Carolina>

1.66

<dbo: River, unknown, dbr: South_Carolina> ∩ < dbo: Place, uknown, dbr: South_Carolina> 2

Figure 18. Graph dependency of the query «what 2 cars are from Germany».

3.2. Mapping the NL Terms to Semantic Entities

In this second step, we try to match each term in the query to one or more entities in the
chosen dataset without considering their relations. In particular, to realize this mapping of
NL terms to the entities in the dataset, we use the DBpedia Lookup (https://www.dbpedia.
org/resources/lookup/ (accessed on 20 December 2022), an entity retrieval service for
Linked Data. This service can extract all the related entity identifiers in DBpedia [17] for a
given term, one of the most famous steps of the decentralized Linked Data effort.

Next, to classify the matching entities, we rank them by the Levenshtein (http://
www.Merriampark.com/ld.htm, accessed on 18 April 2007.) distances between the query
term and these entities. Then, we eliminate all the matching entities with a Levenshtein
distance greater than 5 to select the closest entities of the initial term. When this term
has no appropriate matching entities in DBpedia, we have to search for its synonyms in
WordNet [14]. If this term or at least one of its synonyms has matching entities in DBpedia,
the list of matching entities consists of the mapped entities ranked with the Levenshtein
distances. Otherwise, if a query term or its synonyms in WordNet do not have matching
entities in DBpedia, we establish a dialogue with the user to get clarification. For example,
in the query «how many rivers and lakes are in South Carolina», we obtained the matching
entities listed in Table 1.

https://www.dbpedia.org/resources/lookup/
https://www.dbpedia.org/resources/lookup/
http://www.Merriampark.com/ld.htm
http://www.Merriampark.com/ld.htm

Future Internet 2023, 15, 106 15 of 20

Table 1. Mapping of NL terms to DBpedia entities.

Query Terms Matching Entities in DBpedia Uri Levenshtein Distance

Rivers River http://dbpedia.org/ontology/River 2

Lakes Lake
Place

http://dbpedia.org/resource/Lake
http://dbpedia.org/ontology/Place

2
3

South-Carolina South_Carolina http://dbpedia.org/resource/South_Carolina 1

After identifying the matching entities of each term, we combine them to identify all
possible queries. Finally, these queries are classified in ascending order of the averages of
the Levenshtein distances associated with each entity belonging to a given query (Table 2).

Table 2. Query classification.

Queries Average of
Levenshtein Distances

<dbo (http://dbpedia.org/ontology/): River, unknown, dbr (http://dbpedia.org/resource/):
South_Carolina> ∩ <dbr: Lake, unknown, dbr: South_Carolina> 1.66

<dbo: River, unknown, dbr: South_Carolina> ∩ < dbo: Place, uknown, dbr: South_Carolina> 2

3.3. Grouping the Mapped Semantic Entities into Valid Triples

The third step needs to represent the query in the form of triples because triples are the
fundamental data structure of RDF. This requires using the identified semantic relations,
the matching entities of NL terms, and the dataset structure to construct valid triples. In this
context, we try to exploit the existing semantic relations between the different entities of
the queried dataset to build valid triples that represent the semantics of the query (Table 3).

Table 3. Triple validation.

Initial Relation SPARQL Query Result Valid Triple

Relation <Argument1,
unknown, Argument2>

Query 1: Select distinct ?prop
where {

?uri rdf:type prefix:
Argument1.

?uri ?prop prefix: Argument2.
}

Prop <Argument1, Prop, Argument2>

Relation <Argument1,
relation, ?var>

Query 2: Select distinct ?Arg2
where {?uri rdf:type prefix:

Argument1.
?uri prefix:relation ?Arg2.

}

Arg2 <Argument1, relation, Arg2>

Relation < ?var, relation,
Argument2>

Query 3: Select distinct ?Arg1
where {

?uri rdf:type prefix:
Argument2.

?Arg1 prefix: relation
?Argument2.

}

Arg1 <Arg1, relation, Argument2>

triple<Argument, relation,
Argument>

Query1
Else Query2
Else Query3

Prop
Else Arg2
Else Arg1

<Argument1, Prop, Argument2>
Else <Argument1, relation, Arg2>
Else < Arg1, relation, Argument2>

First, we look for the relations between each pair of arguments in the triples with
an unknown relation <Argument1, unknown, Argument2>. In particular, we execute the

http://dbpedia.org/ontology/River
http://dbpedia.org/resource/Lake
http://dbpedia.org/ontology/Place
http://dbpedia.org/resource/South_Carolina
http://dbpedia.org/ontology/
http://dbpedia.org/resource/

Future Internet 2023, 15, 106 16 of 20

SPARQL query Query1 to find the unknown property between two arguments (Argument 1
and Argument 2). For example, in the previous query, we execute the SPARQL query:

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT distinct ?prop where {
?uri rdf:type dbo:River.
?uri ?prop res:South_Carolina.

− If this SPARQL query has a result, we confirm that the two arguments are related, and
we complete the triple with the relationship found. For example, dbo:location is the result
of the previous SPARQL query. Therefore, the valid triple is: < dbo: River, dbo:location,
dbr: South_Carolina>.

Next, we examine the triples of the form <Argument1, relation, ?var> and <?var,
relation, Argument2 > to check whether the argument is the domain or the range of
the relation and to enrich the query with the unknown argument, which can be a class,
instance, or literal. In particular, we run the SPARQL queries Query2 and Query3 to find
the missing argument.

Finally, we treat the triples in the form <Argument, relation, Argument> by executing
one of the three previous SPARQL queries to identify a valid triple.

This step results in the queries containing all valid triples to generate correct SPARQL queries.

3.4. Generating the SPARQL Query and Extracting the Answers

SPARQL (SPARQL Protocol and RDF Query Language) [3] is the query language used
to query semantic web data in RDF. Generally, the SPARQL query has the following syntax:

Prefix declarations>
SELECT <query-objects>
WHERE <query-body>
<Query modifiers>

(1) Prefix declarations

The prefix declarations represent the abbreviations of the URIs. In the following, we
describe the principal prefixes used in this work:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/>
PREFIX dbr: http://dbpedia.org/resource/>
PREFIX dbc: http://dbpedia.org/resource/Category:
PREFIX yago: <http://dbpedia.org/class/yago/>

(2) Query objects

In SPARQL language, the query objects represent the variables prefixed with “?” that
will appear in the query results. In particular, we have some cases:

• If the query object is an entity of type RDF class, we interpret it as a variable prefixed
with “?”after SELECT. We also interpret it in the query body as a triple pattern <?class-
Name rdf:type ClassName> after the “WHERE” clause. For example, the following
query returns all instances of the class dbo:River:

SELECT DISTINCT ?river WHERE {
?river rdf:type dbo:River.}

• If the query object is an entity of type RDF literal, we interpret it directly as a variable
prefixed with “?” after SELECT. Similarly, we interpret it in the query body as a

http://dbpedia.org/ontology/
http://dbpedia.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://xmlns.com/foaf/0.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#/
http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://dbpedia.org/resource/
http://dbpedia.org/resource/Category
http://dbpedia.org/class/yago/

Future Internet 2023, 15, 106 17 of 20

triple pattern <?x, DataProperty, ?L> after the “WHERE” clause, as shown in the
following example:

SELECT DISTINCT ?title WHERE {
?book rdf:type dbo:Book.
?book rdfs:label ?title}

• If the query object is a variable, we interpret it as a variable “?uri” in the head and the
body of the query, as shown in the following example:

SELECT ?uri
WHERE {
dbr:Wikipedia dbo:author ?uri}

• If the query object is a counted variable, we interpret it as the variable COUNT (?var)
after SELECT, as shown in the following example:

SELECT (COUNT(?Awards) AS ?Counter)
WHERE {
dbr:Bertrand_Russell dbp:awards ?Awards}

• If the query object is the validation of the query in the dataset, we use ASK queries
which intuitively correspond to a yes/no question in conversational language. For
example, the previous query «is the wife of President Obama called Michelle» corre-
sponds to a yes/no question, and has the following SPARQL query:

ASK WHERE {res:Barack_Obama dbo:spouse ?spouse. ?spouse rdfs:label ?name FILTER regex
(?name, \"Michelle\")

(3) Query body

The body of the query consists of all the valid triples. The instances and the properties
are interpreted as their URIs. In contrast, we interpret the classes and the RDF literal entities
as variables according to the previous rules.

(4) Query modifiers

The query modifiers represent the restrictions of the query that can be interpreted with
the SPARQL language. In particular, SPARQL has some functions that restrict the solutions
of a graph pattern match according to a given expression. In the following, we describe
some SPARQL functions:

• FILTER (condition) is a clause inserted into the SPARQL query to filter the results.
The condition inside the parentheses is a Boolean-type expression, and only those
results where the expression returns true are used. FILTER functions can test the
values of RDF literal strings. They can also restrict the numeric values and the dates
by arithmetic expressions. For example, in the previous query «which daughters of
British earls died at the same place they were born at», we interpret the restriction:
Restriction (?var1 = ?var2) as follows:

SELECT DISTINCT ?uri
WHERE {?uri rdf:type yago:WikicatDaughtersOfBritishEarls;
?uri dbo:birthPlace ?var1.
?uri dbo:deathPlace ?var2.
FILTER (?var1 = ?var2)}

−We note that the negation is a special filter function by providing the operator “!” and
the instruction “NOT EXISTS“.

SELECT ?birth ?death ?person WHERE {?person dbo:birthPlace dbr:Berlin.
?person dbo:birthDate ?birth.
?person dbo:deathDate ?death.
FILTER NOT EXISTS {?person dbo:deathDate dbr:Berlin}}

Future Internet 2023, 15, 106 18 of 20

• HAVING (condition) is analogous to a FILTER expression but operates over groups
rather than individual solutions. HAVING is always used with GROUP BY, a clause
that groups query solutions according to one or more expressions. For example, in
the query «which countries have places with more than two caves», we interpret the
restriction: Restriction (count (caves), >, two) as follows:

SELECT DISTINCT ?uri
WHERE {?uri rdf:type dbo:Country.
?cave rdf:type dbo:Cave.
?cave dbo:location ?uri. }
GROUP BY ?uri HAVING (COUNT(?cave) > 2)

• The LIMIT number clause puts an upper bound on the number of solutions returned.
If the number of actual solutions is greater than the limit, then at most, the limit
number of solutions will be returned.

• The ORDER BY ASC/DESC clause establishes the order of a solution sequence. Each
ordering comparator is either ascending, indicated by the ASC() modifier, or descend-
ing, indicated by the DESC() modifier. Generally, this clause is used to interpret the
superlative adjectives as shown in the query «which book has the most pages»:

SELECT DISTINCT ?uri
WHERE { ?uri rdf:type dbo:Book.
?uri dbo:numberOfPages ?n.}
ORDER BY DESC(?n) LIMIT 1

Thus, we need to combine the prefix declarations, query objects, valid triples, and
query restriction to generate the final SPARQL query that will be executed to return the
relevant responses.

4. Evaluation

The system was evaluated against test questions of the QALD-9 challenge [18]. We used
precision, recall, and F-measure metrics to measure the performance of the proposed system.
From 150 queries of the QALD-9 test, we identified 50 as complex queries representing the
compound queries and queries containing numbers, date comparisons, superlatives, and
comparatives adjectives. As described in Table 4, our system correctly answered 110 queries
among 150, for which 80 simple and 30 complex queries were analyzed correctly.

Table 4. QALD-9 test dataset results.

Queries Total Processed Correct Precision Recall F-Mesure

Simple 100 95 80 0.84 0.8 0.82
Complex 50 40 30 0.75 0.6 0.66

Total 150 135 110 0.81 0.73 0.76

The experimental results show that the proposed system had the best results compared
to the state-of-the-art precision, recall, and F-measure methods. Table 5 shows a comparison
of the performance of the proposed system and some existing systems.

Table 5. Comparison of the proposed system with existing systems.

System Challenge Precision Recall F-Mesure

FREyA [5] QALD-1 0.63 0.54 0.58
DEANNA [9] QALD-3 0.21 0.21 0.21
GAnswer [9] QALD-3 0.40 0.40 0.40

Casia [8] QALD-4 0.32 0.40 0.36
WDAqua [11] QALD-7 0.63 0.32 0.42

Proposed system QALD-9 0.81 0.73 0.76

Future Internet 2023, 15, 106 19 of 20

However, our system failed to parse some queries correctly. The following reasons
can explain these failures:

(1) The system fails to find the relations between the terms of some complex queries,
such as «show me hiking trails in the Grand Canyon where there is no danger of flash
floods». Therefore, this leads to misinterpretation of queries.

(2) The system cannot find matching entities of a given term. For example, the term
“grand-children” in the query «how many grand-children did Jacques Cousteau have»
has no matching entities. Thus, the system must learn this kind of term in another
way: uri1 child of uri2 and uri2 child of uri3.

(3) Finally, the system cannot express some NL queries using the SPARQL language, such
as the query «who became president after JFK died». It implies that we are limited by
formal language syntax, which can produce irrelevant answers.

5. Discussion

Most users are unfamiliar with formal query languages such as SPARQL, which
precisely describes their information needs in the form of queries. As a result, they may
prefer to express their intentions in simple languages such as NL queries. However, given
the specified representation of data in the dataset, existing query systems face a significant
challenge in understanding NL queries, particularly complex queries.

The primary goal of this paper is to present a new approach for querying Linked Data
with NL queries, particularly complex queries containing negation, numbers, superlatives,
and comparative adjectives. Our proposed system differs from others in that it focuses
on the semantic relations between NL query terms, which can be identified using the
representation of grammatical relations between words in a query. We use some proposed
rules to describe the particular triples, relations, and query restrictions.

Following that, we identify each term’s matching entities and use the existing link
between the different entities of the queried dataset to construct the query’s valid triples.
Finally, we generate the final SPARQL query that will be executed to return the appropriate
results. However, our system could not express some NL queries in SPARQL. This finding
suggests that the ambiguity of the NL queries and the syntax of the SPARQL language
impact the quality of answers and the performance of the proposed system.

6. Conclusions

Using natural language queries to query Linked Data provides novice users with a
simple and natural way to access multiple heterogeneous semantic sources and datasets.
However, the ambiguity causes significant issues when analyzing NL queries and translat-
ing them into SPARQL queries to return precise answers.

Numerous matching entities are returned, in particular, to interpret an ambiguous
word in the query. In this context, the disambiguation of a given word in the query
can influence the mapping of other words and the semantics of query. Furthermore, the
syntactic relations between these words do not always correspond to semantic relations in
queried datasets. As a result, mapping NL terms to semantic entities may result in multiple
interpretations of the meaning of an NL query, with some interpretations relevant and
others not relevant.

In this study, we propose to assist users in asking questions in NL using their termi-
nology and receiving relevant answers by querying Linked Data knowledge. To address
the issue of ambiguity in NL queries, we must consider the semantic relations between NL
query terms during the query interpretation process. We intend to improve our system in
the future to use other datasets and to handle more complex queries.

Author Contributions: Conceptualization, H.B. and Z.B.; methodology, H.B.; software, H.B.; valida-
tion, H.B.; writing—review and editing, H.B. and Z.B.; supervision, Z.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Future Internet 2023, 15, 106 20 of 20

Data Availability Statement: Not applicable, the study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data—The Story So Far. J. Semant. Web Inf. Syst. 2009, 5, 1–22. [CrossRef]
2. Linked Data. Available online: http://www.w3.org/DesignIssues/LinkedData.html (accessed on 18 June 2009).
3. SPARQL Query Language for RDF. Available online: http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ (accessed

on 26 March 2013).
4. Moussa, A.M.; Abdel-Kader, R.F. QASYO: A Question Answering System for YAGO Ontology. Int. J. Database Theory Appl. 2011,

4, 99–112.
5. Damljanovic, D.; Agatonovic, M.; Cunningham, H. FREyA: An Interactive Way of Querying Linked Data Using Natural Language.

In Proceedings of the 1st Workshop on Question Answering over Linked Data (ESWC 2011), Heraklion, Greece, 30 May 2011.
[CrossRef]

6. Yahya, M.; Berberich, K.; Elbassuoni, S.; Ramanath, M.; Tresp, V.; Weikum, G. Natural Language Questions for the Web of Data.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP CoNLL 2012), Jeju Island, Republic of Korea, 12–14 July 2012.

7. Marginean, A. GFMed: Question answering over biomedical linked data with grammatical framework. In Proceedings of the 1st
International Workshop on Natural Language Interfaces for Web of Data (NLI-WoD 2014) co-located with the 13th International
Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, 19–23 October 2014. [CrossRef]

8. Shizhu, H.; Yuanzhe, Z.; Liu, K.; Zhao, J. CASIA@V2: A MLN-based question answering system over linked data. In Proceedings
of the Working Notes for {CLEF} 2014 Conference (CLEF 2014), Sheffield, UK, 15–18 September 2014.

9. Zou, L.; Huang, R.; Wang, H.; Xu, Y.J.; He, W.; Zhao, D. Natural langauge question answering over RDF a graph data driven
approach. In Proceedings of the SIGMOD ’14:International Conference on Management of Data, New York, NY, USA, 22–27
June 2014. [CrossRef]

10. Xu, K.; Feng, Y.; Zhao, D. Xser@QALD-4: Answering natural language questions via phrasal semantic parsing. In Proceedings of
the Working Notes for {CLEF} 2014 Conference (CLEF 2014), Sheffield, UK, 15–18 September 2014. [CrossRef]

11. Diefenbach, D.; Deep Singh, K.; Maret, P. Wdaqua-core0: A question answering component for the research community. In
Proceedings of the SemWebEval 2017, Portoroz, Slovenia, 28 May–1 June 2017. [CrossRef]

12. Zheng, W.; Yu, J.X.; Zou, L.; Cheng, H. Question Answering Over Knowledge Graphs: Question Understanding Via Template
Decomposition. Proc. VLDB Endow. 2018, 11, 1373–1386. [CrossRef]

13. Kotnis, B.; Lawrence, C.; Niepert, M. Answering Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders. In
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Vancouver, BC, Canada, 2–9 February 2021.
[CrossRef]

14. Miller, G.A.; Beckwith, R.; Fellbaum, C.; Gross, D.; Miller, K. Introduction to WordNet: An on-line lexical database. Int. J. Lexicogr.
1990, 3, 235–244. [CrossRef]

15. Kittredge, R.I. Sublanguages. In The Oxford Handbook of Computational Linguistics; Mitkov, R., Ed.; Oxford University Press, Inc.:
New York, NY, USA, 2003; pp. 430–447. [CrossRef]

16. Manning, C.D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, R.S.; McClosky, D. The stanford corenlp natural language processing
toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), Stanford
University, Baltimore, MD, USA, 22–27 June 2014. [CrossRef]

17. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. Dbpedia: A nucleus for a web of open data in The semantic
web. In Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC
2007, Busan, Republic of Korea, 11–15 November 2007. [CrossRef]

18. Usbeck, R.; Gusmita, R.H.; Ngomo, A.N.; Saleem, M. 9th Challenge on Question Answering over Linked Data (QALD-9). In
Proceedings of the 4th Workshop on Semantic Deep Learning (SemDeep-4) and NLIWoD4: Natural Language Interfaces for the
Web of Data (NLIWOD-4) and 9th Question Answering over Linked Data Challenge (QALD-9) Co-Located with 17th International
Semantic Web Conference (ISWC 2018), Monterey, CA, USA, 8–9 October 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.4018/jswis.2009081901
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://doi.org/10.1007/978-3-642-25953-1_11
http://doi.org/10.3233/SW-160223
http://doi.org/10.1145/2588555.2610525
http://doi.org/10.1007/978-3-662-45924-9_30
http://doi.org/10.1007/978-3-319-69146-6_8
http://doi.org/10.14778/3236187.3236192
http://doi.org/10.48550/arXiv.2004.02596
http://doi.org/10.1093/ijl/3.4.235
http://doi.org/10.1093/OXFORDHB/9780199276349.013.0023
http://doi.org/10.3115/v1/P14-5010
http://doi.org/10.1007/978-3-540-76298-0_52

	Introduction
	Related Work
	Proposed System
	Interpreting the User’s NL Query
	Identifying the Query Class
	Identifying the Query Object
	Identifying the Query Body

	Mapping the NL Terms to Semantic Entities
	Grouping the Mapped Semantic Entities into Valid Triples
	Generating the SPARQL Query and Extracting the Answers

	Evaluation
	Discussion
	Conclusions
	References

